Search results for: director networks
2212 CoP-Networks: Virtual Spaces for New Faculty’s Professional Development in the 21st Higher Education
Authors: Eman AbuKhousa, Marwan Z. Bataineh
Abstract:
The 21st century higher education and globalization challenge new faculty members to build effective professional networks and partnership with industry in order to accelerate their growth and success. This creates the need for community of practice (CoP)-oriented development approaches that focus on cognitive apprenticeship while considering individual predisposition and future career needs. This work adopts data mining, clustering analysis, and social networking technologies to present the CoP-Network as a virtual space that connects together similar career-aspiration individuals who are socially influenced to join and engage in a process for domain-related knowledge and practice acquisitions. The CoP-Network model can be integrated into higher education to extend traditional graduate and professional development programs.Keywords: clustering analysis, community of practice, data mining, higher education, new faculty challenges, social network, social influence, professional development
Procedia PDF Downloads 1842211 Product Modularity, Collaboration and the Impact on Innovation Performance in Intra-Organizational R&D Networks
Authors: Daniel Martinez, Tim de Leeuw, Stefan Haefliger
Abstract:
The challenges of managing a large and geographically dispersed R&D organization have been further increasing during the past years, concentrating on the leverage of a geo-graphically dispersed body of knowledge in an efficient and effective manner. In order to reduce complexity and improve performance, firms introduce product modularity as one key element for global R&D network teams to develop their products and projects in collaboration. However, empirical studies on the effects of product modularity on innovation performance are really scant. Furthermore, some researchers have suggested that product modularity promotes innovation performance, while others argue that it inhibits innovation performance. This research fills this gap by investigating the impact of product modularity on various dimensions of innovation performance, i.e. effectiveness and efficiency. By constructing the theoretical framework, this study suggests that that there is an inverted U-shaped relationship between product modularity and innovation performance. Moreover, this research work suggests that the optimum of innovation performance efficiency will be at a higher level than innovation performance effectiveness at a given product modularity level.Keywords: modularity, innovation performance, networks, R&D, collaboration
Procedia PDF Downloads 5212210 Performance Improvement of Long-Reach Optical Access Systems Using Hybrid Optical Amplifiers
Authors: Shreyas Srinivas Rangan, Jurgis Porins
Abstract:
The internet traffic has increased exponentially due to the high demand for data rates by the users, and the constantly increasing metro networks and access networks are focused on improving the maximum transmit distance of the long-reach optical networks. One of the common methods to improve the maximum transmit distance of the long-reach optical networks at the component level is to use broadband optical amplifiers. The Erbium Doped Fiber Amplifier (EDFA) provides high amplification with low noise figure but due to the characteristics of EDFA, its operation is limited to C-band and L-band. In contrast, the Raman amplifier exhibits a wide amplification spectrum, and negative noise figure values can be achieved. To obtain such results, high powered pumping sources are required. Operating Raman amplifiers with such high-powered optical sources may cause fire hazards and it may damage the optical system. In this paper, we implement a hybrid optical amplifier configuration. EDFA and Raman amplifiers are used in this hybrid setup to combine the advantages of both EDFA and Raman amplifiers to improve the reach of the system. Using this setup, we analyze the maximum transmit distance of the network by obtaining a correlation diagram between the length of the single-mode fiber (SMF) and the Bit Error Rate (BER). This hybrid amplifier configuration is implemented in a Wavelength Division Multiplexing (WDM) system with a BER of 10⁻⁹ by using NRZ modulation format, and the gain uniformity noise ratio (signal-to-noise ratio (SNR)), the efficiency of the pumping source, and the optical signal gain efficiency of the amplifier are studied experimentally in a mathematical modelling environment. Numerical simulations were implemented in RSoft OptSim simulation software based on the nonlinear Schrödinger equation using the Split-Step method, the Fourier transform, and the Monte Carlo method for estimating BER.Keywords: Raman amplifier, erbium doped fibre amplifier, bit error rate, hybrid optical amplifiers
Procedia PDF Downloads 712209 Embedded Visual Perception for Autonomous Agricultural Machines Using Lightweight Convolutional Neural Networks
Authors: René A. Sørensen, Søren Skovsen, Peter Christiansen, Henrik Karstoft
Abstract:
Autonomous agricultural machines act in stochastic surroundings and therefore, must be able to perceive the surroundings in real time. This perception can be achieved using image sensors combined with advanced machine learning, in particular Deep Learning. Deep convolutional neural networks excel in labeling and perceiving color images and since the cost of high-quality RGB-cameras is low, the hardware cost of good perception depends heavily on memory and computation power. This paper investigates the possibility of designing lightweight convolutional neural networks for semantic segmentation (pixel wise classification) with reduced hardware requirements, to allow for embedded usage in autonomous agricultural machines. Using compression techniques, a lightweight convolutional neural network is designed to perform real-time semantic segmentation on an embedded platform. The network is trained on two large datasets, ImageNet and Pascal Context, to recognize up to 400 individual