Search results for: injury prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3064

Search results for: injury prediction

2374 Comparison of Existing Predictor and Development of Computational Method for S- Palmitoylation Site Identification in Arabidopsis Thaliana

Authors: Ayesha Sanjana Kawser Parsha

Abstract:

S-acylation is an irreversible bond in which cysteine residues are linked to fatty acids palmitate (74%) or stearate (22%), either at the COOH or NH2 terminal, via a thioester linkage. There are several experimental methods that can be used to identify the S-palmitoylation site; however, since they require a lot of time, computational methods are becoming increasingly necessary. There aren't many predictors, however, that can locate S- palmitoylation sites in Arabidopsis Thaliana with sufficient accuracy. This research is based on the importance of building a better prediction tool. To identify the type of machine learning algorithm that predicts this site more accurately for the experimental dataset, several prediction tools were examined in this research, including the GPS PALM 6.0, pCysMod, GPS LIPID 1.0, CSS PALM 4.0, and NBA PALM. These analyses were conducted by constructing the receiver operating characteristics plot and the area under the curve score. An AI-driven deep learning-based prediction tool has been developed utilizing the analysis and three sequence-based input data, such as the amino acid composition, binary encoding profile, and autocorrelation features. The model was developed using five layers, two activation functions, associated parameters, and hyperparameters. The model was built using various combinations of features, and after training and validation, it performed better when all the features were present while using the experimental dataset for 8 and 10-fold cross-validations. While testing the model with unseen and new data, such as the GPS PALM 6.0 plant and pCysMod mouse, the model performed better, and the area under the curve score was near 1. It can be demonstrated that this model outperforms the prior tools in predicting the S- palmitoylation site in the experimental data set by comparing the area under curve score of 10-fold cross-validation of the new model with the established tools' area under curve score with their respective training sets. The objective of this study is to develop a prediction tool for Arabidopsis Thaliana that is more accurate than current tools, as measured by the area under the curve score. Plant food production and immunological treatment targets can both be managed by utilizing this method to forecast S- palmitoylation sites.

Keywords: S- palmitoylation, ROC PLOT, area under the curve, cross- validation score

Procedia PDF Downloads 79
2373 Exploring the Impact of Input Sequence Lengths on Long Short-Term Memory-Based Streamflow Prediction in Flashy Catchments

Authors: Farzad Hosseini Hossein Abadi, Cristina Prieto Sierra, Cesar Álvarez Díaz

Abstract:

Predicting streamflow accurately in flashy catchments prone to floods is a major research and operational challenge in hydrological modeling. Recent advancements in deep learning, particularly Long Short-Term Memory (LSTM) networks, have shown to be promising in achieving accurate hydrological predictions at daily and hourly time scales. In this work, a multi-timescale LSTM (MTS-LSTM) network was applied to the context of regional hydrological predictions at an hourly time scale in flashy catchments. The case study includes 40 catchments allocated in the Basque Country, north of Spain. We explore the impact of hyperparameters on the performance of streamflow predictions given by regional deep learning models through systematic hyperparameter tuning - where optimal regional values for different catchments are identified. The results show that predictions are highly accurate, with Nash-Sutcliffe (NSE) and Kling-Gupta (KGE) metrics values as high as 0.98 and 0.97, respectively. A principal component analysis reveals that a hyperparameter related to the length of the input sequence contributes most significantly to the prediction performance. The findings suggest that input sequence lengths have a crucial impact on the model prediction performance. Moreover, employing catchment-scale analysis reveals distinct sequence lengths for individual basins, highlighting the necessity of customizing this hyperparameter based on each catchment’s characteristics. This aligns with well known “uniqueness of the place” paradigm. In prior research, tuning the length of the input sequence of LSTMs has received limited focus in the field of streamflow prediction. Initially it was set to 365 days to capture a full annual water cycle. Later, performing limited systematic hyper-tuning using grid search, revealed a modification to 270 days. However, despite the significance of this hyperparameter in hydrological predictions, usually studies have overlooked its tuning and fixed it to 365 days. This study, employing a simultaneous systematic hyperparameter tuning approach, emphasizes the critical role of input sequence length as an influential hyperparameter in configuring LSTMs for regional streamflow prediction. Proper tuning of this hyperparameter is essential for achieving accurate hourly predictions using deep learning models.

Keywords: LSTMs, streamflow, hyperparameters, hydrology

Procedia PDF Downloads 72
2372 Comparison of Different Machine Learning Algorithms for Solubility Prediction

Authors: Muhammet Baldan, Emel Timuçin

Abstract:

Molecular solubility prediction plays a crucial role in various fields, such as drug discovery, environmental science, and material science. In this study, we compare the performance of five machine learning algorithms—linear regression, support vector machines (SVM), random forests, gradient boosting machines (GBM), and neural networks—for predicting molecular solubility using the AqSolDB dataset. The dataset consists of 9981 data points with their corresponding solubility values. MACCS keys (166 bits), RDKit properties (20 properties), and structural properties(3) features are extracted for every smile representation in the dataset. A total of 189 features were used for training and testing for every molecule. Each algorithm is trained on a subset of the dataset and evaluated using metrics accuracy scores. Additionally, computational time for training and testing is recorded to assess the efficiency of each algorithm. Our results demonstrate that random forest model outperformed other algorithms in terms of predictive accuracy, achieving an 0.93 accuracy score. Gradient boosting machines and neural networks also exhibit strong performance, closely followed by support vector machines. Linear regression, while simpler in nature, demonstrates competitive performance but with slightly higher errors compared to ensemble methods. Overall, this study provides valuable insights into the performance of machine learning algorithms for molecular solubility prediction, highlighting the importance of algorithm selection in achieving accurate and efficient predictions in practical applications.

Keywords: random forest, machine learning, comparison, feature extraction

Procedia PDF Downloads 42
2371 StockTwits Sentiment Analysis on Stock Price Prediction

Authors: Min Chen, Rubi Gupta

Abstract:

Understanding and predicting stock market movements is a challenging problem. It is believed stock markets are partially driven by public sentiments, which leads to numerous research efforts to predict stock market trend using public sentiments expressed on social media such as Twitter but with limited success. Recently a microblogging website StockTwits is becoming increasingly popular for users to share their discussions and sentiments about stocks and financial market. In this project, we analyze the text content of StockTwits tweets and extract financial sentiment using text featurization and machine learning algorithms. StockTwits tweets are first pre-processed using techniques including stopword removal, special character removal, and case normalization to remove noise. Features are extracted from these preprocessed tweets through text featurization process using bags of words, N-gram models, TF-IDF (term frequency-inverse document frequency), and latent semantic analysis. Machine learning models are then trained to classify the tweets' sentiment as positive (bullish) or negative (bearish). The correlation between the aggregated daily sentiment and daily stock price movement is then investigated using Pearson’s correlation coefficient. Finally, the sentiment information is applied together with time series stock data to predict stock price movement. The experiments on five companies (Apple, Amazon, General Electric, Microsoft, and Target) in a duration of nine months demonstrate the effectiveness of our study in improving the prediction accuracy.

