Search results for: trees recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2243

Search results for: trees recognition

1553 Restoring Ecosystem Balance in Arid Regions: A Case Study of a Royal Nature Reserve in the Kingdom of Saudi Arabia

Authors: Talal Alharigi, Kawther Alshlash, Mariska Weijerman

Abstract:

The government of Saudi Arabia has developed an ambitious “Vision 2030”, which includes a Green Initiative (i.e., the planting of 10 billion trees) and the establishment of seven Royal Reserves as protected areas that comprise 13% of the total land area. The main objective of the reserves is to restore ecosystem balance and reconnect people with nature. Two royal reserves are managed by The Imam Abdulaziz bin Mohammed Royal Reserve Development Authority, including Imam Abdulaziz bin Mohammed Royal Reserve and King Khalid Royal Reserve. The authority has developed a management plan to enhance the habitat through seed dispersal and the planting of 10 million trees, and to restock wildlife that was once abundant in these arid ecosystems (e.g., oryx, Nubian ibex, gazelles, red-necked ostrich). Expectations are that with the restoration of the native vegetation, soil condition and natural hydrologic processes will improve and lead to further enhancement of vegetation and, over time, an increase in biodiversity of flora and fauna. To evaluate the management strategies in reaching these expectations, a comprehensive monitoring and evaluation program was developed. The main objectives of this program are to (1) monitor the status and trends of indicator species, (2) improve desert ecosystem understanding, (3) assess the effects of human activities, and (4) provide science-based management recommendations. Using a random stratified survey design, a diverse suite of survey methods will be implemented, including belt and quadrant transects, camera traps, GPS tracking devices, and drones. Data will be gathered on biotic parameters (plant and animal diversity, density, and distribution) and abiotic parameters (humidity, temperature, precipitation, wind, air, soil quality, vibrations, and noise levels) to meet the goals of the monitoring program. This case study intends to provide a detailed overview of the management plan and monitoring program of two royal reserves and outlines the types of data gathered which can be made available for future research projects.

Keywords: camera traps, desert ecosystem, enhancement, GPS tracking, management evaluation, monitoring, planting, restocking, restoration

Procedia PDF Downloads 117
1552 The Application of AI in Developing Assistive Technologies for Non-Verbal Individuals with Autism

Authors: Ferah Tesfaye Admasu

Abstract:

Autism Spectrum Disorder (ASD) often presents significant communication challenges, particularly for non-verbal individuals who struggle to express their needs and emotions effectively. Assistive technologies (AT) have emerged as vital tools in enhancing communication abilities for this population. Recent advancements in artificial intelligence (AI) hold the potential to revolutionize the design and functionality of these technologies. This study explores the application of AI in developing intelligent, adaptive, and user-centered assistive technologies for non-verbal individuals with autism. Through a review of current AI-driven tools, including speech-generating devices, predictive text systems, and emotion-recognition software, this research investigates how AI can bridge communication gaps, improve engagement, and support independence. Machine learning algorithms, natural language processing (NLP), and facial recognition technologies are examined as core components in creating more personalized and responsive communication aids. The study also discusses the challenges and ethical considerations involved in deploying AI-based AT, such as data privacy and the risk of over-reliance on technology. Findings suggest that integrating AI into assistive technologies can significantly enhance the quality of life for non-verbal individuals with autism, providing them with greater opportunities for social interaction and participation in daily activities. However, continued research and development are needed to ensure these technologies are accessible, affordable, and culturally sensitive.

Keywords: artificial intelligence, autism spectrum disorder, non-verbal communication, assistive technology, machine learning

Procedia PDF Downloads 19
1551 Modified Active (MA) Algorithm to Generate Semantic Web Related Clustered Hierarchy for Keyword Search

Authors: G. Leena Giri, Archana Mathur, S. H. Manjula, K. R. Venugopal, L. M. Patnaik

Abstract:

Keyword search in XML documents is based on the notion of lowest common ancestors in the labelled trees model of XML documents and has recently gained a lot of research interest in the database community. In this paper, we propose the Modified Active (MA) algorithm which is an improvement over the active clustering algorithm by taking into consideration the entity aspect of the nodes to find the level of the node pertaining to a particular keyword input by the user. A portion of the bibliography database is used to experimentally evaluate the modified active algorithm and results show that it performs better than the active algorithm. Our modification improves the response time of the system and thereby increases the efficiency of the system.

Keywords: keyword matching patterns, MA algorithm, semantic search, knowledge management

Procedia PDF Downloads 413
1550 Antagonistic Potential of Epiphytic Bacteria Isolated in Kazakhstan against Erwinia amylovora, the Causal Agent of Fire Blight

Authors: Assel E. Molzhigitova, Amankeldi K. Sadanov, Elvira T. Ismailova, Kulyash A. Iskandarova, Olga N. Shemshura, Ainur I. Seitbattalova

Abstract:

Fire blight is a very harmful for commercial apple and pear production quarantine bacterial disease. To date, several different methods have been proposed for disease control, including the use of copperbased preparations and antibiotics, which are not always reliable or effective. The use of bacteria as biocontrol agents is one of the most promising and eco-friendly alternative methods. Bacteria with protective activity against the causal agent of fire blight are often present among the epiphytic microorganisms of the phyllosphere of host plants. Therefore, the main objective of our study was screening of local epiphytic bacteria as possible antagonists against Erwinia amylovora, the causal agent of fire blight. Samples of infected organs of apple and pear trees (shoots, leaves, fruits) were collected from the industrial horticulture areas in various agro-ecological zones of Kazakhstan. Epiphytic microorganisms were isolated by standard and modified methods on specific nutrient media. The primary screening of selected microorganisms under laboratory conditions to determine the ability to suppress the growth of Erwinia amylovora was performed by agar-diffusion-test. Among 142 bacteria isolated from the fire blight host plants, 5 isolates, belonging to the genera Bacillus, Lactobacillus, Pseudomonas, Paenibacillus and Pantoea showed higher antagonistic activity against the pathogen. The diameters of inhibition zone have been depended on the species and ranged from 10 mm to 48 mm. The maximum diameter of inhibition zone (48 mm) was exhibited by B. amyloliquefaciens. Less inhibitory effect was showed by Pantoea agglomerans PA1 (19 mm). The study of inhibitory effect of Lactobacillus species against E. amylovora showed that among 7 isolates tested only one (Lactobacillus plantarum 17M) demonstrated inhibitory zone (30 mm). In summary, this study was devoted to detect the beneficial epiphytic bacteria from plants organs of pear and apple trees due to fire blight control in Kazakhstan. Results obtained from the in vitro experiments showed that the most efficient bacterial isolates are Lactobacillus plantarum 17M, Bacillus amyloliquefaciens MB40, and Pantoea agglomerans PA1. These antagonists are suitable for development as biocontrol agents for fire blight control. Their efficacies will be evaluated additionally, in biological tests under in vitro and field conditions during our further study.

