Search results for: fuzzy object
1220 Near-Miss Deep Learning Approach for Neuro-Fuzzy Risk Assessment in Pipelines
Authors: Alexander Guzman Urbina, Atsushi Aoyama
Abstract:
The sustainability of traditional technologies employed in energy and chemical infrastructure brings a big challenge for our society. Making decisions related with safety of industrial infrastructure, the values of accidental risk are becoming relevant points for discussion. However, the challenge is the reliability of the models employed to get the risk data. Such models usually involve large number of variables and with large amounts of uncertainty. The most efficient techniques to overcome those problems are built using Artificial Intelligence (AI), and more specifically using hybrid systems such as Neuro-Fuzzy algorithms. Therefore, this paper aims to introduce a hybrid algorithm for risk assessment trained using near-miss accident data. As mentioned above the sustainability of traditional technologies related with energy and chemical infrastructure constitutes one of the major challenges that today’s societies and firms are facing. Besides that, the adaptation of those technologies to the effects of the climate change in sensible environments represents a critical concern for safety and risk management. Regarding this issue argue that social consequences of catastrophic risks are increasing rapidly, due mainly to the concentration of people and energy infrastructure in hazard-prone areas, aggravated by the lack of knowledge about the risks. Additional to the social consequences described above, and considering the industrial sector as critical infrastructure due to its large impact to the economy in case of a failure the relevance of industrial safety has become a critical issue for the current society. Then, regarding the safety concern, pipeline operators and regulators have been performing risk assessments in attempts to evaluate accurately probabilities of failure of the infrastructure, and consequences associated with those failures. However, estimating accidental risks in critical infrastructure involves a substantial effort and costs due to number of variables involved, complexity and lack of information. Therefore, this paper aims to introduce a well trained algorithm for risk assessment using deep learning, which could be capable to deal efficiently with the complexity and uncertainty. The advantage point of the deep learning using near-miss accidents data is that it could be employed in risk assessment as an efficient engineering tool to treat the uncertainty of the risk values in complex environments. The basic idea of using a Near-Miss Deep Learning Approach for Neuro-Fuzzy Risk Assessment in Pipelines is focused in the objective of improve the validity of the risk values learning from near-miss accidents and imitating the human expertise scoring risks and setting tolerance levels. In summary, the method of Deep Learning for Neuro-Fuzzy Risk Assessment involves a regression analysis called group method of data handling (GMDH), which consists in the determination of the optimal configuration of the risk assessment model and its parameters employing polynomial theory.Keywords: deep learning, risk assessment, neuro fuzzy, pipelines
Procedia PDF Downloads 2921219 Fuzzy Optimization for Identifying Anticancer Targets in Genome-Scale Metabolic Models of Colon Cancer
Authors: Feng-Sheng Wang, Chao-Ting Cheng
Abstract:
Developing a drug from conception to launch is costly and time-consuming. Computer-aided methods can reduce research costs and accelerate the development process during the early drug discovery and development stages. This study developed a fuzzy multi-objective hierarchical optimization framework for identifying potential anticancer targets in a metabolic model. First, RNA-seq expression data of colorectal cancer samples and their healthy counterparts were used to reconstruct tissue-specific genome-scale metabolic models. The aim of the optimization framework was to identify anticancer targets that lead to cancer cell death and evaluate metabolic flux perturbations in normal cells that have been caused by cancer treatment. Four objectives were established in the optimization framework to evaluate the mortality of cancer cells for treatment and to minimize side effects causing toxicity-induced tumorigenesis on normal cells and smaller metabolic perturbations. Through fuzzy set theory, a multiobjective optimization problem was converted into a trilevel maximizing decision-making (MDM) problem. The applied nested hybrid differential evolution was applied to solve the trilevel MDM problem using two nutrient media to identify anticancer targets in the genome-scale metabolic model of colorectal cancer, respectively. Using Dulbecco’s Modified Eagle Medium (DMEM), the computational results reveal that the identified anticancer targets were mostly involved in cholesterol biosynthesis, pyrimidine and purine metabolisms, glycerophospholipid biosynthetic pathway and sphingolipid pathway. However, using Ham’s medium, the genes involved in cholesterol biosynthesis were unidentifiable. A comparison of the uptake reactions for the DMEM and Ham’s medium revealed that no cholesterol uptake reaction was included in DMEM. Two additional media, i.e., a cholesterol uptake reaction was included in DMEM and excluded in HAM, were respectively used to investigate the relationship of tumor cell growth with nutrient components and anticancer target genes. The genes involved in the cholesterol biosynthesis were also revealed to be determinable if a cholesterol uptake reaction was not induced when the cells were in the culture medium. However, the genes involved in cholesterol biosynthesis became unidentifiable if such a reaction was induced.Keywords: Cancer metabolism, genome-scale metabolic model, constraint-based model, multilevel optimization, fuzzy optimization, hybrid differential evolution
Procedia PDF Downloads 811218 A Sustainable Supplier Selection and Order Allocation Based on Manufacturing Processes and Product Tolerances: A Multi-Criteria Decision Making and Multi-Objective Optimization Approach
Authors: Ravi Patel, Krishna K. Krishnan
Abstract:
In global supply chains, appropriate and sustainable suppliers play a vital role in supply chain development and feasibility. In a larger organization with huge number of suppliers, it is necessary to divide suppliers based on their past history of quality and delivery of each product category. Since performance of any organization widely depends on their suppliers, well evaluated selection criteria and decision-making models lead to improved supplier assessment and development. In this paper, SCOR® performance evaluation approach and ISO standards are used to determine selection criteria for better utilization of supplier assessment by using hybrid model of Analytic Hierchchy Problem (AHP) and Fuzzy Techniques for Order Preference by Similarity to Ideal Solution (FTOPSIS). AHP is used to determine the global weightage of criteria which helps TOPSIS to get supplier score by using triangular fuzzy set theory. Both qualitative and quantitative criteria are taken into consideration for the proposed model. In addition, a multi-product and multi-time period model is selected for order allocation. The optimization model integrates multi-objective integer linear programming (MOILP) for order allocation and a hybrid approach for supplier selection. The proposed MOILP model optimizes order allocation based on manufacturing process and product tolerances as per manufacturer’s requirement for quality product. The integrated model and solution approach are tested to find optimized solutions for different scenario. The detailed analysis shows the superiority of proposed model over other solutions which considered individual decision making models.Keywords: AHP, fuzzy set theory, multi-criteria decision making, multi-objective integer linear programming, TOPSIS
Procedia PDF Downloads 1721217 Separating Permanent and Induced Magnetic Signature: A Simple Approach
Authors: O. J. G. Somsen, G. P. M. Wagemakers
Abstract:
Magnetic signature detection provides sensitive detection of metal objects, especially in the natural environment. Our group is developing a tabletop setup for magnetic signatures of various small and model objects. A particular issue is the separation of permanent and induced magnetization. While the latter depends only on the composition and shape of the object, the former also depends on the magnetization history. With common deperming techniques, a significant permanent signature may still remain, which confuses measurements of the induced component. We investigate a basic technique of separating the two. Measurements were done by moving the object along an aluminum rail while the three field components are recorded by a detector attached near the center. This is done first with the rail parallel to the Earth magnetic field and then with anti-parallel orientation. The reversal changes the sign of the induced- but not the permanent magnetization so that the two can be separated. Our preliminary results on a small iron block show excellent reproducibility. A considerable permanent magnetization was indeed present, resulting in a complex asymmetric signature. After separation, a much more symmetric induced signature was obtained that can be studied in detail and compared with theoretical calculations.Keywords: magnetic signature, data analysis, magnetization, deperming techniques
Procedia PDF Downloads 4521216 Shear Strength Evaluation of Ultra-High-Performance Concrete Flexural Members Using Adaptive Neuro-Fuzzy System
Authors: Minsu Kim, Hae-Chang Cho, Jae Hoon Chung, Inwook Heo, Kang Su Kim
Abstract:
For safe design of the UHPC flexural members, accurate estimations of their shear strengths are very important. However, since the shear strengths are significantly affected by various factors such as tensile strength of concrete, shear span to depth ratio, volume ratio of steel fiber, and steel fiber factor, the accurate estimations of their shear strengths are very challenging. In this study, therefore, the Adaptive Neuro-Fuzzy System (ANFIS), which has been widely used to solve many complex problems in engineering fields, was introduced to estimate the shear strengths of UHPC flexural members. A total of 32 experimental results has been collected from previous studies for training of the ANFIS algorithm, and the well-trained ANFIS algorithm provided good estimations on the shear strengths of the UHPC test specimens. Acknowledgement: This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning(NRF-2016R1A2B2010277).Keywords: ultra-high-performance concrete, ANFIS, shear strength, flexural member
Procedia PDF Downloads 1891215 The Potential of Southern Malang as Geotourism Site: The Distribution of Geodiversity and Geotrek in Southern Malang, Indonesia
Authors: Arda Bagus M, Yehezkiel Festian P, Budianto Santoso
Abstract:
The Tourism Area of Southern Malang is administratively located in the Regency of Malang, East Java Province, Indonesia and geographically is in a position between 112o17' - 112o57' E dan 7o44' - 8o26' S. Southern Malang consists of several sub-districts that directly borders with the Indian Ocean, such as Donomulyo, Bantur, Gedangan, Sumbermanjing, Tirto Yudo, and Ampel Gading. This area has a high geotourism potential because of the existence of geodiversity such as beaches, waterfalls, caves, and karst area. However, to the best of the authors’ knowledge, there is still no systematic data that informs the geotourism potentials to the public. The aim of this research is to complete the lack of data and then arrange it systematically so it can be used for both tourism and research purposes. Research methods such as field observation, literature study, and depth interview to local people have been implemented. Aspects reviewed by visiting the field are accommodation, transportation, and the feasibility of a place to be geotourism object. The primary data was taken in Sumbermanjing, Gedangan, Bantur, and Donomulyo sub-district. A literature study is needed to determine the regional geology of Southern Malang and as a comparison to new data obtained in the field. The results of the literature study show that southern Malang consists of three formations: Wonosari Formation, Mandalaka Formation, and River-swamps Sediment Formation with the age range of Oligocene to Quaternary. Depth interviews have been conducted by involving local people with the aim of knowing cultural-history in the research area. From this research, the geotourism object distribution map has been made. The map also includes Geotrek and basic geological information of each object. The results of this research can support the development of geotourism in Southern Malang.Keywords: geodiversity, geology, geotourism, geotrek, southern Malang
Procedia PDF Downloads 1761214 Streamlining the Fuzzy Front-End and Improving the Usability of the Tools Involved
Authors: Michael N. O'Sullivan, Con Sheahan
Abstract:
Researchers have spent decades developing tools and techniques to aid teams in the new product development (NPD) process. Despite this, it is evident that there is a huge gap between their academic prevalence and their industry adoption. For the fuzzy front-end, in particular, there is a wide range of tools to choose from, including the Kano Model, the House of Quality, and many others. In fact, there are so many tools that it can often be difficult for teams to know which ones to use and how they interact with one another. Moreover, while the benefits of using these tools are obvious to industrialists, they are rarely used as they carry a learning curve that is too steep and they become too complex to manage over time. In essence, it is commonly believed that they are simply not worth the effort required to learn and use them. This research explores a streamlined process for the fuzzy front-end, assembling the most effective tools and making them accessible to everyone. The process was developed iteratively over the course of 3 years, following over 80 final year NPD teams from engineering, design, technology, and construction as they carried a product from concept through to production specification. Questionnaires, focus groups, and observations were used to understand the usability issues with the tools involved, and a human-centred design approach was adopted to produce a solution to these issues. The solution takes the form of physical toolkit, similar to a board game, which allows the team to play through an example of a new product development in order to understand the process and the tools, before using it for their own product development efforts. A complimentary website is used to enhance the physical toolkit, and it provides more examples of the tools being used, as well as deeper discussions on each of the topics, allowing teams to adapt the process to their skills, preferences and product type. Teams found the solution very useful and intuitive and experienced significantly less confusion and mistakes with the process than teams who did not use it. Those with a design background found it especially useful for the engineering principles like Quality Function Deployment, while those with an engineering or technology background found it especially useful for design and customer requirements acquisition principles, like Voice of the Customer. Products developed using the toolkit are added to the website as more examples of how it can be used, creating a loop which helps future teams understand how the toolkit can be adapted to their project, whether it be a small consumer product or a large B2B service. The toolkit unlocks the potential of these beneficial tools to those in industry, both for large, experienced teams and for inexperienced start-ups. It allows users to assess the market potential of their product concept faster and more effectively, arriving at the product design stage with technical requirements prioritized according to their customers’ needs and wants.Keywords: new product development, fuzzy front-end, usability, Kano model, quality function deployment, voice of customer
Procedia PDF Downloads 1081213 An Adaptive Neuro-Fuzzy Inference System (ANFIS) Modelling of Bleeding
Authors: Seyed Abbas Tabatabaei, Fereydoon Moghadas Nejad, Mohammad Saed
Abstract:
The bleeding prediction of the asphalt is one of the most complex subjects in the pavement engineering. In this paper, an Adaptive Neuro Fuzzy Inference System (ANFIS) is used for modeling the effect of important parameters on bleeding is trained and tested with the experimental results. bleeding index based on the asphalt film thickness differential as target parameter,asphalt content, temperature depth of two centemeter, heavy traffic, dust to effective binder, Marshall strength, passing 3/4 sieves, passing 3/8 sieves,passing 3/16 sieves, passing NO8, passing NO50, passing NO100, passing NO200 as input parameters. Then, we randomly divided empirical data into train and test sections in order to accomplish modeling. We instructed ANFIS network by 72 percent of empirical data. 28 percent of primary data which had been considered for testing the approprativity of the modeling were entered into ANFIS model. Results were compared by two statistical criterions (R2, RMSE) with empirical ones. Considering the results, it is obvious that our proposed modeling by ANFIS is efficient and valid and it can also be promoted to more general states.Keywords: bleeding, asphalt film thickness differential, Anfis Modeling
Procedia PDF Downloads 2701212 Landfill Site Selection Using Multi-Criteria Decision Analysis A Case Study for Gulshan-e-Iqbal Town, Karachi
Authors: Javeria Arain, Saad Malik
Abstract:
The management of solid waste is a crucial and essential aspect of urban environmental management especially in a city with an ever increasing population such as Karachi. The total amount of municipal solid waste generated from Gulshan e Iqbal town on average is 444.48 tons per day and landfill sites are a widely accepted solution for final disposal of this waste. However, an improperly selected site can have immense environmental, economical and ecological impacts. To select an appropriate landfill site a number of factors should be kept into consideration to minimize the potential hazards of solid waste. The purpose of this research is to analyse the study area for the construction of an appropriate landfill site for disposal of municipal solid waste generated from Gulshan e-Iqbal Town by using geospatial techniques considering hydrological, geological, social and geomorphological factors. This was achieved using analytical hierarchy process and fuzzy analysis as a decision support tool with integration of geographic information sciences techniques. Eight most critical parameters, relevant to the study area, were selected. After generation of thematic layers for each parameter, overlay analysis was performed in ArcGIS 10.0 software. The results produced by both methods were then compared with each other and the final suitability map using AHP shows that 19% of the total area is Least Suitable, 6% is Suitable but avoided, 46% is Moderately Suitable, 26% is Suitable, 2% is Most Suitable and 1% is Restricted. In comparison the output map of fuzzy set theory is not in crisp logic rather it provides an output map with a range of 0-1, where 0 indicates least suitable and 1 indicates most suitable site. Considering the results it is deduced that the northern part of the city is appropriate for constructing the landfill site though a final decision for an optimal site could be made after field survey and considering economical and political factors.Keywords: Analytical Hierarchy Process (AHP), fuzzy set theory, Geographic Information Sciences (GIS), Multi-Criteria Decision Analysis (MCDA)
Procedia PDF Downloads 5061211 Image Classification with Localization Using Convolutional Neural Networks
Authors: Bhuyain Mobarok Hossain
Abstract:
Image classification and localization research is currently an important strategy in the field of computer vision. The evolution and advancement of deep learning and convolutional neural networks (CNN) have greatly improved the capabilities of object detection and image-based classification. Target detection is important to research in the field of computer vision, especially in video surveillance systems. To solve this problem, we will be applying a convolutional neural network of multiple scales at multiple locations in the image in one sliding window. Most translation networks move away from the bounding box around the area of interest. In contrast to this architecture, we consider the problem to be a classification problem where each pixel of the image is a separate section. Image classification is the method of predicting an individual category or specifying by a shoal of data points. Image classification is a part of the classification problem, including any labels throughout the image. The image can be classified as a day or night shot. Or, likewise, images of cars and motorbikes will be automatically placed in their collection. The deep learning of image classification generally includes convolutional layers; the invention of it is referred to as a convolutional neural network (CNN).Keywords: image classification, object detection, localization, particle filter
Procedia PDF Downloads 3061210 The Dependence of the Liquid Application on the Coverage of the Sprayed Objects in Terms of the Characteristics of the Sprayed Object during Spraying
Authors: Beata Cieniawska, Deta Łuczycka, Katarzyna Dereń
Abstract:
When assessing the quality of the spraying procedure, three indicators are used: uneven distribution of precipitation of liquid sprayed, degree of coverage of sprayed surfaces, and deposition of liquid spraying However, there is a lack of information on the relationship between the quality parameters of the procedure. Therefore, the research was carried out at the Institute of Agricultural Engineering of Wrocław University of Environmental and Life Sciences. The aim of the study was to determine the relationship between the degree of coverage of sprayed surfaces and the deposition of liquid in the aspect of the parametric characteristics of the protected plant using selected single and double stream nozzles. Experiments were conducted under laboratory conditions. The carrier of nozzles acted as an independent self-propelled sprayer used for spraying, whereas the parametric characteristics of plants were determined using artificial plants as the ratio of the vertical projection surface and the horizontal projection surface. The results and their analysis showed a strong and very strong correlation between the analyzed parameters in terms of the characteristics of the sprayed object.Keywords: degree of coverage, deposition of liquid, nozzle, spraying
Procedia PDF Downloads 3371209 Silymarin Reverses Scopolamine-Induced Memory Deficit in Object Recognition Test in Rats: A Behavioral, Biochemical, Histopathological and Immunohistochemical Study
Authors: Salma A. El-Marasy, Reham M. Abd-Elsalam, Omar A. Ahmed-Farid
Abstract:
Dementia is characterized by impairments in memory and other cognitive abilities. This study aims to elucidate the possible ameliorative effect of silymarin on scopolamine-induced dementia using the object recognition test (ORT). The study was extended to demonstrate the role of cholinergic activity, oxidative stress, neuroinflammation, brain neurotransmitters and histopathological changes in the anti-amnestic effect of silymarin in demented rats. Wistar rats were pretreated with silymarin (200, 400, 800 mg/kg) or donepezil (10 mg/kg) orally for 14 consecutive days. Dementia was induced after the last drug administration by a single intraperitoneal dose of scopolamine (16 mg/kg). Then behavioral, biochemical, histopathological, and immunohistochemical analyses were then performed. Rats pretreated with silymarin counteracted scopolamine-induced non-spatial working memory impairment in the ORT and decreased acetylcholinesterase (AChE) activity, reduced malondialdehyde (MDA), elevated reduced glutathione (GSH), restored gamma-aminobutyric acid (GABA) and dopamine (DA) contents in the cortical and hippocampal brain homogenates. Silymarin dose-dependently reversed scopolamine-induced histopathological changes. Immunohistochemical analysis showed that silymarin dose-dependently mitigated protein expression of a glial fibrillary acidic protein (GFAP) and nuclear factor kappa-B (NF-κB) in the brain cortex and hippocampus. All these effects of silymarin were similar to that of the standard anti-amnestic drug, donepezil. This study reveals that the ameliorative effect of silymarin on scopolamine-induced dementia in rats using the ORT maybe in part mediated by, enhancement of cholinergic activity, anti-oxidant and anti-inflammatory activities as well as mitigation in brain neurotransmitters and histopathological changes.Keywords: dementia, donepezil, object recognition test, rats, silymarin, scopolamine