Keywords: machine learning, sentiment analysis, stock price prediction, tweet processing

Procedia PDF Downloads 157
2370 Investigation on Remote Sense Surface Latent Heat Temperature Associated with Pre-Seismic Activities in Indian Region

Authors: Vijay S. Katta, Vinod Kushwah, Rudraksh Tiwari, Mulayam Singh Gaur, Priti Dimri, Ashok Kumar Sharma

Abstract:

The formation process of seismic activities because of abrupt slip on faults, tectonic plate moments due to accumulated stress in the Earth’s crust. The prediction of seismic activity is a very challenging task. We have studied the changes in surface latent heat temperatures which are observed prior to significant earthquakes have been investigated and could be considered for short term earthquake prediction. We analyzed the surface latent heat temperature (SLHT) variation for inland earthquakes occurred in Chamba, Himachal Pradesh (32.5 N, 76.1E, M-4.5, depth-5km) nearby the main boundary fault region, the data of SLHT have been taken from National Center for Environmental Prediction (NCEP). In this analysis, we have calculated daily variations with surface latent heat temperature (0C) in the range area 1⁰x1⁰ (~120/KM²) with the pixel covering epicenter of earthquake at the center for a three months period prior to and after the seismic activities. The mean value during that period has been considered in order to take account of the seasonal effect. The monthly mean has been subtracted from daily value to study anomalous behavior (∆SLHT) of SLHT during the earthquakes. The results found that the SLHTs adjacent the epicenters all are anomalous high value 3-5 days before the seismic activities. The abundant surface water and groundwater in the epicenter and its adjacent region can provide the necessary condition for the change of SLHT. To further confirm the reliability of SLHT anomaly, it is necessary to explore its physical mechanism in depth by more earthquakes cases.

Keywords: surface latent heat temperature, satellite data, earthquake, magnetic storm

Procedia PDF Downloads 135
2369 Prediction of Rolling Forces and Real Exit Thickness of Strips in the Cold Rolling by Using Artificial Neural Networks

Authors: M. Heydari Vini

Abstract:

There is a complicated relation between effective input parameters of cold rolling and output rolling force and exit thickness of strips.in many mathematical models, the effect of some rolling parameters have been ignored and the outputs have not a desirable accuracy. In the other hand, there is a special relation among input thickness of strips,the width of the strips,rolling speeds,mandrill tensions and the required exit thickness of strips with rolling force and the real exit thickness of the rolled strip. First of all, in this paper the effective parameters of cold rolling process modeled using an artificial neural network according to the optimum network achieved by using a written program in MATLAB,it has been shown that the prediction of rolling stand parameters with different properties and new dimensions attained from prior rolled strips by an artificial neural network is applicable.

Keywords: cold rolling, artificial neural networks, rolling force, real rolled thickness of strips

Procedia PDF Downloads 506
2368 Prediction of California Bearing Ratio of a Black Cotton Soil Stabilized with Waste Glass and Eggshell Powder using Artificial Neural Network

Authors: Biruhi Tesfaye, Avinash M. Potdar

Abstract:

The laboratory test process to determine the California bearing ratio (CBR) of black cotton soils is not only overpriced but also time-consuming as well. Hence advanced prediction of CBR plays a significant role as it is applicable In pavement design. The prediction of CBR of treated soil was executed by Artificial Neural Networks (ANNs) which is a Computational tool based on the properties of the biological neural system. To observe CBR values, combined eggshell and waste glass was added to soil as 4, 8, 12, and 16 % of the weights of the soil samples. Accordingly, the laboratory related tests were conducted to get the required best model. The maximum CBR value found at 5.8 at 8 % of eggshell waste glass powder addition. The model was developed using CBR as an output layer variable. CBR was considered as a function of the joint effect of liquid limit, plastic limit, and plastic index, optimum moisture content and maximum dry density. The best model that has been found was ANN with 5, 6 and 1 neurons in the input, hidden and output layer correspondingly. The performance of selected ANN has been 0.99996, 4.44E-05, 0.00353 and 0.0067 which are correlation coefficient (R), mean square error (MSE), mean absolute error (MAE) and root mean square error (RMSE) respectively. The research presented or summarized above throws light on future scope on stabilization with waste glass combined with different percentages of eggshell that leads to the economical design of CBR acceptable to pavement sub-base or base, as desired.

Keywords: CBR, artificial neural network, liquid limit, plastic limit, maximum dry density, OMC

Procedia PDF Downloads 193
2367 Application of Post-Stack and Pre-Stack Seismic Inversion for Prediction of Hydrocarbon Reservoirs in a Persian Gulf Gas Field

Authors: Nastaran Moosavi, Mohammad Mokhtari

Abstract:

Seismic inversion is a technique which has been in use for years and its main goal is to estimate and to model physical characteristics of rocks and fluids. Generally, it is a combination of seismic and well-log data. Seismic inversion can be carried out through different methods; we have conducted and compared post-stack and pre- stack seismic inversion methods on real data in one of the fields in the Persian Gulf. Pre-stack seismic inversion can transform seismic data to rock physics such as P-impedance, S-impedance and density. While post- stack seismic inversion can just estimate P-impedance. Then these parameters can be used in reservoir identification. Based on the results of inverting seismic data, a gas reservoir was detected in one of Hydrocarbon oil fields in south of Iran (Persian Gulf). By comparing post stack and pre-stack seismic inversion it can be concluded that the pre-stack seismic inversion provides a more reliable and detailed information for identification and prediction of hydrocarbon reservoirs.