Keywords: antagonists, epiphytic bacteria, Erwinia amylovora, fire blight

Procedia PDF Downloads 166
1549 Ionophore-Based Materials for Selective Optical Sensing of Iron(III)

Authors: Natalia Lukasik, Ewa Wagner-Wysiecka

Abstract:

Development of selective, fast-responsive, and economical sensors for diverse ions detection and determination is one of the most extensively studied areas due to its importance in the field of clinical, environmental and industrial analysis. Among chemical sensors, vast popularity has gained ionophore-based optical sensors, where the generated analytical signal is a consequence of the molecular recognition of ion by the ionophore. Change of color occurring during host-guest interactions allows for quantitative analysis and for 'naked-eye' detection without the need of using sophisticated equipment. An example of application of such sensors is colorimetric detection of iron(III) cations. Iron as one of the most significant trace elements plays roles in many biochemical processes. For these reasons, the development of reliable, fast, and selective methods of iron ions determination is highly demanded. Taking all mentioned above into account a chromogenic amide derivative of 3,4-dihydroxybenzoic acid was synthesized, and its ability to iron(III) recognition was tested. To the best of authors knowledge (according to chemical abstracts) the obtained ligand has not been described in the literature so far. The catechol moiety was introduced to the ligand structure in order to mimic the action of naturally occurring siderophores-iron(III)-selective receptors. The ligand–ion interactions were studied using spectroscopic methods: UV-Vis spectrophotometry and infrared spectroscopy. The spectrophotometric measurements revealed that the amide exhibits affinity to iron(III) in dimethyl sulfoxide and fully aqueous solution, what is manifested by the change of color from yellow to green. Incorporation of the tested amide into a polymeric matrix (cellulose triacetate) ensured effective recognition of iron(III) at pH 3 with the detection limit 1.58×10⁻⁵ M. For the obtained sensor material parameters like linear response range, response time, selectivity, and possibility of regeneration were determined. In order to evaluate the effect of the size of the sensing material on iron(III) detection nanospheres (in the form of nanoemulsion) containing the tested amide were also prepared. According to DLS (dynamic light scattering) measurements, the size of the nanospheres is 308.02 ± 0.67 nm. Work parameters of the nanospheres were determined and compared with cellulose triacetate-based material. Additionally, for fast, qualitative experiments the test strips were prepared by adsorption of the amide solution on a glass microfiber material. Visual limit of detection of iron(III) at pH 3 by the test strips was estimated at the level 10⁻⁴ M. In conclusion, reported here amide derived from 3,4- dihydroxybenzoic acid proved to be an effective candidate for optical sensing of iron(III) in fully aqueous solutions. N. L. kindly acknowledges financial support from National Science Centre Poland the grant no. 2017/01/X/ST4/01680. Authors thank for financial support from Gdansk University of Technology grant no. 032406.

Keywords: ion-selective optode, iron(III) recognition, nanospheres, optical sensor

Procedia PDF Downloads 154
1548 Land Use, Land Cover Changes and Woody Vegetation Status of Tsimur Saint Gebriel Monastery, in Tigray Region, Northern Ethiopia

Authors: Abraha Hatsey, Nesibu Yahya, Abeje Eshete

Abstract:

Ethiopian Orthodox Tewahido Church has a long tradition of conserving the Church vegetation and is an area treated as a refugee camp for many endangered indigenous tree species in Northern Ethiopia. Though around 36,000 churches exist in Ethiopia, only a few churches have been studied so far. Thus, this study assessed the land use land cover change of 3km buffer (1986-2018) and the woody species diversity and regeneration status of Tsimur St. Gebriel monastery in Tigray region, Northern Ethiopia. For vegetation study, systematic sampling was used with 100m spacing between plots and between transects. Plot size was 20m*20m for the main plot and 2 subplots (5m*5m each) for the regeneration study. Tree height, diameter at breast height(DBH) and crown area were measured in the main plot for all trees with DBH ≥ 5cm. In the subplots, all seedlings and saplings were counted with DBH < 5cm. The data was analyzed on excel and Pass biodiversity software for diversity and evenness analysis. The major land cover classes identified include bare land, farmland, forest, shrubland and wetland. The extents of forest and shrubland were declined considerably due to bare land and agricultural land expansions within the 3km buffer, indicating an increasing pressure on the church forest. Regarding the vegetation status, A total of 19 species belonging to 13 families were recorded in the monastery. The diversity (H’) and evenness recorded were 2.4 and 0.5, respectively. The tree density (DBH ≥ 5cm) was 336/ha and a crown cover of 65%. Olea europaea was the dominant (6.4m2/ha out of 10.5m2 total basal area) and a frequent species (100%) with good regeneration in the monastery. The rest of the species are less frequent and are mostly confined to water sources with good site conditions. Juniperus procera (overharvested) and the other indigenous species were with few trees left and with no/very poor regeneration status. The species having poor density, frequency and regeneration (Junperus procera, Nuxia congesta Fersen and Jasminium abyssinica) need prior conservation and enrichment planting. The indigenous species could also serve as a potential seed source for the reproduction and restoration of nearby degraded landscapes. The buffer study also demonstrated expansion of agriculture and bare land, which could be a threat to the forest of the isolated monastery. Hence, restoring the buffer zone is the only guarantee for the healthy existence of the church forest.

Keywords: church forests, regeneration, land use change, vegetation status

Procedia PDF Downloads 205
1547 The Staphylococcus aureus Exotoxin Recognition Using Nanobiosensor Designed by an Antibody-Attached Nanosilica Method

Authors: Hamed Ahari, Behrouz Akbari Adreghani, Vadood Razavilar, Amirali Anvar, Sima Moradi, Hourieh Shalchi

Abstract:

Considering the ever increasing population and industrialization of the developmental trend of humankind's life, we are no longer able to detect the toxins produced in food products using the traditional techniques. This is due to the fact that the isolation time for food products is not cost-effective and even in most of the cases, the precision in the practical techniques like the bacterial cultivation and other techniques suffer from operator errors or the errors of the mixtures used. Hence with the advent of nanotechnology, the design of selective and smart sensors is one of the greatest industrial revelations of the quality control of food products that in few minutes time, and with a very high precision can identify the volume and toxicity of the bacteria. Methods and Materials: In this technique, based on the bacterial antibody connection to nanoparticle, a sensor was used. In this part of the research, as the basis for absorption for the recognition of bacterial toxin, medium sized silica nanoparticles of 10 nanometer in form of solid powder were utilized with Notrino brand. Then the suspension produced from agent-linked nanosilica which was connected to bacterial antibody was positioned near the samples of distilled water, which were contaminated with Staphylococcus aureus bacterial toxin with the density of 10-3, so that in case any toxin exists in the sample, a connection between toxin antigen and antibody would be formed. Finally, the light absorption related to the connection of antigen to the particle attached antibody was measured using spectrophotometry. The gene of 23S rRNA that is conserved in all Staphylococcus spp., also used as control. The accuracy of the test was monitored by using serial dilution (l0-6) of overnight cell culture of Staphylococcus spp., bacteria (OD600: 0.02 = 107 cell). It showed that the sensitivity of PCR is 10 bacteria per ml of cells within few hours. Result: The results indicate that the sensor detects up to 10-4 density. Additionally, the sensitivity of the sensors was examined after 60 days, the sensor by the 56 days had confirmatory results and started to decrease after those time periods. Conclusions: Comparing practical nano biosensory to conventional methods like that culture and biotechnology methods(such as polymerase chain reaction) is accuracy, sensitiveness and being unique. In the other way, they reduce the time from the hours to the 30 minutes.

