Search results for: ontology validation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1557

Search results for: ontology validation

867 Solar Energy Generation Based Urban Development: A Case of Jodhpur City

Authors: A. Kumar, V. Devadas

Abstract:

India has the most year-round favorable sunny conditions along with the second-highest solar irradiation in the world, the country holds the potential to become the global solar hub. The solar and wind-based generation capacity has skyrocketed in India with the successful effort of the Ministry of Renewable Energy, whereas the potential of rooftop based solar power generation has yet to be explored for proposed solar cities in India. The research aims to analyze the gap in the energy scenario in Jodhpur City and proposes interventions of solar energy generation systems as a catalyst for urban development. The research is based on the system concept which deals with simulation between the city system as a whole and its interactions between different subsystems. A system-dynamics based mathematical model is developed by identifying the control parameters using regression and correlation analysis to assess the gap in energy sector. The base model validation is done using the past 10 years timeline data collected from secondary sources. Further, energy consumption and solar energy generation-based projection are made for testing different scenarios to conclude the feasibility for maintaining the city level energy independence till 2031.

Keywords: city, consumption, energy, generation

Procedia PDF Downloads 129
866 Performance Analysis of Compression Socks Strips

Authors: Hafiz Faisal Siddique, Adnan Ahmed Mazari, Antonin Havelka

Abstract:

Compression socks are highly recommended textile garment for pressure exertion on the lower part of leg. The extent of compression that a patient can easily manage depends on stage (limb size and shape) of venous disease and his activities (mobility, age). Due to dynamic mechanical influence, the socks destroy their extent of pressure exertion around the leg. The main aim of this research is to investigate how the performance of compression socks is deteriorated due to expected induced wearing mechanical impacts. Wearing mechanical impacts influence the durability parameter i.e. tensile energy loss. For tensile energy loss, cut-strip samples were interacted to constant rate of loading and un-loading, cyclic-loading upto 15th cycles for ±5mm extension (considering muscles expansion and relaxation) and were dwelled (stayed) for 3 minutes at 25%, 50% and 75% extension levels, simultaneously. Statistical validation of tensile energy loss was performed by introducing measures of correlation, p-value (≤ 0.05), R-square values using MINITAB 17 software.

Keywords: compression socks, loading and unloading, 15th cyclic loading, Dwell time effect

Procedia PDF Downloads 160
865 Image Encryption Using Eureqa to Generate an Automated Mathematical Key

Authors: Halima Adel Halim Shnishah, David Mulvaney

Abstract:

Applying traditional symmetric cryptography algorithms while computing encryption and decryption provides immunity to secret keys against different attacks. One of the popular techniques generating automated secret keys is evolutionary computing by using Eureqa API tool, which got attention in 2013. In this paper, we are generating automated secret keys for image encryption and decryption using Eureqa API (tool which is used in evolutionary computing technique). Eureqa API models pseudo-random input data obtained from a suitable source to generate secret keys. The validation of generated secret keys is investigated by performing various statistical tests (histogram, chi-square, correlation of two adjacent pixels, correlation between original and encrypted images, entropy and key sensitivity). Experimental results obtained from methods including histogram analysis, correlation coefficient, entropy and key sensitivity, show that the proposed image encryption algorithms are secure and reliable, with the potential to be adapted for secure image communication applications.

Keywords: image encryption algorithms, Eureqa, statistical measurements, automated key generation

Procedia PDF Downloads 483
864 A Comparative Analysis on QRS Peak Detection Using BIOPAC and MATLAB Software

Authors: Chandra Mukherjee

Abstract:

The present paper is a representation of the work done in the field of ECG signal analysis using MATLAB 7.1 Platform. An accurate and simple ECG feature extraction algorithm is presented in this paper and developed algorithm is validated using BIOPAC software. To detect the QRS peak, ECG signal is processed by following mentioned stages- First Derivative, Second Derivative and then squaring of that second derivative. Efficiency of developed algorithm is tested on ECG samples from different database and real time ECG signals acquired using BIOPAC system. Firstly we have lead wise specified threshold value the samples above that value is marked and in the original signal, where these marked samples face change of slope are spotted as R-peak. On the left and right side of the R-peak, faces change of slope identified as Q and S peak, respectively. Now the inbuilt Detection algorithm of BIOPAC software is performed on same output sample and both outputs are compared. ECG baseline modulation correction is done after detecting characteristics points. The efficiency of the algorithm is tested using some validation parameters like Sensitivity, Positive Predictivity and we got satisfied value of these parameters.

Keywords: first derivative, variable threshold, slope reversal, baseline modulation correction

Procedia PDF Downloads 411
863 Development of Anterior Lumbar Interbody Fusion (ALIF) Peek Cage Based on the Korean Lumbar Anatomical Information

Authors: Chang Soo Chon, Cheol Woong Ko, Han Sung Kim

Abstract:

The aim of this study is to develop an anterior lumbar interbody fusion (ALIF) PEEK cage suitable for Korean people. In this study, CT images were obtained from Korean male (173cm, 71kg) and 3D Korean lumbar models were reconstructed based on the CT images to investigate anatomical characteristics. Major design parameters of anterior lumbar interbody fusion (ALIF) PEEK Cage were selected using the morphological measurement information of the Korean Lumbar models. Through finite element analysis and mechanical tests, the developed ALIF PEEK Cage prototype was compared with the Fidji Cage (Zimmer.Inc, USA) and it was found that the ALIF prototype showed similar and/or superior mechanical performance compared to the FidJi Cage. Also, clinical validation for the ALIF PEEK Cage prototype was carried out to check predictable troubles in surgical operations. Finally, it is considered that the convenience and stability of the prototype was clinically verified.