Keywords: density, p-impedance, s-impedance, post-stack seismic inversion, pre-stack seismic inversion

Procedia PDF Downloads 324
2366 A Study of the Atlantoaxial Fracture or Dislocation in Motorcyclists with Helmet Accidents

Authors: Shao-Huang Wu, Ai-Yun Wu, Meng-Chen Wu, Chun-Liang Wu, Kai-Ping Shaw, Hsiao-Ting Chen

Abstract:

Objective: To analyze the forensic autopsy data of known passengers and compare it with the National database of the autopsy report in 2017, and obtain the special patterned injuries, which can be used as the reference for the reconstruction of hit-and-run motor vehicle accidents. Methods: Analyze the items of the Motor Vehicle Accident Report, including Date of accident, Time occurred, Day, Acc. severity, Acc. Location, Acc. Class, Collision with Vehicle, Motorcyclists Codes, Safety equipment use, etc. Analyzed the items of the Autopsy Report included, including General Description, Clothing and Valuables, External Examination, Head and Neck Trauma, Trunk Trauma, Other Injuries, Internal Examination, Associated Items, Autopsy Determinations, etc. Materials: Case 1. The process of injury formation: the car was chased forward and collided with the scooter. The passenger wearing the helmet fell to the ground. The helmet crashed under the bottom of the sedan, and the bottom of the sedan was raised. Additionally, the sedan was hit on the left by the other sedan behind, resulting in the front sedan turning 180 degrees on the spot. The passenger’s head was rotated, and the cervical spine was fractured. Injuries: 1. Fracture of atlantoaxial joint 2. Fracture of the left clavicle, scapula, and proximal humerus 3. Fracture of the 1-10 left ribs and 2-7 right ribs with lung contusion and hemothorax 4. Fracture of the transverse process of 2-5 lumbar vertebras 5. Comminuted fracture of the right femur 6. Suspected subarachnoid space and subdural hemorrhage 7. Laceration of the spleen. Case 2. The process of injury formation: The motorcyclist wearing the helmet fell to the left by himself, and his chest was crushed by the car going straight. Only his upper body was under the car and the helmet finally fell off. Injuries: 1. Dislocation of atlantoaxial joint 2. Laceration on the left posterior occipital 3. Laceration on the left frontal 4. Laceration on the left side of the chin 5. Strip bruising on the anterior neck 6. Open rib fracture of the right chest wall 7. Comminuted fracture of both 1-12 ribs 8. Fracture of the sternum 9. Rupture of the left lung 10. Rupture of the left and right atria, heart tip and several large vessels 11. The aortic root is nearly transected 12. Severe rupture of the liver. Results: The common features of the two cases were the fracture or dislocation of the atlantoaxial joint and both helmets that were crashed. There were no atlantoaxial fractures or dislocations in 27 pedestrians (without wearing a helmet) versus motor vehicle accidents in 2017 the National database of an autopsy report, but there were two atlantoaxial fracture or dislocation cases in the database, both of which were cases of falling from height. Conclusion: The cervical spine fracture injury of the motorcyclist, who was wearing a helmet, is very likely to be a patterned injury caused by his/her fall and rollover under the sedan. It could provide a reference for forensic peers.

Keywords: patterned injuries, atlantoaxial fracture or dislocation, accident reconstruction, motorcycle accident with helmet, forensic autopsy data

Procedia PDF Downloads 93
2365 Rotational and Linear Accelerations of an Anthropometric Test Dummy Head from Taekwondo Kicks among Amateur Practitioners

Authors: Gabriel P. Fife, Saeyong Lee, David M. O'Sullivan

Abstract:

Introduction: Although investigations into injury characteristics are represented well in the literature, few have investigated the biomechanical characteristics associated with head impacts in Taekwondo. Therefore, the purpose of this study was to identify the kinematic characteristics of head impacts due to taekwondo kicks among non-elite practitioners. Participants: Male participants (n= 11, 175 + 5.3 cm, 71 + 8.3 kg) with 7.5 + 3.6 years of taekwondo training volunteered for this study. Methods: Participants were asked to perform five repetitions of each technique (i.e., turning kick, spinning hook kick, spinning back kick, front axe kick, and clench axe kick) aimed at the Hybrid III head with their dominant kicking leg. All participants wore a protective foot pad (thickness = 12 mm) that is commonly used in competition and training. To simulate head impact in taekwondo, the target consisted of a Hybrid III 50th Percentile Crash Test Dummy (Hybrid III) head (mass = 5.1 kg) and neck (fitted with taekwondo headgear) secured to an aluminum support frame and positioned to each athlete’s standing height. The Hybrid III head form was instrumented with a 500 g tri-axial accelerometer (PCB Piezotronics) mounted to the head center of gravity to obtain resultant linear accelerations (RLA). Rotational accelerations were collected using three angular rate sensors mounted orthogonally to each other (Diversified Technical Systems ARS-12 K Angular Rate Sensor). The accelerometers were interfaced via a 3-channel, battery-powered integrated circuit piezoelectric sensor signal conditioner (PCB Piezotronics) and connected to a desktop computer for analysis. Acceleration data were captured using LABVIEW Signal Express and processed in accordance with SAE J211-1 channel frequency class 1000. Head injury criteria values (HIC) were calculated using the VSRSoftware. A one-way analysis of variance was used to determine differences between kicks, while the Tukey HSD test was employed for pairwise comparisons. The level of significance was set to an effect size of 0.20. All statistical analyses were done using R 3.1.0. Results: A statistically significant difference was observed in RLA (p = 0.00075); however, these differences were not clinically meaningful (η² = 0.04, 95% CI: -0.94 to 1.03). No differences were identified with ROTA (p = 0.734, η² = 0.0004, 95% CI: -0.98 to 0.98). A statistically significant difference (p < 0.001) between kicks in HIC was observed, with a medium effect (η2= 0.08, 95% CI: -0.98 to 1.07). However, the confidence interval of this difference indicates uncertainty. Tukey HSD test identified differences (p < 0.001) between kicking techniques in RLA and HIC. Conclusion: This study observed head impact levels that were comparable to previous studies of similar objectives and methodology. These data are important as impact measures from this study may be more representative of impact levels experienced by non-elite competitors. Although the clench axe kick elicited a lower RLA, the ROTA of this technique was higher than levels from other techniques (although not large differences in reference to effect sizes). As the axe kick has been reported to cause severe head injury, future studies may consider further study of this kick important.

Keywords: Taekwondo, head injury, biomechanics, kicking

Procedia PDF Downloads 34
2364 Reburning Characteristics of Biomass Syngas in a Pilot Scale Heavy Oil Furnace

Authors: Sang Heon Han, Daejun Chang, Won Yang

Abstract:

NOx reduction characteristics of syngas fuel were numerically investigated for the 2MW pilot scale heavy oil furnace of KITECH (Korea Institute of Industrial Technology). The secondary fuel and syngas was fed into the furnace with two purposes- partial replacement of main fuel and reburning of NOx. Some portion of syngas was fed into the flame zone to partially replace the heavy oil, while the other portion was fed into the furnace downstream to reduce NOx generation. The numerical prediction was verified by comparing it with the experimental results. Syngas of KITECH’s experiment, assumed to be produced from biomass, had very low calorific value and contained 3% hydrocarbon. This study investigated the precise behavior of NOx generation and NOx reduction as well as thermo-fluidic characteristics inside the furnace, which was unavailable with experiment. In addition to 3% hydrocarbon syngas, 5%, and 7% hydrocarbon syngas were numerically tested as reburning fuels to analyze the effect of hydrocarbon proportion to NOx reduction. The prediction showed that the 3% hydrocarbon syngas is as much effective as 7% hydrocarbon syngas in reducing NOx.

