Search results for: dataset quality
10060 Predicting the Next Offensive Play Types will be Implemented to Maximize the Defense’s Chances of Success in the National Football League
Authors: Chris Schoborg, Morgan C. Wang
Abstract:
In the realm of the National Football League (NFL), substantial dedication of time and effort is invested by both players and coaches in meticulously analyzing the game footage of their opponents. The primary aim is to anticipate the actions of the opposing team. Defensive players and coaches are especially focused on deciphering their adversaries' intentions to effectively counter their strategies. Acquiring insights into the specific play type and its intended direction on the field would confer a significant competitive advantage. This study establishes pre-snap information as the cornerstone for predicting both the play type (e.g., deep pass, short pass, or run) and its spatial trajectory (right, left, or center). The dataset for this research spans the regular NFL season data for all 32 teams from 2013 to 2022. This dataset is acquired using the nflreadr package, which conveniently extracts play-by-play data from NFL games and imports it into the R environment as structured datasets. In this study, we employ a recently developed machine learning algorithm, XGBoost. The final predictive model achieves an impressive lift of 2.61. This signifies that the presented model is 2.61 times more effective than random guessing—a significant improvement. Such a model has the potential to markedly enhance defensive coaches' ability to formulate game plans and adequately prepare their players, thus mitigating the opposing offense's yardage and point gains.Keywords: lift, NFL, sports analytics, XGBoost
Procedia PDF Downloads 5610059 The Effect of Group Logotherapy on Depression and Life Quality in Cancer Patients
Authors: Fatemeh Ghaemi, Padideh Feyzi, Zohreh Dortaj
Abstract:
Cancer is one of the common diseases that may cause death due to malignancy. The physical problems of cancer patients can have an impact on the psychological and social aspects of their lives. Depression is one of these problems that threaten the lives of these patients and can also reduce their quality of life. Helping patients with cancer to find meaning in life can increase their level of health and improve their quality of life. This study thus examines the effectiveness of group logotherapy on the depression and quality of life of women with cancer. Depression was measured using the Beck Depression Inventory (BDI) and quality of life was measured using Quality of Life Questionnaire (WHOQL) with acceptable and reliable indicators in the pre-test and post-test stages. The experimental group received group therapy in eight, sixty-minute sessions and the control group did not receive any intervention. After collecting the questionnaires, the mean and standard deviations were used to describe the data and the statistical method of multivariate analysis of covariance was used at the significant level (P≤0.05). The results were analyzed using SPSS(22). The results showed that there was a significant difference between post-test depression scores in the experimental group and the control group. Also, there was a significant difference between the post-test scores of quality of life and its components (psychological, physical, social and environmental health) in the experimental group and control group. The findings of this study showed the effectiveness of group logotherapy in decreasing depression and improving the quality of life of cancer patients. By focusing the minds of the people on the present and changing the attitude of the human being towards themselves, life and environment can help the depressed people, and by influencing the individual's view of himself, accepting responsibility, accepting life with purpose, paying attention to life uniformly, it allows a person to maintain his quality of life even with cancer. Therefore, it is recommended that this approach be used as a group intervention in hospitals and care units for cancer patients and even in people with certain diseases.Keywords: cancer, depression, group psychiatry, quality of life
Procedia PDF Downloads 17610058 Springback Prediction for Sheet Metal Cold Stamping Using Convolutional Neural Networks
Abstract:
Cold stamping has been widely applied in the automotive industry for the mass production of a great range of automotive panels. Predicting the springback to ensure the dimensional accuracy of the cold-stamped components is a critical step. The main approaches for the prediction and compensation of springback in cold stamping include running Finite Element (FE) simulations and conducting experiments, which require forming process expertise and can be time-consuming and expensive for the design of cold stamping tools. Machine learning technologies have been proven and successfully applied in learning complex system behaviours using presentative samples. These technologies exhibit the promising potential to be used as supporting design tools for metal forming technologies. This study, for the first time, presents a novel application of a Convolutional Neural Network (CNN) based surrogate model to predict the springback fields for variable U-shape cold bending geometries. A dataset is created based on the U-shape cold bending geometries and the corresponding FE simulations results. The dataset is then applied to train the CNN surrogate model. The result shows that the surrogate model can achieve near indistinguishable full-field predictions in real-time when compared with the FE simulation results. The application of CNN in efficient springback prediction can be adopted in industrial settings to aid both conceptual and final component designs for designers without having manufacturing knowledge.Keywords: springback, cold stamping, convolutional neural networks, machine learning