Keywords: exotoxin, nanobiosensor, recognition, Staphylococcus aureus

Procedia PDF Downloads 385
1546 [Keynote Talk]: sEMG Interface Design for Locomotion Identification

Authors: Rohit Gupta, Ravinder Agarwal

Abstract:

Surface electromyographic (sEMG) signal has the potential to identify the human activities and intention. This potential is further exploited to control the artificial limbs using the sEMG signal from residual limbs of amputees. The paper deals with the development of multichannel cost efficient sEMG signal interface for research application, along with evaluation of proposed class dependent statistical approach of the feature selection method. The sEMG signal acquisition interface was developed using ADS1298 of Texas Instruments, which is a front-end interface integrated circuit for ECG application. Further, the sEMG signal is recorded from two lower limb muscles for three locomotions namely: Plane Walk (PW), Stair Ascending (SA), Stair Descending (SD). A class dependent statistical approach is proposed for feature selection and also its performance is compared with 12 preexisting feature vectors. To make the study more extensive, performance of five different types of classifiers are compared. The outcome of the current piece of work proves the suitability of the proposed feature selection algorithm for locomotion recognition, as compared to other existing feature vectors. The SVM Classifier is found as the outperformed classifier among compared classifiers with an average recognition accuracy of 97.40%. Feature vector selection emerges as the most dominant factor affecting the classification performance as it holds 51.51% of the total variance in classification accuracy. The results demonstrate the potentials of the developed sEMG signal acquisition interface along with the proposed feature selection algorithm.

Keywords: classifiers, feature selection, locomotion, sEMG

Procedia PDF Downloads 293
1545 Like a Bridge over Troubled Waters: The Value of Joint Learning Programs in Intergroup Identity-Based Conflict in Israel

Authors: Rachelly Ashwall, Ephraim Tabory

Abstract:

In an attempt to reduce the level of a major identity-based conflict in Israel between Ultra-orthodox and secular Jews, several initiatives in recent years have tried to bring members of the two societies together in facilitated joint discussion forums. Our study analyzes the impact of two types of such programs: joint mediation training classes and confrontation-based learning programs that are designed to facilitate discussions over controversial issues. These issues include claims about an unequal shouldering of national obligations such as military service, laws requiring public observance of the Sabbath, and discrimination against women, among others. The study examines the factors that enabled the two groups to reduce their social distance, and increase their understanding of each other, and develop a recognition and tolerance of the other group's particular social identity. The research conducted over a course of two years involved observations of the activities of the groups, interviews with the participants, and analysis of the social media used by the groups. The findings demonstrate the progression from a mutual initial lack of knowledge about habits, norms, and attitudes of the out-group to an increasing desire to know, understand and more readily accept the identity of a previously rejected outsider. Participants manifested more respect, concern for and even affection for those whose identity initially led them to reject them out of hand. We discuss the implications for seemingly intractable identity-based conflict in fragile societies.

Keywords: identity-based conflict, intergroup relations, joint mediation learning, out-group recognition, social identity

Procedia PDF Downloads 252
1544 Variation in Wood Anatomical Properties of Acacia seyal var. seyal Tree Species Growing in Different Zones in Sudan

Authors: Hanadi Mohamed Shawgi Gamal, Ashraf Mohamed Ahmed Abdalla

Abstract:

Sudan is endowed by a great diversity of tree species; nevertheless, the utilization of wood resources has traditionally concentrated on a few number of species. With the great variation in the climatic zones of Sudan, great variations are expected in the anatomical properties between and within species. This variation needs to be fully explored in order to suggest the best uses for the species. Modern research on wood has substantiated that the climatic condition where the species grow has significant effect on wood properties. Understanding the extent of variability of wood is important because the uses for each kind of wood are related to its characteristics; furthermore, the suitability or quality of wood for a particular purpose is determined by the variability of one or more of these characteristics. The present study demonstrates the effect of rainfall zones in some anatomical properties of Acacia seyal var. seyal growing in Sudan. For this purpose, twenty healthy trees were collected randomly from two zones (ten trees per zone). One zone with relatively low rainfall (273mm annually) which represented by North Kordofan state and White Nile state and the second with relatively high rainfall (701 mm annually) represented by Blue Nile state and South Kordofan state. From each sampled tree, a stem disc (3 cm thick) was cut at 10% from stem height. One radius was obtained in central stem dices. Two representative samples were taken from each disc, one at 10% distance from pith to bark, the second at 90% in order to represent the juvenile and mature wood. The investigated anatomical properties were fibers length, fibers and vessels diameter, lumen diameter, and wall thickness as well as cell proportions. The result of the current study reveals significant differences between zones in mature wood vessels diameter and wall thickness, as well as juvenile wood vessels, wall thickness. The higher values were detected in the drier zone. Significant differences were also observed in juvenile wood fiber length, diameter as well as wall thickness. Contrary to vessels diameter and wall thickness, the fiber length, diameter as well as wall thickness were decreased in the drier zone. No significant differences have been detected in cell proportions of juvenile and mature wood. The significant differences in some fiber and vessels dimension lead to expect significant differences in wood density. From these results, Acacia seyal var. seyal seems to be well adapted with the change in rainfall and may survive in any rainfall zone.