Keywords: syngas, reburning, heavy oil, furnace

Procedia PDF Downloads 445
2363 The Relationship between Self-Injurious Behavior and Manner of Death

Authors: Sait Ozsoy, Hacer Yasar Teke, Mustafa Dalgic, Cetin Ketenci, Ertugrul Gok, Kenan Karbeyaz, Azem Irez, Mesut Akyol

Abstract:

Self-mutilating behavior or self-injury behavior (SIB) is defined as: intentional harm to one’s body without intends to commit suicide”. SIB cases are commonly seen in psychiatry and forensic medicine practices. Despite variety of SIB methods, cuts in the skin is the most common (70-97%) injury in this group of patients. Subjects with SIB have one or more other comorbidities which include depression, anxiety, depersonalization, and feeling of worthlessness, borderline personality disorder, antisocial behaviors, and histrionic personality. These individuals feel a high level of hostility towards themselves and their surroundings. Researches have also revealed a strong relationship between antisocial personality disorder, criminal behavior, and SIB. This study has retrospectively evaluated 6,599 autopsy cases performed at forensic medicine institutes of six major cities (Ankara, Izmir, Diyarbakir, Erzurum, Trabzon, Eskisehir) of Turkey in 2013. The study group consisted of all cases with SIB findings (psychopathic cuts, cigarette burns, scars, and etc.). The relationship between causes of death in the study group (SIB subjects) and the control group was investigated. The control group was created from subjects without signs of SIB. Mann-Whitney U test was used for age variables and Chi-square test for categorical variables. Multinomial logistic regression analysis was used in order to analyze group differences in respect to manner of death (natural, accident, homicide, suicide) and analysis of risk factors associated with each group was determined by the Binomial logistic regression analysis. This study used SPSS statistics 15.0 for all its statistical and calculation needs. The statistical significance was p <0.05. There was no significant difference between accidental and natural death among the groups (p=0.737). Also there was a unit increase in number of cuts in psychopathic group while number of accidental death decreased (95% CI: 0.941-0.993) by 0.967 times (p=0.015). In contrast, there was a significant difference between suicidal and natural death (p<0.001), and also between homicidal and natural death (p=0.025). SIB is often seen with borderline and antisocial personality disorder but may be associated with many psychiatric illnesses. Studies have shown a relationship between antisocial personality disorders with criminal behavior and SIB with suicidal behavior. In our study, rate of suicide, murder and intoxication was higher compared to the control group. It could be concluded that SIB can be used as a predictor of possibility of one’s harm to him/herself and other people.

Keywords: autopsy, cause of death, forensic science, self-injury behaviour

Procedia PDF Downloads 510
2362 Modern Technology-Based Methods in Neurorehabilitation for Social Competence Deficit in Children with Acquired Brain Injury

Authors: M. Saard, A. Kolk, K. Sepp, L. Pertens, L. Reinart, C. Kööp

Abstract:

Introduction: Social competence is often impaired in children with acquired brain injury (ABI), but evidence-based rehabilitation for social skills has remained undeveloped. Modern technology-based methods create effective and safe learning environments for pediatric social skills remediation. The aim of the study was to implement our structured model of neuro rehab for socio-cognitive deficit using multitouch-multiuser tabletop (MMT) computer-based platforms and virtual reality (VR) technology. Methods: 40 children aged 8-13 years (yrs) have participated in the pilot study: 30 with ABI -epilepsy, traumatic brain injury and/or tic disorder- and 10 healthy age-matched controls. From the patients, 12 have completed the training (M = 11.10 yrs, SD = 1.543) and 20 are still in training or in the waiting-list group (M = 10.69 yrs, SD = 1.704). All children performed the first individual and paired assessments. For patients, second evaluations were performed after the intervention period. Two interactive applications were implemented into rehabilitation design: Snowflake software on MMT tabletop and NoProblem on DiamondTouch Table (DTT), which allowed paired training (2 children at once). Also, in individual training sessions, HTC Vive VR device was used with VR metaphors of difficult social situations to treat social anxiety and train social skills. Results: At baseline (B) evaluations, patients had higher deficits in executive functions on the BRIEF parents’ questionnaire (M = 117, SD = 23.594) compared to healthy controls (M = 22, SD = 18.385). The most impaired components of social competence were emotion recognition, Theory of Mind skills (ToM), cooperation, verbal/non-verbal communication, and pragmatics (Friendship Observation Scale scores only 25-50% out of 100% for patients). In Sentence Completion Task and Spence Anxiety Scale, the patients reported a lack of friends, behavioral problems, bullying in school, and social anxiety. Outcome evaluations: Snowflake on MMT improved executive and cooperation skills and DTT developed communication skills, metacognitive skills, and coping. VR, video modelling and role-plays improved social attention, emotional attitude, gestural behaviors, and decreased social anxiety. NEPSY-II showed improvement in Affect Recognition [B = 7, SD = 5.01 vs outcome (O) = 10, SD = 5.85], Verbal ToM (B = 8, SD = 3.06 vs O = 10, SD = 4.08), Contextual ToM (B = 8, SD = 3.15 vs O = 11, SD = 2.87). ToM Stories test showed an improved understanding of Intentional Lying (B = 7, SD = 2.20 vs O = 10, SD = 0.50), and Sarcasm (B=6, SD = 2.20 vs O = 7, SD = 2.50). Conclusion: Neurorehabilitation based on the Structured Model of Neurorehab for Socio-Cognitive Deficit in children with ABI were effective in social skills remediation. The model helps to understand theoretical connections between components of social competence and modern interactive computerized platforms. We encourage therapists to implement these next-generation devices into the rehabilitation process as MMT and VR interfaces are motivating for children, thus ensuring good compliance. Improving children’s social skills is important for their and their families’ quality of life and social capital.