Keywords: inter-body anterior fusion, ALIF cage, PEEK, Korean lumbar, CT image, animal test

Procedia PDF Downloads 523
862 Model-Free Distributed Control of Dynamical Systems

Authors: Javad Khazaei, Rick Blum

Abstract:

Distributed control is an efficient and flexible approach for coordination of multi-agent systems. One of the main challenges in designing a distributed controller is identifying the governing dynamics of the dynamical systems. Data-driven system identification is currently undergoing a revolution. With the availability of high-fidelity measurements and historical data, model-free identification of dynamical systems can facilitate the control design without tedious modeling of high-dimensional and/or nonlinear systems. This paper develops a distributed control design using consensus theory for linear and nonlinear dynamical systems using sparse identification of system dynamics. Compared with existing consensus designs that heavily rely on knowing the detailed system dynamics, the proposed model-free design can accurately capture the dynamics of the system with available measurements and input data and provide guaranteed performance in consensus and tracking problems. Heterogeneous damped oscillators are chosen as examples of dynamical system for validation purposes.

Keywords: consensus tracking, distributed control, model-free control, sparse identification of dynamical systems

Procedia PDF Downloads 265
861 Use of Structural Family Therapy and Dialectical Behavior Therapy with High-Conflict Couples

Authors: Eman Tadros, Natasha Finney

Abstract:

The following case study involving a high-conflict, Children’s Services Bureau (CSB) referred couple is analyzed and reviewed through an integrated lens of structural family therapy and dialectical behavior therapy. In structural family therapy, normal family development is not characterized by a lack of problems, but instead by families’ having developed a functional structure for dealing with their problems. Whereas, in dialectical behavioral therapy normal family development can be characterized by having a supportive and validating environment, where all family members feel a sense of acceptance and validation for who they are and where they are in life. The clinical case conceptualization highlights the importance of conceptualizing how change occurs within a therapeutic setting. In the current case study, the couple did not only experience high-conflict, but there were also issues of substance use, health issues, and other complicating factors. Clinicians should view their clients holistically and tailor their treatment to fit their unique needs. In this framework, change occurs within the family unit, by accepting each member as they are, while at the same time working together to change maladaptive familial structures.

Keywords: couples, dialectical behavior therapy, high-conflict, structural family therapy

Procedia PDF Downloads 349
860 Comparison of Methods for Detecting and Quantifying Amplitude Modulation of Wind Farm Noise

Authors: Phuc D. Nguyen, Kristy L. Hansen, Branko Zajamsek

Abstract:

The existence of special characteristics of wind farm noise such as amplitude modulation (AM) contributes significantly to annoyance, which could ultimately result in sleep disturbance and other adverse health effects for residents living near wind farms. In order to detect and quantify this phenomenon, several methods have been developed which can be separated into three types: time-domain, frequency-domain and hybrid methods. However, due to a lack of systematic validation of these methods, it is still difficult to select the best method for identifying AM. Furthermore, previous comparisons between AM methods have been predominantly qualitative or based on synthesised signals, which are not representative of the actual noise. In this study, a comparison between methods for detecting and quantifying AM has been carried out. The results are based on analysis of real noise data which were measured at a wind farm in South Australia. In order to evaluate the performance of these methods in terms of detecting AM, an approach has been developed to select the most successful method of AM detection. This approach uses a receiver operating characteristic (ROC) curve which is based on detection of AM in audio files by experts.

Keywords: amplitude modulation, wind farm noise, ROC curve

Procedia PDF Downloads 145
859 Simulator Dynamic Positioning System with Azimuthal Thruster

Authors: Robson C. Santos, Christian N. Barreto, Gerson G. Cunha, Severino J. C. Neto

Abstract:

This paper aims to project the construction of a prototype azimuthal thruster, mounted with materials of low cost and easy access, testing in a controlled environment to measure their performance, characteristics and feasibility of future projects. The construction of the simulation of dynamic positioning software, responsible for simulating a vessel and reposition it when necessary . Tests for partial and full validation of the model were conducted, operates independently of the control system and executes the commands and commands of the helix of rotation azimuth. The system provides an interface to the user and simulates the conditions unfavorable positioning of a vessel, accurately calculates the azimuth angle, the direction of rotation of the helix and the time that this should be turned on so that the vessel back to position original. There is a serial communication that connects the Simulation Dynamic Positioning System with Embedded System causing the user-generated data to simulate the DP system arrives in the form of control signals to the motors of the propellant. This article addresses issues in the marine industry employees.

