Search results for: macroeconomic uncertainty
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1134

Search results for: macroeconomic uncertainty

444 The Role and Function of National Land Authority as Mediator in Land Dispute Settlements in Indonesia

Authors: Nia Kurniati, Efa Laela Fakhriah

Abstract:

The regulation in Indonesia provides space for the land dispute to be settled outside the court by the government through National Land. In this case, the bureaucrat of Badan Pertanahan Nasional (BPN) acts as mediator to reach a fair agreement between the disputing parties. Land dispute is from a party who denies the ownership of the other party of a land and denies legal-technical facts written on land certificate published by BPN. Appointing the bureaucrat of BPN as mediator in dispute settlements may possibly create conflict of interest since the object. It has become a concern since bureaucrat of BPN acts as mediator, he will be bias and partial in assisting the dispute settlement, thus the spirit and purposes of mediation will be hampered. This issue triggers to be thoroughly examined further in a relation with the role and function of BPN as land dispute mediator. The methodology used in this research is a normative-legal one with qualitative-legal analytical method. The object of this research is in the form of random sampling of land dispute cases being occurred in some areas. Several principles in mediation have to be made as the base of the consideration to appoint bureaucrat of BPN as mediator since the mediator is an impartial third party, working with both disputing parties and assisting them to reach a fair resolution written in agreement as a foundation of land dispute settlement. The existence of BPN as mediator in land dispute settlement encounters conflict of interest which uphold legal uncertainty to act objectively.

Keywords: Indonesia, land dispute, mediator, national land authority

Procedia PDF Downloads 311
443 Comparison between Deterministic and Probabilistic Stability Analysis, Featuring Consequent Risk Assessment

Authors: Isabela Moreira Queiroz

Abstract:

Slope stability analyses are largely carried out by deterministic methods and evaluated through a single security factor. Although it is known that the geotechnical parameters can present great dispersal, such analyses are considered fixed and known. The probabilistic methods, in turn, incorporate the variability of input key parameters (random variables), resulting in a range of values of safety factors, thus enabling the determination of the probability of failure, which is an essential parameter in the calculation of the risk (probability multiplied by the consequence of the event). Among the probabilistic methods, there are three frequently used methods in geotechnical society: FOSM (First-Order, Second-Moment), Rosenblueth (Point Estimates) and Monte Carlo. This paper presents a comparison between the results from deterministic and probabilistic analyses (FOSM method, Monte Carlo and Rosenblueth) applied to a hypothetical slope. The end was held to evaluate the behavior of the slope and consequent risk analysis, which is used to calculate the risk and analyze their mitigation and control solutions. It can be observed that the results obtained by the three probabilistic methods were quite close. It should be noticed that the calculation of the risk makes it possible to list the priority to the implementation of mitigation measures. Therefore, it is recommended to do a good assessment of the geological-geotechnical model incorporating the uncertainty in viability, design, construction, operation and closure by means of risk management. 

Keywords: probabilistic methods, risk assessment, risk management, slope stability

Procedia PDF Downloads 392
442 Fault Detection and Diagnosis of Broken Bar Problem in Induction Motors Base Wavelet Analysis and EMD Method: Case Study of Mobarakeh Steel Company in Iran

Authors: M. Ahmadi, M. Kafil, H. Ebrahimi

Abstract:

Nowadays, induction motors have a significant role in industries. Condition monitoring (CM) of this equipment has gained a remarkable importance during recent years due to huge production losses, substantial imposed costs and increases in vulnerability, risk, and uncertainty levels. Motor current signature analysis (MCSA) is one of the most important techniques in CM. This method can be used for rotor broken bars detection. Signal processing methods such as Fast Fourier transformation (FFT), Wavelet transformation and Empirical Mode Decomposition (EMD) are used for analyzing MCSA output data. In this study, these signal processing methods are used for broken bar problem detection of Mobarakeh steel company induction motors. Based on wavelet transformation method, an index for fault detection, CF, is introduced which is the variation of maximum to the mean of wavelet transformation coefficients. We find that, in the broken bar condition, the amount of CF factor is greater than the healthy condition. Based on EMD method, the energy of intrinsic mode functions (IMF) is calculated and finds that when motor bars become broken the energy of IMFs increases.

Keywords: broken bar, condition monitoring, diagnostics, empirical mode decomposition, fourier transform, wavelet transform

Procedia PDF Downloads 150
441 Tuning of Kalman Filter Using Genetic Algorithm

Authors: Hesham Abdin, Mohamed Zakaria, Talaat Abd-Elmonaem, Alaa El-Din Sayed Hafez

Abstract:

Kalman filter algorithm is an estimator known as the workhorse of estimation. It has an important application in missile guidance, especially in lack of accurate data of the target due to noise or uncertainty. In this paper, a Kalman filter is used as a tracking filter in a simulated target-interceptor scenario with noise. It estimates the position, velocity, and acceleration of the target in the presence of noise. These estimations are needed for both proportional navigation and differential geometry guidance laws. A Kalman filter has a good performance at low noise, but a large noise causes considerable errors leads to performance degradation. Therefore, a new technique is required to overcome this defect using tuning factors to tune a Kalman filter to adapt increasing of noise. The values of the tuning factors are between 0.8 and 1.2, they have a specific value for the first half of range and a different value for the second half. they are multiplied by the estimated values. These factors have its optimum values and are altered with the change of the target heading. A genetic algorithm updates these selections to increase the maximum effective range which was previously reduced by noise. The results show that the selected factors have other benefits such as decreasing the minimum effective range that was increased earlier due to noise. In addition to, the selected factors decrease the miss distance for all ranges of this direction of the target, and expand the effective range which leads to increase probability of kill.