Procedia PDF Downloads 1381208 A Data Science Pipeline for Algorithmic Trading: A Comparative Study in Applications to Finance and Cryptoeconomics
Authors: Luyao Zhang, Tianyu Wu, Jiayi Li, Carlos-Gustavo Salas-Flores, Saad Lahrichi
Abstract:
Recent advances in AI have made algorithmic trading a central role in finance. However, current research and applications are disconnected information islands. We propose a generally applicable pipeline for designing, programming, and evaluating algorithmic trading of stock and crypto tokens. Moreover, we provide comparative case studies for four conventional algorithms, including moving average crossover, volume-weighted average price, sentiment analysis, and statistical arbitrage. Our study offers a systematic way to program and compare different trading strategies. Moreover, we implement our algorithms by object-oriented programming in Python3, which serves as open-source software for future academic research and applications.Keywords: algorithmic trading, AI for finance, fintech, machine learning, moving average crossover, volume weighted average price, sentiment analysis, statistical arbitrage, pair trading, object-oriented programming, python3
Procedia PDF Downloads 1491207 The Change of Urban Land Use/Cover Using Object Based Approach for Southern Bali
Authors: I. Gusti A. A. Rai Asmiwyati, Robert J. Corner, Ashraf M. Dewan
Abstract:
Change on land use/cover (LULC) dominantly affects spatial structure and function. It can have such impacts by disrupting social culture practice and disturbing physical elements. Thus, it has become essential to understand of the dynamics in time and space of LULC as it can be used as a critical input for developing sustainable LULC. This study was an attempt to map and monitor the LULC change in Bali Indonesia from 2003 to 2013. Using object based classification to improve the accuracy, and change detection, multi temporal land use/cover data were extracted from a set of ASTER satellite image. The overall accuracies of the classification maps of 2003 and 2013 were 86.99% and 80.36%, respectively. Built up area and paddy field were the dominant type of land use/cover in both years. Patch increase dominantly in 2003 illustrated the rapid paddy field fragmentation and the huge occurring transformation. This approach is new for the case of diverse urban features of Bali that has been growing fast and increased the classification accuracy than the manual pixel based classification.Keywords: land use/cover, urban, Bali, ASTER
Procedia PDF Downloads 5421206 Active Islanding Detection Method Using Intelligent Controller
Authors: Kuang-Hsiung Tan, Chih-Chan Hu, Chien-Wu Lan, Shih-Sung Lin, Te-Jen Chang
Abstract:
An active islanding detection method using disturbance signal injection with intelligent controller is proposed in this study. First, a DC\AC power inverter is emulated in the distributed generator (DG) system to implement the tracking control of active power, reactive power outputs and the islanding detection. The proposed active islanding detection method is based on injecting a disturbance signal into the power inverter system through the d-axis current which leads to a frequency deviation at the terminal of the RLC load when the utility power is disconnected. Moreover, in order to improve the transient and steady-state responses of the active power and reactive power outputs of the power inverter, and to further improve the performance of the islanding detection method, two probabilistic fuzzy neural networks (PFNN) are adopted to replace the traditional proportional-integral (PI) controllers for the tracking control and the islanding detection. Furthermore, the network structure and the online learning algorithm of the PFNN are introduced in detail. Finally, the feasibility and effectiveness of the tracking control and the proposed active islanding detection method are verified with experimental results.Keywords: distributed generators, probabilistic fuzzy neural network, islanding detection, non-detection zone
Procedia PDF Downloads 3901205 Prioritization in a Maintenance, Repair and Overhaul (MRO) System Based on Fuzzy Logic at Iran Khodro (IKCO)
Authors: Izadi Banafsheh, Sedaghat Reza
Abstract:
Maintenance, Repair, and Overhaul (MRO) of machinery are a key recent issue concerning the automotive industry. It has always been a debated question what order or priority should be adopted for the MRO of machinery. This study attempts to examine several criteria including process sensitivity, average time between machine failures, average duration of repair, availability of parts, availability of maintenance personnel and workload through a literature review and experts survey so as to determine the condition of the machine. According to the mentioned criteria, the machinery were ranked in four modes below: A) Need for inspection, B) Need for minor repair, C) Need for part replacement, and D) Need for major repair. The Fuzzy AHP was employed to determine the weighting of criteria. At the end, the obtained weights were ranked through the AHP for each criterion, three groups were specified: shaving machines, assembly and painting in four modes. The statistical population comprises the elite in the Iranian automotive industry at IKCO covering operation managers, CEOs and maintenance professionals who are highly specialized in MRO and perfectly knowledgeable in how the machinery function. The information required for this study were collected from both desk research and field review, which eventually led to construction of a questionnaire handed out to the sample respondents in order to collect information on the subject matter. The results of the AHP for weighting the criteria revealed that the availability of maintenance personnel was the top priority at coefficient of 0.206, while the process sensitivity took the last priority at coefficient of 0.066. Furthermore, the results of TOPSIS for prioritizing the IKCO machinery suggested that at the mode where there is need for inspection, the assembly machines took the top priority while paining machines took the third priority. As for the mode where there is need for minor repairs, the assembly machines took the top priority while the third priority belonged to the shaving machines. As for the mode where there is need for parts replacement, the assembly machines took the top priority while the third belonged to the paining machinery. Finally, as for the mode where there is need for major repair, the assembly machines took the top priority while the third belonged to the paining machinery.Keywords: maintenance, repair, overhaul, MRO, prioritization of machinery, fuzzy logic, AHP, TOPSIS
Procedia PDF Downloads 2881204 Understanding the Impact of Spatial Light Distribution on Object Identification in Low Vision: A Pilot Psychophysical Study
Authors: Alexandre Faure, Yoko Mizokami, éRic Dinet
Abstract:
These recent years, the potential of light in assisting visually impaired people in their indoor mobility has been demonstrated by different studies. Implementing smart lighting systems for selective visual enhancement, especially designed for low-vision people, is an approach that breaks with the existing visual aids. The appearance of the surface of an object is significantly influenced by the lighting conditions and the constituent materials of the objects. Appearance of objects may appear to be different from expectation. Therefore, lighting conditions lead to an important part of accurate material recognition. The main objective of this work was to investigate the effect of the spatial distribution of light on object identification in the context of low vision. The purpose was to determine whether and what specific lighting approaches should be preferred for visually impaired people. A psychophysical experiment was designed to study the ability of individuals to identify the smallest cube of a pair under different lighting diffusion conditions. Participants were divided into two distinct groups: a reference group of observers with normal or corrected-to-normal visual acuity and a test group, in which observers were required to wear visual impairment simulation glasses. All participants were presented with pairs of cubes in a "miniature room" and were instructed to estimate the relative size of the two cubes. The miniature room replicates real-life settings, adorned with decorations and separated from external light sources by black curtains. The correlated color temperature was set to 6000 K, and the horizontal illuminance at the object level at approximately 240 lux. The objects presented for comparison consisted of 11 white cubes and 11 black cubes of different sizes manufactured with a 3D printer. Participants were seated 60 cm away from the objects. Two different levels of light diffuseness were implemented. After receiving instructions, participants were asked to judge whether the two presented cubes were the same size or if one was smaller. They provided one of five possible answers: "Left one is smaller," "Left one is smaller but unsure," "Same size," "Right one is smaller," or "Right one is smaller but unsure.". The method of constant stimuli was used, presenting stimulus pairs in a random order to prevent learning and expectation biases. Each pair consisted of a comparison stimulus and a reference cube. A psychometric function was constructed to link stimulus value with the frequency of correct detection, aiming to determine the 50% correct detection threshold. Collected data were analyzed through graphs illustrating participants' responses to stimuli, with accuracy increasing as the size difference between cubes grew. Statistical analyses, including 2-way ANOVA tests, showed that light diffuseness had no significant impact on the difference threshold, whereas object color had a significant influence in low vision scenarios. The first results and trends derived from this pilot experiment clearly and strongly suggest that future investigations could explore extreme diffusion conditions to comprehensively assess the impact of diffusion on object identification. For example, the first findings related to light diffuseness may be attributed to the range of manipulation, emphasizing the need to explore how other lighting-related factors interact with diffuseness.Keywords: Lighting, Low Vision, Visual Aid, Object Identification, Psychophysical Experiment
Procedia PDF Downloads 641203 Comparison Analysis of Fuzzy Logic Controler Based PV-Pumped Hydro and PV-Battery Storage Systems
Authors: Seada Hussen, Frie Ayalew
Abstract:
Integrating different energy resources, like solar PV and hydro, is used to ensure reliable power to rural communities like Hara village in Ethiopia. Hybrid power system offers power supply for rural villages by providing an alternative supply for the intermittent nature of renewable energy resources. The intermittent nature of renewable energy resources is a challenge to electrifying rural communities in a sustainable manner with solar resources. Major rural villages in Ethiopia are suffering from a lack of electrification, that cause our people to suffer deforestation, travel for long distance to fetch water, and lack good services like clinic and school sufficiently. The main objective of this project is to provide a balanced, stable, reliable supply for Hara village, Ethiopia using solar power with a pumped hydro energy storage system. The design of this project starts by collecting data from villages and taking solar irradiance data from NASA. In addition to this, geographical arrangement and location are also taken into consideration. After collecting this, all data analysis and cost estimation or optimal sizing of the system and comparison of solar with pumped hydro and solar with battery storage system is done using Homer Software. And since solar power only works in the daytime and pumped hydro works at night time and also at night and morning, both load will share to cover the load demand; this need controller designed to control multiple switch and scheduling in this project fuzzy logic controller is used to control this scenario. The result of the simulation shows that solar with pumped hydro energy storage system achieves good results than with a battery storage system since the comparison is done considering storage reliability, cost, storage capacity, life span, and efficiency.Keywords: pumped hydro storage, solar energy, solar PV, battery energy storage, fuzzy logic controller
Procedia PDF Downloads 801202 High Resolution Satellite Imagery and Lidar Data for Object-Based Tree Species Classification in Quebec, Canada
Authors: Bilel Chalghaf, Mathieu Varin
Abstract:
Forest characterization in Quebec, Canada, is usually assessed based on photo-interpretation at the stand level. For species identification, this often results in a lack of precision. Very high spatial resolution imagery, such as DigitalGlobe, and Light Detection and Ranging (LiDAR), have the potential to overcome the limitations of aerial imagery. To date, few studies have used that data to map a large number of species at the tree level using machine learning techniques. The main objective of this study is to map 11 individual high tree species ( > 17m) at the tree level using an object-based approach in the broadleaf forest of Kenauk Nature, Quebec. For the individual tree crown segmentation, three canopy-height models (CHMs) from LiDAR data were assessed: 1) the original, 2) a filtered, and 3) a corrected model. The corrected CHM gave the best accuracy and was then coupled with imagery to refine tree species crown identification. When compared with photo-interpretation, 90% of the objects represented a single species. For modeling, 313 variables were derived from 16-band WorldView-3 imagery and LiDAR data, using radiance, reflectance, pixel, and object-based calculation techniques. Variable selection procedures were employed to reduce their number from 313 to 16, using only 11 bands to aid reproducibility. For classification, a global approach using all 11 species was compared to a semi-hierarchical hybrid classification approach at two levels: (1) tree type (broadleaf/conifer) and (2) individual broadleaf (five) and conifer (six) species. Five different model techniques were used: (1) support vector machine (SVM), (2) classification and regression tree (CART), (3) random forest (RF), (4) k-nearest neighbors (k-NN), and (5) linear discriminant analysis (LDA). Each model was tuned separately for all approaches and levels. For the global approach, the best model was the SVM using eight variables (overall accuracy (OA): 80%, Kappa: 0.77). With the semi-hierarchical hybrid approach, at the tree type level, the best model was the k-NN using six variables (OA: 100% and Kappa: 1.00). At the level of identifying broadleaf and conifer species, the best model was the SVM, with OA of 80% and 97% and Kappa values of 0.74 and 0.97, respectively, using seven variables for both models. This paper demonstrates that a hybrid classification approach gives better results and that using 16-band WorldView-3 with LiDAR data leads to more precise predictions for tree segmentation and classification, especially when the number of tree species is large.Keywords: tree species, object-based, classification, multispectral, machine learning, WorldView-3, LiDAR
Procedia PDF Downloads 1361201 Towards Expanding the Use of the Online Judge UnitJudge for Java Programming Exercises and Web Development Practices in Computer Science Education
Authors: Iván García-Magariño, Javier Bravo-Agapito, Marta López-Fernández
Abstract:
Online judges have proven their utility in partial auto-evaluation of programming short exercises in the last decades. UnitJudge online judge has the advantage of facilitating the evaluation of separate units to provide more segregate and meaningful feedback to students in complex exercises and practices. This paper discusses the use of UnitUdge in advanced Java object-oriented programming exercises and web development practices. This later usage has been proposed by means of the Selenium Java library and classes to provide the web address. Consequently, UnitJudge is an online judge system that can be applied in several subjects, and therefore, many other students would take advantage of self-testing their exercises. This paper presents the experiments with a Java programming exercise for learning Java object-oriented classes with a generic type. Considering 10 students who voluntarily used UnitJudge, 80% successfully learned this concept, passing the judge exercise with correct results.Keywords: online judges, programming skills, computer science education, auto-evaluation
Procedia PDF Downloads 1011200 Relativity in Toddlers' Understanding of the Physical World as Key to Misconceptions in the Science Classroom
Authors: Michael Hast
Abstract:
Within their first year, infants can differentiate between objects based on their weight. By at least 5 years children hold consistent weight-related misconceptions about the physical world, such as that heavy things fall faster than lighter ones because of their weight. Such misconceptions are seen as a challenge for science education since they are often highly resistant to change through instruction. Understanding the time point of emergence of such ideas could, therefore, be crucial for early science pedagogy. The paper thus discusses two studies that jointly address the issue by examining young children’s search behaviour in hidden displacement tasks under consideration of relative object weight. In both studies, they were tested with a heavy or a light ball, and they either had information about one of the balls only or both. In Study 1, 88 toddlers aged 2 to 3½ years watched a ball being dropped into a curved tube and were then allowed to search for the ball in three locations – one straight beneath the tube entrance, one where the curved tube lead to, and one that corresponded to neither of the previous outcomes. Success and failure at the task were not impacted by weight of the balls alone in any particular way. However, from around 3 years onwards, relative lightness, gained through having tactile experience of both balls beforehand, enhanced search success. Conversely, relative heaviness increased search errors such that children increasingly searched in the location immediately beneath the tube entry – known as the gravity bias. In Study 2, 60 toddlers aged 2, 2½ and 3 years watched a ball roll down a ramp and behind a screen with four doors, with a barrier placed along the ramp after one of four doors. Toddlers were allowed to open the doors to find the ball. While search accuracy generally increased with age, relative weight did not play a role in 2-year-olds’ search behaviour. Relative lightness improved 2½-year-olds’ searches. At 3 years, both relative lightness and relative heaviness had a significant impact, with the former improving search accuracy and the latter reducing it. Taken together, both studies suggest that between 2 and 3 years of age, relative object weight is increasingly taken into consideration in navigating naïve physical concepts. In particular, it appears to contribute to the early emergence of misconceptions relating to object weight. This insight from developmental psychology research may have consequences for early science education and related pedagogy towards early conceptual change.Keywords: conceptual development, early science education, intuitive physics, misconceptions, object weight
Procedia PDF Downloads 1901199 Unsupervised Detection of Burned Area from Remote Sensing Images Using Spatial Correlation and Fuzzy Clustering
Authors: Tauqir A. Moughal, Fusheng Yu, Abeer Mazher
Abstract:
Land-cover and land-use change information are important because of their practical uses in various applications, including deforestation, damage assessment, disasters monitoring, urban expansion, planning, and land management. Therefore, developing change detection methods for remote sensing images is an important ongoing research agenda. However, detection of change through optical remote sensing images is not a trivial task due to many factors including the vagueness between the boundaries of changed and unchanged regions and spatial dependence of the pixels to its neighborhood. In this paper, we propose a binary change detection technique for bi-temporal optical remote sensing images. As in most of the optical remote sensing images, the transition between the two clusters (change and no change) is overlapping and the existing methods are incapable of providing the accurate cluster boundaries. In this regard, a methodology has been proposed which uses the fuzzy c-means clustering to tackle the problem of vagueness in the changed and unchanged class by formulating the soft boundaries between them. Furthermore, in order to exploit the neighborhood information of the pixels, the input patterns are generated corresponding to each pixel from bi-temporal images using 3×3, 5×5 and 7×7 window. The between images and within image spatial dependence of the pixels to its neighborhood is quantified by using Pearson product moment correlation and Moran’s I statistics, respectively. The proposed technique consists of two phases. At first, between images and within image spatial correlation is calculated to utilize the information that the pixels at different locations may not be independent. Second, fuzzy c-means technique is used to produce two clusters from input feature by not only taking care of vagueness between the changed and unchanged class but also by exploiting the spatial correlation of the pixels. To show the effectiveness of the proposed technique, experiments are conducted on multispectral and bi-temporal remote sensing images. A subset (2100×1212 pixels) of a pan-sharpened, bi-temporal Landsat 5 thematic mapper optical image of Los Angeles, California, is used in this study which shows a long period of the forest fire continued from July until October 2009. Early forest fire and later forest fire optical remote sensing images were acquired on July 5, 2009 and October 25, 2009, respectively. The proposed technique is used to detect the fire (which causes change on earth’s surface) and compared with the existing K-means clustering technique. Experimental results showed that proposed technique performs better than the already existing technique. The proposed technique can be easily extendable for optical hyperspectral images and is suitable for many practical applications.Keywords: burned area, change detection, correlation, fuzzy clustering, optical remote sensing
Procedia PDF Downloads 1701198 A Framework for Automated Nuclear Waste Classification
Authors: Seonaid Hume, Gordon Dobie, Graeme West
Abstract:
Detecting and localizing radioactive sources is a necessity for safe and secure decommissioning of nuclear facilities. An important aspect for the management of the sort-and-segregation process is establishing the spatial distributions and quantities of the waste radionuclides, their type, corresponding activity, and ultimately classification for disposal. The data received from surveys directly informs decommissioning plans, on-site incident management strategies, the approach needed for a new cell, as well as protecting the workforce and the public. Manual classification of nuclear waste from a nuclear cell is time-consuming, expensive, and requires significant expertise to make the classification judgment call. Also, in-cell decommissioning is still in its relative infancy, and few techniques are well-developed. As with any repetitive and routine tasks, there is the opportunity to improve the task of classifying nuclear waste using autonomous systems. Hence, this paper proposes a new framework for the automatic classification of nuclear waste. This framework consists of five main stages; 3D spatial mapping and object detection, object classification, radiological mapping, source localisation based on gathered evidence and finally, waste classification. The first stage of the framework, 3D visual mapping, involves object detection from point cloud data. A review of related applications in other industries is provided, and recommendations for approaches for