classes. The 400 classes are remapped into agricultural superclasses (e.g. human, animal, sky, road, field, shelterbelt and obstacle) and the ability to provide accurate real-time perception of agricultural surroundings is studied. The network is applied to the case of autonomous grass mowing using the NVIDIA Tegra X1 embedded platform. Feeding case-specific images to the network results in a fully segmented map of the superclasses in the image. As the network is still being designed and optimized, only a qualitative analysis of the method is complete at the abstract submission deadline. Proceeding this deadline, the finalized design is quantitatively evaluated on 20 annotated grass mowing images. Lightweight convolutional neural networks for semantic segmentation can be implemented on an embedded platform and show competitive performance with regards to accuracy and speed. It is feasible to provide cost-efficient perceptive capabilities related to semantic segmentation for autonomous agricultural machines.Keywords: autonomous agricultural machines, deep learning, safety, visual perception
Procedia PDF Downloads 3982208 Evolution under Length Constraints for Convolutional Neural Networks Architecture Design
Authors: Ousmane Youme, Jean Marie Dembele, Eugene Ezin, Christophe Cambier
Abstract:
In recent years, the convolutional neural networks (CNN) architectures designed by evolution algorithms have proven to be competitive with handcrafted architectures designed by experts. However, these algorithms need a lot of computational power, which is beyond the capabilities of most researchers and engineers. To overcome this problem, we propose an evolution architecture under length constraints. It consists of two algorithms: a search length strategy to find an optimal space and a search architecture strategy based on a genetic algorithm to find the best individual in the optimal space. Our algorithms drastically reduce resource costs and also keep good performance. On the Cifar-10 dataset, our framework presents outstanding performance with an error rate of 5.12% and only 4.6 GPU a day to converge to the optimal individual -22 GPU a day less than the lowest cost automatic evolutionary algorithm in the peer competition.Keywords: CNN architecture, genetic algorithm, evolution algorithm, length constraints
Procedia PDF Downloads 1302207 Development of a Congestion Controller of Computer Network Using Artificial Intelligence Algorithm
Authors: Mary Anne Roa
Abstract:
Congestion in network occurs due to exceed in aggregate demand as compared to the accessible capacity of the resources. Network congestion will increase as network speed increases and new effective congestion control methods are needed, especially for today’s very high speed networks. To address this undeniably global issue, the study focuses on the development of a fuzzy-based congestion control model concerned with allocating the resources of a computer network such that the system can operate at an adequate performance level when the demand exceeds or is near the capacity of the resources. Fuzzy logic based models have proven capable of accurately representing a wide variety of processes. The model built is based on bandwidth, the aggregate incoming traffic and the waiting time. The theoretical analysis and simulation results show that the proposed algorithm provides not only good utilization but also low packet loss.Keywords: congestion control, queue management, computer networks, fuzzy logic
Procedia PDF Downloads 4002206 Network Conditioning and Transfer Learning for Peripheral Nerve Segmentation in Ultrasound Images
Authors: Harold Mauricio Díaz-Vargas, Cristian Alfonso Jimenez-Castaño, David Augusto Cárdenas-Peña, Guillermo Alberto Ortiz-Gómez, Alvaro Angel Orozco-Gutierrez
Abstract:
Precise identification of the nerves is a crucial task performed by anesthesiologists for an effective Peripheral Nerve Blocking (PNB). Now, anesthesiologists use ultrasound imaging equipment to guide the PNB and detect nervous structures. However, visual identification of the nerves from ultrasound images is difficult, even for trained specialists, due to artifacts and low contrast. The recent advances in deep learning make neural networks a potential tool for accurate nerve segmentation systems, so addressing the above issues from raw data. The most widely spread U-Net network yields pixel-by-pixel segmentation by encoding the input image and decoding the attained feature vector into a semantic image. This work proposes a conditioning approach and encoder pre-training to enhance the nerve segmentation of traditional U-Nets. Conditioning is achieved by the one-hot encoding of the kind of target nerve a the network input, while the pre-training considers five well-known deep networks for image classification. The proposed approach is tested in a collection of 619 US images, where the best C-UNet architecture yields an 81% Dice coefficient, outperforming the 74% of the best traditional U-Net. Results prove that pre-trained models with the conditional approach outperform their equivalent baseline by supporting learning new features and enriching the discriminant capability of the tested networks.Keywords: nerve segmentation, U-Net, deep learning, ultrasound imaging, peripheral nerve blocking
Procedia PDF Downloads 1092205 Improving the Performance of Back-Propagation Training Algorithm by Using ANN
Authors: Vishnu Pratap Singh Kirar
Abstract:
Artificial Neural Network (ANN) can be trained using backpropagation (BP). It is the most widely used algorithm for supervised learning with multi-layered feed-forward networks. Efficient learning by the BP algorithm is required for many practical applications. The BP algorithm calculates the weight changes of artificial neural networks, and a common approach is to use a two-term algorithm consisting of a learning rate (LR) and a momentum factor (MF). The major drawbacks of the two-term BP learning algorithm are the problems of local minima and slow convergence speeds, which limit the scope for real-time applications. Recently the addition of an extra term, called a proportional factor (PF), to the two-term BP algorithm was proposed. The third increases the speed of the BP algorithm. However, the PF term also reduces the convergence of the BP algorithm, and criteria for evaluating convergence are required to facilitate the application of the three terms BP algorithm. Although these two seem to be closely related, as described later, we summarize various improvements to overcome the drawbacks. Here we compare the different methods of convergence of the new three-term BP algorithm.Keywords: neural network, backpropagation, local minima, fast convergence rate