Keywords: Acacia seyal var. seyal, anatomical properties, rainfall zones, variation

Procedia PDF Downloads 148
1543 Issues of Accounting of Lease and Revenue according to International Financial Reporting Standards

Authors: Nadezhda Kvatashidze, Elena Kharabadze

Abstract:

It is broadly known that lease is a flexible means of funding enterprises. Lease reduces the risk related to access and possession of assets, as well as obtainment of funding. Therefore, it is important to refine lease accounting. The lease accounting regulations under the applicable standard (International Accounting Standards 17) make concealment of liabilities possible. As a result, the information users get inaccurate and incomprehensive information and have to resort to an additional assessment of the off-balance sheet lease liabilities. In order to address the problem, the International Financial Reporting Standards Board decided to change the approach to lease accounting. With the deficiencies of the applicable standard taken into account, the new standard (IFRS 16 ‘Leases’) aims at supplying appropriate and fair lease-related information to the users. Save certain exclusions; the lessee is obliged to recognize all the lease agreements in its financial report. The approach was determined by the fact that under the lease agreement, rights and obligations arise by way of assets and liabilities. Immediately upon conclusion of the lease agreement, the lessee takes an asset into its disposal and assumes the obligation to effect the lease-related payments in order to meet the recognition criteria defined by the Conceptual Framework for Financial Reporting. The payments are to be entered into the financial report. The new lease accounting standard secures supply of quality and comparable information to the financial information users. The International Accounting Standards Board and the US Financial Accounting Standards Board jointly developed IFRS 15: ‘Revenue from Contracts with Customers’. The standard allows the establishment of detailed revenue recognition practical criteria such as identification of the performance obligations in the contract, determination of the transaction price and its components, especially price variable considerations and other important components, as well as passage of control over the asset to the customer. IFRS 15: ‘Revenue from Contracts with Customers’ is very similar to the relevant US standards and includes requirements more specific and consistent than those of the standards in place. The new standard is going to change the recognition terms and techniques in the industries, such as construction, telecommunications (mobile and cable networks), licensing (media, science, franchising), real property, software etc.

Keywords: assessment of the lease assets and liabilities, contractual liability, division of contract, identification of contracts, contract price, lease identification, lease liabilities, off-balance sheet, transaction value

Procedia PDF Downloads 319
1542 Development of Allergenic and Melliferous Floral Pollen Spectrum Using Scanning Electron Microscopy

Authors: Mehwish Jamil Noor

Abstract:

Morphological features of pollen (sculpturing) were useful for identification of different floral taxa. In this study 49 pollen grains, types belonging to 25 families were studied using Scanning Electron Microscope. Shape and sculpturing of pollen ranging from Psilate, scabrate to reticulate, bireticulate and echinolophate. Honey pollen was identified using morphological features, number and arrangement of pore and colpi, size and shape. It presents the first attempt from Pakistan involving extraction of pollen from honey, its identification and taxonomic analysis. Among pollen studied diversity in shape and sculpturing has been observed ranging from Psilate, scabrate to reticulate to bireticulate and echinolophate condition. Pollen has been identified with the help of morphological feature, number and arrangement of pore and colpi, size and shape, reference slides, light microscopic data and previous literature have been consulted for pollen identification. Pollen of closely related species resemble each other therefore pollen identification of airborne and honey pollen is not possible till species level. Survey of flora was carried in parallel to keep the record about the allergenic and melliferous preference of specific sites through surveys and interviews. Their pollination season and geographical distribution were recorded. Two hundred and five including wild and cultivated taxa were identified belonging to sixty-seven families. Major bee attracting wild shrub and trees includes Justicia adhatoda, Acacia nilotica, Ziziphus jujuba, Taraxicum officinalis, Artemisia dubia, Casuarina sp., Ulmus sp., Broussonetia papyrifera, Cupressus sp. or Pinus roxburghii etc. Cultivated crops like Pennisetum typhoides, Nigella sativa, Triticum sativum along with fruit trees of Pyrus, Prunus, Eryobotria, Citrus etc. are popular melliferous floras. Exotic/ introduced species like Eucalyptus or Parthenium hysterophorus, are also frequently visited by bees indicating the significance of those plants in the honey industry. It is concluded that different microscopic analysis techniques give more clear and authentic pictures of and melliferous pollen identification which is well supported by the floral calendar. The diversity of pollen are observed in case of melliferous pollen, and most of the windborne pollen were found less sculptured or psilate expressing the adaptation to the specific mode of pollination. Pollen morphology and sculpturing would serve as a reference for future studies.

Keywords: pollen, allergenic flora, sem, pollen key, Scanning Electron Microscopy (SEM)

Procedia PDF Downloads 201
1541 An Efficient Aptamer-Based Biosensor Developed via Irreversible Pi-Pi Functionalisation of Graphene/Zinc Oxide Nanocomposite

Authors: Sze Shin Low, Michelle T. T. Tan, Poi Sim Khiew, Hwei-San Loh

Abstract:

An efficient graphene/zinc oxide (PSE-G/ZnO) platform based on pi-pi stacking, non-covalent interactions for the development of aptamer-based biosensor was presented in this study. As a proof of concept, the DNA recognition capability of the as-developed PSE-G/ZnO enhanced aptamer-based biosensor was evaluated using Coconut Cadang-cadang viroid disease (CCCVd). The G/ZnO nanocomposite was synthesised via a simple, green and efficient approach. The pristine graphene was produced through a single step exfoliation of graphite in sonochemical alcohol-water treatment while the zinc nitrate hexahydrate was mixed with the graphene and subjected to low temperature hydrothermal growth. The developed facile, environmental friendly method provided safer synthesis procedure by eliminating the need of harsh reducing chemicals and high temperature. The as-prepared nanocomposite was characterised by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) to evaluate its crystallinity, morphology and purity. Electrochemical impedance spectroscopy (EIS) was employed for the detection of CCCVd sequence with the use of potassium ferricyanide (K3[Fe(CN)6]). Recognition of the RNA analytes was achieved via the significant increase in resistivity for the double stranded DNA, as compared to single-stranded DNA. The PSE-G/ZnO enhanced aptamer-based biosensor exhibited higher sensitivity than the bare biosensor, attributing to the synergistic effect of high electrical conductivity of graphene and good electroactive property of ZnO.

Keywords: aptamer-based biosensor, graphene/zinc oxide nanocomposite, green synthesis, screen printed carbon electrode

Procedia PDF Downloads 369
1540 Risks in Forestry Operations, Analysis of Fatal Accidents

Authors: Rino Gubiani, Gianfranco Pergher

Abstract:

The work focused on the statistical analysis of accidents in the forestry sector (2000-2020) in Friuli-Venezia Giulia region, located in the North-East of Italy. The aim of the work was to analyse the evolution of the casualties throughout time and to evaluate possible improvements in the sector. It was shown that even nowadays the rate of accidents in forestry work is higher compared with all the other sectors, including agriculture; moreover, it was highlighted that some accidents remained present throughout the whole analysed range, such as slipping on the soil, being hit by trees and falling down from the plants. The results showed that an increase in forestry exploitation could even increase the total number of accidents, if advanced technological machines, such as cable cranes, would not implemented, given the fact that there is also a significant number of old people (above 50 years old) working in the sector.