Keywords: proportional navigation, differential geometry, Kalman filter, genetic algorithm

Procedia PDF Downloads 512
440 Fuzzy Approach for the Evaluation of Feasibility Levels of Vehicle Movement on the Disaster-Streaking Zone’s Roads

Authors: Gia Sirbiladze

Abstract:

Route planning problems are among the activities that have the highest impact on logistical planning, transportation, and distribution because of their effects on efficiency in resource management, service levels, and client satisfaction. In extreme conditions, the difficulty of vehicle movement between different customers causes the imprecision of time of movement and the uncertainty of the feasibility of movement. A feasibility level of vehicle movement on the closed route of the disaster-streaking zone is defined for the construction of an objective function. Experts’ evaluations of the uncertain parameters in q-rung ortho-pair fuzzy numbers (q-ROFNs) are presented. A fuzzy bi-objective combinatorial optimization problem of fuzzy vehicle routine problem (FVRP) is constructed based on the technique of possibility theory. The FVRP is reduced to the bi-criteria partitioning problem for the so-called “promising” routes which were selected from the all-admissible closed routes. The convenient selection of the “promising” routes allows us to solve the reduced problem in real-time computing. For the numerical solution of the bi-criteria partitioning problem, the -constraint approach is used. The main results' support software is designed. The constructed model is illustrated with a numerical example.

Keywords: q-rung ortho-pair fuzzy sets, facility location selection problem, multi-objective combinatorial optimization problem, partitioning problem

Procedia PDF Downloads 136
439 AutoML: Comprehensive Review and Application to Engineering Datasets

Authors: Parsa Mahdavi, M. Amin Hariri-Ardebili

Abstract:

The development of accurate machine learning and deep learning models traditionally demands hands-on expertise and a solid background to fine-tune hyperparameters. With the continuous expansion of datasets in various scientific and engineering domains, researchers increasingly turn to machine learning methods to unveil hidden insights that may elude classic regression techniques. This surge in adoption raises concerns about the adequacy of the resultant meta-models and, consequently, the interpretation of the findings. In response to these challenges, automated machine learning (AutoML) emerges as a promising solution, aiming to construct machine learning models with minimal intervention or guidance from human experts. AutoML encompasses crucial stages such as data preparation, feature engineering, hyperparameter optimization, and neural architecture search. This paper provides a comprehensive overview of the principles underpinning AutoML, surveying several widely-used AutoML platforms. Additionally, the paper offers a glimpse into the application of AutoML on various engineering datasets. By comparing these results with those obtained through classical machine learning methods, the paper quantifies the uncertainties inherent in the application of a single ML model versus the holistic approach provided by AutoML. These examples showcase the efficacy of AutoML in extracting meaningful patterns and insights, emphasizing its potential to revolutionize the way we approach and analyze complex datasets.

Keywords: automated machine learning, uncertainty, engineering dataset, regression

Procedia PDF Downloads 62
438 Anxieolytic Activity of Ethyl Acetate Extract of Flowers Nerium indicum

Authors: D. S. Mohale, A. V. Chandewar

Abstract:

Anxiety is defined as an exaggerated feeling of apprehension, uncertainty and fear. Nerium indicum is a well-known ornamental and medicinal plant belonging to the family Apocynaceae. A wide spectrum of biological activities has been reported with various constituents isolated from different parts of the plant. This study was conducted to investigate antianxiety activity of flower extract. Flowers were collected and dried in shade and coarsely powdered. Powdered mixture was extracted with ethyl acetate by maceration process. Extract of flowers obtained was subsequently dried in oven at 40-50 °C. This extract is then tested for antianxiety activity at low and high dose using Elevated Plus Maze and Light & dark Model. Rats shown increased open arm entries and time spent in open arm in elevated Plus maze with treatment low and high dose of extract of Nerium indicum flower as compared to their respective control groups. In Light & dark Model, light box entries and time spent in light box increased with treatment low and high dose of extract of Nerium indicum flower as compared to their respective control groups. From result it is concluded that Ethyl acetate extract of flower of Nerium indicum possess antianxiety activity at low and high dose.

Keywords: anxiety, anxieolytic, social isolation, nerium indicum, kaner

Procedia PDF Downloads 309
437 Develop a Conceptual Data Model of Geotechnical Risk Assessment in Underground Coal Mining Using a Cloud-Based Machine Learning Platform

Authors: Reza Mohammadzadeh

Abstract:

The major challenges in geotechnical engineering in underground spaces arise from uncertainties and different probabilities. The collection, collation, and collaboration of existing data to incorporate them in analysis and design for given prospect evaluation would be a reliable, practical problem solving method under uncertainty. Machine learning (ML) is a subfield of artificial intelligence in statistical science which applies different techniques (e.g., Regression, neural networks, support vector machines, decision trees, random forests, genetic programming, etc.) on data to automatically learn and improve from them without being explicitly programmed and make decisions and predictions. In this paper, a conceptual database schema of geotechnical risks in underground coal mining based on a cloud system architecture has been designed. A new approach of risk assessment using a three-dimensional risk matrix supported by the level of knowledge (LoK) has been proposed in this model. Subsequently, the model workflow methodology stages have been described. In order to train data and LoK models deployment, an ML platform has been implemented. IBM Watson Studio, as a leading data science tool and data-driven cloud integration ML platform, is employed in this study. As a Use case, a data set of geotechnical hazards and risk assessment in underground coal mining were prepared to demonstrate the performance of the model, and accordingly, the results have been outlined.