Procedia PDF Downloads 5022204 Building Social Capital for Social Inclusion: The Use of Social Networks in Government
Authors: Suha Alawadhi, Malak Alrasheed
Abstract:
In the recent past, public participation in governments has been declined to a great extent, as citizens have been isolated from community life and their ability to articulate demands for good government has been noticeably decreased. However, the Internet has introduced new forms of interaction that could enhance different types of relationships, including government-public relationship. In fact, technology-enabled government has become a catalyst for enabling social inclusion. This exploratory study seeks to investigate public perceptions in Kuwait regarding the use of social media networks in government where social capital is built to achieve social inclusion. Social capital has been defined as social networks and connections amongst individuals, that are based on shared trust, ideas and norms, enable participants of a network to act effectively to pursue a shared objective. The quantitative method was used to generate empirical evidence. A questionnaire was designed to address the research objective and reflect the identified constructs: social capital dimensions (bridging, bonding and maintaining social capital), social inclusion, and social equality. In this pilot study, data was collected from a random sample of 61 subjects. The results indicate that all participants have a positive attitude towards the dimensions of social capital (bridging, bonding and maintaining), social inclusion and social equality constructs. Tests of identified constructs against demographic characteristics indicate that there are significant differences between male and female as they perceived bonding and maintaining social capital, social inclusion and social equality whereas no difference was identified in their perceptions of bridging social capital. Also, those who are aged 26-30 perceived bonding and maintaining social capital, social inclusion and social equality negatively compared to those aged 20-25, 31-35, and 40-above whose perceptions were positive. With regard to education, the results also show that those holding high school, university degree and diploma perceived maintaining social capital positively higher than with those who hold graduate degrees. Moreover, a regression model is proposed to study the effect of bridging, bonding, and maintaining social capital on social inclusion via social equality as a mediator. This exploratory study is necessary for testing the validity and reliability of the questionnaire which will be used in the main study that aims to investigate the perceptions of individuals towards building social capital to achieve social inclusion.Keywords: government, social capital, social inclusion, social networks
Procedia PDF Downloads 3282203 Reliable Line-of-Sight and Non-Line-of-Sight Propagation Channel Identification in Ultra-Wideband Wireless Networks
Authors: Mohamed Adnan Landolsi, Ali F. Almutairi
Abstract:
The paper addresses the problem of line-of-sight (LOS) vs. non-line-of-sight (NLOS) propagation link identification in ultra-wideband (UWB) wireless networks, which is necessary for improving the accuracy of radiolocation and positioning applications. A LOS/NLOS likelihood hypothesis testing approach is applied based on exploiting distinctive statistical features of the channel impulse response (CIR) using parameters related to the “skewness” of the CIR and its root mean square (RMS) delay spread. A log-normal fit is presented for the probability densities of the CIR parameters. Simulation results show that different environments (residential, office, outdoor, etc.) have measurable differences in their CIR parameters’ statistics, which is then exploited in determining the nature of the propagation channels. Correct LOS/NLOS channel identification rates exceeding 90% are shown to be achievable for most types of environments. Additional improvement is also obtained by combining both CIR skewness and RMS delay statistics.Keywords: UWB, propagation, LOS, NLOS, identification
Procedia PDF Downloads 2532202 Stimuli-Responsive Zwitterionic Dressings for Chronic Wounds Management
Authors: Konstans Ruseva, Kristina Ivanova, Katerina Todorova, Margarita Gabrashanska, Tzanko Tzanov, Elena Vassileva
Abstract:
Zwitterionic polymers (ZP) are well-known with their ultralow biofouling. They are successfully competing with poly(ethylene glycols) (PEG), which are considered as the “golden standard” in this respect. These unique properties are attributed to their strong hydration capacity, defined by the dipole-dipole interactions, arising between the ZP pendant groups as well as to the dipoles interaction with water molecules. Beside, ZP are highly resistant to bacterial adhesion thus ensuring an excellent anti-biofilm formation ability. Moreover, ZP are able to respond upon external stimuli such as temperature, pH, salt concentration changes which in combination with their anti-biofouling effect render this type of polymers as materials with a high potential in biomedical applications. The present work is focused on the development of zwitterionic hydrogels for efficient treatment of highly exudating and hard-to-heal chronic wounds. To this purpose, two types of ZP networks with different crosslinking degree were synthesized - polysulfobetaine (PSB) and polycarboxybetaine (PCB) ones. They were characterized in terms of their physico-mechanical properties, e.g. microhardness, swelling ability, smart behaviour. Furthermore, the potential of ZP networks to resist biofilm formation towards Staphylococcus aureus and Escherichia coli was studied. Their ability to reduce the high levels of myeloperoxidase and metalloproteinase, two enzymes that are part of the chronic wounds enviroenment, was revealed. Moreover, the in vitro cytotoxic assessment of PSB and PCB networks along with their in vivo performance in rats was also studied to reveal their high biocompatibility.Keywords: absorption properties, biocompatibility, enzymatic inhibition activity, wound healing, zwitterionic polymers