waste classification are made. Object detection focusses initially on cylindrical objects since pipework is significant in nuclear cells and indeed any industrial site. The approach can be extended to other commonly occurring primitives such as spheres and cubes. This is in preparation of stage two, characterizing the point cloud data and estimating the dimensions, material, degradation, and mass of the objects detected in order to feature match them to an inventory of possible items found in that nuclear cell. Many items in nuclear cells are one-offs, have limited or poor drawings available, or have been modified since installation, and have complex interiors, which often and inadvertently pose difficulties when accessing certain zones and identifying waste remotely. Hence, this may require expert input to feature match objects. The third stage, radiological mapping, is similar in order to facilitate the characterization of the nuclear cell in terms of radiation fields, including the type of radiation, activity, and location within the nuclear cell. The fourth stage of the framework takes the visual map for stage 1, the object characterization from stage 2, and radiation map from stage 3 and fuses them together, providing a more detailed scene of the nuclear cell by identifying the location of radioactive materials in three dimensions. The last stage involves combining the evidence from the fused data sets to reveal the classification of the waste in Bq/kg, thus enabling better decision making and monitoring for in-cell decommissioning. The presentation of the framework is supported by representative case study data drawn from an application in decommissioning from a UK nuclear facility. This framework utilises recent advancements of the detection and mapping capabilities of complex radiation fields in three dimensions to make the process of classifying nuclear waste faster, more reliable, cost-effective and safer.Keywords: nuclear decommissioning, radiation detection, object detection, waste classification
Procedia PDF Downloads 2011197 Second-Order Complex Systems: Case Studies of Autonomy and Free Will
Authors: Eric Sanchis
Abstract:
Although there does not exist a definitive consensus on a precise definition of a complex system, it is generally considered that a system is complex by nature. The presented work illustrates a different point of view: a system becomes complex only with regard to the question posed to it, i.e., with regard to the problem which has to be solved. A complex system is a couple (question, object). Because the number of questions posed to a given object can be potentially substantial, complexity does not present a uniform face. Two types of complex systems are clearly identified: first-order complex systems and second-order complex systems. First-order complex systems physically exist. They are well-known because they have been studied by the scientific community for a long time. In second-order complex systems, complexity results from the system composition and its articulation that are partially unknown. For some of these systems, there is no evidence of their existence. Vagueness is the keyword characterizing this kind of systems. Autonomy and free will, two mental productions of the human cognitive system, can be identified as second-order complex systems. A classification based on the properties structure makes it possible to discriminate complex properties from the others and to model this kind of second order complex systems. The final outcome is an implementable synthetic property that distinguishes the solid aspects of the actual property from those that are uncertain.Keywords: autonomy, free will, synthetic property, vaporous complex systems
Procedia PDF Downloads 2051196 Audio-Visual Co-Data Processing Pipeline
Authors: Rita Chattopadhyay, Vivek Anand Thoutam
Abstract:
Speech is the most acceptable means of communication where we can quickly exchange our feelings and thoughts. Quite often, people can communicate orally but cannot interact or work with computers or devices. It’s easy and quick to give speech commands than typing commands to computers. In the same way, it’s easy listening to audio played from a device than extract output from computers or devices. Especially with Robotics being an emerging market with applications in warehouses, the hospitality industry, consumer electronics, assistive technology, etc., speech-based human-machine interaction is emerging as a lucrative feature for robot manufacturers. Considering this factor, the objective of this paper is to design the “Audio-Visual Co-Data Processing Pipeline.” This pipeline is an integrated version of Automatic speech recognition, a Natural language model for text understanding, object detection, and text-to-speech modules. There are many Deep Learning models for each type of the modules mentioned above, but OpenVINO Model Zoo models are used because the OpenVINO toolkit covers both computer vision and non-computer vision workloads across Intel hardware and maximizes performance, and accelerates application development. A speech command is given as input that has information about target objects to be detected and start and end times to extract the required interval from the video. Speech is converted to text using the Automatic speech recognition QuartzNet model. The summary is extracted from text using a natural language model Generative Pre-Trained Transformer-3 (GPT-3). Based on the summary, essential frames from the video are extracted, and the You Only Look Once (YOLO) object detection model detects You Only Look Once (YOLO) objects on these extracted frames. Frame numbers that have target objects (specified objects in the speech command) are saved as text. Finally, this text (frame numbers) is converted to speech using text to speech model and will be played from the device. This project is developed for 80 You Only Look Once (YOLO) labels, and the user can extract frames based on only one or two target labels. This pipeline can be extended for more than two target labels easily by making appropriate changes in the object detection module. This project is developed for four different speech command formats by including sample examples in the prompt used by Generative Pre-Trained Transformer-3 (GPT-3) model. Based on user preference, one can come up with a new speech command format by including some examples of the respective format in the prompt used by the Generative Pre-Trained Transformer-3 (GPT-3) model. This pipeline can be used in many projects like human-machine interface, human-robot interaction, and surveillance through speech commands. All object detection projects can be upgraded using this pipeline so that one can give speech commands and output is played from the device.Keywords: OpenVINO, automatic speech recognition, natural language processing, object detection, text to speech
Procedia PDF Downloads 801195 Theoretical Exploration for the Impact of Accounting for Special Methods in Connectivity-Based Cohesion Measurement
Authors: Jehad Al Dallal
Abstract:
Class cohesion is a key object-oriented software quality attribute that is used to evaluate the degree of relatedness of class attributes and methods. Researchers have proposed several class cohesion measures. However, the effect of considering the special methods (i.e., constructors, destructors, and access and delegation methods) in cohesion calculation is not thoroughly theoretically studied for most of them. In this paper, we address this issue for three popular connectivity-based class cohesion measures. For each of the considered measures we theoretically study the impact of including or excluding special methods on the values that are obtained by applying the measure. This study is based on analyzing the definitions and formulas that are proposed for the measures. The results show that including/excluding special methods has a considerable effect on the obtained cohesion values and that this effect varies from one measure to another. For each of the three connectivity-based measures, the proposed theoretical study recommended excluding the special methods in cohesion measurement.Keywords: object-oriented class, software quality, class cohesion measure, class cohesion, special methods
