Search results for: machine learning tools and techniques
16209 A Neuroscience-Based Learning Technique: Framework and Application to STEM
Authors: Dante J. Dorantes-González, Aldrin Balsa-Yepes
Abstract:
Existing learning techniques such as problem-based learning, project-based learning, or case study learning are learning techniques that focus mainly on technical details, but give no specific guidelines on learner’s experience and emotional learning aspects such as arousal salience and valence, being emotional states important factors affecting engagement and retention. Some approaches involving emotion in educational settings, such as social and emotional learning, lack neuroscientific rigorousness and use of specific neurobiological mechanisms. On the other hand, neurobiology approaches lack educational applicability. And educational approaches mainly focus on cognitive aspects and disregard conditioning learning. First, authors start explaining the reasons why it is hard to learn thoughtfully, then they use the method of neurobiological mapping to track the main limbic system functions, such as the reward circuit, and its relations with perception, memories, motivations, sympathetic and parasympathetic reactions, and sensations, as well as the brain cortex. The authors conclude explaining the major finding: The mechanisms of nonconscious learning and the triggers that guarantee long-term memory potentiation. Afterward, the educational framework for practical application and the instructors’ guidelines are established. An implementation example in engineering education is given, namely, the study of tuned-mass dampers for earthquake oscillations attenuation in skyscrapers. This work represents an original learning technique based on nonconscious learning mechanisms to enhance long-term memories that complement existing cognitive learning methods.Keywords: emotion, emotion-enhanced memory, learning technique, STEM
Procedia PDF Downloads 9116208 Blending Synchronous with Asynchronous Learning Tools: Students’ Experiences and Preferences for Online Learning Environment in a Resource-Constrained Higher Education Situations in Uganda
Authors: Stephen Kyakulumbye, Vivian Kobusingye
Abstract:
Generally, World over, COVID-19 has had adverse effects on all sectors but with more debilitating effects on the education sector. After reactive lockdowns, education institutions that could continue teaching and learning had to go a distance mediated by digital technological tools. In Uganda, the Ministry of Education thereby issued COVID-19 Online Distance E-learning (ODeL) emergent guidelines. Despite such guidelines, academic institutions in Uganda and similar developing contexts with academically constrained resource environments were caught off-guard and ill-prepared to transform from face-to-face learning to online distance learning mode. Most academic institutions that migrated spontaneously did so with no deliberate tools, systems, strategies, or software to cause active, meaningful, and engaging learning for students. By experience, most of these academic institutions shifted to Zoom and WhatsApp and instead conducted online teaching in real-time than blended synchronous and asynchronous tools. This paper provides students’ experiences while blending synchronous and asynchronous content-creating and learning tools within a technological resource-constrained environment to navigate in such a challenging Uganda context. These conceptual case-based findings, using experience from Uganda Christian University (UCU), point at the design of learning activities with two certain characteristics, the enhancement of synchronous learning technologies with asynchronous ones to mitigate the challenge of system breakdown, passive learning to active learning, and enhances the types of presence (social, cognitive and facilitatory). The paper, both empirical and experiential in nature, uses online experiences from third-year students in Bachelor of Business Administration student lectured using asynchronous text, audio, and video created with Open Broadcaster Studio software and compressed with Handbrake, all open-source software to mitigate disk space and bandwidth usage challenges. The synchronous online engagements with students were a blend of zoom or BigBlueButton, to ensure that students had an alternative just in case one failed due to excessive real-time traffic. Generally, students report that compared to their previous face-to-face lectures, the pre-recorded lectures via Youtube provided them an opportunity to reflect on content in a self-paced manner, which later on enabled them to engage actively during the live zoom and/or BigBlueButton real-time discussions and presentations. The major recommendation is that lecturers and teachers in a resource-constrained environment with limited digital resources like the internet and digital devices should harness this approach to offer students access to learning content in a self-paced manner and thereby enabling reflective active learning through reflective and high-order thinking.Keywords: synchronous learning, asynchronous learning, active learning, reflective learning, resource-constrained environment
Procedia PDF Downloads 13816207 Probabilistic Crash Prediction and Prevention of Vehicle Crash
Authors: Lavanya Annadi, Fahimeh Jafari
Abstract:
Transportation brings immense benefits to society, but it also has its costs. Costs include such as the cost of infrastructure, personnel and equipment, but also the loss of life and property in traffic accidents on the road, delays in travel due to traffic congestion and various indirect costs in terms of air transport. More research has been done to identify the various factors that affect road accidents, such as road infrastructure, traffic, sociodemographic characteristics, land use, and the environment. The aim of this research is to predict the probabilistic crash prediction of vehicles using machine learning due to natural and structural reasons by excluding spontaneous reasons like overspeeding etc., in the United States. These factors range from weather factors, like weather conditions, precipitation, visibility, wind speed, wind direction, temperature, pressure, and humidity to human made structures like road structure factors like bump, roundabout, no exit, turning loop, give away, etc. Probabilities are dissected into ten different classes. All the predictions are based on multiclass classification techniques, which are supervised learning. This study considers all crashes that happened in all states collected by the US government. To calculate the probability, multinomial expected value was used and assigned a classification label as the crash probability. We applied three different classification models, including multiclass Logistic Regression, Random Forest and XGBoost. The numerical results show that XGBoost achieved a 75.2% accuracy rate which indicates the part that is being played by natural and structural reasons for the crash. The paper has provided in-deep insights through exploratory data analysis.Keywords: road safety, crash prediction, exploratory analysis, machine learning