Keywords: azimuthal thruster, dynamic positioning, embedded system, simulator dynamic positioning

Procedia PDF Downloads 465
858 The Best Prediction Data Mining Model for Breast Cancer Probability in Women Residents in Kabul

Authors: Mina Jafari, Kobra Hamraee, Saied Hossein Hosseini

Abstract:

The prediction of breast cancer disease is one of the challenges in medicine. In this paper we collected 528 records of women’s information who live in Kabul including demographic, life style, diet and pregnancy data. There are many classification algorithm in breast cancer prediction and tried to find the best model with most accurate result and lowest error rate. We evaluated some other common supervised algorithms in data mining to find the best model in prediction of breast cancer disease among afghan women living in Kabul regarding to momography result as target variable. For evaluating these algorithms we used Cross Validation which is an assured method for measuring the performance of models. After comparing error rate and accuracy of three models: Decision Tree, Naive Bays and Rule Induction, Decision Tree with accuracy of 94.06% and error rate of %15 is found the best model to predicting breast cancer disease based on the health care records.

Keywords: decision tree, breast cancer, probability, data mining

Procedia PDF Downloads 138
857 Intelligent Computing with Bayesian Regularization Artificial Neural Networks for a Nonlinear System of COVID-19 Epidemic Model for Future Generation Disease Control

Authors: Tahir Nawaz Cheema, Dumitru Baleanu, Ali Raza

Abstract:

In this research work, we design intelligent computing through Bayesian Regularization artificial neural networks (BRANNs) introduced to solve the mathematical modeling of infectious diseases (Covid-19). The dynamical transmission is due to the interaction of people and its mathematical representation based on the system's nonlinear differential equations. The generation of the dataset of the Covid-19 model is exploited by the power of the explicit Runge Kutta method for different countries of the world like India, Pakistan, Italy, and many more. The generated dataset is approximately used for training, testing, and validation processes for every frequent update in Bayesian Regularization backpropagation for numerical behavior of the dynamics of the Covid-19 model. The performance and effectiveness of designed methodology BRANNs are checked through mean squared error, error histograms, numerical solutions, absolute error, and regression analysis.

Keywords: mathematical models, beysian regularization, bayesian-regularization backpropagation networks, regression analysis, numerical computing

Procedia PDF Downloads 147
856 Bone Fracture Detection with X-Ray Images Using Mobilenet V3 Architecture

Authors: Ashlesha Khanapure, Harsh Kashyap, Abhinav Anand, Sanjana Habib, Anupama Bidargaddi

Abstract:

Technologies that are developing quickly are being developed daily in a variety of disciplines, particularly the medical field. For the purpose of detecting bone fractures in X-ray pictures of different body segments, our work compares the ResNet-50 and MobileNetV3 architectures. It evaluates accuracy and computing efficiency with X-rays of the elbow, hand, and shoulder from the MURA dataset. Through training and validation, the models are evaluated on normal and fractured images. While ResNet-50 showcases superior accuracy in fracture identification, MobileNetV3 showcases superior speed and resource optimization. Despite ResNet-50’s accuracy, MobileNetV3’s swifter inference makes it a viable choice for real-time clinical applications, emphasizing the importance of balancing computational efficiency and accuracy in medical imaging. We created a graphical user interface (GUI) for MobileNet V3 model bone fracture detection. This research underscores MobileNetV3’s potential to streamline bone fracture diagnoses, potentially revolutionizing orthopedic medical procedures and enhancing patient care.

Keywords: CNN, MobileNet V3, ResNet-50, healthcare, MURA, X-ray, fracture detection

Procedia PDF Downloads 63
855 Simulation of the Asphaltene Deposition Rate in a Wellbore Blockage via Computational Fluid Dynamic

Authors: Xiaodong Gao, Pingchuan Dong, Qichao Gao

Abstract:

There has been lots of published work focused on asphaltene deposited on the smooth pipe under steady conditions, while particle deposition on the blockage wellbores under transient conditions has not been well elucidated. This work attempts to predict the deposition rate of asphaltene particles in blockage tube through CFD simulation. The Euler-Lagrange equation has been applied during the flow of crude oil and asphaltene particles. The net gravitational force, virtual mass, pressure gradient, saffman lift, and drag forces are incorporated in the simulations process. Validation of CFD simulation results is compared to the benchmark experiments from the previous literature. Furthermore, the effect of blockage location, blockage length, and blockage thickness on deposition rate are also analyzed. The simulation results indicate that the maximum deposition rate of asphaltene occurs in the blocked tube section, and the greater the deposition thickness, the greater the deposition rate. Moreover, the deposition amount and maximum deposition rate along the length of the tube have the same trend. Results of this study are in the ability to better understand the deposition of asphaltene particles in production and help achieve to deal with the asphaltene challenges.