Keywords: safety, forestry work, accidents, risk analysis, casualties, statistical analysis

Procedia PDF Downloads 131
1539 Image Recognition Performance Benchmarking for Edge Computing Using Small Visual Processing Unit

Authors: Kasidis Chomrat, Nopasit Chakpitak, Anukul Tamprasirt, Annop Thananchana

Abstract:

Internet of Things devices or IoT and Edge Computing has become one of the biggest things happening in innovations and one of the most discussed of the potential to improve and disrupt traditional business and industry alike. With rises of new hang cliff challenges like COVID-19 pandemic that posed a danger to workforce and business process of the system. Along with drastically changing landscape in business that left ruined aftermath of global COVID-19 pandemic, looming with the threat of global energy crisis, global warming, more heating global politic that posed a threat to become new Cold War. How emerging technology like edge computing and usage of specialized design visual processing units will be great opportunities for business. The literature reviewed on how the internet of things and disruptive wave will affect business, which explains is how all these new events is an effect on the current business and how would the business need to be adapting to change in the market and world, and example test benchmarking for consumer marketed of newer devices like the internet of things devices equipped with new edge computing devices will be increase efficiency and reducing posing a risk from a current and looming crisis. Throughout the whole paper, we will explain the technologies that lead the present technologies and the current situation why these technologies will be innovations that change the traditional practice through brief introductions to the technologies such as cloud computing, edge computing, Internet of Things and how it will be leading into future.

Keywords: internet of things, edge computing, machine learning, pattern recognition, image classification

Procedia PDF Downloads 155
1538 Statistical Feature Extraction Method for Wood Species Recognition System

Authors: Mohd Iz'aan Paiz Bin Zamri, Anis Salwa Mohd Khairuddin, Norrima Mokhtar, Rubiyah Yusof

Abstract:

Effective statistical feature extraction and classification are important in image-based automatic inspection and analysis. An automatic wood species recognition system is designed to perform wood inspection at custom checkpoints to avoid mislabeling of timber which will results to loss of income to the timber industry. The system focuses on analyzing the statistical pores properties of the wood images. This paper proposed a fuzzy-based feature extractor which mimics the experts’ knowledge on wood texture to extract the properties of pores distribution from the wood surface texture. The proposed feature extractor consists of two steps namely pores extraction and fuzzy pores management. The total number of statistical features extracted from each wood image is 38 features. Then, a backpropagation neural network is used to classify the wood species based on the statistical features. A comprehensive set of experiments on a database composed of 5200 macroscopic images from 52 tropical wood species was used to evaluate the performance of the proposed feature extractor. The advantage of the proposed feature extraction technique is that it mimics the experts’ interpretation on wood texture which allows human involvement when analyzing the wood texture. Experimental results show the efficiency of the proposed method.

Keywords: classification, feature extraction, fuzzy, inspection system, image analysis, macroscopic images

Procedia PDF Downloads 425
1537 Supernatural Beliefs Impact Pattern Perception

Authors: Silvia Boschetti, Jakub Binter, Robin Kopecký, Lenka PříPlatová, Jaroslav Flegr

Abstract:

A strict dichotomy was present between religion and science, but recently, cognitive science focusses on the impact of supernatural beliefs on cognitive processes such as pattern recognition. It has been hypothesized that cognitive and perceptual processes have been under evolutionary pressures that ensured amplified perception of patterns, especially when in stressful and harsh conditions. The pattern detection in religious and non-religious individuals after induction of negative, anxious mood shall constitute a cornerstone of the general role of anxiety, cognitive bias, leading towards or against the by-product hypothesis, one of the main theories on the evolutionary studies of religion. The apophenia (tendencies to perceive connection and meaning on unrelated events) and perception of visual patterns (or pateidolia) are of utmost interest. To capture the impact of culture and upbringing, a comparative study of two European countries, the Czech Republic (low organized religion participation, high esoteric belief) and Italy (high organized religion participation, low esoteric belief), are currently in the data collection phase. Outcomes will be presented at the conference. A battery of standardized questionnaires followed by pattern recognition tasks (the patterns involve color, shape, and are of artificial and natural origin) using an experimental method involving the conditioning of (controlled, laboratory-induced) stress is taking place. We hypothesize to find a difference between organized religious belief and personal (esoteric) belief that will be alike in both of the cultural environments.

Keywords: culture, esoteric belief, pattern perception, religiosity

Procedia PDF Downloads 185
1536 Normalized Laplacian Eigenvalues of Graphs

Authors: Shaowei Sun

Abstract:

Let G be a graph with vertex set V(G)={v_1,v_2,...,v_n} and edge set E(G). For any vertex v belong to V(G), let d_v denote the degree of v. The normalized Laplacian matrix of the graph G is the matrix where the non-diagonal (i,j)-th entry is -1/(d_id_j) when vertex i is adjacent to vertex j and 0 when they are not adjacent, and the diagonal (i,i)-th entry is the di. In this paper, we discuss some bounds on the largest and the second smallest normalized Laplacian eigenvalue of trees and graphs. As following, we found some new bounds on the second smallest normalized Laplacian eigenvalue of tree T in terms of graph parameters. Moreover, we use Sage to give some conjectures on the second largest and the third smallest normalized eigenvalues of graph.

Keywords: graph, normalized Laplacian eigenvalues, normalized Laplacian matrix, tree

Procedia PDF Downloads 328
1535 The Comparison of Bird’s Population between Naturally Regenerated Acacia Forest with Adjacent Secondary Indigenous Forest in Universiti Malaysia Sabah

Authors: Jephte Sompud, Emily A. Gilbert, Andy Russel Mojiol, Cynthia B. Sompud, Alim Biun

Abstract:

Naturally regenerated acacia forest and secondary indigenous forest forms some of the urban forests in Sabah. Naturally regenerated acacia trees are usually seen along the road that exists as forest islands. Acacia tree is not an indigenous tree species in Sabah that was introduced in the 1960’s as fire breakers that eventually became one of the preferred trees for forest plantation for paper and pulp production. Due to its adaptability to survive even in impoverished soils and poor-irrigated land, this species has rapidly spread throughout Sabah through natural regeneration. Currently, there is a lack of study to investigate the bird population in the naturally regenerated acacia forest. This study is important because it shed some light on the role of naturally regenerated acacia forest on bird’s population, as bird is known to be a good bioindicator forest health. The aim of this study was to document the bird’s population in naturally regenerated acacia forest with that adjacent secondary indigenous forest. The study site for this study was at Universiti Malaysia Sabah (UMS) Campus. Two forest types in the campus were chosen as a study site, of which were naturally regenerated Acacia Forest and adjacent secondary indigenous forest, located at the UMS Hill. A total of 21 sampling days were conducted in each of the forest types. The method used during this study was solely mist nets with three pockets. Whenever a bird is caught, it is extracted from the net to be identified and measurements were recorded in a standard data sheet. Mist netting was conducted from 6 morning until 5 evening. This study was conducted between February to August 2014. Birds that were caught were ring banded to initiate a long-term study on the understory bird’s population in the Campus The data was analyzed using descriptive analysis, diversity indices, and t-test. The bird population diversity at naturally regenerated Acacia forest with those at the secondary indigenous forest was calculated using two common indices, of which were Shannon-Wiener and Simpson diversity index. There were 18 families with 33 species that were recorded from both sites. The number of species recorded at the naturally regenerated acacia forest was 26 species while at the secondary indigenous forest were 19 species. The Shannon diversity index for Naturally Regenerated Acacia Forest and secondary indigenous forests were 2.87 and 2.46. The results show that there was very significantly higher species diversity at the Naturally Regenerated Acacia Forest as opposed to the secondary indigenous forest (p<0.001). This suggests that Naturally Regenerated Acacia forest plays an important role in urban bird conservation. It is recommended that Naturally Regenerated Acacia Forests should be considered as an established urban forest conservation area as they do play a role in biodiversity conservation. More future studies in Naturally Regenerated Acacia Forest should be encouraged to determine the status and value of biodiversity conservation of this ecosystem.