Keywords: data model, geotechnical risks, machine learning, underground coal mining

Procedia PDF Downloads 275
436 Planning a European Policy for Increasing Graduate Population: The Conditions That Count

Authors: Alice Civera, Mattia Cattaneo, Michele Meoli, Stefano Paleari

Abstract:

Despite the fact that more equal access to higher education has been an objective public policy for several decades, little is known about the effectiveness of alternative means for achieving such goal. Indeed, nowadays, high level of graduate population can be observed both in countries with the high and low level of fees, or high and low level of public expenditure in higher education. This paper surveys the extant literature providing some background on the economic concepts of the higher education market, and reviews key determinants of demand and supply. A theoretical model of aggregate demand and supply of higher education is derived, with the aim to facilitate the understanding of the challenges in today’s higher education systems, as well as the opportunities for development. The model is validated on some exemplary case studies describing the different relationship between the level of public investment and levels of graduate population and helps to derive general implications. In addition, using a two-stage least squares model, we build a macroeconomic model of supply and demand for European higher education. The model allows interpreting policies shifting either the supply or the demand for higher education, and allows taking into consideration contextual conditions with the aim of comparing divergent policies under a common framework. Results show that the same policy objective (i.e., increasing graduate population) can be obtained by shifting either the demand function (i.e., by strengthening student aid) or the supply function (i.e., by directly supporting higher education institutions). Under this theoretical perspective, the level of tuition fees is irrelevant, and empirically we can observe high levels of graduate population in both countries with high (i.e., the UK) or low (i.e., Germany) levels of tuition fees. In practice, this model provides a conceptual framework to help better understanding what are the external conditions that need to be considered, when planning a policy for increasing graduate population. Extrapolating a policy from results in different countries, under this perspective, is a poor solution when contingent factors are not addressed. The second implication of this conceptual framework is that policies addressing the supply or the demand function needs to address different contingencies. In other words, a government aiming at increasing graduate population needs to implement complementary policies, designing them according to the side of the market that is interested. For example, a ‘supply-driven’ intervention, through the direct financial support of higher education institutions, needs to address the issue of institutions’ moral hazard, by creating incentives to supply higher education services in efficient conditions. By contrast, a ‘demand-driven’ policy, providing student aids, need to tackle the students’ moral hazard, by creating an incentive to responsible behavior.

Keywords: graduates, higher education, higher education policies, tuition fees

Procedia PDF Downloads 169
435 Improving Flash Flood Forecasting with a Bayesian Probabilistic Approach: A Case Study on the Posina Basin in Italy

Authors: Zviad Ghadua, Biswa Bhattacharya

Abstract:

The Flash Flood Guidance (FFG) provides the rainfall amount of a given duration necessary to cause flooding. The approach is based on the development of rainfall-runoff curves, which helps us to find out the rainfall amount that would cause flooding. An alternative approach, mostly experimented with Italian Alpine catchments, is based on determining threshold discharges from past events and on finding whether or not an oncoming flood has its magnitude more than some critical discharge thresholds found beforehand. Both approaches suffer from large uncertainties in forecasting flash floods as, due to the simplistic approach followed, the same rainfall amount may or may not cause flooding. This uncertainty leads to the question whether a probabilistic model is preferable over a deterministic one in forecasting flash floods. We propose the use of a Bayesian probabilistic approach in flash flood forecasting. A prior probability of flooding is derived based on historical data. Additional information, such as antecedent moisture condition (AMC) and rainfall amount over any rainfall thresholds are used in computing the likelihood of observing these conditions given a flash flood has occurred. Finally, the posterior probability of flooding is computed using the prior probability and the likelihood. The variation of the computed posterior probability with rainfall amount and AMC presents the suitability of the approach in decision making in an uncertain environment. The methodology has been applied to the Posina basin in Italy. From the promising results obtained, we can conclude that the Bayesian approach in flash flood forecasting provides more realistic forecasting over the FFG.

Keywords: flash flood, Bayesian, flash flood guidance, FFG, forecasting, Posina

Procedia PDF Downloads 137
434 Impact of Zeolite NaY Synthesized from Kaolin on the Properties of Pyrolytic Oil Derived from Used Tire

Authors: Julius Ilawe Osayi, Peter Osifo

Abstract:

Solid waste disposal, such as used tires is a global challenge as well as energy crisis due to rising energy demand amidst price uncertainty and depleting fossil fuel reserves. Therefore, the effectiveness of pyrolysis as a disposal method that can transform used tires into liquid fuel and other end-products has made the process attractive to researchers. Although used tires have been converted to liquid fuel using pyrolysis, there is the need to improve on the liquid fuel properties. Hence, this paper reports the investigation of zeolite NaY synthesized from kaolin, a locally abundant soil material in the Benin metropolis as a suitable catalyst and its effect on the properties of pyrolytic oil produced from used tires. The pyrolysis process was conducted for a range of 1 to 10 wt.% of catalyst concentration to used tire at a temperature of 600 oC, a heating rate of 15oC/min and particle size of 6mm. Although no significant increase in pyrolytic oil yield was observed compared to the previously investigated non-catalytic pyrolysis of a used tire. However, the Fourier transform infrared (FTIR), Nuclear Magnetic Resonance (NMR); and Gas chromatography-mass spectrometry (GC-MS) characterization results revealed the pyrolytic oil to possess an improved physicochemical and fuel properties alongside valuable industrial chemical species. This confirms the possibility of transforming kaolin into a catalyst suitable for improved fuel properties of the liquid fraction obtainable from thermal cracking of hydrocarbon materials.

Keywords: catalytic pyrolysis, fossil fuel, kaolin, pyrolytic oil, used tyres, Zeolite NaY

Procedia PDF Downloads 181
433 Appraisal of Transaction Cost in South African Construction Projects

Authors: Kenneth O. Otasowie, Matthew Ikuabe, Clinton Aigbavboa, Ayodeji Oke

Abstract:

Construction project cost are not only made up of production costs. This cost comprises of many other elements such as the preparation of a bidding document, cost estimations, drafting contractual agreements and monitoring that contractual obligations are met. Several studies have stressed the need for transaction costs (TC) to be defined in a way that covers all phases of a project and not only the pre-contract phase. Hence, this study aims to appraise transaction cost in South African (SA) construction projects by assessing what constitutes transaction cost, influencing factors and possible optimisation measures. A survey design was adopted. A total number of eighty (80) questionnaires were administered to quantity surveyors, procurement managers and project managers in Guateng Province, SA and seventy-two (72) were returned and found suitable for analysis. Collected data was analysed using percentage, mean item score, standard deviation, one-sample t-test. The findings show that external technical interaction, uncertainty, human factors are the most significant constituents of TC in SA, while technical competency, experience in similar project type and project characteristics are the leading influencing factors. Furthermore, understanding project characteristics, clear communication and technically competent project teams are most of the significant measures for optimising TC in SA construction projects. Therefore, this study recommends that a competent project team and a clear communication are fundamental to proper management of TC in SA construction projects.