Procedia PDF Downloads 2971194 The Development of Leisure and Endowment Characteristic Villages in the Perspective of Balancing the Dwellers and Aged Visitors:A Case Study of Villages in Hangzhou Metropolitan Area
Authors: Zijiao Chai, Wangming Li
Abstract:
Under the background of increasing aging population, the situation of city endowment resources shortage gradually revealed. And many villages in the metropolitan area with the good natural ecological environment and leisure tourism base, have become one of the main destinations of urban old people for the off-site pension. This paper is based on a survey of more than ten villages which are characterized by leisure and endowment in Hangzhou metropolitan area, China. The satisfaction degree of the two main groups in the villages, dwellers, and aged visitors, is researched using the method of fuzzy comprehensive evaluation. The statistics are obtained from 535 questionnaires and qualitative interview. According to the satisfaction scores, it could be determined whether the dwellers and aged visitors have reached the equilibrium state. The equilibrium state is the development target of the villages, and it`s defined by environmentally friendly, proper for employment and pension, facilities sharing and harmonious life for each other. Furthermore, this paper comes up with some planning countermeasures in order to avoid "imbalance between dwellers and aged visitors" and obtain sustainable development while maintaining the economic benefit.Keywords: aged visitors, balance between dwellers and aged visitors, dwellers, fuzzy comprehensive evaluation, Hangzhou metropolitan area, leisure and endowment characteristic villages
Procedia PDF Downloads 2931193 A High Efficiency Reduced Rules Neuro-Fuzzy Based Maximum Power Point Tracking Controller for Photovoltaic Array Connected to Grid
Authors: Lotfi Farah, Nadir Farah, Zaiem Kamar
Abstract:
This paper achieves a maximum power point tracking (MPPT) controller using a high-efficiency reduced rules neuro-fuzzy inference system (HE2RNF) for a 100 kW stand-alone photovoltaic (PV) system connected to the grid. The suggested HE2RNF based MPPT seeks the optimal duty cycle for the boost DC-DC converter, making the designed PV system working at the maximum power point (MPP), then transferring this power to the grid via a three levels voltage source converter (VSC). PV current variation and voltage variation are chosen as HE2RNF-based MPPT controller inputs. By using these inputs with the duty cycle as the only single output, a six rules ANFIS is generated. The high performance of the proposed HE2RNF numerically in the MATLAB/Simulink environment is shown. The 0.006% steady-state error, 0.006s of tracking time, and 0.088s of starting time prove the robustness of this six reduced rules against the widely used twenty-five ones.Keywords: PV, MPPT, ANFIS, HE2RNF-based MPPT controller, VSC, grid connection
Procedia PDF Downloads 1851192 Digital Holographic Interferometric Microscopy for the Testing of Micro-Optics
Authors: Varun Kumar, Chandra Shakher
Abstract:
Micro-optical components such as microlenses and microlens array have numerous engineering and industrial applications for collimation of laser diodes, imaging devices for sensor system (CCD/CMOS, document copier machines etc.), for making beam homogeneous for high power lasers, a critical component in Shack-Hartmann sensor, fiber optic coupling and optical switching in communication technology. Also micro-optical components have become an alternative for applications where miniaturization, reduction of alignment and packaging cost are necessary. The compliance with high-quality standards in the manufacturing of micro-optical components is a precondition to be compatible on worldwide markets. Therefore, high demands are put on quality assurance. For quality assurance of these lenses, an economical measurement technique is needed. For cost and time reason, technique should be fast, simple (for production reason), and robust with high resolution. The technique should provide non contact, non-invasive and full field information about the shape of micro- optical component under test. The interferometric techniques are noncontact type and non invasive and provide full field information about the shape of the optical components. The conventional interferometric technique such as holographic interferometry or Mach-Zehnder interferometry is available for characterization of micro-lenses. However, these techniques need more experimental efforts and are also time consuming. Digital holography (DH) overcomes the above described problems. Digital holographic microscopy (DHM) allows one to extract both the amplitude and phase information of a wavefront transmitted through the transparent object (microlens or microlens array) from a single recorded digital hologram by using numerical methods. Also one can reconstruct the complex object wavefront at different depths due to numerical reconstruction. Digital holography provides axial resolution in nanometer range while lateral resolution is limited by diffraction and the size of the sensor. In this paper, Mach-Zehnder based digital holographic interferometric microscope (DHIM) system is used for the testing of transparent microlenses. The advantage of using the DHIM is that the distortions due to aberrations in the optical system are avoided by the interferometric comparison of reconstructed phase with and without the object (microlens array). In the experiment, first a digital hologram is recorded in the absence of sample (microlens array) as a reference hologram. Second hologram is recorded in the presence of microlens array. The presence of transparent microlens array will induce a phase change in the transmitted laser light. Complex amplitude of object wavefront in presence and absence of microlens array is reconstructed by using Fresnel reconstruction method. From the reconstructed complex amplitude, one can evaluate the phase of object wave in presence and absence of microlens array. Phase difference between the two states of object wave will provide the information about the optical path length change due to the shape of the microlens. By the knowledge of the value of the refractive index of microlens array material and air, the surface profile of microlens array is evaluated. The Sag of microlens and radius of curvature of microlens are evaluated and reported. The sag of microlens agrees well within the experimental limit as provided in the specification by the manufacturer.Keywords: micro-optics, microlens array, phase map, digital holographic interferometric microscopy
Procedia PDF Downloads 4991191 Evaluating the Influence of Road Markings Retroreflectivity on Road Safety in Low Visibility Conditions
Authors: Darko Babic, Maja Modric, Dario Babic, Mario Fiolic
Abstract:
For road markings as a part of traffic control plan, it is considered to have a positive impact on road safety. Their importance is particularly evident in low visibility conditions when the field of vision and the driver's visual acuity are significantly reduced. The aim of this article is to analyze how road marking retroreflectivity affects the frequency of traffic accidents in low visibility conditions. For this purpose, 10,417.4 km single carriageway roads were analysed across Croatia in the period from 2012 to 2016. The research included accidents that may be significantly affected by marking retroreflectivity: head-on collisions, running off the road, hitting a stationary object on the road and hitting a stationary roadside object. The results have shown that the retroreflectivity level is negatively correlated to the total number of accidents and the number of casualties and injuries, which ultimately means that the risk of traffic accidents and deaths and/or injuries of participants will be lower with the increase of road markings retroreflectivity. These results may assist in defining minimum values of retroreflectivity that the markings must meet at any time as well as the suitable technologies and materials for their implementation.Keywords: retroreflectivity, road markings, traffic accidents, traffic safety
Procedia PDF Downloads 153