Keywords: naturally regenerated acacia forest, bird population diversity, Universiti Malaysia Sabah, biodiversity conservation

Procedia PDF Downloads 427
1534 Tongue Image Retrieval Based Using Machine Learning

Authors: Ahmad FAROOQ, Xinfeng Zhang, Fahad Sabah, Raheem Sarwar

Abstract:

In Traditional Chinese Medicine, tongue diagnosis is a vital inspection tool (TCM). In this study, we explore the potential of machine learning in tongue diagnosis. It begins with the cataloguing of the various classifications and characteristics of the human tongue. We infer 24 kinds of tongues from the material and coating of the tongue, and we identify 21 attributes of the tongue. The next step is to apply machine learning methods to the tongue dataset. We use the Weka machine learning platform to conduct the experiment for performance analysis. The 457 instances of the tongue dataset are used to test the performance of five different machine learning methods, including SVM, Random Forests, Decision Trees, and Naive Bayes. Based on accuracy and Area under the ROC Curve, the Support Vector Machine algorithm was shown to be the most effective for tongue diagnosis (AUC).

Keywords: medical imaging, image retrieval, machine learning, tongue

Procedia PDF Downloads 81
1533 GPS Refinement in Cities Using Statistical Approach

Authors: Ashwani Kumar

Abstract:

GPS plays an important role in everyday life for safe and convenient transportation. While pedestrians use hand held devices to know their position in a city, vehicles in intelligent transport systems use relatively sophisticated GPS receivers for estimating their current position. However, in urban areas where the GPS satellites are occluded by tall buildings, trees and reflections of GPS signals from nearby vehicles, GPS position estimation becomes poor. In this work, an exhaustive GPS data is collected at a single point in urban area under different times of day and under dynamic environmental conditions. The data is analyzed and statistical refinement methods are used to obtain optimal position estimate among all the measured positions. The results obtained are compared with publically available datasets and obtained position estimation refinement results are promising.

Keywords: global positioning system, statistical approach, intelligent transport systems, least squares estimation

Procedia PDF Downloads 288
1532 Omni-Modeler: Dynamic Learning for Pedestrian Redetection

Authors: Michael Karnes, Alper Yilmaz

Abstract:

This paper presents the application of the omni-modeler towards pedestrian redetection. The pedestrian redetection task creates several challenges when applying deep neural networks (DNN) due to the variety of pedestrian appearance with camera position, the variety of environmental conditions, and the specificity required to recognize one pedestrian from another. DNNs require significant training sets and are not easily adapted for changes in class appearances or changes in the set of classes held in its knowledge domain. Pedestrian redetection requires an algorithm that can actively manage its knowledge domain as individuals move in and out of the scene, as well as learn individual appearances from a few frames of a video. The Omni-Modeler is a dynamically learning few-shot visual recognition algorithm developed for tasks with limited training data availability. The Omni-Modeler adapts the knowledge domain of pre-trained deep neural networks to novel concepts with a calculated localized language encoder. The Omni-Modeler knowledge domain is generated by creating a dynamic dictionary of concept definitions, which are directly updatable as new information becomes available. Query images are identified through nearest neighbor comparison to the learned object definitions. The study presented in this paper evaluates its performance in re-identifying individuals as they move through a scene in both single-camera and multi-camera tracking applications. The results demonstrate that the Omni-Modeler shows potential for across-camera view pedestrian redetection and is highly effective for single-camera redetection with a 93% accuracy across 30 individuals using 64 example images for each individual.

Keywords: dynamic learning, few-shot learning, pedestrian redetection, visual recognition

Procedia PDF Downloads 76
1531 Recognition of Arrest Patients and Application of Basic Life Support by Bystanders in the Field

Authors: Behcet Al, Mehmet Murat Oktay, Suat Zengin, Mustafa Sabak, Cuma Yildirim

Abstract:

Objective: Th Recognition of arrest patients and application of basic life support (BLS) by bystanders in the field and the activation of emergency serves were evaluated in present study. Methodology: The present study was carried out by Emergency Department of Medicine Faculty of Gaziantep University at 33 of Emergency Health center in Gaziantep between December 2012- April 2014 prospectively. Of 539 arrested patients, 171 patients were included in study. Results: 118 (69%) male, and 53 31(%) female with a totlay of 171 patients were included in this study. Of patients, 32.2% had syncope and 24% had shorth breathing just befor being arrested. The majority of arrest cases had occured at home (61.4%) and rural area (11.7%) respectively. Of asking help, %48.5 were constructed by family members. Of announcement, only 15.2% occured within first minute of arrest. The BLS ratio that was applied by bystanders was 22.2%. Of bystanders, 47.4% had a course experience of BLS. The emergency serve had reached to the field with a mean of 8.43 min. Of cases, 55% (n=94) were evaluated as exitus firstly bu emergency staff. The most noticed rythim was asystol (73.1%). BLS and advanced life support (ALS) were applied to 98.8% and 60% respectively at the field. 10.5% (n=18) of cases were defibrilated, and 45 (26.3%) were intubated endotrecealy. The majority (48.5%) of staff who applied BLS and ALS at the fied were emergency medicine technicians. CPR was performed to 86.5% (n=148) cases in ambulance while they were transported. The mean arrival time to mergency department was 9.13 min. When the patients arrived to ED 15.2% needed defirlitation. 91.2% (n =156) of patients resulted in exitus in ED. 15 (8.8%) patients were discharged (9 with recovery, six patients with damage). Conclusion: The ratio of inntervention for arrest patients by bystanders is still low. To optain a high percentage of survival, BLS training should be widened among the puplic especiallyamong the caregivers.