Keywords: asphaltene deposition rate, blockage length, blockage thickness, blockage diameter, transient condition

Procedia PDF Downloads 201
854 Vulnerability of Groundwater to Pollution in Akwa Ibom State, Southern Nigeria, using the DRASTIC Model and Geographic Information System (GIS)

Authors: Aniedi A. Udo, Magnus U. Igboekwe, Rasaaq Bello, Francis D. Eyenaka, Michael C. Ohakwere-Eze

Abstract:

Groundwater vulnerability to pollution was assessed in Akwa Ibom State, Southern Nigeria, with the aim of locating areas with high potentials for resource contamination, especially due to anthropogenic influence. The electrical resistivity method was utilized in the collection of the initial field data. Additional data input, which included depth to static water level, drilled well log data, aquifer recharge data, percentage slope, as well as soil information, were sourced from secondary sources. The initial field data were interpreted both manually and with computer modeling to provide information on the geoelectric properties of the subsurface. Interpreted results together with the secondary data were used to develop the DRASTIC thematic maps. A vulnerability assessment was performed using the DRASTIC model in a GIS environment and areas with high vulnerability which needed immediate attention was clearly mapped out and presented using an aquifer vulnerability map. The model was subjected to validation and the rate of validity was 73% within the area of study.

Keywords: groundwater, vulnerability, DRASTIC model, pollution

Procedia PDF Downloads 207
853 Functional Instruction Set Simulator (ISS) of a Neural Network (NN) IP with Native BF-16 Generator

Authors: Debajyoti Mukherjee, Arathy B. S., Arpita Sahu, Saranga P. Pogula

Abstract:

A Functional Model to mimic the functional correctness of a Neural Network Compute Accelerator IP is very crucial for design validation. Neural network workloads are based on a Brain Floating Point (BF-16) data type. The major challenge we were facing was the incompatibility of gcc compilers to BF-16 datatype, which we addressed with a native BF-16 generator integrated to our functional model. Moreover, working with big GEMM (General Matrix Multiplication) or SpMM (Sparse Matrix Multiplication) Work Loads (Dense or Sparse) and debugging the failures related to data integrity is highly painstaking. In this paper, we are addressing the quality challenge of such a complex Neural Network Accelerator design by proposing a Functional Model-based scoreboard or Software model using SystemC. The proposed Functional Model executes the assembly code based on the ISA of the processor IP, decodes all instructions, and executes as expected to be done by the DUT. The said model would give a lot of visibility and debug capability in the DUT bringing up micro-steps of execution.

Keywords: ISA (instruction set architecture), NN (neural network), TLM (transaction-level modeling), GEMM (general matrix multiplication)

Procedia PDF Downloads 86
852 SEM Image Classification Using CNN Architectures

Authors: Güzi̇n Ti̇rkeş, Özge Teki̇n, Kerem Kurtuluş, Y. Yekta Yurtseven, Murat Baran

Abstract:

A scanning electron microscope (SEM) is a type of electron microscope mainly used in nanoscience and nanotechnology areas. Automatic image recognition and classification are among the general areas of application concerning SEM. In line with these usages, the present paper proposes a deep learning algorithm that classifies SEM images into nine categories by means of an online application to simplify the process. The NFFA-EUROPE - 100% SEM data set, containing approximately 21,000 images, was used to train and test the algorithm at 80% and 20%, respectively. Validation was carried out using a separate data set obtained from the Middle East Technical University (METU) in Turkey. To increase the accuracy in the results, the Inception ResNet-V2 model was used in view of the Fine-Tuning approach. By using a confusion matrix, it was observed that the coated-surface category has a negative effect on the accuracy of the results since it contains other categories in the data set, thereby confusing the model when detecting category-specific patterns. For this reason, the coated-surface category was removed from the train data set, hence increasing accuracy by up to 96.5%.

Keywords: convolutional neural networks, deep learning, image classification, scanning electron microscope

Procedia PDF Downloads 125
851 An Adaptive Conversational AI Approach for Self-Learning

Authors: Airy Huang, Fuji Foo, Aries Prasetya Wibowo

Abstract:

In recent years, the focus of Natural Language Processing (NLP) development has been gradually shifting from the semantics-based approach to deep learning one, which performs faster with fewer resources. Although it performs well in many applications, the deep learning approach, due to the lack of semantics understanding, has difficulties in noticing and expressing a novel business case with a pre-defined scope. In order to meet the requirements of specific robotic services, deep learning approach is very labor-intensive and time consuming. It is very difficult to improve the capabilities of conversational AI in a short time, and it is even more difficult to self-learn from experiences to deliver the same service in a better way. In this paper, we present an adaptive conversational AI algorithm that combines both semantic knowledge and deep learning to address this issue by learning new business cases through conversations. After self-learning from experience, the robot adapts to the business cases originally out of scope. The idea is to build new or extended robotic services in a systematic and fast-training manner with self-configured programs and constructed dialog flows. For every cycle in which a chat bot (conversational AI) delivers a given set of business cases, it is trapped to self-measure its performance and rethink every unknown dialog flows to improve the service by retraining with those new business cases. If the training process reaches a bottleneck and incurs some difficulties, human personnel will be informed of further instructions. He or she may retrain the chat bot with newly configured programs, or new dialog flows for new services. One approach employs semantics analysis to learn the dialogues for new business cases and then establish the necessary ontology for the new service. With the newly learned programs, it completes the understanding of the reaction behavior and finally uses dialog flows to connect all the understanding results and programs, achieving the goal of self-learning process. We have developed a chat bot service mounted on a kiosk, with a camera for facial recognition and a directional microphone array for voice capture. The chat bot serves as a concierge with polite conversation for visitors. As a proof of concept. We have demonstrated to complete 90% of reception services with limited self-learning capability.