Procedia PDF Downloads 11116206 Towards Developing a Self-Explanatory Scheduling System Based on a Hybrid Approach
Authors: Jian Zheng, Yoshiyasu Takahashi, Yuichi Kobayashi, Tatsuhiro Sato
Abstract:
In the study, we present a conceptual framework for developing a scheduling system that can generate self-explanatory and easy-understanding schedules. To this end, a user interface is conceived to help planners record factors that are considered crucial in scheduling, as well as internal and external sources relating to such factors. A hybrid approach combining machine learning and constraint programming is developed to generate schedules and the corresponding factors, and accordingly display them on the user interface. Effects of the proposed system on scheduling are discussed, and it is expected that scheduling efficiency and system understandability will be improved, compared with previous scheduling systems.Keywords: constraint programming, factors considered in scheduling, machine learning, scheduling system
Procedia PDF Downloads 32416205 Development of an Automatic Computational Machine Learning Pipeline to Process Confocal Fluorescence Images for Virtual Cell Generation
Authors: Miguel Contreras, David Long, Will Bachman
Abstract:
Background: Microscopy plays a central role in cell and developmental biology. In particular, fluorescence microscopy can be used to visualize specific cellular components and subsequently quantify their morphology through development of virtual-cell models for study of effects of mechanical forces on cells. However, there are challenges with these imaging experiments, which can make it difficult to quantify cell morphology: inconsistent results, time-consuming and potentially costly protocols, and limitation on number of labels due to spectral overlap. To address these challenges, the objective of this project is to develop an automatic computational machine learning pipeline to predict cellular components morphology for virtual-cell generation based on fluorescence cell membrane confocal z-stacks. Methods: Registered confocal z-stacks of nuclei and cell membrane of endothelial cells, consisting of 20 images each, were obtained from fluorescence confocal microscopy and normalized through software pipeline for each image to have a mean pixel intensity value of 0.5. An open source machine learning algorithm, originally developed to predict fluorescence labels on unlabeled transmitted light microscopy cell images, was trained using this set of normalized z-stacks on a single CPU machine. Through transfer learning, the algorithm used knowledge acquired from its previous training sessions to learn the new task. Once trained, the algorithm was used to predict morphology of nuclei using normalized cell membrane fluorescence images as input. Predictions were compared to the ground truth fluorescence nuclei images. Results: After one week of training, using one cell membrane z-stack (20 images) and corresponding nuclei label, results showed qualitatively good predictions on training set. The algorithm was able to accurately predict nuclei locations as well as shape when fed only fluorescence membrane images. Similar training sessions with improved membrane image quality, including clear lining and shape of the membrane, clearly showing the boundaries of each cell, proportionally improved nuclei predictions, reducing errors relative to ground truth. Discussion: These results show the potential of pre-trained machine learning algorithms to predict cell morphology using relatively small amounts of data and training time, eliminating the need of using multiple labels in immunofluorescence experiments. With further training, the algorithm is expected to predict different labels (e.g., focal-adhesion sites, cytoskeleton), which can be added to the automatic machine learning pipeline for direct input into Principal Component Analysis (PCA) for generation of virtual-cell mechanical models.Keywords: cell morphology prediction, computational machine learning, fluorescence microscopy, virtual-cell models
Procedia PDF Downloads 20516204 On the Use of Machine Learning for Tamper Detection
Authors: Basel Halak, Christian Hall, Syed Abdul Father, Nelson Chow Wai Kit, Ruwaydah Widaad Raymode
Abstract:
The attack surface on computing devices is becoming very sophisticated, driven by the sheer increase of interconnected devices, reaching 50B in 2025, which makes it easier for adversaries to have direct access and perform well-known physical attacks. The impact of increased security vulnerability of electronic systems is exacerbated for devices that are part of the critical infrastructure or those used in military applications, where the likelihood of being targeted is very high. This continuously evolving landscape of security threats calls for a new generation of defense methods that are equally effective and adaptive. This paper proposes an intelligent defense mechanism to protect from physical tampering, it consists of a tamper detection system enhanced with machine learning capabilities, which allows it to recognize normal operating conditions, classify known physical attacks and identify new types of malicious behaviors. A prototype of the proposed system has been implemented, and its functionality has been successfully verified for two types of normal operating conditions and further four forms of physical attacks. In addition, a systematic threat modeling analysis and security validation was carried out, which indicated the proposed solution provides better protection against including information leakage, loss of data, and disruption of operation.Keywords: anti-tamper, hardware, machine learning, physical security, embedded devices, ioT
Procedia PDF Downloads 15316203 The Cooperative Learning Management in the Course of Principles of Mathematics for Graduate Level
Authors: Komon Paisal
Abstract:
The aim of this research was to create collaborative learning activities in the course of Principles of Mathematics for graduate level by investigating the students’ ability in proving the mathematics principles as well as their attitudes towards the activities. The samples composed of 2 main group; lecturers and students. The lecturers consisted of 3 teachers who taught the course of Principles of Mathematics at Rajabhat Suan Sunandha Unicersity in the academic year 2012. The students consisted of 32 students joining the cooperative learning activities in the subject of Principles of Mathematics in the academic year 2012. The research tools included activity plan for cooperative learning, testing on mathematics with the reliability of 0.8067 and the attitude questionnaires reported by the students. The results showed that: 1) the efficiency of the developed cooperative learning activities was 69.76/ 68.57 which was lower than the set criteria at 70/70. 2) The students joining the cooperative learning activities were able to prove the principles of mathematics at the average of 70%. 3) The students joining the cooperative learning activities reported moderate attitude towards the activities.Keywords: instructional design, pedagogical, teaching strategies, learning strategies
Procedia PDF Downloads 27216202 Machine Learning Approach in Predicting Cracking Performance of Fiber Reinforced Asphalt Concrete Materials