Keywords: construction projects, project cost, South Africa, transaction cost

Procedia PDF Downloads 99
432 A Project Screening System for Energy Enterprise Based on Dempster-Shafer Theory

Authors: Woosik Jang, Seung Heon Han, Seung Won Baek

Abstract:

Natural gas (NG) is an energy resource in a few countries, and most NG producers do business in politically unstable countries. In addition, as 90% of the LNG market is controlled by a small number of international oil companies (IOCs) and national oil companies (NOCs), entry of latecomers into the market is extremely limited. To meet these challenges, project viability needs to be assessed based on limited information from a project screening perspective. However, the early stages of the project have the following difficulties: (1) What are the factors to consider? (2) How many professionals do you need to decide? (3) How to make the best decision with limited information? To address this problem, this study proposes a model for evaluating LNG project viability based on the Dempster-Shafer theory (DST). A total of 11 indicators for analyzing the gas field, reflecting the characteristics of the LNG industry, and 23 indicators for analyzing the market environment, were identified. The proposed model also evaluates the LNG project based on the survey and provides uncertainty of the results based on DST as well as quantified results. Thus, the proposed model is expected to be able to support the decision-making process of the gas field project using quantitative results as a systematic framework, and it was developed as a stand-alone system to improve its usefulness in practice. Consequently, the amount of information and the mathematical approach are expected to improve the quality and opportunity of decision making for LNG projects for enterprises.

Keywords: project screen, energy enterprise, decision support system, Dempster-Shafer theory

Procedia PDF Downloads 344
431 Anti-Anxiety Activity of Ethyl Acetate Extract of Flowers Nerium indicum

Authors: Deepak Suresh Mohale, Anil V. Chandewar

Abstract:

Anxiety is defined as an exaggerated feeling of apprehension, uncertainty and fear. Nerium indicum is a well-known ornamental and medicinal plant belonging to the family Apocynaceae. A wide spectrum of biological activities has been reported with various constituents isolated from different parts of the plant. This study was conducted to investigate antianxiety activity of flower extract. Flowers were collected and dried in shade and coarsely powdered. Powdered mixture was extracted with ethyl acetate by maceration process. Extract of flowers obtained was subsequently dried in oven at 40-50 °C. This extract is then tested for antianxiety activity at low and high dose using elevated plus maze and light & dark model. Rats shown increased open arm entries and time spent in open arm in elevated Plus maze with treatment low and high dose of extract of Nerium indicum flower as compared to their respective control groups. In Light & dark Model, light box entries and time spent in light box increased with treatment low and high dose of extract of Nerium indicum flower as compared to their respective control groups. From result it is concluded that ethyl acetate extract of flower of Nerium indicum possess antianxiety activity at low and high dose.

Keywords: antianxiety, anxiety, kaner, nerium indicum, social isolation

Procedia PDF Downloads 392
430 A Hybrid Genetic Algorithm and Neural Network for Wind Profile Estimation

Authors: M. Saiful Islam, M. Mohandes, S. Rehman, S. Badran

Abstract:

Increasing necessity of wind power is directing us to have precise knowledge on wind resources. Methodical investigation of potential locations is required for wind power deployment. High penetration of wind energy to the grid is leading multi megawatt installations with huge investment cost. This fact appeals to determine appropriate places for wind farm operation. For accurate assessment, detailed examination of wind speed profile, relative humidity, temperature and other geological or atmospheric parameters are required. Among all of these uncertainty factors influencing wind power estimation, vertical extrapolation of wind speed is perhaps the most difficult and critical one. Different approaches have been used for the extrapolation of wind speed to hub height which are mainly based on Log law, Power law and various modifications of the two. This paper proposes a Artificial Neural Network (ANN) and Genetic Algorithm (GA) based hybrid model, namely GA-NN for vertical extrapolation of wind speed. This model is very simple in a sense that it does not require any parametric estimations like wind shear coefficient, roughness length or atmospheric stability and also reliable compared to other methods. This model uses available measured wind speeds at 10m, 20m and 30m heights to estimate wind speeds up to 100m. A good comparison is found between measured and estimated wind speeds at 30m and 40m with approximately 3% mean absolute percentage error. Comparisons with ANN and power law, further prove the feasibility of the proposed method.

Keywords: wind profile, vertical extrapolation of wind, genetic algorithm, artificial neural network, hybrid machine learning

Procedia PDF Downloads 490
429 On Panel Data Analysis of Factors on Economic Advances in Some African Countries

Authors: Ayoola Femi J., Kayode Balogun

Abstract:

In some African Countries, increase in Gross Domestic Products (GDP) has not translated to real development as expected by common-man in his household. For decades, a lot of contests on economic growth and development has been a nagging issues. The focus of this study is to analysing the effects of economic determinants/factors on economic advances in some African Countries by employing panel data analysis. The yearly (1990-2013) data were obtained from the world economic outlook database of the International Monetary Fund (IMF), for probing the effects of these variables on growth rate in some selected African countries which include: Nigeria, Algeria, Angola, Benin, Botswana, Burundi, Cape-Verde, Cameroun, Central African Republic, Chad, Republic Of Congo, Cote di’ Voire, Egypt, Equatorial-Guinea, Ethiopia, Gabon, Ghana, Guinea Bissau, Kenya, Lesotho, Madagascar, Mali, Mauritius, Morocco, Mozambique, Niger, Rwanda, Senegal, Seychelles, Sierra Leone, South Africa, Sudan, Swaziland, Tanzania, Togo, Tunisia, and Uganda. The effects of 6 macroeconomic variables on GDP were critically examined. We used 37 Countries GDP as our dependent variable and 6 independent variables used in this study include: Total Investment (totinv), Inflation (inf), Population (popl), current account balance (cab), volume of imports of goods and services (vimgs), and volume of exports of goods and services (vexgs). The results of our analysis shows that total investment, population and volume of exports of goods and services strongly affect the economic growth. We noticed that population of these selected countries positively affect the GDP while total investment and volume of exports negatively affect GDP. On the contrary, inflation, current account balance and volume of imports of goods and services’ contribution to the GDP are insignificant. The results of our analysis shows that total investment, population and volume of exports of goods and services strongly affect the economic growth. We noticed that population of these selected countries positively affect the GDP while total investment and volume of exports negatively affect GDP. On the contrary, inflation, current account balance and volume of imports of goods and services’ contribution to the GDP are insignificant. The results of this study would be useful for individual African governments for developing a suitable and appropriate economic policies and strategies. It will also help investors to understand the economic nature and viability of Africa as a continent as well as its individual countries.

