Search results for: input current
10276 The Contemporary Dynamics of Board Composition and Executive Compensation for R&D Spending
Authors: Farheen Akram
Abstract:
Research and Development (R&D) is the most crucial element of the firm’s survival in a competitive business environment. R&D is a long-term investment; therefore, executives having the power to make the investment decisions may be pessimistic when their compensation is closely linked with short-term firm performance. Thus, the current study investigates the impact of board composition and executives’ compensation (cash or short-term benefits and LTIs) on R&D spending using a sample of 85 S&P/100 firms listed on the Australian Stock Exchange (ASX) in 2017. SmartPLS (v.3.2.7) was used to evaluate the proposed model of current research. The empirical findings of this study indicate that board composition has a significant and positive effect on R&D spending. While, as expected, executive cash compensation has negative and Long-Term-Incentives (LTIs) has a positive impact on R&D spending. Based on current findings, the study suggested that myopic behavior of CEOs and top management towards long-term value creation investment like R&D can be controlled by using long-term compensation rewards.Keywords: cash compensation, LTIs, board composition, R&D spending
Procedia PDF Downloads 19410275 Calculation of the Normalized Difference Vegetation Index and the Spectral Signature of Coffee Crops: Benefits of Image Filtering on Mixed Crops
Authors: Catalina Albornoz, Giacomo Barbieri
Abstract:
Crop monitoring has shown to reduce vulnerability to spreading plagues and pathologies in crops. Remote sensing with Unmanned Aerial Vehicles (UAVs) has made crop monitoring more precise, cost-efficient and accessible. Nowadays, remote monitoring involves calculating maps of vegetation indices by using different software that takes either Truecolor (RGB) or multispectral images as an input. These maps are then used to segment the crop into management zones. Finally, knowing the spectral signature of a crop (the reflected radiation as a function of wavelength) can be used as an input for decision-making and crop characterization. The calculation of vegetation indices using software such as Pix4D has high precision for monoculture plantations. However, this paper shows that using this software on mixed crops may lead to errors resulting in an incorrect segmentation of the field. Within this work, authors propose to filter all the elements different from the main crop before the calculation of vegetation indices and the spectral signature. A filter based on the Sobel method for border detection is used for filtering a coffee crop. Results show that segmentation into management zones changes with respect to the traditional situation in which a filter is not applied. In particular, it is shown how the values of the spectral signature change in up to 17% per spectral band. Future work will quantify the benefits of filtering through the comparison between in situ measurements and the calculated vegetation indices obtained through remote sensing.Keywords: coffee, filtering, mixed crop, precision agriculture, remote sensing, spectral signature
Procedia PDF Downloads 39110274 Code Embedding for Software Vulnerability Discovery Based on Semantic Information
Authors: Joseph Gear, Yue Xu, Ernest Foo, Praveen Gauravaran, Zahra Jadidi, Leonie Simpson
Abstract:
Deep learning methods have been seeing an increasing application to the long-standing security research goal of automatic vulnerability detection for source code. Attention, however, must still be paid to the task of producing vector representations for source code (code embeddings) as input for these deep learning models. Graphical representations of code, most predominantly Abstract Syntax Trees and Code Property Graphs, have received some use in this task of late; however, for very large graphs representing very large code snip- pets, learning becomes prohibitively computationally expensive. This expense may be reduced by intelligently pruning this input to only vulnerability-relevant information; however, little research in this area has been performed. Additionally, most existing work comprehends code based solely on the structure of the graph at the expense of the information contained by the node in the graph. This paper proposes Semantic-enhanced Code Embedding for Vulnerability Discovery (SCEVD), a deep learning model which uses semantic-based feature selection for its vulnerability classification model. It uses information from the nodes as well as the structure of the code graph in order to select features which are most indicative of the presence or absence of vulnerabilities. This model is implemented and experimentally tested using the SARD Juliet vulnerability test suite to determine its efficacy. It is able to improve on existing code graph feature selection methods, as demonstrated by its improved ability to discover vulnerabilities.Keywords: code representation, deep learning, source code semantics, vulnerability discovery
Procedia PDF Downloads 16610273 Examination of Public Hospital Unions Technical Efficiencies Using Data Envelopment Analysis and Machine Learning Techniques
Authors: Songul Cinaroglu
Abstract:
Regional planning in health has gained speed for developing countries in recent years. In Turkey, 89 different Public Hospital Unions (PHUs) were conducted based on provincial levels. In this study technical efficiencies of 89 PHUs were examined by using Data Envelopment Analysis (DEA) and machine learning techniques by dividing them into two clusters in terms of similarities of input and output indicators. Number of beds, physicians and nurses determined as input variables and number of outpatients, inpatients and surgical operations determined as output indicators. Before performing DEA, PHUs were grouped into two clusters. It is seen that the first cluster represents PHUs which have higher population, demand and service density than the others. The difference between clusters was statistically significant in terms of all study variables (p ˂ 0.001). After clustering, DEA was performed for general and for two clusters separately. It was found that 11% of PHUs were efficient in general, additionally 21% and 17% of them were efficient for the first and second clusters respectively. It is seen that PHUs, which are representing urban parts of the country and have higher population and service density, are more efficient than others. Random forest decision tree graph shows that number of inpatients is a determinative factor of efficiency of PHUs, which is a measure of service density. It is advisable for public health policy makers to use statistical learning methods in resource planning decisions to improve efficiency in health care.Keywords: public hospital unions, efficiency, data envelopment analysis, random forest