Keywords: acquired brain injury, children, social skills deficit, technology-based neurorehabilitation

Procedia PDF Downloads 121
2361 Current Methods for Drug Property Prediction in the Real World

Authors: Jacob Green, Cecilia Cabrera, Maximilian Jakobs, Andrea Dimitracopoulos, Mark van der Wilk, Ryan Greenhalgh

Abstract:

Predicting drug properties is key in drug discovery to enable de-risking of assets before expensive clinical trials and to find highly active compounds faster. Interest from the machine learning community has led to the release of a variety of benchmark datasets and proposed methods. However, it remains unclear for practitioners which method or approach is most suitable, as different papers benchmark on different datasets and methods, leading to varying conclusions that are not easily compared. Our large-scale empirical study links together numerous earlier works on different datasets and methods, thus offering a comprehensive overview of the existing property classes, datasets, and their interactions with different methods. We emphasise the importance of uncertainty quantification and the time and, therefore, cost of applying these methods in the drug development decision-making cycle. To the best of the author's knowledge, it has been observed that the optimal approach varies depending on the dataset and that engineered features with classical machine learning methods often outperform deep learning. Specifically, QSAR datasets are typically best analysed with classical methods such as Gaussian Processes, while ADMET datasets are sometimes better described by Trees or deep learning methods such as Graph Neural Networks or language models. Our work highlights that practitioners do not yet have a straightforward, black-box procedure to rely on and sets a precedent for creating practitioner-relevant benchmarks. Deep learning approaches must be proven on these benchmarks to become the practical method of choice in drug property prediction.

Keywords: activity (QSAR), ADMET, classical methods, drug property prediction, empirical study, machine learning

Procedia PDF Downloads 83
2360 Regression Model Evaluation on Depth Camera Data for Gaze Estimation

Authors: James Purnama, Riri Fitri Sari

Abstract:

We investigate the machine learning algorithm selection problem in the term of a depth image based eye gaze estimation, with respect to its essential difficulty in reducing the number of required training samples and duration time of training. Statistics based prediction accuracy are increasingly used to assess and evaluate prediction or estimation in gaze estimation. This article evaluates Root Mean Squared Error (RMSE) and R-Squared statistical analysis to assess machine learning methods on depth camera data for gaze estimation. There are 4 machines learning methods have been evaluated: Random Forest Regression, Regression Tree, Support Vector Machine (SVM), and Linear Regression. The experiment results show that the Random Forest Regression has the lowest RMSE and the highest R-Squared, which means that it is the best among other methods.

Keywords: gaze estimation, gaze tracking, eye tracking, kinect, regression model, orange python

Procedia PDF Downloads 539
2359 Physical Activity Patterns during Inpatient Rehabilitation in Patients with Recent Brain Injury

Authors: Nikita Pasricha, Karen Smith, Simone Marshall, Vincent DePaul, Jessica Trier

Abstract:

Understanding that physical activity in rehabilitation programs shapes outcomes in acquired brain injury (ABI) populations is not a new concept. However, there is a void in understanding the physical activity patterns of inpatients in ABI rehabilitation, the trajectory of physical activity recovery, and factors that contribute to the recovery of physical activity over the initial months post-ABI. The purpose of this study was to determine if physical activity patterns vary in people with recent ABI in inpatient rehabilitation. The study also investigated differences in physical activity patterns in ABI patients compared to age-related healthy participants. Results revealed that ABI patients spent approximately 6.7 times longer per day in sedentary postures than in active positions. In comparison, the control group spent only 2.8 times longer in sedentary postures compared to active positions. Patients with ABI took significantly fewer steps than age-matched health control participants. Within the ABI population, patients took 0.78 times fewer steps on weekends compared to weekdays. Participants with greater mobility limitations had a greater difference in WD to WE steps taken. Potential reasons could be from no structured weekend rehabilitation programs, lower availability of staff, or varying schedules. Given that the rehabilitation program is only structured on weekdays, further research to investigate the benefits of structured physical activities like group walking programs on weekends for ABI patients in inpatient rehabilitation programs is warranted.

Keywords: brain, ABI, TBI, rehabilitation

Procedia PDF Downloads 55
2358 Rail Degradation Modelling Using ARMAX: A Case Study Applied to Melbourne Tram System

Authors: M. Karimpour, N. Elkhoury, L. Hitihamillage, S. Moridpour, R. Hesami

Abstract:

There is a necessity among rail transportation authorities for a superior understanding of the rail track degradation overtime and the factors influencing rail degradation. They need an accurate technique to identify the time when rail tracks fail or need maintenance. In turn, this will help to increase the level of safety and comfort of the passengers and the vehicles as well as improve the cost effectiveness of maintenance activities. An accurate model can play a key role in prediction of the long-term behaviour of railroad tracks. An accurate model can decrease the cost of maintenance. In this research, the rail track degradation is predicted using an autoregressive moving average with exogenous input (ARMAX). An ARMAX has been implemented on Melbourne tram data to estimate the values for the tram track degradation. Gauge values and rail usage in Million Gross Tone (MGT) are the main parameters used in the model. The developed model can accurately predict the future status of the tram tracks.

Keywords: ARMAX, dynamic systems, MGT, prediction, rail degradation

Procedia PDF Downloads 249
2357 Hyper Tuned RBF SVM: Approach for the Prediction of the Breast Cancer

Authors: Surita Maini, Sanjay Dhanka

Abstract:

Machine learning (ML) involves developing algorithms and statistical models that enable computers to learn and make predictions or decisions based on data without being explicitly programmed. Because of its unlimited abilities ML is gaining popularity in medical sectors; Medical Imaging, Electronic Health Records, Genomic Data Analysis, Wearable Devices, Disease Outbreak Prediction, Disease Diagnosis, etc. In the last few decades, many researchers have tried to diagnose Breast Cancer (BC) using ML, because early detection of any disease can save millions of lives. Working in this direction, the authors have proposed a hybrid ML technique RBF SVM, to predict the BC in earlier the stage. The proposed method is implemented on the Breast Cancer UCI ML dataset with 569 instances and 32 attributes. The authors recorded performance metrics of the proposed model i.e., Accuracy 98.24%, Sensitivity 98.67%, Specificity 97.43%, F1 Score 98.67%, Precision 98.67%, and run time 0.044769 seconds. The proposed method is validated by K-Fold cross-validation.