Keywords: African countries, economic growth and development, gross domestic products, static panel data models

Procedia PDF Downloads 475
428 Efficient Wind Fragility Analysis of Concrete Chimney under Stochastic Extreme Wind Incorporating Temperature Effects

Authors: Soumya Bhattacharjya, Avinandan Sahoo, Gaurav Datta

Abstract:

Wind fragility analysis of chimney is often carried out disregarding temperature effect. However, the combined effect of wind and temperature is the most critical limit state for chimney design. Hence, in the present paper, an efficient fragility analysis for concrete chimney is explored under combined wind and temperature effect. Wind time histories are generated by Davenports Power Spectral Density Function and using Weighed Amplitude Wave Superposition Technique. Fragility analysis is often carried out in full Monte Carlo Simulation framework, which requires extensive computational time. Thus, in the present paper, an efficient adaptive metamodelling technique is adopted to judiciously approximate limit state function, which will be subsequently used in the simulation framework. This will save substantial computational time and make the approach computationally efficient. Uncertainty in wind speed, wind load related parameters, and resistance-related parameters is considered. The results by the full simulation approach, conventional metamodelling approach and proposed adaptive metamodelling approach will be compared. Effect of disregarding temperature in wind fragility analysis will be highlighted.

Keywords: adaptive metamodelling technique, concrete chimney, fragility analysis, stochastic extreme wind load, temperature effect

Procedia PDF Downloads 215
427 Decision Making System for Clinical Datasets

Authors: P. Bharathiraja

Abstract:

Computer Aided decision making system is used to enhance diagnosis and prognosis of diseases and also to assist clinicians and junior doctors in clinical decision making. Medical Data used for decision making should be definite and consistent. Data Mining and soft computing techniques are used for cleaning the data and for incorporating human reasoning in decision making systems. Fuzzy rule based inference technique can be used for classification in order to incorporate human reasoning in the decision making process. In this work, missing values are imputed using the mean or mode of the attribute. The data are normalized using min-ma normalization to improve the design and efficiency of the fuzzy inference system. The fuzzy inference system is used to handle the uncertainties that exist in the medical data. Equal-width-partitioning is used to partition the attribute values into appropriate fuzzy intervals. Fuzzy rules are generated using Class Based Associative rule mining algorithm. The system is trained and tested using heart disease data set from the University of California at Irvine (UCI) Machine Learning Repository. The data was split using a hold out approach into training and testing data. From the experimental results it can be inferred that classification using fuzzy inference system performs better than trivial IF-THEN rule based classification approaches. Furthermore it is observed that the use of fuzzy logic and fuzzy inference mechanism handles uncertainty and also resembles human decision making. The system can be used in the absence of a clinical expert to assist junior doctors and clinicians in clinical decision making.

Keywords: decision making, data mining, normalization, fuzzy rule, classification

Procedia PDF Downloads 518
426 Development of Fault Diagnosis Technology for Power System Based on Smart Meter

Authors: Chih-Chieh Yang, Chung-Neng Huang

Abstract:

In power system, how to improve the fault diagnosis technology of transmission line has always been the primary goal of power grid operators. In recent years, due to the rise of green energy, the addition of all kinds of distributed power also has an impact on the stability of the power system. Because the smart meters are with the function of data recording and bidirectional transmission, the adaptive Fuzzy Neural inference system, ANFIS, as well as the artificial intelligence that has the characteristics of learning and estimation in artificial intelligence. For transmission network, in order to avoid misjudgment of the fault type and location due to the input of these unstable power sources, combined with the above advantages of smart meter and ANFIS, a method for identifying fault types and location of faults is proposed in this study. In ANFIS training, the bus voltage and current information collected by smart meters can be trained through the ANFIS tool in MATLAB to generate fault codes to identify different types of faults and the location of faults. In addition, due to the uncertainty of distributed generation, a wind power system is added to the transmission network to verify the diagnosis correctness of the study. Simulation results show that the method proposed in this study can correctly identify the fault type and location of fault with more efficiency, and can deal with the interference caused by the addition of unstable power sources.

Keywords: ANFIS, fault diagnosis, power system, smart meter

Procedia PDF Downloads 140
425 A Multigranular Linguistic ARAS Model in Group Decision Making

Authors: Wiem Daoud Ben Amor, Luis Martínez López, Hela Moalla Frikha

Abstract:

Most of the multi-criteria group decision making (MCGDM) problems dealing with qualitative criteria require consideration of the large background of expert information. It is common that experts have different degrees of knowledge for giving their alternative assessments according to criteria. So, it seems logical that they use different evaluation scales to express their judgment, i.e., multi granular linguistic scales. In this context, we propose the extension of the classical additive ratio assessment (ARAS) method to the case of a hierarchical linguistics term for managing multi granular linguistic scales in uncertain contexts where uncertainty is modeled by means in linguistic information. The proposed approach is called the extended hierarchical linguistics-ARAS method (ARAS-ELH). Within the ARAS-ELH approach, the DM can diagnose the results (the ranking of the alternatives) in a decomposed style, i.e., not only at one level of the hierarchy but also at the intermediate ones. Also, the developed approach allows a feedback transformation i.e the collective final results of all experts able to be transformed at any level of the extended linguistic hierarchy that each expert has previously used. Therefore, the ARAS-ELH technique makes it easier for decision-makers to understand the results. Finally, An MCGDM case study is given to illustrate the proposed approach.