Authors: Behzad Behnia, Noah LaRussa-Trott
Abstract:
In recent years, fibers have been successfully used as an additive to reinforce asphalt concrete materials and to enhance the sustainability and resiliency of transportation infrastructure. Roads covered with fiber-reinforced asphalt concrete (FRAC) require less frequent maintenance and tend to have a longer lifespan. The present work investigates the application of sasobit-coated aramid fibers in asphalt pavements and employs machine learning to develop prediction models to evaluate the cracking performance of FRAC materials. For the experimental part of the study, the effects of several important parameters such as fiber content, fiber length, and testing temperature on fracture characteristics of FRAC mixtures were thoroughly investigated. Two mechanical performance tests, i.e., the disk-shaped compact tension [DC(T)] and indirect tensile [ID(T)] strength tests, as well as the non-destructive acoustic emission test, were utilized to experimentally measure the cracking behavior of the FRAC material in both macro and micro level, respectively. The experimental results were used to train the supervised machine learning approach in order to establish prediction models for fracture performance of the FRAC mixtures in the field. Experimental results demonstrated that adding fibers improved the overall fracture performance of asphalt concrete materials by increasing their fracture energy, tensile strength and lowering their 'embrittlement temperature'. FRAC mixtures containing long-size fibers exhibited better cracking performance than regular-size fiber mixtures. The developed prediction models of this study could be easily employed by pavement engineers in the assessment of the FRAC pavements.Keywords: fiber reinforced asphalt concrete, machine learning, cracking performance tests, prediction model
Procedia PDF Downloads 14116201 Machine Learning Prediction of Diabetes Prevalence in the U.S. Using Demographic, Physical, and Lifestyle Indicators: A Study Based on NHANES 2009-2018
Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei
Abstract:
To develop a machine learning model to predict diabetes (DM) prevalence in the U.S. population using demographic characteristics, physical indicators, and lifestyle habits, and to analyze how these factors contribute to the likelihood of diabetes. We analyzed data from 23,546 participants aged 20 and older, who were non-pregnant, from the 2009-2018 National Health and Nutrition Examination Survey (NHANES). The dataset included key demographic (age, sex, ethnicity), physical (BMI, leg length, total cholesterol [TCHOL], fasting plasma glucose), and lifestyle indicators (smoking habits). A weighted sample was used to account for NHANES survey design features such as stratification and clustering. A classification machine learning model was trained to predict diabetes status. The target variable was binary (diabetes or non-diabetes) based on fasting plasma glucose measurements. The following models were evaluated: Logistic Regression (baseline), Random Forest Classifier, Gradient Boosting Machine (GBM), Support Vector Machine (SVM). Model performance was assessed using accuracy, F1-score, AUC-ROC, and precision-recall metrics. Feature importance was analyzed using SHAP values to interpret the contributions of variables such as age, BMI, ethnicity, and smoking status. The Gradient Boosting Machine (GBM) model outperformed other classifiers with an AUC-ROC score of 0.85. Feature importance analysis revealed the following key predictors: Age: The most significant predictor, with diabetes prevalence increasing with age, peaking around the 60s for males and 70s for females. BMI: Higher BMI was strongly associated with a higher risk of diabetes. Ethnicity: Black participants had the highest predicted prevalence of diabetes (14.6%), followed by Mexican-Americans (13.5%) and Whites (10.6%). TCHOL: Diabetics had lower total cholesterol levels, particularly among White participants (mean decline of 23.6 mg/dL). Smoking: Smoking showed a slight increase in diabetes risk among Whites (0.2%) but had a limited effect in other ethnic groups. Using machine learning models, we identified key demographic, physical, and lifestyle predictors of diabetes in the U.S. population. The results confirm that diabetes prevalence varies significantly across age, BMI, and ethnic groups, with lifestyle factors such as smoking contributing differently by ethnicity. These findings provide a basis for more targeted public health interventions and resource allocation for diabetes management.Keywords: diabetes, NHANES, random forest, gradient boosting machine, support vector machine
Procedia PDF Downloads 816200 Integration of Educational Data Mining Models to a Web-Based Support System for Predicting High School Student Performance
Authors: Sokkhey Phauk, Takeo Okazaki
Abstract:
The challenging task in educational institutions is to maximize the high performance of students and minimize the failure rate of poor-performing students. An effective method to leverage this task is to know student learning patterns with highly influencing factors and get an early prediction of student learning outcomes at the timely stage for setting up policies for improvement. Educational data mining (EDM) is an emerging disciplinary field of data mining, statistics, and machine learning concerned with extracting useful knowledge and information for the sake of improvement and development in the education environment. The study is of this work is to propose techniques in EDM and integrate it into a web-based system for predicting poor-performing students. A comparative study of prediction models is conducted. Subsequently, high performing models are developed to get higher performance. The hybrid random forest (Hybrid RF) produces the most successful classification. For the context of intervention and improving the learning outcomes, a feature selection method MICHI, which is the combination of mutual information (MI) and chi-square (CHI) algorithms based on the ranked feature scores, is introduced to select a dominant feature set that improves the performance of prediction and uses the obtained dominant set as information for intervention. By using the proposed techniques of EDM, an academic performance prediction system (APPS) is subsequently developed for educational stockholders to get an early prediction of student learning outcomes for timely intervention. Experimental outcomes and evaluation surveys report the effectiveness and usefulness of the developed system. The system is used to help educational stakeholders and related individuals for intervening and improving student performance.Keywords: academic performance prediction system, educational data mining, dominant factors, feature selection method, prediction model, student performance
Procedia PDF Downloads 10616199 Soybean Seed Composition Prediction From Standing Crops Using Planet Scope Satellite Imagery and Machine Learning
Authors: Supria Sarkar, Vasit Sagan, Sourav Bhadra, Meghnath Pokharel, Felix B.Fritschi
Abstract:
Soybean and their derivatives are very important agricultural commodities around the world because of their wide applicability in human food, animal feed, biofuel, and industries. However, the significance of soybean production depends on the quality of the soybean seeds rather than the yield alone. Seed composition is widely dependent on plant physiological properties, aerobic and anaerobic environmental conditions, nutrient content, and plant phenological characteristics, which can be captured by high temporal resolution remote sensing datasets. Planet scope (PS) satellite images have high potential in sequential information of crop growth due to their frequent revisit throughout the world. In this study, we estimate soybean seed composition while the plants are in the field by utilizing PlanetScope (PS) satellite images and different machine learning algorithms. Several experimental fields were established with varying genotypes and different seed compositions were measured from the samples as ground truth data. The PS images were processed to extract 462 hand-crafted vegetative and textural features. Four machine learning algorithms, i.e., partial least squares (PLSR), random forest (RFR), gradient boosting machine (GBM), support vector machine (SVM), and two recurrent neural network architectures, i.e., long short-term memory (LSTM) and gated recurrent unit (GRU) were used in this study to predict oil, protein, sucrose, ash, starch, and fiber of soybean seed samples. The GRU and LSTM architectures had two separate branches, one for vegetative features and the other for textures features, which were later concatenated together to predict seed composition. The results show that sucrose, ash, protein, and oil yielded comparable prediction results. Machine learning algorithms that best predicted the six seed composition traits differed. GRU worked well for oil (R-Squared: of 0.53) and protein (R-Squared: 0.36), whereas SVR and PLSR showed the best result for sucrose (R-Squared: 0.74) and ash (R-Squared: 0.60), respectively. Although, the RFR and GBM provided comparable performance, the models tended to extremely overfit. Among the features, vegetative features were found as the most important variables compared to texture features. It is suggested to utilize many vegetation indices for machine learning training and select the best ones by using feature selection methods. Overall, the study reveals the feasibility and efficiency of PS images and machine learning for plot-level seed composition estimation. However, special care should be given while designing the plot size in the experiments to avoid mixed pixel issues.Keywords: agriculture, computer vision, data science, geospatial technology
Procedia PDF Downloads 13716198 An ANOVA-based Sequential Forward Channel Selection Framework for Brain-Computer Interface Application based on EEG Signals Driven by Motor Imagery
Authors: Forouzan Salehi Fergeni
Abstract:
Converting the movement intents of a person into commands for action employing brain signals like electroencephalogram signals is a brain-computer interface (BCI) system. When left or right-hand motions are imagined, different patterns of brain activity appear, which can be employed as BCI signals for control. To make better the brain-computer interface (BCI) structures, effective and accurate techniques for increasing the classifying precision of motor imagery (MI) based on electroencephalography (EEG) are greatly needed. Subject dependency and non-stationary are two features of EEG signals. So, EEG signals must be effectively processed before being used in BCI applications. In the present study, after applying an 8 to 30 band-pass filter, a car spatial filter is rendered for the purpose of denoising, and then, a method of analysis of variance is used to select more appropriate and informative channels from a category of a large number of different channels. After ordering channels based on their efficiencies, a sequential forward channel selection is employed to choose just a few reliable ones. Features from two domains of time and wavelet are extracted and shortlisted with the help of a statistical technique, namely the t-test. Finally, the selected features are classified with different machine learning and neural network classifiers being k-nearest neighbor, Probabilistic neural network, support-vector-machine, Extreme learning machine, decision tree, Multi-layer perceptron, and linear discriminant analysis with the purpose of comparing their performance in this application. Utilizing a ten-fold cross-validation approach, tests are performed on a motor imagery dataset found in the BCI competition III. Outcomes demonstrated that the SVM classifier got the greatest classification precision of 97% when compared to the other available approaches. The entire investigative findings confirm that the suggested framework is reliable and computationally effective for the construction of BCI systems and surpasses the existing methods.Keywords: brain-computer interface, channel selection, motor imagery, support-vector-machine
Procedia PDF Downloads 5016197 Achieving High Renewable Energy Penetration in Western Australia Using Data Digitisation and Machine Learning
Authors: A. D. Tayal
Abstract:
The energy industry is undergoing significant disruption. This research outlines that, whilst challenging; this disruption is also an emerging opportunity for electricity utilities. One such opportunity is leveraging the developments in data analytics and machine learning. As the uptake of renewable energy technologies and complimentary control systems increases, electricity grids will likely transform towards dense microgrids with high penetration of renewable generation sources, rich in network and customer data, and linked through intelligent, wireless communications. Data digitisation and analytics have already impacted numerous industries, and its influence on the energy sector is growing, as computational capabilities increase to manage big data, and as machines develop algorithms to solve the energy challenges of the future. The objective of this paper is to address how far the uptake of renewable technologies can go given the constraints of existing grid infrastructure and provides a qualitative assessment of how higher levels of renewable energy penetration can be facilitated by incorporating even broader technological advances in the fields of data analytics and machine learning. Western Australia is used as a contextualised case study, given its abundance and diverse renewable resources (solar, wind, biomass, and wave) and isolated networks, making a high penetration of renewables a feasible target for policy makers over coming decades.Keywords: data, innovation, renewable, solar
Procedia PDF Downloads 36416196 Data Mining in Healthcare for Predictive Analytics
Authors: Ruzanna Muradyan
Abstract:
Medical data mining is a crucial field in contemporary healthcare that offers cutting-edge tactics with enormous potential to transform patient care. This abstract examines how sophisticated data mining techniques could transform the healthcare industry, with a special focus on how they might improve patient outcomes. Healthcare data repositories have dynamically evolved, producing a rich tapestry of different, multi-dimensional information that includes genetic profiles, lifestyle markers, electronic health records, and more. By utilizing data mining techniques inside this vast library, a variety of prospects for precision medicine, predictive analytics, and insight production become visible. Predictive modeling for illness prediction, risk stratification, and therapy efficacy evaluations are important points of focus. Healthcare providers may use this abundance of data to tailor treatment plans, identify high-risk patient populations, and forecast disease trajectories by applying machine learning algorithms and predictive analytics. Better patient outcomes, more efficient use of resources, and early treatments are made possible by this proactive strategy. Furthermore, data mining techniques act as catalysts to reveal complex relationships between apparently unrelated data pieces, providing enhanced insights into the cause of disease, genetic susceptibilities, and environmental factors. Healthcare practitioners can get practical insights that guide disease prevention, customized patient counseling, and focused therapies by analyzing these associations. The abstract explores the problems and ethical issues that come with using data mining techniques in the healthcare industry. In order to properly use these approaches, it is essential to find a balance between data privacy, security issues, and the interpretability of complex models. Finally, this abstract demonstrates the revolutionary power of modern data mining methodologies in transforming the healthcare sector. Healthcare practitioners and researchers can uncover unique insights, enhance clinical decision-making, and ultimately elevate patient care to unprecedented levels of precision and efficacy by employing cutting-edge methodologies.Keywords: data mining, healthcare, patient care, predictive analytics, precision medicine, electronic health records, machine learning, predictive modeling, disease prognosis, risk stratification, treatment efficacy, genetic profiles, precision health
Procedia PDF Downloads 6316195 Development of Agricultural Robotic Platform for Inter-Row Plant: An Autonomous Navigation Based on Machine Vision
Authors: Alaa El-Din Rezk
Abstract:
In Egypt, management of crops still away from what is being used today by utilizing the advances of mechanical design capabilities, sensing and electronics technology. These technologies have been introduced in many places and recorm, for Straight Path, Curved Path, Sine Wave ded high accuracy in different field operations. So, an autonomous robotic platform based on machine vision has been developed and constructed to be implemented in Egyptian conditions as self-propelled mobile vehicle for carrying tools for inter/intra-row crop management based on different control modules. The experiments were carried out at plant protection research institute (PPRI) during 2014-2015 to optimize the accuracy of agricultural robotic platform control using machine vision in term of the autonomous navigation and performance of the robot’s guidance system. Results showed that the robotic platform' guidance system with machine vision was able to adequately distinguish the path and resisted image noise and did better than human operators for getting less lateral offset error. The average error of autonomous was 2.75, 19.33, 21.22, 34.18, and 16.69 mm. while the human operator was 32.70, 4.85, 7.85, 38.35 and 14.75 mm Path, Offset Discontinuity and Angle Discontinuity respectively.Keywords: autonomous robotic, Hough transform, image processing, machine vision
Procedia PDF Downloads 31516194 Web Development in Information Technology with Javascript, Machine Learning and Artificial Intelligence
Authors: Abdul Basit Kiani, Maryam Kiani
Abstract:
Online developers now have the tools necessary to create online apps that are not only reliable but also highly interactive, thanks to the introduction of JavaScript frameworks and APIs. The objective is to give a broad overview of the recent advances in the area. The fusion of machine learning (ML) and artificial intelligence (AI) has expanded the possibilities for web development. Modern websites now include chatbots, clever recommendation systems, and customization algorithms built in. In the rapidly evolving landscape of modern websites, it has become increasingly apparent that user engagement and personalization are key factors for success. To meet these demands, websites now incorporate a range of innovative technologies. One such technology is chatbots, which provide users with instant assistance and support, enhancing their overall browsing experience. These intelligent bots are capable of understanding natural language and can answer frequently asked questions, offer product recommendations, and even help with troubleshooting. Moreover, clever recommendation systems have emerged as a powerful tool on modern websites. By analyzing user behavior, preferences, and historical data, these systems can intelligently suggest relevant products, articles, or services tailored to each user's unique interests. This not only saves users valuable time but also increases the chances of conversions and customer satisfaction. Additionally, customization algorithms have revolutionized the way websites interact with users. By leveraging user preferences, browsing history, and demographic information, these algorithms can dynamically adjust the website's layout, content, and functionalities to suit individual user needs. This level of personalization enhances user engagement, boosts conversion rates, and ultimately leads to a more satisfying online experience. In summary, the integration of chatbots, clever recommendation systems, and customization algorithms into modern websites is transforming the way users interact with online platforms. These advanced technologies not only streamline user experiences but also contribute to increased customer satisfaction, improved conversions, and overall website success.Keywords: Javascript, machine learning, artificial intelligence, web development
Procedia PDF Downloads 8016193 E–Learning System in Virtual Learning Environment to Develop Problem Solving Ability and Team Learning for Learners in Higher Education
Authors: Noawanit Songkram
Abstract:
This paper is a report on the findings of a study conducted on e–learning system in virtual learning environment to develop problem solving ability and team learning for learners in higher education. The methodology of this study was R&D research. The subjects were 18 undergraduate students in Faculty of Education, Chulalongkorn University in the academic year of 2013. The research instruments were a problem solving ability assessment, a team learning evaluation form, and an attitude questionnaire. The data was statistically analyzed using mean, standard deviation, one way repeated measure ANOVA and t–test. The research findings discovered the e –learning system in virtual learning environment to develop problem solving ability and team learning for learners in higher education consisted of five components:(1) online collaborative tools, (2) active learning activities, (3) creative thinking, (4) knowledge sharing process, (5) evaluation and nine processes which were (1) preparing in group working, (2) identifying interested topic, (3) analysing interested topic, (4) collecting data, (5) concluding idea (6) proposing idea, (7) creating workings, (8) workings evaluation, (9) sharing knowledge from empirical experience.Keywords: e-learning system, problem solving ability, team leaning, virtual learning environment