Keywords: breast cancer, support vector classifier, machine learning, hyper parameter tunning

Procedia PDF Downloads 68
2356 Evaluation of Short-Term Load Forecasting Techniques Applied for Smart Micro-Grids

Authors: Xiaolei Hu, Enrico Ferrera, Riccardo Tomasi, Claudio Pastrone

Abstract:

Load Forecasting plays a key role in making today's and future's Smart Energy Grids sustainable and reliable. Accurate power consumption prediction allows utilities to organize in advance their resources or to execute Demand Response strategies more effectively, which enables several features such as higher sustainability, better quality of service, and affordable electricity tariffs. It is easy yet effective to apply Load Forecasting at larger geographic scale, i.e. Smart Micro Grids, wherein the lower available grid flexibility makes accurate prediction more critical in Demand Response applications. This paper analyses the application of short-term load forecasting in a concrete scenario, proposed within the EU-funded GreenCom project, which collect load data from single loads and households belonging to a Smart Micro Grid. Three short-term load forecasting techniques, i.e. linear regression, artificial neural networks, and radial basis function network, are considered, compared, and evaluated through absolute forecast errors and training time. The influence of weather conditions in Load Forecasting is also evaluated. A new definition of Gain is introduced in this paper, which innovatively serves as an indicator of short-term prediction capabilities of time spam consistency. Two models, 24- and 1-hour-ahead forecasting, are built to comprehensively compare these three techniques.

Keywords: short-term load forecasting, smart micro grid, linear regression, artificial neural networks, radial basis function network, gain

Procedia PDF Downloads 471
2355 Water Leakage Detection System of Pipe Line using Radial Basis Function Neural Network

Authors: A. Ejah Umraeni Salam, M. Tola, M. Selintung, F. Maricar

Abstract:

Clean water is an essential and fundamental human need. Therefore, its supply must be assured by maintaining the quality, quantity and water pressure. However the fact is, on its distribution system, leakage happens and becomes a common world issue. One of the technical causes of the leakage is a leaking pipe. The purpose of the research is how to use the Radial Basis Function Neural (RBFNN) model to detect the location and the magnitude of the pipeline leakage rapidly and efficiently. In this study the RBFNN are trained and tested on data from EPANET hydraulic modeling system. Method of Radial Basis Function Neural Network is proved capable to detect location and magnitude of pipeline leakage with of the accuracy of the prediction results based on the value of RMSE (Root Meant Square Error), comparison prediction and actual measurement approaches 0.000049 for the whole pipeline system.

Keywords: radial basis function neural network, leakage pipeline, EPANET, RMSE

Procedia PDF Downloads 360
2354 Jelly and Beans: Appropriate Use of Ultrasound in Acute Kidney Injury

Authors: Raja Ezman Raja Shariff

Abstract:

Acute kidney injury (AKI) is commonly seen in inpatients, and places a great cost on the NHS and patients. Timely and appropriate management is both nephron sparing and potentially life-saving. Ultrasound scanning (USS) is a well-recognised method for stratifying patients. Subsequently, the NICE AKI guidance has defined groups in whom scanning is recommended within 6 hours of request (pyonephrosis), within 24 hours (obstruction/cause unknown), and in whom routine scanning isn't recommended (cause for AKI identified). The audit looks into whether Stockport NHS Trust USS practice was in line with such recommendations. The audit evaluated 92 patients with AKI who had USS, between 01/01/14 to 30/04/14. Data collection was divided into 2 parts. Firstly, radiology request cards and the online imaging software (PACS) were evaluated. Then, the electronic case notes (ADVANTIS) was evaluated further. Based on request cards, 10% of requests were for pyonephrosis. Only 33% were scanned within 6hours and a further 33% within 24hours. 75% were requested for possible obstructions and unknown cause collectively. Of those due to possible obstruction, 71% of patients were scanned within 24 hours. Of those with unknown cause, 50% were scanned within 24 hours. 15% of requests had a cause declared and so potentially did not require scanning. Evaluation of the patients’ notes suggested further interesting findings. Firstly, potentially 39% of patients had a known cause for AKI, therefore, did not need USS. Subsequently, the cohort of unknown cause and possible obstruction was collectively reduced to 45%. Alarmingly the patient cohort with possible pyonephrosis went up to 16%, suggesting an under-recognition of this life-threatening condition. We plan to highlight these findings within our institution and make changes to encourage more appropriate requesting and timely scanning. Time will tell if we manage to save or increase our costs in this cost-conscious NHS. Patient benefits, though, seem to be guaranteed.

Keywords: AKI, ARF, kidney, renal

Procedia PDF Downloads 401
2353 The Use of Five Times Sit-To-Stand Test in Ambulatory People with Spinal Cord Injury When Tested with or without Hands

Authors: Lalita Khuna, Sugalya Amatachaya, Pipatana Amatachaya, Thiwabhorn Thaweewannakij, Pattra Wattanapan

Abstract:

The five times sit-to-stand test (FTSST) has been widely used to quantify lower extremity motor strength (LEMS), dynamic balance ability, and risk of falls in many individuals. Recently, it has been used in ambulatory patients with spinal cord injury (SCI) but variously using with or without hands according to patients’ ability. This difference might affect the validity of the test in these individuals. Thus, this study assessed the concurrent validity of the FTSST in ambulatory individuals with SCI, separately for those who could complete the test with or without hands using LEMS and standard functional measures as gold standards. Moreover, the data of the tests from those who completed the FTSST with and without hands were compared. A total of 56 ambulatory participants with SCI who could complete sit-to-stand with or without hands were assessed for the time to complete the FTSST according to their ability. Then they were assessed for their LEMS scores and functional abilities, including the 10-meter walk test (10MWT), the walking index for spinal cord injury II (WISCI II), the timed up and go test (TUGT), and the 6-minute walk test (6MWT). The Mann-Whitney U test was used to compare the different findings between the participants who performed the FTSST with and without hands. The Spearman rank correlation coefficient (ρ) was applied to analyze the levels of correlation between the FTSST and standard tests (LEMS scores and functional measures). There were significant differences in the data between the participants who performed the test with and without hands (p < 0.01). The time to complete the FTSST of the participants who performed the test without hands showed moderate to strong correlation with total LEMS scores and all functional measures (ρ = -0.71 to 0.69, p < 0.001). On the contrary, the FTSST data of those who performed the test with hands were significantly correlated only with the 10MWT, TUGT, and 6MWT (ρ = -0.47 to 0.57, p < 0.01). The present findings confirm the concurrent validity of the FTSST when performed without hands for LEMS and functional mobility necessary for the ability of independence and safety of ambulatory individuals with SCI. However, the test using hands distort the ability of the outcomes to reflect LEMS and WISCI II that reflect lower limb functions. By contrast, the 10MWT, TUGT, and 6MWT allowed upper limb contribution in the tests. Therefore, outcomes of these tests showed a significant correlation to the outcomes of FTSST when assessed using hands. Consequently, the use of FTSST with or without hands needs to consider the clinical application of the outcomes, i.e., to reflect lower limb functions or mobility of the patients.