Procedia PDF Downloads 1982201 A Study on Game Theory Approaches for Wireless Sensor Networks
Authors: M. Shoukath Ali, Rajendra Prasad Singh
Abstract:
Game Theory approaches and their application in improving the performance of Wireless Sensor Networks (WSNs) are discussed in this paper. The mathematical modeling and analysis of WSNs may have low success rate due to the complexity of topology, modeling, link quality, etc. However, Game Theory is a field, which can efficiently use to analyze the WSNs. Game Theory is related to applied mathematics that describes and analyzes interactive decision situations. Game theory has the ability to model independent, individual decision makers whose actions affect the surrounding decision makers. The outcome of complex interactions among rational entities can be predicted by a set of analytical tools. However, the rationality demands a stringent observance to a strategy based on measured of perceived results. Researchers are adopting game theory approaches to model and analyze leading wireless communication networking issues, which includes QoS, power control, resource sharing, etc.Keywords: wireless sensor network, game theory, cooperative game theory, non-cooperative game theory
Procedia PDF Downloads 4352200 Teaching Neuroscience from Neuroscience: an Approach Based on the Allosteric Learning Model, Pathfinder Associative Networks and Teacher Professional Knowledge
Authors: Freddy Rodriguez Saza, Erika Sanabria, Jair Tibana
Abstract:
Currently, the important role of neurosciences in the professional training of the physical educator is known, highlighting in the teaching-learning process aspects such as the nervous structures involved in the adjustment of posture and movement, the neurophysiology of locomotion, the process of nerve impulse transmission, and the relationship between physical activity, learning, and cognition. The teaching-learning process of neurosciences is complex, due to the breadth of the contents, the diversity of teaching contexts required, and the demanding ability to relate concepts from different disciplines, necessary for the correct understanding of the function of the nervous system. This text presents the results of the application of a didactic environment based on the Allosteric Learning Model in morphophysiology students of the Faculty of Military Physical Education, Military School of Cadets of the Colombian Army (Bogotá, Colombia). The research focused then, on analyzing the change in the cognitive structure of the students on neurosciences. Methodology. [1] The predominant learning styles were identified. [2] Students' cognitive structure, core concepts, and threshold concepts were analyzed through the construction of Pathfinder Associative Networks. [3] Didactic Units in Neuroscience were designed to favor metacognition, the development of Executive Functions (working memory, cognitive flexibility, and inhibitory control) that led students to recognize their errors and conceptual distortions and to overcome them. [4] The Teacher's Professional Knowledge and the role of the assessment strategies applied were taken into account, taking into account the perspective of the Dynamizer, Obstacle, and Questioning axes. In conclusion, the study found that physical education students achieved significant learning in neuroscience, favored by the development of executive functions and by didactic environments oriented with the predominant learning styles and focused on increasing cognitive networks and overcoming difficulties, neuromyths and neurophobia.Keywords: allosteric learning model, military physical education, neurosciences, pathfinder associative networks, teacher professional knowledge
Procedia PDF Downloads 2372199 The Art of Looking (Back): The Female Gaze in Portrait de la Jeune Fille en Feu and Little Women
Authors: Louisa Browne Kirk
Abstract:
In recent press interviews to promote Portrait de la jeune fille en feu (2019, translated to Portrait of a Lady on Fire in English), director and screenwriter Céline Sciamma and actors Adèle Haenel and Noémie Merlant repeatedly state that they understand the film as (if not uniquely, then unusually) produced via and supportive of ‘the female gaze’. Such a way of seeing stands in opposition to ‘the male gaze’, first theorised by Laura Mulvey as the way in which the female figure is a bearer, not maker, of meaning, a silent signifier through and against whom the male creator/viewer produces his fantasies and obsessions. What, then, is the female gaze? How does a woman produce meaning in and through film? Portrait de la jeune fille en feu and another very recent film, Little Women (2019, directed by Greta Gerwig), are unlikely companion films that understand the female gaze to be the act of one woman looking at another woman, a looking that is mediated through the production of art. In Sciamma’s film this looking is sexual and mediated through painting and in Gerwig’s film looking is familial and mediated through writing. In the schema of these films, art, love, looking and meaning are produced through collaboration. The painted and the painter, the written and the writer, are no longer rendered as subject and object but as dual creators, both always seeing and seen. The gaze of the cinematic woman, mediated through shared artistic practice, is ‘the desire-that-gives’.Keywords: female gaze, Gerwig, Sciamma, shared artistic practice
Procedia PDF Downloads 1832198 Advances in the Design of Wireless Sensor Networks for Environmental Monitoring