Procedia PDF Downloads 12910272 Trauma System in England: An Overview and Future Directions
Authors: Raheel Shakoor Siddiqui, Sanjay Narayana Murthy, Manikandar Srinivas Cheruvu, Kash Akhtar
Abstract:
Major trauma is a dynamic public health epidemic that is continuously evolving. Major trauma care services rely on multi-disciplinary team input involving highly trained pre and in-hospital critical care teams. Pre-hospital critical care teams (PHCCTs), major trauma centres (MTCs), trauma units, and rehabilitation facilities all form an efficient and organised trauma system. England comprises 27 MTCs funded by the National Health Service (NHS). Major trauma care entails enhanced resuscitation protocols coupled with the expertise of dedicated trauma teams and rapid radiological imaging to improve trauma outcomes. Literature reports a change in the demographic of major trauma as elderly patients (silver trauma) with injuries sustained from a fall of 2 metres or less commonly present to services. Evidence of an increasing population age with multiple comorbidities necessitates treatment within the first hour of injury (golden hour) to improve trauma survival outcomes. Staffing and funding pressures within the NHS have subsequently led to a shortfall of available physician-led PHCCTs. Thus, there is a strong emphasis on targeted research and funding to appropriately deploy resources to deprived areas. This review article will discuss the current English trauma system whilst critically appraising present challenges, identifying insufficiencies, and recommending aims for an improved future trauma system in England.Keywords: trauma, orthopaedics, major trauma, trauma system, trauma network
Procedia PDF Downloads 19510271 Peptide Aptasensor for Electrochemical Detection of Rheumatoid Arthritis
Authors: Shah Abbas
Abstract:
Rheumatoid arthritis is a systemic, inflammatory autoimmune disease, affecting an overall 1% of the global population. Despite being tremendous efforts by scientists, early diagnosis of RA still has not been achieved. In the current study, a Graphene oxide (GO) based electrochemical sensor has been developed for early diagnosis of RA through Cyclic voltammetry. Chitosan (CHI), a CPnatural polymer has also been incorporated along with GO in order to enhance the biocompatibility and functionalization potential of the biosensor. CCPs are known antigens for Anti Citrullinated Peptide Antibodies (ACPAs) which can be detected in serum even 14 years before the appearance of symptoms, thus they are believed to be an ideal target for the early diagnosis of RA. This study has yielded some promising results regarding the binding and detection of ACPAs through changes in the electrochemical properties of biosensing material. The cyclic voltammogram of this biosensor reflects the binding of ACPAs to the biosensor surface, due to its shifts observed in the current flow (cathodic current) as compared to the when no ACPAs bind as it is absent in RA negative patients.Keywords: rheumatoid arthritis, peptide sensor, graphene oxide, anti citrullinated peptide antibodies, cyclic voltammetry
Procedia PDF Downloads 14610270 AS-Geo: Arbitrary-Sized Image Geolocalization with Learnable Geometric Enhancement Resizer
Authors: Huayuan Lu, Chunfang Yang, Ma Zhu, Baojun Qi, Yaqiong Qiao, Jiangqian Xu
Abstract:
Image geolocalization has great application prospects in fields such as autonomous driving and virtual/augmented reality. In practical application scenarios, the size of the image to be located is not fixed; it is impractical to train different networks for all possible sizes. When its size does not match the size of the input of the descriptor extraction model, existing image geolocalization methods usually directly scale or crop the image in some common ways. This will result in the loss of some information important to the geolocalization task, thus affecting the performance of the image geolocalization method. For example, excessive down-sampling can lead to blurred building contour, and inappropriate cropping can lead to the loss of key semantic elements, resulting in incorrect geolocation results. To address this problem, this paper designs a learnable image resizer and proposes an arbitrary-sized image geolocation method. (1) The designed learnable image resizer employs the self-attention mechanism to enhance the geometric features of the resized image. Firstly, it applies bilinear interpolation to the input image and its feature maps to obtain the initial resized image and the resized feature maps. Then, SKNet (selective kernel net) is used to approximate the best receptive field, thus keeping the geometric shapes as the original image. And SENet (squeeze and extraction net) is used to automatically select the feature maps with strong contour information, enhancing the geometric features. Finally, the enhanced geometric features are fused with the initial resized image, to obtain the final resized images. (2) The proposed image geolocalization method embeds the above image resizer as a fronting layer of the descriptor extraction network. It not only enables the network to be compatible with arbitrary-sized input images but also enhances the geometric features that are crucial to the image geolocalization task. Moreover, the triplet attention mechanism is added after the first convolutional layer of the backbone network to optimize the utilization of geometric elements extracted by the first convolutional layer. Finally, the local features extracted by the backbone network are aggregated to form image descriptors for image geolocalization. The proposed method was evaluated on several mainstream datasets, such as Pittsburgh30K, Tokyo24/7, and Places365. The results show that the proposed method has excellent size compatibility and compares favorably to recently mainstream geolocalization methods.Keywords: image geolocalization, self-attention mechanism, image resizer, geometric feature
Procedia PDF Downloads 21810269 Modeling of in 738 LC Alloy Mechanical Properties Based on Microstructural Evolution Simulations for Different Heat Treatment Conditions
Authors: M. Tarik Boyraz, M. Bilge Imer
Abstract:
Conventionally cast nickel-based super alloys, such as commercial alloy IN 738 LC, are widely used in manufacturing of industrial gas turbine blades. With carefully designed microstructure and the existence of alloying elements, the blades show improved mechanical properties at high operating temperatures and corrosive environment. The aim of this work is to model and estimate these mechanical properties of IN 738 LC alloy solely based on simulations for projected heat treatment conditions or service conditions. The microstructure (size, fraction and frequency of gamma prime- γ′ and carbide phases in gamma- γ matrix, and grain size) of IN 738 LC needs to be optimized to improve the high temperature mechanical properties by heat treatment process. This process can be performed at different soaking temperature, time and cooling rates. In this work, micro-structural evolution studies were performed experimentally at various heat treatment process conditions, and these findings were used as input for further simulation studies. The operation time, soaking temperature and cooling rate provided by experimental heat treatment procedures were used as micro-structural simulation input. The results of this simulation were compared with the size, fraction and frequency of γ′ and carbide phases, and grain size provided by SEM (EDS module and mapping), EPMA (WDS module) and optical microscope for before and after heat treatment. After iterative comparison of experimental findings and simulations, an offset was determined to fit the real time and theoretical findings. Thereby, it was possible to estimate the final micro-structure without any necessity to carry out the heat treatment experiment. The output of this microstructure simulation based on heat treatment was used as input to estimate yield stress and creep properties. Yield stress was calculated mainly as a function of precipitation, solid solution and grain boundary strengthening contributors in microstructure. Creep rate was calculated as a function of stress, temperature and microstructural factors such as dislocation density, precipitate size, inter-particle spacing of precipitates. The estimated yield stress values were compared with the corresponding experimental hardness and tensile test values. The ability to determine best heat treatment conditions that achieve the desired microstructural and mechanical properties were developed for IN 738 LC based completely on simulations.Keywords: heat treatment, IN738LC, simulations, super-alloys
Procedia PDF Downloads 25110268 A Novel Hybrid Deep Learning Architecture for Predicting Acute Kidney Injury Using Patient Record Data and Ultrasound Kidney Images
Authors: Sophia Shi
Abstract:
Acute kidney injury (AKI) is the sudden onset of kidney damage in which the kidneys cannot filter waste from the blood, requiring emergency hospitalization. AKI patient mortality rate is high in the ICU and is virtually impossible for doctors to predict because it is so unexpected. Currently, there is no hybrid model predicting AKI that takes advantage of two types of data. De-identified patient data from the MIMIC-III database and de-identified kidney images and corresponding patient records from the Beijing Hospital of the Ministry of Health were collected. Using data features including serum creatinine among others, two numeric models using MIMIC and Beijing Hospital data were built, and with the hospital ultrasounds, an image-only model was built. Convolutional neural networks (CNN) were used, VGG and Resnet for numeric data and Resnet for image data, and they were combined into a hybrid model by concatenating feature maps of both types of models to create a new input. This input enters another CNN block and then two fully connected layers, ending in a binary output after running through Softmax and additional code. The hybrid model successfully predicted AKI and the highest AUROC of the model was 0.953, achieving an accuracy of 90% and F1-score of 0.91. This model can be implemented into urgent clinical settings such as the ICU and aid doctors by assessing the risk of AKI shortly after the patient’s admission to the ICU, so that doctors can take preventative measures and diminish mortality risks and severe kidney damage.Keywords: Acute kidney injury, Convolutional neural network, Hybrid deep learning, Patient record data, ResNet, Ultrasound kidney images, VGG
Procedia PDF Downloads 13510267 A Case Study on the Seismic Performance Assessment of the High-Rise Setback Tower Under Multiple Support Excitations on the Basis of TBI Guidelines
Authors: Kamyar Kildashti, Rasoul Mirghaderi
Abstract:
This paper describes the three-dimensional seismic performance assessment of a high-rise steel moment-frame setback tower, designed and detailed per the 2010 ASCE7, under multiple support excitations. The vulnerability analyses are conducted based on nonlinear history analyses under a set of multi-directional strong ground motion records which are scaled to design-based site-specific spectrum in accordance with ASCE41-13. Spatial variation of input motions between far distant supports of each part of the tower is considered by defining time lag. Plastic hinge monotonic and cyclic behavior for prequalified steel connections, panel zones, as well as steel columns is obtained from predefined values presented in TBI Guidelines, PEER/ATC72 and FEMA P440A to include stiffness and strength degradation. Inter-story drift ratios, residual drift ratios, as well as plastic hinge rotation demands under multiple support excitations, are compared to those obtained from uniform support excitations. Performance objectives based on acceptance criteria declared by TBI Guidelines are compared between uniform and multiple support excitations. The results demonstrate that input motion discrepancy results in detrimental effects on the local and global response of the tower.Keywords: high-rise building, nonlinear time history analysis, multiple support excitation, performance-based design
Procedia PDF Downloads 28610266 Comparison Analysis of Science and Technology Council between Korea, USA, and Japan
Authors: Daekook Kang, Wooseok Jang, Jeonghwan Jeon
Abstract:
As Korea government has expanded the budget for the national research and development business, the need for the installation of institute taking a role of deliberation, coordination, and operation of research development business and its budget has been increased continuously. In response to the demands of the times, recently, the National Science & Technology Council (NSTC) was installed. However, to achieve a creative economy more efficiently, the fundamental introspection on the current state of the national administration system of science and technology in Korea should be needed. Accordingly, this study, firstly, analyzes the function and organizational structure of NSTC in Korea. Then, this study investigates the current state of the National Science and Technology Council in main world countries. Lastly, this study derives some implications based on the comparison analysis of the current state of the National Science and Technology Council between Korea and these countries. The present study will help in finding the way for the advancement of the NSTC in Korea.Keywords: Comparison Analysis of Science & Technology Council (NSTC), CSTP, National Science & Technology Council in Korea, operating system of NSTC
Procedia PDF Downloads 43210265 Aggregating Buyers and Sellers for E-Commerce: How Demand and Supply Meet in Fairs
Authors: Pierluigi Gallo, Francesco Randazzo, Ignazio Gallo
Abstract:
In recent years, many new and interesting models of successful online business have been developed. Many of these are based on the competition between users, such as online auctions, where the product price is not fixed and tends to rise. Other models, including group-buying, are based on cooperation between users, characterized by a dynamic price of the product that tends to go down. There is not yet a business model in which both sellers and buyers are grouped in order to negotiate on a specific product or service. The present study investigates a new extension of the group-buying model, called fair, which allows aggregation of demand and supply for price optimization, in a cooperative manner. Additionally, our system also aggregates products and destinations for shipping optimization. We introduced the following new relevant input parameters in order to implement a double-side aggregation: (a) price-quantity curves provided by the seller; (b) waiting time, that is, the longer buyers wait, the greater discount they get; (c) payment time, which determines if the buyer pays before, during or after receiving the product; (d) the distance between the place where products are available and the place of shipment, provided in advance by the buyer or dynamically suggested by the system. To analyze the proposed model we implemented a system prototype and a simulator that allows studying effects of changing some input parameters. We analyzed the dynamic price model in fairs having one single seller and a combination of selected sellers. The results are very encouraging and motivate further investigation on this topic.Keywords: auction, aggregation, fair, group buying, social buying
Procedia PDF Downloads 29710264 Comparative Analysis of Photovoltaic Systems
Authors: Irtaza M. Syed, Kaameran Raahemifar
Abstract:
This paper presents comparative analysis of photovoltaic systems (PVS) and proposes practical techniques to improve operational efficiency of the PVS. The best engineering and construction practices for PVS are identified and field oriented recommendation are made. Comparative analysis of central and string inverter based, as well as 600 and 1000 VDC PVS are performed. In addition, direct current (DC) and alternating current (AC) photovoltaic (PV) module based systems are compared. Comparison shows that 1000 V DC String Inverters based PVS is the best choice.Keywords: photovoltaic module, photovoltaic systems, operational efficiency improvement, comparative analysis
Procedia PDF Downloads 48810263 Network Conditioning and Transfer Learning for Peripheral Nerve Segmentation in Ultrasound Images
Authors: Harold Mauricio Díaz-Vargas, Cristian Alfonso Jimenez-Castaño, David Augusto Cárdenas-Peña, Guillermo Alberto Ortiz-Gómez, Alvaro Angel Orozco-Gutierrez
Abstract:
Precise identification of the nerves is a crucial task performed by anesthesiologists for an effective Peripheral Nerve Blocking (PNB). Now, anesthesiologists use ultrasound imaging equipment to guide the PNB and detect nervous structures. However, visual identification of the nerves from ultrasound images is difficult, even for trained specialists, due to artifacts and low contrast. The recent advances in deep learning make neural networks a potential tool for accurate nerve segmentation systems, so addressing the above issues from raw data. The most widely spread U-Net network yields pixel-by-pixel segmentation by encoding the input image and decoding the attained feature vector into a semantic image. This work proposes a conditioning approach and encoder pre-training to enhance the nerve segmentation of traditional U-Nets. Conditioning is achieved by the one-hot encoding of the kind of target nerve a the network input, while the pre-training considers five well-known deep networks for image classification. The proposed approach is tested in a collection of 619 US images, where the best C-UNet architecture yields an 81% Dice coefficient, outperforming the 74% of the best traditional U-Net. Results prove that pre-trained models with the conditional approach outperform their equivalent baseline by supporting learning new features and enriching the discriminant capability of the tested networks.Keywords: nerve segmentation, U-Net, deep learning, ultrasound imaging, peripheral nerve blocking
Procedia PDF Downloads 11110262 Awareness regarding Radiation Protection among the Technicians Practicing in Bharatpur, Chitwan, Nepal
Authors: Jayanti Gyawali, Deepak Adhikari, Mukesh Mallik, Sanjay Sah
Abstract:
Radiation is defined as an emission or transmission of energy in form of waves or particles through space or material medium. The major imaging tools used in diagnostic radiology is based on the use of ionizing radiation. A cross-sectional study was carried out during July- August, 2015 among technicians in 15 different hospitals of Bharatpur, Chitwan, Nepal to assess awareness regarding radiation protection and their current practice. The researcher was directly engaged for data collection using self-administered semi-structured questionnaire. The findings of the study are presented in socio-demographic characteristics of respondents, current practice of respondents and knowledge regarding radiation protection. The result of this study demonstrated that despite the importance of radiation and its consequent hazards, the level of knowledge among technicians is only 60.23% and their current practice is 76.84%. The difference in the mean score of knowledge and practice might have resulted due to technicians’s regular work and lack of updates. The study also revealed that there is no significant (p>0.05) difference in knowledge level of technicians practicing in different hospitals. But the mean difference in practice scores of different hospital is significant (p<0.05) i.e. i.e. the cancer hospital with large volumes of regular radiological cases and radiation therapies for cancer treatment has better practice in comparison to other hospitals. The deficiency in knowledge of technicians might alter the expected benefits, compared to the risk involved, and can cause erroneous medical diagnosis and radiation hazard. Therefore, this study emphasizes the need for all technicians to update themselves with the appropriate knowledge and current practice about ionizing and non-ionizing radiation.Keywords: technicians, knowledge, Nepal, radiation
Procedia PDF Downloads 33510261 Response Analysis of a Steel Reinforced Concrete High-Rise Building during the 2011 Tohoku Earthquake
Authors: Naohiro Nakamura, Takuya Kinoshita, Hiroshi Fukuyama
Abstract:
The 2011 off The Pacific Coast of Tohoku Earthquake caused considerable damage to wide areas of eastern Japan. A large number of earthquake observation records were obtained at various places. To design more earthquake-resistant buildings and improve earthquake disaster prevention, it is necessary to utilize these data to analyze and evaluate the behavior of a building during an earthquake. This paper presents an earthquake response simulation analysis (hereafter a seismic response analysis) that was conducted using data recorded during the main earthquake (hereafter the main shock) as well as the earthquakes before and after it. The data were obtained at a high-rise steel-reinforced concrete (SRC) building in the bay area of Tokyo. We first give an overview of the building, along with the characteristics of the earthquake motion and the building during the main shock. The data indicate that there was a change in the natural period before and after the earthquake. Next, we present the results of our seismic response analysis. First, the analysis model and conditions are shown, and then, the analysis result is compared with the observational records. Using the analysis result, we then study the effect of soil-structure interaction on the response of the building. By identifying the characteristics of the building during the earthquake (i.e., the 1st natural period and the 1st damping ratio) by the Auto-Regressive eXogenous (ARX) model, we compare the analysis result with the observational records so as to evaluate the accuracy of the response analysis. In this study, a lumped-mass system SR model was used to conduct a seismic response analysis using observational data as input waves. The main results of this study are as follows: 1) The observational records of the 3/11 main shock put it between a level 1 and level 2 earthquake. The result of the ground response analysis showed that the maximum shear strain in the ground was about 0.1% and that the possibility of liquefaction occurring was low. 2) During the 3/11 main shock, the observed wave showed that the eigenperiod of the building became longer; this behavior could be generally reproduced in the response analysis. This prolonged eigenperiod was due to the nonlinearity of the superstructure, and the effect of the nonlinearity of the ground seems to have been small. 3) As for the 4/11 aftershock, a continuous analysis in which the subject seismic wave was input after the 3/11 main shock was input was conducted. The analyzed values generally corresponded well with the observed values. This means that the effect of the nonlinearity of the main shock was retained by the building. It is important to consider this when conducting the response evaluation. 4) The first period and the damping ratio during a vibration were evaluated by an ARX model. Our results show that the response analysis model in this study is generally good at estimating a change in the response of the building during a vibration.Keywords: ARX model, response analysis, SRC building, the 2011 off the Pacific Coast of Tohoku Earthquake
Procedia PDF Downloads 16710260 Performance Improvement of The Nano-Composite Based Proton Exchange Membranes (PEMs)
Authors: Yusuf Yılmaz, Kevser Dincer, Derya Saygılı
Abstract:
In this study, performance of PEMs was experimentally investigated. Coating on the cathode side of the PEMs fuel cells was accomplished with the spray method by using NaCaNiBO. A solution having 0,1 gr NaCaNiBO +10 mL methanol was prepared. This solution was taken out and filled into a spray. Then the cathode side of PEMs fuel cells was cladded with NaCaNiBO by using spray method. After coating, the membrane was left out to dry for 24 hours. The PEM fuel cells were mounted to the system in single, double, triple and fourfold manner in order to spot the best performance. The performance parameter considered was the power to current ratio. The best performance was found to occur at the 300th second with the power/current ratio of 3.55 Watt/Ampere and on the fourfold parallel mounting after the coating; whereas the poorest performance took place at the 210th second, power to current ratio of 0.12 Watt/Ampere and on the twofold parallel connection after the coating.Keywords: nano-composites, proton exchange membranes, performance improvement, fuel cell
Procedia PDF Downloads 37210259 Comparison between Classical and New Direct Torque Control Strategies of Induction Machine
Authors: Mouna Essaadi, Mohamed Khafallah, Abdallah Saad, Hamid Chaikhy
Abstract:
This paper presents a comparative analysis between conventional direct torque control (C_DTC), Modified direct torque control (M_DTC) and twelve sectors direct torque control (12_DTC).Those different strategies are compared by simulation in term of torque, flux and stator current performances. Finally, a summary of the comparative analysis is presented.Keywords: C_DTC, M_DTC, 12_DTC, torque dynamic, stator current, flux, performances
Procedia PDF Downloads 62010258 Aristotelian Techniques of Communication Used by Current Affairs Talk Shows in Pakistan for Creating Dramatic Effect to Trigger Emotional Relevance
Authors: Shazia Anwer
Abstract:
The current TV Talk Shows, especially on domestic politics in Pakistan are following the Aristotelian techniques, including deductive reasoning, three modes of persuasion, and guidelines for communication. The application of “Approximate Truth is also seen when Talk Show presenters create doubts against political personalities or national issues. Mainstream media of Pakistan, being a key carrier of narrative construction for the sake of the primary function of national consensus on regional and extended public diplomacy, is failing the purpose. This paper has highlighted the Aristotelian communication methodology, its purposes and its limitations for a serious discussion, and its connection to the mistrust among the Pakistani population regarding fake or embedded, funded Information. Data has been collected from 3 Pakistani TV Talk Shows and their analysis has been made by applying the Aristotelian communication method to highlight the core issues. Paper has also elaborated that current media education is impaired in providing transparent techniques to train the future journalist for a meaningful, thought-provoking discussion. For this reason, this paper has given an overview of HEC’s (Higher Education Commission) graduate-level Mass Com Syllabus for Pakistani Universities. The idea of ethos, logos, and pathos are the main components of TV Talk Shows and as a result, the educated audience is lacking trust in the mainstream media, which eventually generating feelings of distrust and betrayal in the society because productions look like the genre of Drama instead of facts and analysis thus the line between Current Affairs shows and Infotainment has become blurred. In the last section, practical implication to improve meaningfulness and transparency in the TV Talk shows has been suggested by replacing the Aristotelian communication method with the cognitive semiotic communication approach.Keywords: Aristotelian techniques of communication, current affairs talk shows, drama, Pakistan
Procedia PDF Downloads 20710257 Time Series Analysis the Case of China and USA Trade Examining during Covid-19 Trade Enormity of Abnormal Pricing with the Exchange rate
Authors: Md. Mahadi Hasan Sany, Mumenunnessa Keya, Sharun Khushbu, Sheikh Abujar
Abstract:
Since the beginning of China's economic reform, trade between the U.S. and China has grown rapidly, and has increased since China's accession to the World Trade Organization in 2001. The US imports more than it exports from China, reducing the trade war between China and the U.S. for the 2019 trade deficit, but in 2020, the opposite happens. In international and U.S. trade, Washington launched a full-scale trade war against China in March 2016, which occurred a catastrophic epidemic. The main goal of our study is to measure and predict trade relations between China and the U.S., before and after the arrival of the COVID epidemic. The ML model uses different data as input but has no time dimension that is present in the time series models and is only able to predict the future from previously observed data. The LSTM (a well-known Recurrent Neural Network) model is applied as the best time series model for trading forecasting. We have been able to create a sustainable forecasting system in trade between China and the US by closely monitoring a dataset published by the State Website NZ Tatauranga Aotearoa from January 1, 2015, to April 30, 2021. Throughout the survey, we provided a 180-day forecast that outlined what would happen to trade between China and the US during COVID-19. In addition, we have illustrated that the LSTM model provides outstanding outcome in time series data analysis rather than RFR and SVR (e.g., both ML models). The study looks at how the current Covid outbreak affects China-US trade. As a comparative study, RMSE transmission rate is calculated for LSTM, RFR and SVR. From our time series analysis, it can be said that the LSTM model has given very favorable thoughts in terms of China-US trade on the future export situation.Keywords: RFR, China-U.S. trade war, SVR, LSTM, deep learning, Covid-19, export value, forecasting, time series analysis
Procedia PDF Downloads 20210256 Morphological, Mechanical, and Tribological Properties Investigations of CMTed Parts of Al-5356 Alloy
Authors: Antar Bouhank, Youcef Beellal, Samir Adjel, Abdelmadjid Ababsa
Abstract:
This paper investigates the impact of 3D printing parameters using the cold metal transfer (CMT) technique on the morphological, mechanical, and tribological properties of walls and massive parts made from aluminum alloy. The parameters studied include current intensity, torch movement speed, printing increment, and the flow rate of shielding gas. The manufactured parts, using the technique mentioned above, are walls and massive parts with different filling strategies, using grid and zigzag patterns and at different current intensities. The main goal of the article is to find out the welding parameters suitable for having parts with low defects and improved properties from the previously mentioned properties point of view. It has been observed from the results thus obtained that the high current intensity causes rapid solidification, resulting in high porosity and low hardness values. However, the high current intensity can cause very rapid solidification, which increases the melting point, and the part remains in the most stable shape. Furthermore, the results show that there is an evident relationship between hardness, coefficient of friction and wear test where the high intensity is, the low hardness is. The same note is for the coefficient of friction. The micrography of the walls shows a random granular structure with fine grain boundaries with a different grain size. Some interesting results are presented in this paper.Keywords: aluminum alloy, porosity, microstructures, hardness
Procedia PDF Downloads 5610255 Trends in Domestic Terms of Trade of Agricultural Sector of Pakistan
Authors: Anwar Hussain, Muhammad Iqbal
Abstract:
The changes in the prices of the agriculture commodities combined with changes in population and agriculture productivity affect farmers’ profitability and standard of living. This study intends to estimate various domestic terms of trade for agriculture sector and also to assess the volatility in the standard of living and profitability of farmers. The terms of trade has been estimated for Pakistan and its provinces using producer prices indices, consumer price indices, input prices indices and quantity indices using the data for the period 1990-91 to 2008-09. The domestic terms of trade of agriculture sector has been improved in terms of both approaches i.e. the ratio of producer prices indices to consumer prices indices and the real per capita income approach. However, the cross province estimates indicated that the terms of trade also improved for Khyber Pakhtunkhwa, Sindh and Punjab while Balochistan’s domestic terms of trade deteriorated drastically. In other words the standard of living of the farmers in Pakistan and its provinces except Balochistan improved. Using the input prices, the domestic terms of trade deteriorated for Pakistan as a whole and its provinces as well. This also explores that as a whole the profitability of the farmers reduced during the study period. The farmers pay more prices for inputs as compared to they receive for their produce. This further indicates that the poverty at the gross root level has been increased. Further, summing, the standard of living of the farmers improved but their profitability reduced, which indicates that the farmers do not completely rely on the farm income but also utilize some other sources of income for their livelihood. The study supports to give subsidies on farm inputs so as to improve the profitability of the farmers.Keywords: agricultural terms of trade, farmers’ profitability, farmers’ standard of living, consumer and producer price indices, quantity indices
Procedia PDF Downloads 47010254 Optimal Protection Coordination in Distribution Systems with Distributed Generations
Authors: Abdorreza Rabiee, Shahla Mohammad Hoseini Mirzaei
Abstract:
The advantages of distributed generations (DGs) based on renewable energy sources (RESs) leads to high penetration level of DGs in distribution network. With incorporation of DGs in distribution systems, the system reliability and security, as well as voltage profile, is improved. However, the protection of such systems is still challenging. In this paper, at first, the related papers are reviewed and then a practical scheme is proposed for coordination of OCRs in distribution system with DGs. The coordination problem is formulated as a nonlinear programming (NLP) optimization problem with the object function of minimizing total operating time of OCRs. The proposed method is studied based on a simple test system. The optimization problem is solved by General Algebraic Modeling System (GAMS) to calculate the optimal time dial setting (TDS) and also pickup current setting of OCRs. The results show the effectiveness of the proposed method and its applicability.Keywords: distributed generation, DG, distribution network, over current relay, OCR, protection coordination, pickup current, time dial setting, TDS