Procedia PDF Downloads 14910057 Clique and Clan Analysis of Patient-Sharing Physician Collaborations
Authors: Shahadat Uddin, Md Ekramul Hossain, Arif Khan
Abstract:
The collaboration among physicians during episodes of care for a hospitalised patient has a significant contribution towards effective health outcome. This research aims at improving this health outcome by analysing the attributes of patient-sharing physician collaboration network (PCN) on hospital data. To accomplish this goal, we present a research framework that explores the impact of several types of attributes (such as clique and clan) of PCN on hospitalisation cost and hospital length of stay. We use electronic health insurance claim dataset to construct and explore PCNs. Each PCN is categorised as ‘low’ and ‘high’ in terms of hospitalisation cost and length of stay. The results from the proposed model show that the clique and clan of PCNs affect the hospitalisation cost and length of stay. The clique and clan of PCNs show the difference between ‘low’ and ‘high’ PCNs in terms of hospitalisation cost and length of stay. The findings and insights from this research can potentially help the healthcare stakeholders to better formulate the policy in order to improve quality of care while reducing cost.Keywords: clique, clan, electronic health records, physician collaboration
Procedia PDF Downloads 14010056 Recommendations for Data Quality Filtering of Opportunistic Species Occurrence Data
Authors: Camille Van Eupen, Dirk Maes, Marc Herremans, Kristijn R. R. Swinnen, Ben Somers, Stijn Luca
Abstract:
In ecology, species distribution models are commonly implemented to study species-environment relationships. These models increasingly rely on opportunistic citizen science data when high-quality species records collected through standardized recording protocols are unavailable. While these opportunistic data are abundant, uncertainty is usually high, e.g., due to observer effects or a lack of metadata. Data quality filtering is often used to reduce these types of uncertainty in an attempt to increase the value of studies relying on opportunistic data. However, filtering should not be performed blindly. In this study, recommendations are built for data quality filtering of opportunistic species occurrence data that are used as input for species distribution models. Using an extensive database of 5.7 million citizen science records from 255 species in Flanders, the impact on model performance was quantified by applying three data quality filters, and these results were linked to species traits. More specifically, presence records were filtered based on record attributes that provide information on the observation process or post-entry data validation, and changes in the area under the receiver operating characteristic (AUC), sensitivity, and specificity were analyzed using the Maxent algorithm with and without filtering. Controlling for sample size enabled us to study the combined impact of data quality filtering, i.e., the simultaneous impact of an increase in data quality and a decrease in sample size. Further, the variation among species in their response to data quality filtering was explored by clustering species based on four traits often related to data quality: commonness, popularity, difficulty, and body size. Findings show that model performance is affected by i) the quality of the filtered data, ii) the proportional reduction in sample size caused by filtering and the remaining absolute sample size, and iii) a species ‘quality profile’, resulting from a species classification based on the four traits related to data quality. The findings resulted in recommendations on when and how to filter volunteer generated and opportunistically collected data. This study confirms that correctly processed citizen science data can make a valuable contribution to ecological research and species conservation.Keywords: citizen science, data quality filtering, species distribution models, trait profiles
Procedia PDF Downloads 20210055 Development on the Modeling Driven Architecture
Authors: Sahar Shahsavaripour Ghazanfarpour
Abstract:
As our daily life depends on quality of built services by systems and using devices in our environment; so education and model of software′s quality will be so important. By daily growth in software′s systems and using them so much, progressing process and requirements′ evaluation in primary level of progress especially architecture level in software get more important. Modern driver architecture changes an in dependent model of a level into some specific models that their purpose is reducing number of software changes into an executive model. Process of designing software engineering is mid-automated. The needed quality attribute in designing architecture and quality attribute in representation are in architecture models. The main problem is the relationship between needs, and elements in some aspect with implicit models and input sources in process. It’s because there is no detection ability. The MART profile is use to describe real-time properties and perform plat form modeling.Keywords: MDA, DW, OMG, UML, AKB, software architecture, ontology, evaluation
Procedia PDF Downloads 49510054 Sentiment Analysis of Chinese Microblog Comments: Comparison between Support Vector Machine and Long Short-Term Memory
Authors: Xu Jiaqiao
Abstract:
Text sentiment analysis is an important branch of natural language processing. This technology is widely used in public opinion analysis and web surfing recommendations. At present, the mainstream sentiment analysis methods include three parts: sentiment analysis based on a sentiment dictionary, based on traditional machine learning, and based on deep learning. This paper mainly analyzes and compares the advantages and disadvantages of the SVM method of traditional machine learning and the Long Short-term Memory (LSTM) method of deep learning in the field of Chinese sentiment analysis, using Chinese comments on Sina Microblog as the data set. Firstly, this paper classifies and adds labels to the original comment dataset obtained by the web crawler, and then uses Jieba word segmentation to classify the original dataset and remove stop words. After that, this paper extracts text feature vectors and builds document word vectors to facilitate the training of the model. Finally, SVM and LSTM models are trained respectively. After accuracy calculation, it can be obtained that the accuracy of the LSTM model is 85.80%, while the accuracy of SVM is 91.07%. But at the same time, LSTM operation only needs 2.57 seconds, SVM model needs 6.06 seconds. Therefore, this paper concludes that: compared with the SVM model, the LSTM model is worse in accuracy but faster in processing speed.Keywords: sentiment analysis, support vector machine, long short-term memory, Chinese microblog comments
Procedia PDF Downloads 9410053 Conducting Quality Planning, Assurance and Control According to GMP (Good Manufacturing Practices) Standards and Benchmarking Data for Kuwait Food Industries
Authors: Alaa Alateeqi, Sara Aldhulaiee, Sara Alibraheem, Noura Alsaleh
Abstract:
For the past few decades or so, Kuwait's local food industry has grown remarkably due to increase in demand for processed or semi processed food products in the market. It is important that the ever increasing food manufacturing/processing units maintain the required quality standards as per regional and to some extent international quality requirements. It has been realized that all Kuwait food manufacturing units should understand and follow the international standard practices, and moreover a set of guidelines must be set for quality assurance such that any new business in this area is aware of the minimum requirements. The current study has been undertaken to identify the gaps in Kuwait food industries in following the Good Manufacturing Practices (GMP) in terms of quality planning, control and quality assurance. GMP refers to Good Manufacturing Practices, which are a set of rules, laws or regulations that certify producing products within quality standards and ensuring that it is safe, pure and effective. The present study therefore reports about a ‘case study’ in a reputed food manufacturing unit in Kuwait; starting from assessment of the current practices followed by diagnosis, report of the diagnosis and road map and corrective measures for GMP implementation in the unit. The case study has also been able to identify the best practices and establish a benchmarking data for other companies to follow, through measuring the selected company's quality, policies, products and strategies and compare it with the established benchmarking data. A set of questionnaires and assessment mechanism has been established for companies to identify their ‘benchmarking score’ in relation to the number of non-conformities and conformities with the GMP standard requirements.Keywords: good manufacturing practices, GMP, benchmarking, Kuwait Food Industries, food quality
Procedia PDF Downloads 46710052 Dynamic Evaluation of Shallow Lake Habitat Quality Based on InVEST Model: A Case in Baiyangdian Lake
Authors: Shengjun Yan, Xuan Wang
Abstract:
Water level changes in a shallow lake always introduce dramatic land pattern changes. To achieve sustainable ecosystem service, it is necessary to evaluate habitat quality dynamic and its spatio-temporal variation resulted from water level changes, which can provide a scientific basis for protection of biodiversity and planning of wetland ecological system. Landsat data in the spring was chosen to obtain landscape data at different times based on the high, moderate and low water level of Baiyangdian Shallow Lake. We used the InVEST to evaluate the habitat quality, habitat degradation, and habitat scarcity. The result showed that: 1) the water level of shallow lake changes from high to low lead to an obvious landscape pattern changes and habitat degradation, 2) the most change area occurred in northwestward and southwest of Baiyangdian Shallow Lake, which there was a 21 percent of suitable habitat and 42 percent of moderately suitable habitat lost. Our findings show that the changes of water level in the shallow lake would have a strong relationship with the habitat quality.Keywords: habitat quality, habitat degradation, water level changes, shallow lake