Authors: Shathya Duobiene, Gediminas Račiukaitis
Abstract:
Wireless Sensor Networks (WSNs) are an emerging technology that opens up a new field of research. The significant advance in WSN leads to an increasing prevalence of various monitoring applications and real-time assistance in labs and factories. Selective surface activation induced by laser (SSAIL) is a promising technology that adapts to the WSN design freedom of shape, dimensions, and material. This article proposes and implements a WSN-based temperature and humidity monitoring system, and its deployed architectures made for the monitoring task are discussed. Experimental results of newly developed sensor nodes implemented in university campus laboratories are shown. Then, the simulation and the implementation results obtained through monitoring scenarios are displayed. At last, a convenient solution to keep the WSN alive and functional as long as possible is proposed. Unlike other existing models, on success, the node is self-powered and can utilise minimal power consumption for sensing and data transmission to the base station.Keywords: IoT, network formation, sensor nodes, SSAIL technology
Procedia PDF Downloads 892197 An Intrusion Detection Systems Based on K-Means, K-Medoids and Support Vector Clustering Using Ensemble
Authors: A. Mohammadpour, Ebrahim Najafi Kajabad, Ghazale Ipakchi
Abstract:
Presently, computer networks’ security rise in importance and many studies have also been conducted in this field. By the penetration of the internet networks in different fields, many things need to be done to provide a secure industrial and non-industrial network. Fire walls, appropriate Intrusion Detection Systems (IDS), encryption protocols for information sending and receiving, and use of authentication certificated are among things, which should be considered for system security. The aim of the present study is to use the outcome of several algorithms, which cause decline in IDS errors, in the way that improves system security and prevents additional overload to the system. Finally, regarding the obtained result we can also detect the amount and percentage of more sub attacks. By running the proposed system, which is based on the use of multi-algorithmic outcome and comparing that by the proposed single algorithmic methods, we observed a 78.64% result in attack detection that is improved by 3.14% than the proposed algorithms.Keywords: intrusion detection systems, clustering, k-means, k-medoids, SV clustering, ensemble
Procedia PDF Downloads 2222196 Memory Based Reinforcement Learning with Transformers for Long Horizon Timescales and Continuous Action Spaces
Authors: Shweta Singh, Sudaman Katti
Abstract:
The most well-known sequence models make use of complex recurrent neural networks in an encoder-decoder configuration. The model used in this research makes use of a transformer, which is based purely on a self-attention mechanism, without relying on recurrence at all. More specifically, encoders and decoders which make use of self-attention and operate based on a memory, are used. In this research work, results for various 3D visual and non-visual reinforcement learning tasks designed in Unity software were obtained. Convolutional neural networks, more specifically, nature CNN architecture, are used for input processing in visual tasks, and comparison with standard long short-term memory (LSTM) architecture is performed for both visual tasks based on CNNs and non-visual tasks based on coordinate inputs. This research work combines the transformer architecture with the proximal policy optimization technique used popularly in reinforcement learning for stability and better policy updates while training, especially for continuous action spaces, which are used in this research work. Certain tasks in this paper are long horizon tasks that carry on for a longer duration and require extensive use of memory-based functionalities like storage of experiences and choosing appropriate actions based on recall. The transformer, which makes use of memory and self-attention mechanism in an encoder-decoder configuration proved to have better performance when compared to LSTM in terms of exploration and rewards achieved. Such memory based architectures can be used extensively in the field of cognitive robotics and reinforcement learning.Keywords: convolutional neural networks, reinforcement learning, self-attention, transformers, unity
Procedia PDF Downloads 1372195 Predicting Durability of Self Compacting Concrete Using Artificial Neural Network
Authors: R. Boudjelthia
Abstract:
The aim of this study is to determine the influence of mix composition of concrete as the content of water and cement, water–binder ratio, and the replacement of fly ash on the durability of self compacting concrete (SCC) by using artificial neural networks (ANNs). To achieve this, an ANNs model is developed to predict the durability of self compacting concrete which is expressed in terms of chloride ions permeability in accordance with ASTM C1202-97 or AASHTO T277. Database gathered from the literature for the training and testing the model. A sensitivity analysis was also conducted using the trained and tested ANN model to investigate the effect of fly ash on the durability of SCC. The results indicate that the developed model is reliable and accurate. the durability of SCC expressed in terms of total charge passed over a 6-h period can be significantly improved by using at least 25% fly ash as replacement of cement. This study show that artificial neural network have strong potentialas a feasible tool for predicting accurately the durability of SCC containing fly ash.Keywords: artificial neural networks, durability, chloride ions permeability, self compacting concrete
Procedia PDF Downloads 3802194 A Comparative Analysis of Hyper-Parameters Using Neural Networks for E-Mail Spam Detection
Authors: Syed Mahbubuz Zaman, A. B. M. Abrar Haque, Mehedi Hassan Nayeem, Misbah Uddin Sagor
Abstract:
Everyday e-mails are being used by millions of people as an effective form of communication over the Internet. Although e-mails allow high-speed communication, there is a constant threat known as spam. Spam e-mail is often called junk e-mails which are unsolicited and sent in bulk. These unsolicited emails cause security concerns among internet users because they are being exposed to inappropriate content. There is no guaranteed way to stop spammers who use static filters as they are bypassed very easily. In this paper, a smart system is proposed that will be using neural networks to approach spam in a different way, and meanwhile, this will also detect the most relevant features that will help to design the spam filter. Also, a comparison of different parameters for different neural network models has been shown to determine which model works best within suitable parameters.Keywords: long short-term memory, bidirectional long short-term memory, gated recurrent unit, natural language processing, natural language processing
Procedia PDF Downloads 2062193 MCDM Spectrum Handover Models for Cognitive Wireless Networks
Authors: Cesar Hernández, Diego Giral, Fernando Santa
Abstract:
The spectral handoff is important in cognitive wireless networks to ensure an adequate quality of service and performance for secondary user communications. This work proposes a benchmarking of performance of the three spectrum handoff models: VIKOR, SAW and MEW. Four evaluation metrics are used. These metrics are, accumulative average of failed handoffs, accumulative average of handoffs performed, accumulative average of transmission bandwidth and, accumulative average of the transmission delay. As a difference with related work, the performance of the three spectrum handoff models was validated with captured data of spectral occupancy in experiments realized at the GSM frequency band (824 MHz-849 MHz). These data represent the actual behavior of the licensed users for this wireless frequency band. The results of the comparative show that VIKOR Algorithm provides 15.8% performance improvement compared to a SAW Algorithm and, 12.1% better than the MEW Algorithm.Keywords: cognitive radio, decision making, MEW, SAW, spectrum handoff, VIKOR
Procedia PDF Downloads 4392192 Automated Pothole Detection Using Convolution Neural Networks and 3D Reconstruction Using Stereovision
Authors: Eshta Ranyal, Kamal Jain, Vikrant Ranyal
Abstract:
Potholes are a severe threat to road safety and a major contributing factor towards road distress. In the Indian context, they are a major road hazard. Timely detection of potholes and subsequent repair can prevent the roads from deteriorating. To facilitate the roadway authorities in the timely detection and repair of potholes, we propose a pothole detection methodology using convolutional neural networks. The YOLOv3 model is used as it is fast and accurate in comparison to other state-of-the-art models. You only look once v3 (YOLOv3) is a state-of-the-art, real-time object detection system that features multi-scale detection. A mean average precision(mAP) of 73% was obtained on a training dataset of 200 images. The dataset was then increased to 500 images, resulting in an increase in mAP. We further calculated the depth of the potholes using stereoscopic vision by reconstruction of 3D potholes. This enables calculating pothole volume, its extent, which can then be used to evaluate the pothole severity as low, moderate, high.Keywords: CNN, pothole detection, pothole severity, YOLO, stereovision
Procedia PDF Downloads 1392191 Predicting Subsurface Abnormalities Growth Using Physics-Informed Neural Networks
Authors: Mehrdad Shafiei Dizaji, Hoda Azari
Abstract:
The research explores the pioneering integration of Physics-Informed Neural Networks (PINNs) into the domain of Ground-Penetrating Radar (GPR) data prediction, akin to advancements in medical imaging for tracking tumor progression in the human body. This research presents a detailed development framework for a specialized PINN model proficient at interpreting and forecasting GPR data, much like how medical imaging models predict tumor behavior. By harnessing the synergy between deep learning algorithms and the physical laws governing subsurface structures—or, in medical terms, human tissues—the model effectively embeds the physics of electromagnetic wave propagation into its architecture. This ensures that predictions not only align with fundamental physical principles but also mirror the precision needed in medical diagnostics for detecting and monitoring tumors. The suggested deep learning structure comprises three components: a CNN, a spatial feature channel attention (SFCA) mechanism, and ConvLSTM, along with temporal feature frame attention (TFFA) modules. The attention mechanism computes channel attention and temporal attention weights using self-adaptation, thereby fine-tuning the visual and temporal feature responses to extract the most pertinent and significant visual and temporal features. By integrating physics directly into the neural network, our model has shown enhanced accuracy in forecasting GPR data. This improvement is vital for conducting effective assessments of bridge deck conditions and other evaluations related to civil infrastructure. The use of Physics-Informed Neural Networks (PINNs) has demonstrated the potential to transform the field of Non-Destructive Evaluation (NDE) by enhancing the precision of infrastructure deterioration predictions. Moreover, it offers a deeper insight into the fundamental mechanisms of deterioration, viewed through the prism of physics-based models.Keywords: physics-informed neural networks, deep learning, ground-penetrating radar (GPR), NDE, ConvLSTM, physics, data driven
Procedia PDF Downloads 432190 Hybrid Antenna Array with the Bowtie Elements for Super-Resolution and 3D Scanning Radars
Authors: Somayeh Komeylian
Abstract:
The antenna arrays for the entire 3D spherical coverage have been developed for their potential use in variety of applications such as radars and body-worn devices of the body area networks. In this study, we have rigorously revamped the hybrid antenna array using the optimum geometry of bowtie elements for achieving a significant improvement in the angular discrimination capability as well as in separating two adjacent targets. In this scenario, we have analogously investigated the effectiveness of increasing the virtual array length in fostering and enhancing the directivity and angular resolution in the 10 GHz frequency. The simulation results have extensively verified that the proposed antenna array represents a drastic enhancement in terms of size, directivity, side lobe level (SLL) and, especially resolution compared with the other available geometries. We have also verified that the maximum directivities of the proposed hybrid antenna array represent the robustness to the all variations, which is accompanied by the uniform 3D scanning characteristic.Keywords: bowtie antenna, hybrid antenna array, array signal processing, body area networks
Procedia PDF Downloads 1562189 Voting Representation in Social Networks Using Rough Set Techniques
Authors: Yasser F. Hassan
Abstract:
Social networking involves use of an online platform or website that enables people to communicate, usually for a social purpose, through a variety of services, most of which are web-based and offer opportunities for people to interact over the internet, e.g. via e-mail and ‘instant messaging’, by analyzing the voting behavior and ratings of judges in a popular comments in social networks. While most of the party literature omits the electorate, this paper presents a model where elites and parties are emergent consequences of the behavior and preferences of voters. The research in artificial intelligence and psychology has provided powerful illustrations of the way in which the emergence of intelligent behavior depends on the development of representational structure. As opposed to the classical voting system (one person – one decision – one vote) a new voting system is designed where agents with opposed preferences are endowed with a given number of votes to freely distribute them among some issues. The paper uses ideas from machine learning, artificial intelligence and soft computing to provide a model of the development of voting system response in a simulated agent. The modeled development process involves (simulated) processes of evolution, learning and representation development. The main value of the model is that it provides an illustration of how simple learning processes may lead to the formation of structure. We employ agent-based computer simulation to demonstrate the formation and interaction of coalitions that arise from individual voter preferences. We are interested in coordinating the local behavior of individual agents to provide an appropriate system-level behavior.Keywords: voting system, rough sets, multi-agent, social networks, emergence, power indices
Procedia PDF Downloads 3952188 An Accurate Computer-Aided Diagnosis: CAD System for Diagnosis of Aortic Enlargement by Using Convolutional Neural Networks
Authors: Mahdi Bazarganigilani
Abstract:
Aortic enlargement, also known as an aortic aneurysm, can occur when the walls of the aorta become weak. This disease can become deadly if overlooked and undiagnosed. In this paper, a computer-aided diagnosis (CAD) system was introduced to accurately diagnose aortic enlargement from chest x-ray images. An enhanced convolutional neural network (CNN) was employed and then trained by transfer learning by using three different main areas from the original images. The areas included the left lung, heart, and right lung. The accuracy of the system was then evaluated on 1001 samples by using 4-fold cross-validation. A promising accuracy of 90% was achieved in terms of the F-measure indicator. The results showed using different areas from the original image in the training phase of CNN could increase the accuracy of predictions. This encouraged the author to evaluate this method on a larger dataset and even on different CAD systems for further enhancement of this methodology.Keywords: computer-aided diagnosis systems, aortic enlargement, chest X-ray, image processing, convolutional neural networks
Procedia PDF Downloads 1642187 Clothes Identification Using Inception ResNet V2 and MobileNet V2
Authors: Subodh Chandra Shakya, Badal Shrestha, Suni Thapa, Ashutosh Chauhan, Saugat Adhikari
Abstract:
To tackle our problem of clothes identification, we used different architectures of Convolutional Neural Networks. Among different architectures, the outcome from Inception ResNet V2 and MobileNet V2 seemed promising. On comparison of the metrices, we observed that the Inception ResNet V2 slightly outperforms MobileNet V2 for this purpose. So this paper of ours proposes the cloth identifier using Inception ResNet V2 and also contains the comparison between the outcome of ResNet V2 and MobileNet V2. The document here contains the results and findings of the research that we performed on the DeepFashion Dataset. To improve the dataset, we used different image preprocessing techniques like image shearing, image rotation, and denoising. The whole experiment was conducted with the intention of testing the efficiency of convolutional neural networks on cloth identification so that we could develop a reliable system that is good enough in identifying the clothes worn by the users. The whole system can be integrated with some kind of recommendation system.Keywords: inception ResNet, convolutional neural net, deep learning, confusion matrix, data augmentation, data preprocessing
Procedia PDF Downloads 1882186 Moving Target Defense against Various Attack Models in Time Sensitive Networks
Authors: Johannes Günther
Abstract:
Time Sensitive Networking (TSN), standardized in the IEEE 802.1 standard, has been lent increasing attention in the context of mission critical systems. Such mission critical systems, e.g., in the automotive domain, aviation, industrial, and smart factory domain, are responsible for coordinating complex functionalities in real time. In many of these contexts, a reliable data exchange fulfilling hard time constraints and quality of service (QoS) conditions is of critical importance. TSN standards are able to provide guarantees for deterministic communication behaviour, which is in contrast to common best-effort approaches. Therefore, the superior QoS guarantees of TSN may aid in the development of new technologies, which rely on low latencies and specific bandwidth demands being fulfilled. TSN extends existing Ethernet protocols with numerous standards, providing means for synchronization, management, and overall real-time focussed capabilities. These additional QoS guarantees, as well as management mechanisms, lead to an increased attack surface for potential malicious attackers. As TSN guarantees certain deadlines for priority traffic, an attacker may degrade the QoS by delaying a packet beyond its deadline or even execute a denial of service (DoS) attack if the delays lead to packets being dropped. However, thus far, security concerns have not played a major role in the design of such standards. Thus, while TSN does provide valuable additional characteristics to existing common Ethernet protocols, it leads to new attack vectors on networks and allows for a range of potential attacks. One answer to these security risks is to deploy defense mechanisms according to a moving target defense (MTD) strategy. The core idea relies on the reduction of the attackers' knowledge about the network. Typically, mission-critical systems suffer from an asymmetric disadvantage. DoS or QoS-degradation attacks may be preceded by long periods of reconnaissance, during which the attacker may learn about the network topology, its characteristics, traffic patterns, priorities, bandwidth demands, periodic characteristics on links and switches, and so on. Here, we implemented and tested several MTD-like defense strategies against different attacker models of varying capabilities and budgets, as well as collaborative attacks of multiple attackers within a network, all within the context of TSN networks. We modelled the networks and tested our defense strategies on an OMNET++ testbench, with networks of different sizes and topologies, ranging from a couple dozen hosts and switches to significantly larger set-ups.Keywords: network security, time sensitive networking, moving target defense, cyber security
Procedia PDF Downloads 752185 Relations of Progression in Cognitive Decline with Initial EEG Resting-State Functional Network in Mild Cognitive Impairment
Authors: Chia-Feng Lu, Yuh-Jen Wang, Yu-Te Wu, Sui-Hing Yan
Abstract:
This study aimed at investigating whether the functional brain networks constructed using the initial EEG (obtained when patients first visited hospital) can be correlated with the progression of cognitive decline calculated as the changes of mini-mental state examination (MMSE) scores between the latest and initial examinations. We integrated the time–frequency cross mutual information (TFCMI) method to estimate the EEG functional connectivity between cortical regions, and the network analysis based on graph theory to investigate the organization of functional networks in aMCI. Our finding suggested that higher integrated functional network with sufficient connection strengths, dense connection between local regions, and high network efficiency in processing information at the initial stage may result in a better prognosis of the subsequent cognitive functions for aMCI. In conclusion, the functional connectivity can be a useful biomarker to assist in prediction of cognitive declines in aMCI.Keywords: cognitive decline, functional connectivity, MCI, MMSE
Procedia PDF Downloads 3862184 VCloud: A Security Framework for VANET
Authors: Wiseborn Manfe Danquah, D. Turgay Altilar
Abstract:
Vehicular Ad-hoc Network (VANET) is an integral component of Intelligent Transport Systems (ITS) that has enjoyed a lot of attention from the research community and the automotive industry. This is mainly due to the opportunities and challenges it presents. Vehicular Ad-hoc Network being a class of Mobile Ad-hoc Networks (MANET) has all the security concerns existing in traditional MANET as well as new security and privacy concerns introduced by the unique vehicular communication environment. This paper provides a survey of the possible attacks in vehicular environment, as well as security and privacy concerns in VANET. It also provides an insight into the development of a comprehensive cloud framework to provide a more robust and secured communication among vehicular nodes and road side units. Our proposal, a Metropolitan Based Public Interconnected Vehicular Cloud (MIVC) infrastructure seeks to provide a more reliable and secured vehicular communication network.Keywords: mobile Ad-hoc networks, vehicular ad hoc network, cloud, ITS, road side units (RSU), metropolitan interconnected vehicular cloud (MIVC)
Procedia PDF Downloads 3562183 An Efficient Mitigation Plan to Encounter Various Vulnerabilities in Internet of Things Enterprises
Authors: Umesh Kumar Singh, Abhishek Raghuvanshi, Suyash Kumar Singh
Abstract:
As IoT networks gain popularity, they are more susceptible to security breaches. As a result, it is crucial to analyze the IoT platform as a whole from the standpoint of core security concepts. The Internet of Things relies heavily on wireless networks, which are well-known for being susceptible to a wide variety of attacks. This article provides an analysis of many techniques that may be used to identify vulnerabilities in the software and hardware associated with the Internet of Things (IoT). In the current investigation, an experimental setup is built with the assistance of server computers, client PCs, Internet of Things development boards, sensors, and cloud subscriptions. Through the use of network host scanning methods and vulnerability scanning tools, raw data relating to IoT-based applications and devices may be collected. Shodan is a tool that is used for scanning, and it is also used for effective vulnerability discovery in IoT devices as well as penetration testing. This article presents an efficient mitigation plan for encountering vulnerabilities in the Internet of Things.Keywords: internet of things, security, privacy, vulnerability identification, mitigation plan
Procedia PDF Downloads 42