Procedia PDF Downloads 14110253 Investigating Chinese Students' Engagement with Teacher Feedback: Multiple Case Studies in a UK University
Authors: Fangfei Li
Abstract:
This research was conducted to explore how Chinese overseas students, who rarely received teacher feedback during their undergraduate studies in China, engaged in a different feedback provision context in the UK universities. In particular, this research provides some insights into Chinese students’ perspectives on how they made sense of the teacher feedback they obtained and how they took it on board in their assignments. Research questions in this study are 1) What are Chinese overseas students’ perceptions of teacher feedback on courses in UK higher education? 2) How do they respond to the teacher feedback they obtained? 3) What factors might influence their engagement with teacher feedback? Multiple case studies of five Chinese overseas students in a UK university have been carried out to address the research questions. The main data collection instruments are various types of semi-structured interviews, consisting of background interviews, scenario-based activities, stimulated recall sessions and retrospective interviews. Research findings indicate that student engagement with teacher feedback is a complex learning process incorporating several stages: from initial teacher input to ultimate transformational learning. Apart from students interpreting teachers’ comments/suggestions by themselves, students’ understandings of and responses to teacher feedback could also be influenced by pre-submission guidance, peer discussion, use of exemplars and post-submission discussion with teachers. These are key factors influencing students to make use of teacher feedback. Findings also reveal that the level of students’ reflections on tutor feedback influences the quality of their assignments and even their future learning. To sum up, this paper will discuss the current concepts of teacher feedback in existing studies and research findings of this study from which reconceptualization of teacher feedback has occurred.Keywords: Chinese students, student engagement, teacher feedback, the UK higher education
Procedia PDF Downloads 35910252 Chaotic Electronic System with Lambda Diode
Authors: George Mahalu
Abstract:
The Chua diode has been configured over time in various ways, using electronic structures like operational amplifiers (AOs) or devices with gas or semiconductors. When discussing the use of semiconductor devices, tunnel diodes (Esaki diodes) are most often considered, and more recently, transistorized configurations such as lambda diodes. The paperwork proposed here uses in the modeling a lambda diode type configuration consisting of two junction field effect transistors (JFET). The original scheme is created in the MULTISIM electronic simulation environment and is analyzed in order to identify the conditions for the appearance of evolutionary unpredictability specific to nonlinear dynamic systems with chaos-induced behavior. The chaotic deterministic oscillator is one autonomous type, a fact that places it in the class of Chua’s type oscillators, the only significant and most important difference being the presence of a nonlinear device like the one mentioned structure above. The chaotic behavior is identified both by means of strange attractor-type trajectories and visible during the simulation and by highlighting the hypersensitivity of the system to small variations of one of the input parameters. The results obtained through simulation and the conclusions drawn are useful in the further research of ways to implement such constructive electronic solutions in theoretical and practical applications related to modern small signal amplification structures, to systems for encoding and decoding messages through various modern ways of communication, as well as new structures that can be imagined both in modern neural networks and in those for the physical implementation of some requirements imposed by current research with the aim of obtaining practically usable solutions in quantum computing and quantum computers.Keywords: chua, diode, memristor, chaos
Procedia PDF Downloads 9310251 Movable Airfoil Arm (MAA) and Ducting Effect to Increase the Efficiency of a Helical Turbine
Authors: Abdi Ismail, Zain Amarta, Riza Rifaldy Argaputra
Abstract:
The Helical Turbine has the highest efficiency in comparison with the other hydrokinetic turbines. However, the potential of the Helical Turbine efficiency can be further improved so that the kinetic energy of a water current can be converted into mechanical energy as much as possible. This paper explains the effects by adding a Movable Airfoil Arm (MAA) and ducting on a Helical Turbine. The first research conducted an analysis of the efficiency comparison between a Plate Arm Helical Turbine (PAHT) versus a Movable Arm Helical Turbine Airfoil (MAAHT) at various water current velocities. The first step is manufacturing a PAHT and MAAHT. The PAHT and MAAHT has these specifications (as a fixed variable): 80 cm in diameter, a height of 88 cm, 3 blades, NACA 0018 blade profile, a 10 cm blade chord and a 60o inclination angle. The MAAHT uses a NACA 0012 airfoil arm that can move downward 20o, the PAHT uses a 5 mm plate arm. At the current velocity of 0.8, 0.85 and 0.9 m/s, the PAHT respectively generates a mechanical power of 92, 117 and 91 watts (a consecutive efficiency of 16%, 17% and 11%). At the same current velocity variation, the MAAHT respectively generates 74, 60 and 43 watts (a consecutive efficiency of 13%, 9% and 5%). Therefore, PAHT has a better performance than the MAAHT. Using analysis from CFD (Computational Fluid Dynamics), the drag force of MAA is greater than the one generated by the plate arm. By using CFD analysis, the drag force that occurs on the MAA is more dominant than the lift force, therefore the MAA can be called a drag device, whereas the lift force that occurs on the helical blade is more dominant than the drag force, therefore it can be called a lift device. Thus, the lift device cannot be combined with the drag device, because the drag device will become a hindrance to the lift device rotation. The second research conducted an analysis of the efficiency comparison between a Ducted Helical Turbine (DHT) versus a Helical Turbine (HT) through experimental studies. The first step is manufacturing the DHT and HT. The Helical turbine specifications (as a fixed variable) are: 40 cm in diameter, a height of 88 cm, 3 blades, NACA 0018 blade profile, 10 cm blade chord and a 60o inclination angle. At the current speed of 0.7, 0.8, 0.9 and 1.1 m/s, the HT respectively generates a mechanical power of 72, 85, 93 and 98 watts (a consecutive efficiency of 38%, 30%, 23% and 13%). At the same current speed variation, the DHT generates a mechanical power of 82, 98, 110 and 134 watts (a consecutive efficiency of 43%, 34%, 27% and 18%), respectively. The usage of ducting causes the water current speed around the turbine to increase.Keywords: hydrokinetic turbine, helical turbine, movable airfoil arm, ducting