Procedia PDF Downloads 43816192 ROOP: Translating Sequential Code Fragments to Distributed Code Fragments Using Deep Reinforcement Learning
Authors: Arun Sanjel, Greg Speegle
Abstract:
Every second, massive amounts of data are generated, and Data Intensive Scalable Computing (DISC) frameworks have evolved into effective tools for analyzing such massive amounts of data. Since the underlying architecture of these distributed computing platforms is often new to users, building a DISC application can often be time-consuming and prone to errors. The automated conversion of a sequential program to a DISC program will consequently significantly improve productivity. However, synthesizing a user’s intended program from an input specification is complex, with several important applications, such as distributed program synthesizing and code refactoring. Existing works such as Tyro and Casper rely entirely on deductive synthesis techniques or similar program synthesis approaches. Our approach is to develop a data-driven synthesis technique to identify sequential components and translate them to equivalent distributed operations. We emphasize using reinforcement learning and unit testing as feedback mechanisms to achieve our objectives.Keywords: program synthesis, distributed computing, reinforcement learning, unit testing, DISC
Procedia PDF Downloads 10716191 A Review of Deep Learning Methods in Computer-Aided Detection and Diagnosis Systems based on Whole Mammogram and Ultrasound Scan Classification
Authors: Ian Omung'a
Abstract:
Breast cancer remains to be one of the deadliest cancers for women worldwide, with the risk of developing tumors being as high as 50 percent in Sub-Saharan African countries like Kenya. With as many as 42 percent of these cases set to be diagnosed late when cancer has metastasized and or the prognosis has become terminal, Full Field Digital [FFD] Mammography remains an effective screening technique that leads to early detection where in most cases, successful interventions can be made to control or eliminate the tumors altogether. FFD Mammograms have been proven to multiply more effective when used together with Computer-Aided Detection and Diagnosis [CADe] systems, relying on algorithmic implementations of Deep Learning techniques in Computer Vision to carry out deep pattern recognition that is comparable to the level of a human radiologist and decipher whether specific areas of interest in the mammogram scan image portray abnormalities if any and whether these abnormalities are indicative of a benign or malignant tumor. Within this paper, we review emergent Deep Learning techniques that will prove relevant to the development of State-of-The-Art FFD Mammogram CADe systems. These techniques will span self-supervised learning for context-encoded occlusion, self-supervised learning for pre-processing and labeling automation, as well as the creation of a standardized large-scale mammography dataset as a benchmark for CADe systems' evaluation. Finally, comparisons are drawn between existing practices that pre-date these techniques and how the development of CADe systems that incorporate them will be different.Keywords: breast cancer diagnosis, computer aided detection and diagnosis, deep learning, whole mammogram classfication, ultrasound classification, computer vision
Procedia PDF Downloads 9316190 Reducing the Imbalance Penalty Through Artificial Intelligence Methods Geothermal Production Forecasting: A Case Study for Turkey
Authors: Hayriye Anıl, Görkem Kar
Abstract:
In addition to being rich in renewable energy resources, Turkey is one of the countries that promise potential in geothermal energy production with its high installed power, cheapness, and sustainability. Increasing imbalance penalties become an economic burden for organizations since geothermal generation plants cannot maintain the balance of supply and demand due to the inadequacy of the production forecasts given in the day-ahead market. A better production forecast reduces the imbalance penalties of market participants and provides a better imbalance in the day ahead market. In this study, using machine learning, deep learning, and, time series methods, the total generation of the power plants belonging to Zorlu Natural Electricity Generation, which has a high installed capacity in terms of geothermal, was estimated for the first one and two weeks of March, then the imbalance penalties were calculated with these estimates and compared with the real values. These modeling operations were carried out on two datasets, the basic dataset and the dataset created by extracting new features from this dataset with the feature engineering method. According to the results, Support Vector Regression from traditional machine learning models outperformed other models and exhibited the best performance. In addition, the estimation results in the feature engineering dataset showed lower error rates than the basic dataset. It has been concluded that the estimated imbalance penalty calculated for the selected organization is lower than the actual imbalance penalty, optimum and profitable accounts.Keywords: machine learning, deep learning, time series models, feature engineering, geothermal energy production forecasting
Procedia PDF Downloads 11016189 Presenting a Model Based on Artificial Neural Networks to Predict the Execution Time of Design Projects
Authors: Hamed Zolfaghari, Mojtaba Kord
Abstract:
After feasibility study the design phase is started and the rest of other phases are highly dependent on this phase. forecasting the duration of design phase could do a miracle and would save a lot of time. This study provides a fast and accurate Machine learning (ML) and optimization framework, which allows a quick duration estimation of project design phase, hence improving operational efficiency and competitiveness of a design construction company. 3 data sets of three years composed of daily time spent for different design projects are used to train and validate the ML models to perform multiple projects. Our study concluded that Artificial Neural Network (ANN) performed an accuracy of 0.94.Keywords: time estimation, machine learning, Artificial neural network, project design phase
Procedia PDF Downloads 9716188 Neural Networks and Genetic Algorithms Approach for Word Correction and Prediction
Authors: Rodrigo S. Fonseca, Antônio C. P. Veiga
Abstract:
Aiming at helping people with some movement limitation that makes typing and communication difficult, there is a need to customize an assistive tool with a learning environment that helps the user in order to optimize text input, identifying the error and providing the correction and possibilities of choice in the Portuguese language. The work presents an Orthographic and Grammatical System that can be incorporated into writing environments, improving and facilitating the use of an alphanumeric keyboard, using a prototype built using a genetic algorithm in addition to carrying out the prediction, which can occur based on the quantity and position of the inserted letters and even placement in the sentence, ensuring the sequence of ideas using a Long Short Term Memory (LSTM) neural network. The prototype optimizes data entry, being a component of assistive technology for the textual formulation, detecting errors, seeking solutions and informing the user of accurate predictions quickly and effectively through machine learning.Keywords: genetic algorithm, neural networks, word prediction, machine learning
Procedia PDF Downloads 19416187 Design Modification in CNC Milling Machine to Reduce the Weight of Structure
Authors: Harshkumar K. Desai, Anuj K. Desai, Jay P. Patel, Snehal V. Trivedi, Yogendrasinh Parmar
Abstract:
The need of continuous improvement in a product or process in this era of global competition leads to apply value engineering for functional and aesthetic improvement in consideration with economic aspect too. Solar industries located at G.I.D.C., Makarpura, Vadodara, Gujarat, India; a manufacturer of variety of CNC Machines had a challenge to analyze the structural design of column, base, carriage and table of CNC Milling Machine in the account of reduction of overall weight of a machine without affecting the rigidity and accuracy at the time of operation. The identified task is the first attempt to validate and optimize the proposed design of ribbed structure statically using advanced modeling and analysis tools in a systematic way. Results of stress and deformation obtained using analysis software are validated with theoretical analysis and found quite satisfactory. Such optimized results offer a weight reduction of the final assembly which is desired by manufacturers in favor of reduction of material cost, processing cost and handling cost finally.Keywords: CNC milling machine, optimization, finite element analysis (FEA), weight reduction
Procedia PDF Downloads 27616186 Comparison of Existing Predictor and Development of Computational Method for S- Palmitoylation Site Identification in Arabidopsis Thaliana
Authors: Ayesha Sanjana Kawser Parsha
Abstract:
S-acylation is an irreversible bond in which cysteine residues are linked to fatty acids palmitate (74%) or stearate (22%), either at the COOH or NH2 terminal, via a thioester linkage. There are several experimental methods that can be used to identify the S-palmitoylation site; however, since they require a lot of time, computational methods are becoming increasingly necessary. There aren't many predictors, however, that can locate S- palmitoylation sites in Arabidopsis Thaliana with sufficient accuracy. This research is based on the importance of building a better prediction tool. To identify the type of machine learning algorithm that predicts this site more accurately for the experimental dataset, several prediction tools were examined in this research, including the GPS PALM 6.0, pCysMod, GPS LIPID 1.0, CSS PALM 4.0, and NBA PALM. These analyses were conducted by constructing the receiver operating characteristics plot and the area under the curve score. An AI-driven deep learning-based prediction tool has been developed utilizing the analysis and three sequence-based input data, such as the amino acid composition, binary encoding profile, and autocorrelation features. The model was developed using five layers, two activation functions, associated parameters, and hyperparameters. The model was built using various combinations of features, and after training and validation, it performed better when all the features were present while using the experimental dataset for 8 and 10-fold cross-validations. While testing the model with unseen and new data, such as the GPS PALM 6.0 plant and pCysMod mouse, the model performed better, and the area under the curve score was near 1. It can be demonstrated that this model outperforms the prior tools in predicting the S- palmitoylation site in the experimental data set by comparing the area under curve score of 10-fold cross-validation of the new model with the established tools' area under curve score with their respective training sets. The objective of this study is to develop a prediction tool for Arabidopsis Thaliana that is more accurate than current tools, as measured by the area under the curve score. Plant food production and immunological treatment targets can both be managed by utilizing this method to forecast S- palmitoylation sites.Keywords: S- palmitoylation, ROC PLOT, area under the curve, cross- validation score
Procedia PDF Downloads 7716185 Energy Efficiency and Sustainability Analytics for Reducing Carbon Emissions in Oil Refineries
Authors: Gaurav Kumar Sinha
Abstract:
The oil refining industry, significant in its energy consumption and carbon emissions, faces increasing pressure to reduce its environmental footprint. This article explores the application of energy efficiency and sustainability analytics as crucial tools for reducing carbon emissions in oil refineries. Through a comprehensive review of current practices and technologies, this study highlights innovative analytical approaches that can significantly enhance energy efficiency. We focus on the integration of advanced data analytics, including machine learning and predictive modeling, to optimize process controls and energy use. These technologies are examined for their potential to not only lower energy consumption but also reduce greenhouse gas emissions. Additionally, the article discusses the implementation of sustainability analytics to monitor and improve environmental performance across various operational facets of oil refineries. We explore case studies where predictive analytics have successfully identified opportunities for reducing energy use and emissions, providing a template for industry-wide application. The challenges associated with deploying these analytics, such as data integration and the need for skilled personnel, are also addressed. The paper concludes with strategic recommendations for oil refineries aiming to enhance their sustainability practices through the adoption of targeted analytics. By implementing these measures, refineries can achieve significant reductions in carbon emissions, aligning with global environmental goals and regulatory requirements.Keywords: energy efficiency, sustainability analytics, carbon emissions, oil refineries, data analytics, machine learning, predictive modeling, process optimization, greenhouse gas reduction, environmental performance
Procedia PDF Downloads 3116184 Implementation of Data Science in Field of Homologation
Authors: Shubham Bhonde, Nekzad Doctor, Shashwat Gawande
Abstract:
For the use and the import of Keys and ID Transmitter as well as Body Control Modules with radio transmission in a lot of countries, homologation is required. Final deliverables in homologation of the product are certificates. In considering the world of homologation, there are approximately 200 certificates per product, with most of the certificates in local languages. It is challenging to manually investigate each certificate and extract relevant data from the certificate, such as expiry date, approval date, etc. It is most important to get accurate data from the certificate as inaccuracy may lead to missing re-homologation of certificates that will result in an incompliance situation. There is a scope of automation in reading the certificate data in the field of homologation. We are using deep learning as a tool for automation. We have first trained a model using machine learning by providing all country's basic data. We have trained this model only once. We trained the model by feeding pdf and jpg files using the ETL process. Eventually, that trained model will give more accurate results later. As an outcome, we will get the expiry date and approval date of the certificate with a single click. This will eventually help to implement automation features on a broader level in the database where certificates are stored. This automation will help to minimize human error to almost negligible.Keywords: homologation, re-homologation, data science, deep learning, machine learning, ETL (extract transform loading)
Procedia PDF Downloads 16316183 Internet-Based Architecture for Machine-to-Machine Communication of a Public Security Network
Authors: Ogwueleka Francisca Nonyelum, Jiya Muhammad
Abstract:
Poor communication between the victims of the burglaries, road and fire accidents and the agencies, and lack of quick emergency response by the agencies is solved through Machine-to-Machine (M2M) communication. A distress caller is expected to make a call through a network to the respective agency for emergency response but due to some challenges, this often becomes arduous and futile. This research puts forth an Internet-based architecture for Machine-to-Machine (M2M) communication to enhance information dissemination in National Public Security Communication System (NPSCS) network. M2M enables the flow of data between machines and machines and ultimately machines and people with information flowing from a machine over a network, and then through a gateway to a system where it is reviewed and acted on. The research findings showed that Internet-based architecture for M2M communication is most suitable for deployment of a public security network which will allow machines to use Internet to talk to each other.Keywords: machine-to-machine (M2M), internet-based architecture, network, gateway
Procedia PDF Downloads 48416182 Count of Trees in East Africa with Deep Learning
Authors: Nubwimana Rachel, Mugabowindekwe Maurice
Abstract:
Trees play a crucial role in maintaining biodiversity and providing various ecological services. Traditional methods of counting trees are time-consuming, and there is a need for more efficient techniques. However, deep learning makes it feasible to identify the multi-scale elements hidden in aerial imagery. This research focuses on the application of deep learning techniques for tree detection and counting in both forest and non-forest areas through the exploration of the deep learning application for automated tree detection and counting using satellite imagery. The objective is to identify the most effective model for automated tree counting. We used different deep learning models such as YOLOV7, SSD, and UNET, along with Generative Adversarial Networks to generate synthetic samples for training and other augmentation techniques, including Random Resized Crop, AutoAugment, and Linear Contrast Enhancement. These models were trained and fine-tuned using satellite imagery to identify and count trees. The performance of the models was assessed through multiple trials; after training and fine-tuning the models, UNET demonstrated the best performance with a validation loss of 0.1211, validation accuracy of 0.9509, and validation precision of 0.9799. This research showcases the success of deep learning in accurate tree counting through remote sensing, particularly with the UNET model. It represents a significant contribution to the field by offering an efficient and precise alternative to conventional tree-counting methods.Keywords: remote sensing, deep learning, tree counting, image segmentation, object detection, visualization
Procedia PDF Downloads 7116181 Validating Condition-Based Maintenance Algorithms through Simulation
Authors: Marcel Chevalier, Léo Dupont, Sylvain Marié, Frédérique Roffet, Elena Stolyarova, William Templier, Costin Vasile
Abstract:
Industrial end-users are currently facing an increasing need to reduce the risk of unexpected failures and optimize their maintenance. This calls for both short-term analysis and long-term ageing anticipation. At Schneider Electric, we tackle those two issues using both machine learning and first principles models. Machine learning models are incrementally trained from normal data to predict expected values and detect statistically significant short-term deviations. Ageing models are constructed by breaking down physical systems into sub-assemblies, then determining relevant degradation modes and associating each one to the right kinetic law. Validating such anomaly detection and maintenance models is challenging, both because actual incident and ageing data are rare and distorted by human interventions, and incremental learning depends on human feedback. To overcome these difficulties, we propose to simulate physics, systems, and humans -including asset maintenance operations- in order to validate the overall approaches in accelerated time and possibly choose between algorithmic alternatives.Keywords: degradation models, ageing, anomaly detection, soft sensor, incremental learning
Procedia PDF Downloads 12616180 Approaches and Strategies Used to Increase Student Engagement in Blended Learning Courses
Authors: Pinar Ozdemir Ayber, Zeina Hojeij
Abstract:
Blended Learning (BL) is a rapidly growing teaching and learning approach, which brings together the best of both face-to-face and online learning to expand learning opportunities for students. However, there is limited research on the practices, opportunities and quality of instruction in Blended Classrooms, and on the role of the teaching faculty as well as the learners in these types of classes. This paper will highlight the researchers’ experiences and reflections on blending their classes. It will focus on the importance of designing effective lesson plans that emphasize learner engagement and motivation in alignment with course learning outcomes. In addition, it will identify the changing roles of the teacher and the learners and suggest appropriate variations to the traditional classroom setting taking into consideration the benefits and the challenges of the Blended Classroom. It is hoped that this paper would provide sufficient input for participants to reflect on ways they can blend their own lessons to promote ubiquitous learning and student autonomy. Practical tips and ideas will be shared with the participants on various strategies and technologies that were used in the researchers’ classes.Keywords: blended learning, learner autonomy, learner engagement, learner motivation, mobile learning tools
Procedia PDF Downloads 303