Keywords: additive ratio assessment, extended hierarchical linguistic, multi-criteria group decision making problems, multi granular linguistic contexts

Procedia PDF Downloads 208
424 The Impact of the Global Financial Crisis on the Performance of Czech Industrial Enterprises

Authors: Maria Reznakova, Michala Strnadova, Lukas Reznak

Abstract:

The global financial crisis that erupted in 2008 is associated mainly with the debt crisis. It quickly spread globally through financial markets, international banks and trade links, and affected many economic sectors. Measured by the index of the year-on-year change in GDP and industrial production, the consequences of the global financial crisis manifested themselves with some delay also in the Czech economy. This can be considered a result of the overwhelming export orientation of Czech industrial enterprises. These events offer an important opportunity to study how financial and macroeconomic instability affects corporate performance. Corporate performance factors have long been given considerable attention. It is therefore reasonable to ask whether the findings published in the past are also valid in the times of economic instability and subsequent recession. The decisive factor in effective corporate performance measurement is the existence of an appropriate system of indicators that are able to assess progress in achieving corporate goals. Performance measures may be based on non-financial as well as on financial information. In this paper, financial indicators are used in combination with other characteristics, such as the firm size and ownership structure. Financial performance is evaluated based on traditional performance indicators, namely, return on equity and return on assets, supplemented with indebtedness and current liquidity indices. As investments are a very important factor in corporate performance, their trends and importance were also investigated by looking at the ratio of investments to previous year’s sales and the rate of reinvested earnings. In addition to traditional financial performance indicators, the Economic Value Added was also used. Data used in the research were obtained from a questionnaire survey administered in industrial enterprises in the Czech Republic and from AMADEUS (Analyse Major Database from European Sources), from which accounting data of companies were obtained. Respondents were members of the companies’ senior management. Research results unequivocally confirmed that corporate performance dropped significantly in the 2010-2012 period, which can be considered a result of the global financial crisis and a subsequent economic recession. It was reflected mainly in the decreasing values of profitability indicators and the Economic Value Added. Although the total year-on-year indebtedness declined, intercompany indebtedness increased. This can be considered a result of impeded access of companies to bank loans due to the credit crunch. Comparison of the results obtained with the conclusions of previous research on a similar topic showed that the assumption that firms under foreign control achieved higher performance during the period investigated was not confirmed.

Keywords: corporate performance, foreign control, intercompany indebtedness, ratio of investment

Procedia PDF Downloads 334
423 Decision Support: How Explainable A.I. Can Improve Transparency and Trust with Human Users

Authors: Devon Brown, Liu Chunmei

Abstract:

This paper will present an analysis as part of the researchers dissertation topic focusing on the intersection of affective and analytical directed acyclic graphs (DAGs) in the context of Decision Support Systems (DSS). The researcher’s work involves analyzing decision theory models like Affective and Bayesian Decision theory models and how they could be implemented under an Affective Computing Framework using Information Fusion and Human-Centered Design. Additionally, the researcher is beginning research on an Affective-Analytic Decision Framework (AADF) model for their dissertation research and are looking to merge logic and analytic models with empathetic insights into affective DAGs. Data-collection efforts begin Fall 2024 and in preparation for the efforts this paper looks to analyze previous research in this area and introduce the AADF framework and propose conceptual models for consideration. For this paper, the research emphasis is placed on analyzing Bayesian networks and Markov models which offer probabilistic techniques during uncertainty in decision-making. Ideally, including affect into analytic models will ensure algorithms can increase user trust with algorithms by including emotional states and the user’s experience with the goal of developing emotionally intelligent A.I. systems that can start to navigate the complex fabric of human emotion during decision-making.

Keywords: decision support systems, explainable AI, HCAI techniques, affective-analytical decision framework

Procedia PDF Downloads 25
422 Art, Nature, and City in the Construction of Contemporary Public Space

Authors: Rodrigo Coelho

Abstract:

We believe that in the majority of the “recent production of public space", the overvaluation of the "image", of the "ephemeral" and of the "objectual", has come to determine the configuration of banal and (more or less) arbitrary "public spaces", mostly linked to a problem of “outdoor decoration”, reflecting a clear sign of uncertainty and arbitrariness about the meaning, the role and shape of public space and public art.This "inconsistency" which is essentially linked to the loss of urban, but also social, cultural and political, vocation of the disciplines that “shape” the urban space (but is also linked to the lack of urban and technical culture of techinicians and policy makers) converted a significant set of the recently built "public space" and “urban art” into diffuse and multi-referenced pieces, which generally shares the inability of confering to the urban space, civic, aesthetic, social and symbolic meanings. In this sense we consider it is essential to undertake a theoretical reflection on the values, the meaning(s) and the shape(s) that open space, and urban art may (or must) take in the current urban and cultural context, in order to redeem for public space its status of significant physical reference, able to embody a spatial and urban identity, and simultaneously enable the collective accession and appropriation of public space. Taking as reference public space interventions built in the last decade on the European context, we will seek to explore and defend the need of considering public space as a true place of exception, an exceptional support where the emphasis is placed on the quality of the experience, especially by the relations public space/urban art can established with the city, with nature and geography in a broad sense, referring us back to a close and inseparable and timeless relationship between nature and culture.