Procedia PDF Downloads 37110250 2106 kA/cm² Peak Tunneling Current Density in GaN-Based Resonant Tunneling Diode with an Intrinsic Oscillation Frequency of ~260GHz at Room Temperature
Authors: Fang Liu, JunShuai Xue, JiaJia Yao, GuanLin Wu, ZuMaoLi, XueYan Yang, HePeng Zhang, ZhiPeng Sun
Abstract:
Terahertz spectra is in great demand since last two decades for many photonic and electronic applications. III-Nitride resonant tunneling diode is one of the promising candidates for portable and compact THz sources. Room temperature microwave oscillator based on GaN/AlN resonant tunneling diode was reported in this work. The devices, grown by plasma-assisted molecular-beam epitaxy on free-standing c-plane GaN substrates, exhibit highly repeatable and robust negative differential resistance (NDR) characteristics at room temperature. To improve the interface quality at the active region in RTD, indium surfactant assisted growth is adopted to enhance the surface mobility of metal atoms on growing film front. Thanks to the lowered valley current associated with the suppression of threading dislocation scattering on low dislocation GaN substrate, a positive peak current density of record-high 2.1 MA/cm2 in conjunction with a peak-to-valley current ratio (PVCR) of 1.2 are obtained, which is the best results reported in nitride-based RTDs up to now considering the peak current density and PVCR values simultaneously. When biased within the NDR region, microwave oscillations are measured with a fundamental frequency of 0.31 GHz, yielding an output power of 5.37 µW. Impedance mismatch results in the limited output power and oscillation frequency described above. The actual measured intrinsic capacitance is only 30fF. Using a small-signal equivalent circuit model, the maximum intrinsic frequency of oscillation for these diodes is estimated to be ~260GHz. This work demonstrates a microwave oscillator based on resonant tunneling effect, which can meet the demands of terahertz spectral devices, more importantly providing guidance for the fabrication of the complex nitride terahertz and quantum effect devices.Keywords: GaN resonant tunneling diode, peak current density, microwave oscillation, intrinsic capacitance
Procedia PDF Downloads 14210249 Bio-Heat Transfer in Various Transcutaneous Stimulation Models
Authors: Trevor E. Davis, Isaac Cassar, Yi-Kai Lo, Wentai Liu
Abstract:
This study models the use of transcutaneous electrical nerve stimulation on skin with a disk electrode in order to simulate tissue damage. The current density distribution above a disk electrode is known to be a dynamic and non-uniform quantity that is intensified at the edges of the disk. The non-uniformity is subject to change through using various electrode geometries or stimulation methods. One of these methods known as edge-retarded stimulation has shown to reduce this edge enhancement. Though progress has been made in modeling the behavior of a disk electrode, little has been done to test the validity of these models in simulating the actual heat transfer from the electrode. This simulation uses finite element software to couple the injection of current from a disk electrode to heat transfer described by the Pennesbioheat transfer equation. An example application of this model is studying an experimental form of stimulation, known as edge-retarded stimulation. The edge-retarded stimulation method will reduce the current density at the edges of the electrode. It is hypothesized that reducing the current density edge enhancement effect will, in turn, reduce temperature change and tissue damage at the edges of these electrodes. This study tests this hypothesis as a demonstration of the capabilities of this model. The edge-retarded stimulation proved to be safer after this simulation. It is shown that temperature change and the fraction of tissue necrosis is much greater in the square wave stimulation. These results bring implications for changes of procedures in transcutaneous electrical nerve stimulation and transcutaneous spinal cord stimulation as well.Keywords: bioheat transfer, electrode, neuroprosthetics, TENS, transcutaneous stimulation
Procedia PDF Downloads 24210248 Arabic Text Representation and Classification Methods: Current State of the Art
Authors: Rami Ayadi, Mohsen Maraoui, Mounir Zrigui
Abstract:
In this paper, we have presented a brief current state of the art for Arabic text representation and classification methods. We decomposed Arabic Task Classification into four categories. First we describe some algorithms applied to classification on Arabic text. Secondly, we cite all major works when comparing classification algorithms applied on Arabic text, after this, we mention some authors who proposing new classification methods and finally we investigate the impact of preprocessing on Arabic TC.Keywords: text classification, Arabic, impact of preprocessing, classification algorithms
Procedia PDF Downloads 47110247 Implementing an English Medium of Instruction Policy in Algerian Higher Education: A Study of Teachers’ Attitudes, Agency, and Professional Identity
Authors: Ikram Metalsi
Abstract:
English as a Medium of Instruction known as (EMI) is expanding rapidly in the world. A growing volume of research has been dedicated to investigating its implementation. However, considerably less attention has been given to understanding EMI in a context where its implementation has been discussed but not yet put into practice. One such context is Algeria, where talks about a possible implementation of EMI have been going on for some time. The present study examines the current discourses and university lecturers’ attitudes towards the potential implementation of EMI as well as investigating the current implicit and explicit language policies in scientific courses in Algerian state universities. The focus is specifically on Engineering departments, as this field has gained worldwide importance in EMI research (Macaro et al. 2018), and, traditionally, French has been the MOI for Engineering in Algerian universities. Using the ROADMAPPING framework (Dafouz and Smit 2016) and the mixed method research approach, the present work explores the language in education policy (LEP) and planning situation in Algeria, the current media of instruction as well as the status and use of the English language in the scientific courses of the tertiary sector. Finally, the current study explores the perceived challenges and benefits of the implementation of EMI programmes from teachers’ perspectives with a particular focus on agency and how this potential policy implementation and teachers’ perceptions of agency around it may reflexively influence their professional identity.Keywords: media of instruction, language in education policy, lecturers attitudes, teacher agency, professional identity
Procedia PDF Downloads 126