Keywords: conversational AI, chatbot, dialog management, semantic analysis

Procedia PDF Downloads 136
850 Soil Mixed Constructed Permeable Reactive Barrier for Groundwater Remediation: Field Observation

Authors: Ziyda Abunada

Abstract:

In-situ remediation of contaminated land with deep mixing can deliver a multi-technique remedial strategy. A field trail includes permeable reactive barrier (PRB) took place at a severely contaminated site in Yorkshire to the north of the UK through the SMiRT (Soil Mix Remediation Technology) project in May 2011. SMiRT involved the execution of the largest research field trials in the UK to provide field validation. Innovative modified bentonite materials in combination with zeolite and organoclay were used to construct six different walls of a hexagonal PRB. Field monitoring, testing and site cores were collected from the PRB twice: once 2 months after the construction and again in March 2014 (almost 34 months later).This paper presents an overview of the results of the PRB materials’ relative performance with some initial 3-year time-related assessment. Results from the monitoring program and the site cores are presented. Some good correlations are seen together with some clear difference among the materials’ efficiency. These preliminary observations represent a potential for further investigations and highlighted the main lessons learned in a filed scale.

Keywords: in-situ remediation, groundwater, permeable reactive barrier, site cores

Procedia PDF Downloads 203
849 Relation between Pavement Roughness and Distress Parameters for Highways

Authors: Suryapeta Harini

Abstract:

Road surface roughness is one of the essential aspects of the road's functional condition, indicating riding comfort in both the transverse and longitudinal directions. The government of India has made maintaining good surface evenness a prerequisite for all highway projects. Pavement distress data was collected with a Network Survey Vehicle (NSV) on a National Highway. It determines the smoothness and frictional qualities of the pavement surface, which are related to driving safety and ease. Based on the data obtained in the field, a regression equation was created with the IRI value and the visual distresses. The suggested system can use wireless acceleration sensors and GPS to gather vehicle status and location data, as well as calculate the international roughness index (IRI). Potholes, raveling, rut depth, cracked area, and repair work are all affected by pavement roughness, according to the current study. The study was carried out in one location. Data collected through using Bump integrator was used for the validation. The bump integrator (BI) obtained using deflection from the network survey vehicle was correlated with the distress parameter to establish an equation.

Keywords: roughness index, network survey vehicle, regression, correlation

Procedia PDF Downloads 176
848 Challenges, Practices, and Opportunities of Knowledge Management in Industrial Research Institutes: Lessons Learned from Flanders Make

Authors: Zhenmin Tao, Jasper De Smet, Koen Laurijssen, Jeroen Stuyts, Sonja Sioncke

Abstract:

Today, the quality of knowledge management (KM)become one of the underpinning factors in the success of an organization, as it determines the effectiveness of capitalizing the organization’s knowledge. Overall, KMin an organization consists of five aspects: (knowledge) creation, validation, presentation, distribution, and application. Among others, KM in research institutes is considered as the cornerstone as their activities cover all five aspects. Furthermore, KM in a research institute facilitates the steering committee to envision the future roadmap, identify knowledge gaps, and make decisions on future research directions. Likewise, KMis even more challenging in industrial research institutes. From a technical perspective, technology advancement in the past decades calls for combinations of breadth and depth in expertise that poses challenges in talent acquisition and, therefore, knowledge creation. From a regulatory perspective, the strict intellectual property protection from industry collaborators and/or the contractual agreements made by possible funding authoritiesform extra barriers to knowledge validation, presentation, and distribution. From a management perspective, seamless KM activities are only guaranteed by inter-disciplinary talents that combine technical background knowledge, management skills, and leadership, let alone international vision. From a financial perspective, the long feedback period of new knowledge, together with the massive upfront investment costs and low reusability of the fixed assets, lead to low RORC (return on research capital) that jeopardize KM practice. In this study, we aim to address the challenges, practices, and opportunitiesof KM in Flanders Make – a leading European research institute specialized in the manufacturing industry. In particular, the analyses encompass an internal KM project which involves functionalities ranging from management to technical domain experts. This wide range of functionalities provides comprehensive empirical evidence on the challenges and practices w.r.t.the abovementioned KMaspects. Then, we ground our analysis onto the critical dimensions ofKM–individuals, socio‐organizational processes, and technology. The analyses have three steps: First, we lay the foundation and define the environment of this study by briefing the KM roles played by different functionalities in Flanders Make. Second, we zoom in to the CoreLab MotionS where the KM project is located. In this step, given the technical domains covered by MotionS products, the challenges in KM will be addressed w.r.t. the five KM aspects and three critical dimensions. Third, by detailing the objectives, practices, results, and limitations of the MotionSKMproject, we justify the practices and opportunities derived in the execution ofKMw.r.t. the challenges addressed in the second step. The results of this study are twofold: First, a KM framework that consolidates past knowledge is developed. A library based on this framework can, therefore1) overlook past research output, 2) accelerate ongoing research activities, and 3) envision future research projects. Second, the challenges inKM on both individual (actions) level and socio-organizational level (e.g., interactions between individuals)are identified. By doing so, suggestions and guidelines will be provided in KM in the context of industrial research institute. To this end, the results in this study are reflected towards the findings in existing literature.