Keywords: art, city, nature, public space

Procedia PDF Downloads 450
421 Bilateral Relations in Matter of Defense between Argentina-United States and Argentina-China along the Period 2005-2015: Advice to Develop a Rational Defense Foreign Policy for Peripheral Countries

Authors: Alvarez Magañini, María Victoria-Rubbi, Lautaro Nahuel

Abstract:

At present, we are facing an unstable international context, conditioned by a relative decline of the US power, primarily in the economic sphere and, to a lesser extent, in the military sphere. This scenario of multipolarity creates tension and uncertainty in the peripheral countries when the issue of their foreign policy arises. This paper presents an analysis of the bilateral relations that were maintained by the Argentine Republic, a peripheral country, along with the United States and China during the period of 2005-2015 in matters of defense in order to identify the empirical consequences resulted from the Argentine actions. Based on the conceptual framework of Peripheral Realism, we analyze indicators related to the weapon trade, defense loans, joint exercises, and personnel training, among others. There will also be a comparative analysis of the conventional military forces of the two powers in question, United States and China. As a conclusion, the cost of having closer relations with China instead of the United States in the defense agenda has been clearly higher than the benefits obtained. The conclusions drawn are empirically aligned with the theoretical paradigm of peripheral realism. Although there are certain conceptual and methodological digressions, these conclusions they could be useful to update and adapt the theory to the current complex international scenario.

Keywords: China, United States, Argentine, peripheral country, peripheral realism

Procedia PDF Downloads 381
420 Approach for Updating a Digital Factory Model by Photogrammetry

Authors: R. Hellmuth, F. Wehner

Abstract:

Factory planning has the task of designing products, plants, processes, organization, areas, and the construction of a factory. The requirements for factory planning and the building of a factory have changed in recent years. Regular restructuring is becoming more important in order to maintain the competitiveness of a factory. Restrictions in new areas, shorter life cycles of product and production technology as well as a VUCA world (Volatility, Uncertainty, Complexity & Ambiguity) lead to more frequent restructuring measures within a factory. A digital factory model is the planning basis for rebuilding measures and becomes an indispensable tool. Short-term rescheduling can no longer be handled by on-site inspections and manual measurements. The tight time schedules require up-to-date planning models. Due to the high adaptation rate of factories described above, a methodology for rescheduling factories on the basis of a modern digital factory twin is conceived and designed for practical application in factory restructuring projects. The focus is on rebuild processes. The aim is to keep the planning basis (digital factory model) for conversions within a factory up to date. This requires the application of a methodology that reduces the deficits of existing approaches. The aim is to show how a digital factory model can be kept up to date during ongoing factory operation. A method based on photogrammetry technology is presented. The focus is on developing a simple and cost-effective solution to track the many changes that occur in a factory building during operation. The method is preceded by a hardware and software comparison to identify the most economical and fastest variant. 

Keywords: digital factory model, photogrammetry, factory planning, restructuring

Procedia PDF Downloads 117
419 Capital Accumulation and Unemployment in Namibia, Nigeria and South Africa

Authors: Abubakar Dikko

Abstract:

The research investigates the causes of unemployment in Namibia, Nigeria and South Africa, and the role of Capital Accumulation in reducing the unemployment profile of these economies as proposed by the post-Keynesian economics. This is conducted through extensive review of literature on the NAIRU models and focused on the post-Keynesian view of unemployment within the NAIRU framework. The NAIRU (non-accelerating inflation rate of unemployment) model has become a dominant framework used in macroeconomic analysis of unemployment. The study views the post-Keynesian economics arguments that capital accumulation is a major determinant of unemployment. Unemployment remains the fundamental socio-economic challenge facing African economies. It has been a burden to citizens of those economies. Namibia, Nigeria and South Africa are great African nations battling with high unemployment rates. In 2013, the countries recorded high unemployment rates of 16.9%, 23.9% and 24.9% respectively. Most of the unemployed in these economies comprises of youth. Roughly about 40% working age South Africans has jobs, whereas in Nigeria and Namibia is less than that. Unemployment in Africa has wide implications on households which has led to extensive poverty and inequality, and created a rampant criminality. Recently in South Africa there has been a case of xenophobic attacks which were caused by the citizens of the country as a result of unemployment. The high unemployment rate in the country led the citizens to chase away foreigners in the country claiming that they have taken away their jobs. The study proposes that there is a strong relationship between capital accumulation and unemployment in Namibia, Nigeria and South Africa, and capital accumulation is responsible for high unemployment rates in these countries. For the economies to achieve steady state level of employment and satisfactory level of economic growth and development there is need for capital accumulation to take place. The countries in the study have been selected after a critical research and investigations. They are selected based on the following criteria; African economies with high unemployment rates above 15% and have about 40% of their workforce unemployed. This level of unemployment is the critical level of unemployment in Africa as expressed by International Labour Organization (ILO). The African countries with low level of capital accumulation. Adequate statistical measures have been employed using a time-series analysis in the study and the results revealed that capital accumulation is the main driver of unemployment performance in the chosen African countries. An increase in the accumulation of capital causes unemployment to reduce significantly. The results of the research work will be useful and relevant to federal governments and ministries, departments and agencies (MDAs) of Namibia, Nigeria and South Africa to resolve the issue of high and persistent unemployment rates in their economies which are great burden that slows growth and development of developing economies. Also, the result can be useful to World Bank, African Development Bank and International Labour Organization (ILO) in their further research and studies on how to tackle unemployment in developing and emerging economies.

Keywords: capital accumulation, unemployment, NAIRU, Post-Keynesian economics

Procedia PDF Downloads 265
418 Supplier Risk Management: A Multivariate Statistical Modelling and Portfolio Optimization Based Approach for Supplier Delivery Performance Development

Authors: Jiahui Yang, John Quigley, Lesley Walls

Abstract:

In this paper, the authors develop a stochastic model regarding the investment in supplier delivery performance development from a buyer’s perspective. The authors propose a multivariate model through a Multinomial-Dirichlet distribution within an Empirical Bayesian inference framework, representing both the epistemic and aleatory uncertainties in deliveries. A closed form solution is obtained and the lower and upper bound for both optimal investment level and expected profit under uncertainty are derived. The theoretical properties provide decision makers with useful insights regarding supplier delivery performance improvement problems where multiple delivery statuses are involved. The authors also extend the model from a single supplier investment into a supplier portfolio, using a Lagrangian method to obtain a theoretical expression for an optimal investment level and overall expected profit. The model enables a buyer to know how the marginal expected profit/investment level of each supplier changes with respect to the budget and which supplier should be invested in when additional budget is available. An application of this model is illustrated in a simulation study. Overall, the main contribution of this study is to provide an optimal investment decision making framework for supplier development, taking into account multiple delivery statuses as well as multiple projects.