Keywords: arrest patients, cardiopulmonary resuscitation, bystanders, chest compressions, prehospital

Procedia PDF Downloads 389
1530 Improvement of Microscopic Detection of Acid-Fast Bacilli for Tuberculosis by Artificial Intelligence-Assisted Microscopic Platform and Medical Image Recognition System

Authors: Hsiao-Chuan Huang, King-Lung Kuo, Mei-Hsin Lo, Hsiao-Yun Chou, Yusen Lin

Abstract:

The most robust and economical method for laboratory diagnosis of TB is to identify mycobacterial bacilli (AFB) under acid-fast staining despite its disadvantages of low sensitivity and labor-intensive. Though digital pathology becomes popular in medicine, an automated microscopic system for microbiology is still not available. A new AI-assisted automated microscopic system, consisting of a microscopic scanner and recognition program powered by big data and deep learning, may significantly increase the sensitivity of TB smear microscopy. Thus, the objective is to evaluate such an automatic system for the identification of AFB. A total of 5,930 smears was enrolled for this study. An intelligent microscope system (TB-Scan, Wellgen Medical, Taiwan) was used for microscopic image scanning and AFB detection. 272 AFB smears were used for transfer learning to increase the accuracy. Referee medical technicians were used as Gold Standard for result discrepancy. Results showed that, under a total of 1726 AFB smears, the automated system's accuracy, sensitivity and specificity were 95.6% (1,650/1,726), 87.7% (57/65), and 95.9% (1,593/1,661), respectively. Compared to culture, the sensitivity for human technicians was only 33.8% (38/142); however, the automated system can achieve 74.6% (106/142), which is significantly higher than human technicians, and this is the first of such an automated microscope system for TB smear testing in a controlled trial. This automated system could achieve higher TB smear sensitivity and laboratory efficiency and may complement molecular methods (eg. GeneXpert) to reduce the total cost for TB control. Furthermore, such an automated system is capable of remote access by the internet and can be deployed in the area with limited medical resources.

Keywords: TB smears, automated microscope, artificial intelligence, medical imaging

Procedia PDF Downloads 229
1529 The Significance of Islamic Concept of Good Faith to Cure Flaws in Public International Law

Authors: M. A. H. Barry

Abstract:

The concept of Good faith (husn al-niyyah) and fair-dealing (Nadl) are the fundamental guiding elements in all contracts and other agreements under Islamic law. The preaching of Al-Quran and Prophet Muhammad’s (Peace Be upon Him) firmly command people to act in good faith in all dealings. There are several Quran verses and the Prophet’s saying which stressed the significance of dealing honestly and fairly in all transactions. Under the English law, the good faith is not considered a fundamental requirement for the formation of a legal contract. However, the concept of Good Faith in private contracts is recognized by the civil law system and in Article 7(1) of the Convention on International Sale of Goods (CISG-Vienna Convention-1980). It took several centuries for the international trading community to recognize the significance of the concept of good faith for the international sale of goods transactions. Nevertheless, the recognition of good faith in Civil law is only confined for the commercial contracts. Subsequently to the CISG, this concept has made inroads into the private international law. There are submissions in favour of applying the good faith concept to public international law based on tacit recognition by the international conventions and International Tribunals. However, under public international law the concept of good faith is not recognized as a source of rights or obligations. This weakens the spirit of the good faith concept, particularly when determining the international disputes. This also creates a fundamental flaw because the absence of good faith application means the breaches tainted by bad faith are tolerated. The objective of this research is to evaluate, examine and analyze the application of the concept of good faith in the modern laws and identify its limitation, in comparison with Islamic concept of good faith. This paper also identifies the problems and issues connected with the non-application of this concept to public international law. This research consists of three key components (1) the preliminary inquiry (2) subject analysis and discovery of research results, and (3) examining the challenging problems, and concluding with proposals. The preliminary inquiry is based on both the primary and secondary sources. The same sources are used for the subject analysis. This research also has both inductive and deductive features. The Islamic concept of good faith covers all situations and circumstances where the bad faith causes unfairness to the affected parties, especially the weak parties. Under the Islamic law, the concept of good faith is a source of rights and obligations as Islam prohibits any person committing wrongful or delinquent acts in any dealing whether in a private or public life. This rule is applicable not only for individuals but also for institutions, states, and international organizations. This paper explains how the unfairness is caused by non-recognition of the good faith concept as a source of rights or obligations under public international law and provides legal and non-legal reasons to show why the Islamic formulation is important.

Keywords: good faith, the civil law system, the Islamic concept, public international law

Procedia PDF Downloads 147
1528 Protective Effect of the Histamine H3 Receptor Antagonist DL77 in Behavioral Cognitive Deficits Associated with Schizophrenia

Authors: B. Sadek, N. Khan, D. Łażewska, K. Kieć-Kononowicz

Abstract:

The effects of the non-imidazole histamine H3 receptor (H3R) antagonist DL77 in passive avoidance paradigm (PAP) and novel object recognition (NOR) task in MK801-induced cognitive deficits associated with schizophrenia (CDS) in adult male rats, and applying donepezil (DOZ) as a reference drug were investigated. The results show that acute systemic administration of DL77 (2.5, 5, and 10 mg/kg, i.p.) significantly improved MK801-induced (0.1 mg/kg, i.p.) memory deficits in PAP. The ameliorating activity of DL77 (5 mg/kg, i.p.) in MK801-induced deficits was partly reversed when rats were pretreated with the centrally-acting H2R antagonist zolantidine (ZOL, 10 mg/kg, i.p.) or with the antimuscarinic antagonist scopolamine (SCO, 0.1 mg/kg, i.p.), but not with the CNS penetrant H1R antagonist pyrilamine (PYR, 10 mg/kg, i.p.). Moreover, the memory enhancing effect of DL77 (5 mg/kg, i.p.) in MK801-induced memory deficits in PAP was strongly reversed when rats were pretreated with a combination of ZOL (10 mg/kg, i.p.) and SCO (1.0 mg/kg, i.p.). Furthermore, the significant ameliorative effect of DL77 (5 mg/kg, i.p.) on MK801-induced long-term memory (LTM) impairment in NOR test was comparable to the DOZ-provided memory-enhancing effect, and was abrogated when animals were pretreated with the histamine H3R agonist R-(α)-methylhistamine (RAMH, 10 mg/kg, i.p.). However, DL77(5 mg/kg, i.p.) failed to provide procognitive effect on MK801-induced short-term memory (STM) impairment in NOR test. In addition, DL77 (5 mg/kg) did not alter anxiety levels and locomotor activity of animals naive to elevated-plus maze (EPM), demonstrating that improved performances with DL77 (5 mg/kg) in PAP or NOR are unrelated to changes in emotional responding or spontaneous locomotor activity. These results provide evidence for the potential of H3Rs for the treatment of neurodegenerative disorders related to impaired memory function, e.g. CDS.