Keywords: technical knowledge management framework, industrial research institutes, individual knowledge management, socio-organizational knowledge management.

Procedia PDF Downloads 116
847 South Atlantic Architects Validation of the Construction Decision Making Inventory

Authors: Tulio Sulbaran, Sandeep Langar

Abstract:

Architects are an integral part of the construction industry and are continuously incorporating decisions that influence projects during their life cycle. These decisions aim at selecting best alternative from the ones available. Unfortunately, this decision making process is mainly unexplored in the construction industry. No instrument to measure construction decision, based on knowledgebase of decision-makers, has existed. Additionally, limited literature is available on the topic. Recently, an instrument to gain an understanding of the construction decision-making process was developed by Dr. Tulio Sulbaran from the University of Texas, San Antonio. The instrument’s name is 'Construction Decision Making Inventory (CDMI)'. The CDMI is an innovative idea to measure the 'What? When? How? Moreover, Who?' of the construction decision-making process. As an innovative idea, its statistical validity (accuracy of the assessment) is yet to be assessed. Thus, the purpose of this paper is to describe the results of a case study with architects in the south-east of the United States aimed to determine the CDMI validity. The results of the case study are important because they assess the validity of the tool. Furthermore, as the architects evaluated each question within the measurements, this study is also guiding the enhancement of the CDMI.

Keywords: decision, support, inventory, architect

Procedia PDF Downloads 328
846 Application of Support Vector Machines in Forecasting Non-Residential

Authors: Wiwat Kittinaraporn, Napat Harnpornchai, Sutja Boonyachut

Abstract:

This paper deals with the application of a novel neural network technique, so-called Support Vector Machine (SVM). The objective of this study is to explore the variable and parameter of forecasting factors in the construction industry to build up forecasting model for construction quantity in Thailand. The scope of the research is to study the non-residential construction quantity in Thailand. There are 44 sets of yearly data available, ranging from 1965 to 2009. The correlation between economic indicators and construction demand with the lag of one year was developed by Apichat Buakla. The selected variables are used to develop SVM models to forecast the non-residential construction quantity in Thailand. The parameters are selected by using ten-fold cross-validation method. The results are indicated in term of Mean Absolute Percentage Error (MAPE). The MAPE value for the non-residential construction quantity predicted by Epsilon-SVR in corporation with Radial Basis Function (RBF) of kernel function type is 5.90. Analysis of the experimental results show that the support vector machine modelling technique can be applied to forecast construction quantity time series which is useful for decision planning and management purpose.

Keywords: forecasting, non-residential, construction, support vector machines

Procedia PDF Downloads 434
845 CFD Simulation and Experimental Validation of the Bubble-Induced Flow during Electrochemical Water Splitting

Authors: Gabriel Wosiak, Jeyse da Silva, Sthefany S. Sena, Renato N. de Andrade, Ernesto Pereira

Abstract:

The bubble formation during hydrogen production by electrolysis and several electrochemical processes is an inherent phenomenon and can impact the energy consumption of the processes. In this work, it was reported both experimental and computational results describe the effect of bubble displacement, which, under the cases investigated, leads to the formation of a convective flow in the solution. The process is self-sustained, and a solution vortex is formed, which modifies the bubble growth and covering at the electrode surface. Using the experimental data, we have built a model to simulate it, which, with high accuracy, describes the phenomena. Then, it simulated many different experimental conditions and evaluated the effects of the boundary conditions on the bubble surface covering the surface. We have observed a position-dependent bubble covering the surface, which has an effect on the water-splitting efficiency. It was shown that the bubble covering is not uniform at the electrode surface, and using statistical analysis; it was possible to evaluate the influence of the gas type (H2 and O2), current density, and the bubble size (and cross-effects) on the covering fraction and the asymmetric behavior over the electrode surface.

Keywords: water splitting, bubble, electrolysis, hydrogen production

Procedia PDF Downloads 100
844 Transcriptional Response of Honey Bee to Differential Nutritional Status and Nosema Infection

Authors: Farida Azzouz-Olden, Arthur G. Hunt, Gloria Degrandi-Hoffman

Abstract:

Bees are confronting several environmental challenges, including the intermingled effects of malnutrition and disease. Intuitively, pollen is the healthiest nutritional choice; however, commercial substitutes, such as BeePro and MegaBee, are widely used. Herein we examined how feeding natural and artificial diets shapes transcription in the abdomen of the honey bee, and how transcription shifts in combination with Nosema parasitism. Gene ontology enrichment revealed that, compared with poor diet (carbohydrates (C)), bees fed pollen (P > C), BeePro (B > C), and MegaBee (M > C) showed a broad upregulation of metabolic processes, especially lipids; however, pollen feeding promoted more functions and superior proteolysis. The superiority of the pollen diet was also evident through the remarkable overexpression of vitellogenin in bees fed pollen instead of MegaBee or BeePro. Upregulation of bioprocesses under carbohydrates feeding compared to pollen (C > P) provided a clear poor nutritional status, uncovering stark expression changes that were slight or absent relatively to BeePro (C > B) or MegaBee (C > M). Poor diet feeding (C > P) induced starvation response genes and hippo signaling pathway, while it repressed growth through different mechanisms. Carbohydrate feeding (C > P) also elicited ‘adult behavior’, and developmental processes suggesting transition to foraging. Finally, it altered the ‘circadian rhythm’, reflecting the role of this mechanism in the adaptation to nutritional stress in mammals. Nosema-infected bees fed pollen compared to carbohydrates (PN > CN) upheld certain bioprocesses of uninfected bees (P > C). Poor nutritional status was more apparent against pollen (CN > PN) than BeePro (CN > BN) or MegaBee (CN > MN). Nosema accentuated the effects of malnutrition since more starvation-response genes and stress response mechanisms were upregulated in CN > PN compared to C > P. The bioprocess ‘Macromolecular complex assembly’ was also enriched in CN > PN, and involved genes associated with human HIV and/or influenza, thus providing potential candidates for bee-Nosema interactions. Finally, the enzyme Duox emerged as essential for guts defense in bees, similarly to Drosophila. These results provide evidence of the superior nutritional status of bees fed pollen instead of artificial substitutes in terms of overall health, even in the presence of a pathogen.

Keywords: honeybee, immunity, Nosema, nutrition, RNA-seq

Procedia PDF Downloads 153
843 Application and Assessment of Artificial Neural Networks for Biodiesel Iodine Value Prediction

Authors: Raquel M. De sousa, Sofiane Labidi, Allan Kardec D. Barros, Alex O. Barradas Filho, Aldalea L. B. Marques

Abstract:

Several parameters are established in order to measure biodiesel quality. One of them is the iodine value, which is an important parameter that measures the total unsaturation within a mixture of fatty acids. Limitation of unsaturated fatty acids is necessary since warming of a higher quantity of these ones ends in either formation of deposits inside the motor or damage of lubricant. Determination of iodine value by official procedure tends to be very laborious, with high costs and toxicity of the reagents, this study uses an artificial neural network (ANN) in order to predict the iodine value property as an alternative to these problems. The methodology of development of networks used 13 esters of fatty acids in the input with convergence algorithms of backpropagation type were optimized in order to get an architecture of prediction of iodine value. This study allowed us to demonstrate the neural networks’ ability to learn the correlation between biodiesel quality properties, in this case iodine value, and the molecular structures that make it up. The model developed in the study reached a correlation coefficient (R) of 0.99 for both network validation and network simulation, with Levenberg-Maquardt algorithm.

Keywords: artificial neural networks, biodiesel, iodine value, prediction

Procedia PDF Downloads 606
842 Potential Serological Biomarker for Early Detection of Pregnancy in Cows

Authors: Shveta Bathla, Preeti Rawat, Sudarshan Kumar, Rubina Baithalu, Jogender Singh Rana, Tushar Kumar Mohanty, Ashok Kumar Mohanty

Abstract:

Pregnancy is a complex process which includes series of events such as fertilization, formation of blastocyst, implantation of embryo, placental formation and development of fetus. The success of these events depends on various interactions which are synchronized by endocrine interaction between a receptive dam and competent embryo. These interactions lead to change in expression of hormones and proteins. But till date no protein biomarker is available which can be used to detect successful completion of these events. We employed quantitative proteomics approach to develop putative serological biomarker which has diagnostic applicability for early detection of pregnancy in cows. For this study, sera were collected from control (non-pregnant, n=6) and pregnant animals on successive days of pregnancy (7, 19, 45, n=6). The sera were subjected to depletion for removal of albumin using Norgen depletion kit. The tryptic peptides were labeled with iTRAQ. The peptides were pooled and fractionated using bRPLC over 80 min gradient. Then 12 fractions were injected to nLC for identification and quantitation in DDA mode using ESI. Identification using Mascot search revealed 2056 proteins out of which 352 proteins were differentially expressed. Twenty proteins were upregulated and twelve proteins were down-regulated with fold change > 1.5 and < 0.6 respectively (p < 0.05). The gene ontology studies of DEPs using Panther software revealed that majority of proteins are actively involved in catalytic activities, binding and enzyme regulatory activities. The DEP'S such as NF2, MAPK, GRIPI, UGT1A1, PARP, CD68 were further subjected to pathway analysis using KEGG and Cytoscape plugin Cluego that showed involvement of proteins in successful implantation, maintenance of pluripotency, regulation of luteal function, differentiation of endometrial macrophages, protection from oxidative stress and developmental pathways such as Hippo. Further efforts are continuing for targeted proteomics, western blot to validate potential biomarkers and development of diagnostic kit for early pregnancy diagnosis in cows.