Keywords: decision making, empirical bayesian, portfolio optimization, supplier development, supply chain management

Procedia PDF Downloads 289
417 Roads and Agriculture: Impacts of Connectivity in Peru

Authors: Julio Aguirre, Yohnny Campana, Elmer Guerrero, Daniel De La Torre Ugarte

Abstract:

A well-developed transportation network is a necessary condition for a country to derive full benefits from good trade and macroeconomic policies. Road infrastructure plays a key role in the economic development of rural areas of developing countries; where agriculture is the main economic activity. The ability to move agricultural production from the place of production to the market, and then to the place of consumption, greatly influence the economic value of farming activities, and of the resources involved in the production process, i.e., labor and land. Consequently, investment in transportation networks contributes to enhance or overcome the natural advantages or disadvantages that topography and location have imposed over the agricultural sector. This is of particular importance when dealing with countries, like Peru, with a great topographic diversity. The objective of this research is to estimate the impacts of road infrastructure on the performance of the agricultural sector. Specific variables of interest are changes in travel time, shifts of production for self-consumption to production for the market, changes in farmers income, and impacts on the diversification of the agricultural sector. In the study, a cross-section model with instrumental variables is the central methodological instrument. The data is obtained from agricultural and transport geo-referenced databases, and the instrumental variable specification utilized is based on the Kruskal algorithm. The results show that the expansion of road connectivity reduced farmers' travel time by an average of 3.1 hours and the proportion of output sold in the market increases by up to 40 percentage points. The increase in connectivity has an unexpected increase in the districts index of diversification of agricultural production. The results are robust to the inclusion of year and region fixed-effects, and to control for geography (i.e., slope and altitude), population variables, and mining activity. Other results are also very eloquent. For example, a clear positive impact can be seen in access to local markets, but this does not necessarily correlate with an increase in the production of the sector. This can be explained by the fact that agricultural development not only requires provision of roads but additional complementary infrastructure and investments intended to provide the necessary conditions so that producers can offer quality products (improved management practices, timely maintenance of irrigation infrastructure, transparent management of water rights, among other factors). Therefore, complementary public goods are needed to enhance the effects of roads on the welfare of the population, beyond enabling them to increase their access to markets.

Keywords: agriculture devolepment, market access, road connectivity, regional development

Procedia PDF Downloads 208
416 Oedipus as Victim of Fate and Human Psychology: The Fatal Curiosity

Authors: Soham Das

Abstract:

Oedipus in Oedipus Rex is necessarily a victim of fate and his own psychology. His curiosity brings about his downfall. Ancient Greek plays weren't just portrayals of some obscure tale but were insights into human nature. Oedipus, although a victim of circumstances, digs his own grave by curiously unravelling his past. Jocasta foresees his doom and begs him to stop, but to no avail. The curiosity of Oedipus forces him, almost like a drug, to explore the mystery regarding his birth. This curiosity is not something extraordinary in Oedipus - it is an intrinsic attribute of human nature. Knowledge is not always desired - whether it is Adam or Oedipus, their curiosity caused their eventual downfall. Oedipus was ill-fated since birth. He did not know that Laius was his biological father and therefore killed him. He arrived at Thebes, solved the riddle of the Sphinx, and married Jocasta without knowing that she, in fact, was his biological mother. He begot children and was living happily with his family when a sudden calamity struck Thebes. The calamity, though at first seemed public in nature, but later proved to be very personal for Oedipus. It drives home the fundamental truth about uncertainty of human life. That Laius was slayed by his own son, even after many precautions, proves the helplessness of humans in front of the designs of fate. Oedipus's mutilation of his eyes is also fated. It was committed by him in the heat of the moment and was certainly not a rational decision. It is evident to any modern reader that Oedipus does not have justice. Destiny treats him unfairly. Oedipus, in fact, defends his actions in Oedipus Rex in its sequel Oedipus At Colonus. The research paper discusses the unhappy fate of Oedipus and the role of destiny and his own curiosity in achieving it.

Keywords: ancient Greek drama, Oedipus Rex, Sophocles, destiny

Procedia PDF Downloads 1027
415 Developing an Out-of-Distribution Generalization Model Selection Framework through Impurity and Randomness Measurements and a Bias Index

Authors: Todd Zhou, Mikhail Yurochkin

Abstract:

Out-of-distribution (OOD) detection is receiving increasing amounts of attention in the machine learning research community, boosted by recent technologies, such as autonomous driving and image processing. This newly-burgeoning field has called for the need for more effective and efficient methods for out-of-distribution generalization methods. Without accessing the label information, deploying machine learning models to out-of-distribution domains becomes extremely challenging since it is impossible to evaluate model performance on unseen domains. To tackle this out-of-distribution detection difficulty, we designed a model selection pipeline algorithm and developed a model selection framework with different impurity and randomness measurements to evaluate and choose the best-performing models for out-of-distribution data. By exploring different randomness scores based on predicted probabilities, we adopted the out-of-distribution entropy and developed a custom-designed score, ”CombinedScore,” as the evaluation criterion. This proposed score was created by adding labeled source information into the judging space of the uncertainty entropy score using harmonic mean. Furthermore, the prediction bias was explored through the equality of opportunity violation measurement. We also improved machine learning model performance through model calibration. The effectiveness of the framework with the proposed evaluation criteria was validated on the Folktables American Community Survey (ACS) datasets.

Keywords: model selection, domain generalization, model fairness, randomness measurements, bias index

Procedia PDF Downloads 124