Keywords: mobility, lower limb muscle strength, clinical test, rehabilitation

Procedia PDF Downloads 154
2352 Probabilistic Crash Prediction and Prevention of Vehicle Crash

Authors: Lavanya Annadi, Fahimeh Jafari

Abstract:

Transportation brings immense benefits to society, but it also has its costs. Costs include such as the cost of infrastructure, personnel and equipment, but also the loss of life and property in traffic accidents on the road, delays in travel due to traffic congestion and various indirect costs in terms of air transport. More research has been done to identify the various factors that affect road accidents, such as road infrastructure, traffic, sociodemographic characteristics, land use, and the environment. The aim of this research is to predict the probabilistic crash prediction of vehicles using machine learning due to natural and structural reasons by excluding spontaneous reasons like overspeeding etc., in the United States. These factors range from weather factors, like weather conditions, precipitation, visibility, wind speed, wind direction, temperature, pressure, and humidity to human made structures like road structure factors like bump, roundabout, no exit, turning loop, give away, etc. Probabilities are dissected into ten different classes. All the predictions are based on multiclass classification techniques, which are supervised learning. This study considers all crashes that happened in all states collected by the US government. To calculate the probability, multinomial expected value was used and assigned a classification label as the crash probability. We applied three different classification models, including multiclass Logistic Regression, Random Forest and XGBoost. The numerical results show that XGBoost achieved a 75.2% accuracy rate which indicates the part that is being played by natural and structural reasons for the crash. The paper has provided in-deep insights through exploratory data analysis.

Keywords: road safety, crash prediction, exploratory analysis, machine learning

Procedia PDF Downloads 113
2351 Using Data Mining in Automotive Safety

Authors: Carine Cridelich, Pablo Juesas Cano, Emmanuel Ramasso, Noureddine Zerhouni, Bernd Weiler

Abstract:

Safety is one of the most important considerations when buying a new car. While active safety aims at avoiding accidents, passive safety systems such as airbags and seat belts protect the occupant in case of an accident. In addition to legal regulations, organizations like Euro NCAP provide consumers with an independent assessment of the safety performance of cars and drive the development of safety systems in automobile industry. Those ratings are mainly based on injury assessment reference values derived from physical parameters measured in dummies during a car crash test. The components and sub-systems of a safety system are designed to achieve the required restraint performance. Sled tests and other types of tests are then carried out by car makers and their suppliers to confirm the protection level of the safety system. A Knowledge Discovery in Databases (KDD) process is proposed in order to minimize the number of tests. The KDD process is based on the data emerging from sled tests according to Euro NCAP specifications. About 30 parameters of the passive safety systems from different data sources (crash data, dummy protocol) are first analysed together with experts opinions. A procedure is proposed to manage missing data and validated on real data sets. Finally, a procedure is developed to estimate a set of rough initial parameters of the passive system before testing aiming at reducing the number of tests.

Keywords: KDD process, passive safety systems, sled test, dummy injury assessment reference values, frontal impact

Procedia PDF Downloads 382
2350 Investigation of Ezetimibe Administration on Cell Survival Markers in Kidney Ischemia

Authors: Zahra Heydari

Abstract:

Introduction: One of the major clinical issues is acute renal failure, which is caused by ischemia-reperfusion of the kidney and is associated with high mortality. Despite advances in this area, important issues such as tissue necrosis, cell apoptosis, and so on in damaged tissue are suggestive for more researches and study on this subject. Objective: Evaluation of the potential utility of Ezetimibe in reducing injuries and cell death induced by kidney ischemia/ reperfusion through inducing expression changes of different cellular pathways in adult Sprague-Dawley rats. Materials and methods: Forty rats weighing 180-200g were divided into 4 groups. For this purpose, the first right kidneys of the rats were removed during surgery. After 20 days, the left renal artery was closed with a soft clamp and reperfusion was performed. After 24 hours, blood samples were collected and sent to the laboratory with kidneys to measure bax and bcl-2 by Western blotting and histopathological tests. Results: Quantitative damage reviews of Kidney tissue indicates damage Acute and severe tubular lesions were observed in the ischemia group. Also, the amount of injury was significantly reduced in the treatment group. There was also a significant difference between the ischemia and sham groups. In general, the results show that a single dose of 1.2 mg/kg of ezetimibe can reduce the bax/ bcl-2 ratio compared to the ischemia group. In general, the results showed Ezetimibe is effective in reducing cell damage and death due to ischemia/ reperfusion after renal ischemia through changes in the expression of various cellular pathways in rats.

Keywords: acute renal failure, renal ischemia-reperfusion injury, ezetimibe, apoptosis

Procedia PDF Downloads 197
2349 Solid State Drive End to End Reliability Prediction, Characterization and Control

Authors: Mohd Azman Abdul Latif, Erwan Basiron

Abstract:

A flaw or drift from expected operational performance in one component (NAND, PMIC, controller, DRAM, etc.) may affect the reliability of the entire Solid State Drive (SSD) system. Therefore, it is important to ensure the required quality of each individual component through qualification testing specified using standards or user requirements. Qualification testing is time-consuming and comes at a substantial cost for product manufacturers. A highly technical team, from all the eminent stakeholders is embarking on reliability prediction from beginning of new product development, identify critical to reliability parameters, perform full-blown characterization to embed margin into product reliability and establish control to ensure the product reliability is sustainable in the mass production. The paper will discuss a comprehensive development framework, comprehending SSD end to end from design to assembly, in-line inspection, in-line testing and will be able to predict and to validate the product reliability at the early stage of new product development. During the design stage, the SSD will go through intense reliability margin investigation with focus on assembly process attributes, process equipment control, in-process metrology and also comprehending forward looking product roadmap. Once these pillars are completed, the next step is to perform process characterization and build up reliability prediction modeling. Next, for the design validation process, the reliability prediction specifically solder joint simulator will be established. The SSD will be stratified into Non-Operating and Operating tests with focus on solder joint reliability and connectivity/component latent failures by prevention through design intervention and containment through Temperature Cycle Test (TCT). Some of the SSDs will be subjected to the physical solder joint analysis called Dye and Pry (DP) and Cross Section analysis. The result will be feedbacked to the simulation team for any corrective actions required to further improve the design. Once the SSD is validated and is proven working, it will be subjected to implementation of the monitor phase whereby Design for Assembly (DFA) rules will be updated. At this stage, the design change, process and equipment parameters are in control. Predictable product reliability at early product development will enable on-time sample qualification delivery to customer and will optimize product development validation, effective development resource and will avoid forced late investment to bandage the end-of-life product failures. Understanding the critical to reliability parameters earlier will allow focus on increasing the product margin that will increase customer confidence to product reliability.