Keywords: bRPLC, Cluego, ESI, iTRAQ, KEGG, Panther

Procedia PDF Downloads 461
841 Forklift Allocation in Warehouse Operations with Restricted Halls

Authors: Mauricio Becerra Fernández, Olga Rosana Romero Quiroga, Elsa Cristina González La Rotta

Abstract:

The logistics facilities design and construction is one of the strategic decisions that critically affects the performance of the company, from the economic perspective and relationship with customers. The case study company is the Colombian logistic sector leader, with over 60 years of experience, with sales of about one hundred twenty million dollars at the end of 2014. The preliminary design for the warehouse layout and operation includes a customer that provides approximately 17% of the profits of the company, considering the possibility of moving two forklifts in the warehouse halls. Some changes were not consider in previous stages of design, operations required forklift with different characteristics, whose size, do not allow the circulation of more than a forklift at a time. Therefore, it is necessary to assess the impact of this restriction on the warehouse operation, so decision makers implement actions to achieve efficient operation. The problem is addressed by recognizing logistics processes, which develop in a warehouse, collection of processes information behavior, the simulation of the current situation using ProModel software, model validation, making adjustments required, experiments design, conclusions and recommendations for the company.

Keywords: design, discrete events simulation, forklift allocation, logistics facilities, warehouse

Procedia PDF Downloads 303
840 Design and Validation of Different Steering Geometries for an All-Terrain Vehicle

Authors: Prabhsharan Singh, Rahul Sindhu, Piyush Sikka

Abstract:

The steering system is an integral part and medium through which the driver communicates with the vehicle and terrain, hence the most suitable steering geometry as per requirements must be chosen. The function of the chosen steering geometry of an All-Terrain Vehicle (ATV) is to provide the desired understeer gradient, minimum tire slippage, expected weight transfer during turning as these are requirements for a good steering geometry of a BAJA ATV. This research paper focuses on choosing the best suitable steering geometry for BAJA ATV tracks by reasoning the working principle and using fundamental trigonometric functions for obtaining these geometries on the same vehicle itself, namely Ackermann, Anti- Ackermann, Parallel Ackermann. Full vehicle analysis was carried out on Adams Car Analysis software, and graphical results were obtained for various parameters. Steering geometries were achieved by using a single versatile knuckle for frontward and rearward tie-rod placement and were practically tested with the help of data acquisition systems set up on the ATV. Each was having certain characteristics, setup, and parameters were observed for the BAJA ATV, and correlations were created between analytical and practical values.

Keywords: all-terrain vehicle, Ackermann, Adams car, Baja Sae, steering geometry, steering system, tire slip, traction, understeer gradient

Procedia PDF Downloads 154
839 Comparison Of Data Mining Models To Predict Future Bridge Conditions

Authors: Pablo Martinez, Emad Mohamed, Osama Mohsen, Yasser Mohamed

Abstract:

Highway and bridge agencies, such as the Ministry of Transportation in Ontario, use the Bridge Condition Index (BCI) which is defined as the weighted condition of all bridge elements to determine the rehabilitation priorities for its bridges. Therefore, accurate forecasting of BCI is essential for bridge rehabilitation budgeting planning. The large amount of data available in regard to bridge conditions for several years dictate utilizing traditional mathematical models as infeasible analysis methods. This research study focuses on investigating different classification models that are developed to predict the bridge condition index in the province of Ontario, Canada based on the publicly available data for 2800 bridges over a period of more than 10 years. The data preparation is a key factor to develop acceptable classification models even with the simplest one, the k-NN model. All the models were tested, compared and statistically validated via cross validation and t-test. A simple k-NN model showed reasonable results (within 0.5% relative error) when predicting the bridge condition in an incoming year.

Keywords: asset management, bridge condition index, data mining, forecasting, infrastructure, knowledge discovery in databases, maintenance, predictive models

Procedia PDF Downloads 191
838 An Approach for Coagulant Dosage Optimization Using Soft Jar Test: A Case Study of Bangkhen Water Treatment Plant

Authors: Ninlawat Phuangchoke, Waraporn Viyanon, Setta Sasananan

Abstract:

The most important process of the water treatment plant process is the coagulation using alum and poly aluminum chloride (PACL), and the value of usage per day is a hundred thousand baht. Therefore, determining the dosage of alum and PACL are the most important factors to be prescribed. Water production is economical and valuable. This research applies an artificial neural network (ANN), which uses the Levenberg–Marquardt algorithm to create a mathematical model (Soft Jar Test) for prediction chemical dose used to coagulation such as alum and PACL, which input data consists of turbidity, pH, alkalinity, conductivity, and, oxygen consumption (OC) of Bangkhen water treatment plant (BKWTP) Metropolitan Waterworks Authority. The data collected from 1 January 2019 to 31 December 2019 cover changing seasons of Thailand. The input data of ANN is divided into three groups training set, test set, and validation set, which the best model performance with a coefficient of determination and mean absolute error of alum are 0.73, 3.18, and PACL is 0.59, 3.21 respectively.

Keywords: soft jar test, jar test, water treatment plant process, artificial neural network

Procedia PDF Downloads 166