Keywords: histamine H3 receptor, antagonist, learning, memory impairment, passive avoidance paradigm, novel object recognition

Procedia PDF Downloads 203
1527 The Application of a Neural Network in the Reworking of Accu-Chek to Wrist Bands to Monitor Blood Glucose in the Human Body

Authors: J. K Adedeji, O. H Olowomofe, C. O Alo, S.T Ijatuyi

Abstract:

The issue of high blood sugar level, the effects of which might end up as diabetes mellitus, is now becoming a rampant cardiovascular disorder in our community. In recent times, a lack of awareness among most people makes this disease a silent killer. The situation calls for urgency, hence the need to design a device that serves as a monitoring tool such as a wrist watch to give an alert of the danger a head of time to those living with high blood glucose, as well as to introduce a mechanism for checks and balances. The neural network architecture assumed 8-15-10 configuration with eight neurons at the input stage including a bias, 15 neurons at the hidden layer at the processing stage, and 10 neurons at the output stage indicating likely symptoms cases. The inputs are formed using the exclusive OR (XOR), with the expectation of getting an XOR output as the threshold value for diabetic symptom cases. The neural algorithm is coded in Java language with 1000 epoch runs to bring the errors into the barest minimum. The internal circuitry of the device comprises the compatible hardware requirement that matches the nature of each of the input neurons. The light emitting diodes (LED) of red, green, and yellow colors are used as the output for the neural network to show pattern recognition for severe cases, pre-hypertensive cases and normal without the traces of diabetes mellitus. The research concluded that neural network is an efficient Accu-Chek design tool for the proper monitoring of high glucose levels than the conventional methods of carrying out blood test.

Keywords: Accu-Check, diabetes, neural network, pattern recognition

Procedia PDF Downloads 146
1526 3D Human Face Reconstruction in Unstable Conditions

Authors: Xiaoyuan Suo

Abstract:

3D object reconstruction is a broad research area within the computer vision field involving many stages and still open problems. One of the existing challenges in this field lies with micromotion, such as the facial expressions on the appearance of the human or animal face. Similar literatures in this field focuses on 3D reconstruction in stable conditions such as an existing image or photos taken in a rather static environment, while the purpose of this work is to discuss a flexible scan system using multiple cameras that can correctly reconstruct 3D stable and moving objects -- human face with expression in particular. Further, a mathematical model is proposed at the end of this literature to automate the 3D object reconstruction process. The reconstruction process takes several stages. Firstly, a set of simple 2D lines would be projected onto the object and hence a set of uneven curvy lines can be obtained, which represents the 3D numerical data of the surface. The lines and their shapes will help to identify object’s 3D construction in pixels. With the two-recorded angles and their distance from the camera, a simple mathematical calculation would give the resulting coordinate of each projected line in an absolute 3D space. This proposed research will benefit many practical areas, including but not limited to biometric identification, authentications, cybersecurity, preservation of cultural heritage, drama acting especially those with rapid and complex facial gestures, and many others. Specifically, this will (I) provide a brief survey of comparable techniques existing in this field. (II) discuss a set of specialized methodologies or algorithms for effective reconstruction of 3D objects. (III)implement, and testing the developed methodologies. (IV) verify findings with data collected from experiments. (V) conclude with lessons learned and final thoughts.

Keywords: 3D photogrammetry, 3D object reconstruction, facial expression recognition, facial recognition

Procedia PDF Downloads 150
1525 Urban Park Characteristics Defining Avian Community Structure

Authors: Deepti Kumari, Upamanyu Hore

Abstract:

Cities are an example of a human-modified environment with few fragments of urban green spaces, which are widely considered for urban biodiversity. The study aims to address the avifaunal diversity in urban parks based on the park size and their urbanization intensity. Also, understanding the key factors affecting species composition and structure as birds are a good indicator of a healthy ecosystem, and they are sensitive to changes in the environment. A 50 m-long line-transect method is used to survey birds in 39 urban parks in Delhi, India. Habitat variables, including vegetation (percentage of non-native trees, percentage of native trees, top canopy cover, sub-canopy cover, diameter at breast height, ground vegetation cover, shrub height) were measured using the quadrat method along the transect, and disturbance variables (distance from water, distance from road, distance from settlement, park area, visitor rate, and urbanization intensity) were measured using ArcGIS and google earth. We analyzed species data for diversity and richness. We explored the relation of species diversity and richness to habitat variables using the multi-model inference approach. Diversity and richness are found significant in different park sizes and their urbanization intensity. Medium size park supports more diversity, whereas large size park has more richness. However, diversity and richness both declined with increasing urbanization intensity. The result of CCA revealed that species composition in urban parks was positively associated with tree diameter at breast height and distance from the settlement. On the model selection approach, disturbance variables, especially distance from road, urbanization intensity, and visitors are the best predictors for the species richness of birds in urban parks. In comparison, multiple regression analysis between habitat variables and bird diversity suggested that native tree species in the park may explain the diversity pattern of birds in urban parks. Feeding guilds such as insectivores, omnivores, carnivores, granivores, and frugivores showed a significant relation with vegetation variables, while carnivores and scavenger bird species mainly responded with disturbance variables. The study highlights the importance of park size in urban areas and their urbanization intensity. It also indicates that distance from the settlement, distance from the road, urbanization intensity, visitors, diameter at breast height, and native tree species can be important determining factors for bird richness and diversity in urban parks. The study also concludes that the response of feeding guilds to vegetation and disturbance in urban parks varies. Therefore, we recommend that park size and surrounding urban matrix should be considered in order to increase bird diversity and richness in urban areas for designing and planning.

Keywords: diversity, feeding guild, urban park, urbanization intensity

Procedia PDF Downloads 120
1524 Faster Pedestrian Recognition Using Deformable Part Models

Authors: Alessandro Preziosi, Antonio Prioletti, Luca Castangia

Abstract:

Deformable part models achieve high precision in pedestrian recognition, but all publicly available implementations are too slow for real-time applications. We implemented a deformable part model algorithm fast enough for real-time use by exploiting information about the camera position and orientation. This implementation is both faster and more precise than alternative DPM implementations. These results are obtained by computing convolutions in the frequency domain and using lookup tables to speed up feature computation. This approach is almost an order of magnitude faster than the reference DPM implementation, with no loss in precision. Knowing the position of the camera with respect to horizon it is also possible prune many hypotheses based on their size and location. The range of acceptable sizes and positions is set by looking at the statistical distribution of bounding boxes in labelled images. With this approach it is not needed to compute the entire feature pyramid: for example higher resolution features are only needed near the horizon. This results in an increase in mean average precision of 5% and an increase in speed by a factor of two. Furthermore, to reduce misdetections involving small pedestrians near the horizon, input images are supersampled near the horizon. Supersampling the image at 1.5 times the original scale, results in an increase in precision of about 4%. The implementation was tested against the public KITTI dataset, obtaining an 8% improvement in mean average precision over the best performing DPM-based method. By allowing for a small loss in precision computational time can be easily brought down to our target of 100ms per image, reaching a solution that is faster and still more precise than all publicly available DPM implementations.

Keywords: autonomous vehicles, deformable part model, dpm, pedestrian detection, real time

Procedia PDF Downloads 280