Keywords: e2e reliability prediction, SSD, TCT, solder joint reliability, NUDD, connectivity issues, qualifications, characterization and control

Procedia PDF Downloads 174
2348 Application of Artificial Neural Network for Prediction of High Tensile Steel Strands in Post-Tensioned Slabs

Authors: Gaurav Sancheti

Abstract:

This study presents an impacting approach of Artificial Neural Networks (ANNs) in determining the quantity of High Tensile Steel (HTS) strands required in post-tensioned (PT) slabs. Various PT slab configurations were generated by varying the span and depth of the slab. For each of these slab configurations, quantity of required HTS strands were recorded. ANNs with backpropagation algorithm and varying architectures were developed and their performance was evaluated in terms of Mean Square Error (MSE). The recorded data for the quantity of HTS strands was used as a feeder database for training the developed ANNs. The networks were validated using various validation techniques. The results show that the proposed ANNs have a great potential with good prediction and generalization capability.

Keywords: artificial neural networks, back propagation, conceptual design, high tensile steel strands, post tensioned slabs, validation techniques

Procedia PDF Downloads 222
2347 Predicting Bridge Pier Scour Depth with SVM

Authors: Arun Goel

Abstract:

Prediction of maximum local scour is necessary for the safety and economical design of the bridges. A number of equations have been developed over the years to predict local scour depth using laboratory data and a few pier equations have also been proposed using field data. Most of these equations are empirical in nature as indicated by the past publications. In this paper, attempts have been made to compute local depth of scour around bridge pier in dimensional and non-dimensional form by using linear regression, simple regression and SVM (Poly and Rbf) techniques along with few conventional empirical equations. The outcome of this study suggests that the SVM (Poly and Rbf) based modeling can be employed as an alternate to linear regression, simple regression and the conventional empirical equations in predicting scour depth of bridge piers. The results of present study on the basis of non-dimensional form of bridge pier scour indicates the improvement in the performance of SVM (Poly and Rbf) in comparison to dimensional form of scour.

Keywords: modeling, pier scour, regression, prediction, SVM (Poly and Rbf kernels)

Procedia PDF Downloads 452
2346 Connectomic Correlates of Cerebral Microhemorrhages in Mild Traumatic Brain Injury Victims with Neural and Cognitive Deficits

Authors: Kenneth A. Rostowsky, Alexander S. Maher, Nahian F. Chowdhury, Andrei Irimia

Abstract:

The clinical significance of cerebral microbleeds (CMBs) due to mild traumatic brain injury (mTBI) remains unclear. Here we use magnetic resonance imaging (MRI), diffusion tensor imaging (DTI) and connectomic analysis to investigate the statistical association between mTBI-related CMBs, post-TBI changes to the human connectome and neurological/cognitive deficits. This study was undertaken in agreement with US federal law (45 CFR 46) and was approved by the Institutional Review Board (IRB) of the University of Southern California (USC). Two groups, one consisting of 26 (13 females) mTBI victims and another comprising 26 (13 females) healthy control (HC) volunteers were recruited through IRB-approved procedures. The acute Glasgow Coma Scale (GCS) score was available for each mTBI victim (mean µ = 13.2; standard deviation σ = 0.4). Each HC volunteer was assigned a GCS of 15 to indicate the absence of head trauma at the time of enrollment in our study. Volunteers in the HC and mTBI groups were matched according to their sex and age (HC: µ = 67.2 years, σ = 5.62 years; mTBI: µ = 66.8 years, σ = 5.93 years). MRI [including T1- and T2-weighted volumes, gradient recalled echo (GRE)/susceptibility weighted imaging (SWI)] and gradient echo (GE) DWI volumes were acquired using the same MRI scanner type (Trio TIM, Siemens Corp.). Skull-stripping and eddy current correction were implemented. DWI volumes were processed in TrackVis (http://trackvis.org) and 3D Slicer (http://www.slicer.org). Tensors were fit to DWI data to perform DTI, and tractography streamlines were then reconstructed using deterministic tractography. A voxel classifier was used to identify image features as CMB candidates using Microbleed Anatomic Rating Scale (MARS) guidelines. For each peri-lesional DTI streamline bundle, the null hypothesis was formulated as the statement that there was no neurological or cognitive deficit associated with between-scan differences in the mean FA of DTI streamlines within each bundle. The statistical significance of each hypothesis test was calculated at the α = 0.05 level, subject to the family-wise error rate (FWER) correction for multiple comparisons. Results: In HC volunteers, the along-track analysis failed to identify statistically significant differences in the mean FA of DTI streamline bundles. In the mTBI group, significant differences in the mean FA of peri-lesional streamline bundles were found in 21 out of 26 volunteers. In those volunteers where significant differences had been found, these differences were associated with an average of ~47% of all identified CMBs (σ = 21%). In 12 out of the 21 volunteers exhibiting significant FA changes, cognitive functions (memory acquisition and retrieval, top-down control of attention, planning, judgment, cognitive aspects of decision-making) were found to have deteriorated over the six months following injury (r = -0.32, p < 0.001). Our preliminary results suggest that acute post-TBI CMBs may be associated with cognitive decline in some mTBI patients. Future research should attempt to identify mTBI patients at high risk for cognitive sequelae.

Keywords: traumatic brain injury, magnetic resonance imaging, diffusion tensor imaging, connectomics

Procedia PDF Downloads 172
2345 Predicting Global Solar Radiation Using Recurrent Neural Networks and Climatological Parameters

Authors: Rami El-Hajj Mohamad, Mahmoud Skafi, Ali Massoud Haidar

Abstract:

Several meteorological parameters were used for the prediction of monthly average daily global solar radiation on horizontal using recurrent neural networks (RNNs). Climatological data and measures, mainly air temperature, humidity, sunshine duration, and wind speed between 1995 and 2007 were used to design and validate a feed forward and recurrent neural network based prediction systems. In this paper we present our reference system based on a feed-forward multilayer perceptron (MLP) as well as the proposed approach based on an RNN model. The obtained results were promising and comparable to those obtained by other existing empirical and neural models. The experimental results showed the advantage of RNNs over simple MLPs when we deal with time series solar radiation predictions based on daily climatological data.

Keywords: recurrent neural networks, global solar radiation, multi-layer perceptron, gradient, root mean square error

Procedia PDF Downloads 447