Procedia PDF Downloads 25510051 Assessment of Groundwater Chemistry and Quality Characteristics in an Alluvial Aquifer and a Single Plane Fractured-Rock Aquifer in Bloemfontein, South Africa
Authors: Modreck Gomo
Abstract:
The evolution of groundwater chemistry and its quality is largely controlled by hydrogeochemical processes and their understanding is therefore important for groundwater quality assessments and protection of the water resources. A study was conducted in Bloemfontein town of South Africa to assess and compare the groundwater chemistry and quality characteristics in an alluvial aquifer and single-plane fractured-rock aquifers. 9 groundwater samples were collected from monitoring boreholes drilled into the two aquifer systems during a once-off sampling exercise. Samples were collected through low-flow purging technique and analysed for major ions and trace elements. In order to describe the hydrochemical facies and identify dominant hydrogeochemical processes, the groundwater chemistry data are interpreted using stiff diagrams and principal component analysis (PCA), as complimentary tools. The fitness of the groundwater quality for domestic and irrigation uses is also assessed. Results show that the alluvial aquifer is characterised by a Na-HCO3 hydrochemical facie while fractured-rock aquifer has a Ca-HCO3 facie. The groundwater in both aquifers originally evolved from the dissolution of calcite rocks that are common on land surface environments. However the groundwater in the alluvial aquifer further goes through another evolution as driven by cation exchange process in which Na in the sediments exchanges with Ca2+ in the Ca-HCO3 hydrochemical type to result in the Na-HCO3 hydrochemical type. Despite the difference in the hydrogeochemical processes between the alluvial aquifer and single-plane fractured-rock aquifer, this did not influence the groundwater quality. The groundwater in the two aquifers is very hard as influenced by the elevated magnesium and calcium ions that evolve from dissolution of carbonate minerals which typically occurs in surface environments. Based on total dissolved levels (600-900 mg/L), groundwater quality of the two aquifer systems is classified to be of fair quality. The negative potential impacts of the groundwater quality for domestic uses are highlighted.Keywords: alluvial aquifer, fractured-rock aquifer, groundwater quality, hydrogeochemical processes
Procedia PDF Downloads 20410050 Technological Value of Selected Spring Wheat Cultivars Depending on the Sowing Date
Authors: Marta Wyzińska, Jerzy Grabiński, Alicja Sułek
Abstract:
The grain quality is a decisive factor in its use. In Poland, spring wheat is characterized by more favorable quality parameters in relation to the winter form of this species. In the present study, the effects of three different sowing dates (autumn, delayed autumn, and spring) and cultivar (Tybalt, Cytra, Bombona, Monsun, and Parabola) on the selected technological value parameters of spring wheat over three years were studied. The field trials were carried out in two locations (Bezek, Czesławice) in the Lubelskie Vivodeship, Poland. It was found that the falling number of spring wheat grains from autumn sowing dates was at a similar level to wheat sown in spring. The amount of wet gluten in the grain was variable in years, and its quality was better in wheat sown in spring. Sedimentation index was dependent upon on the cultivar.Keywords: Sowing term, spring wheat, technological value, quality
Procedia PDF Downloads 16010049 Assessment of Routine Health Information System (RHIS) Quality Assurance Practices in Tarkwa Sub-Municipal Health Directorate, Ghana
Authors: Richard Okyere Boadu, Judith Obiri-Yeboah, Kwame Adu Okyere Boadu, Nathan Kumasenu Mensah, Grace Amoh-Agyei
Abstract:
Routine health information system (RHIS) quality assurance has become an important issue, not only because of its significance in promoting a high standard of patient care but also because of its impact on government budgets for the maintenance of health services. A routine health information system comprises healthcare data collection, compilation, storage, analysis, report generation, and dissemination on a routine basis in various healthcare settings. The data from RHIS give a representation of health status, health services, and health resources. The sources of RHIS data are normally individual health records, records of services delivered, and records of health resources. Using reliable information from routine health information systems is fundamental in the healthcare delivery system. Quality assurance practices are measures that are put in place to ensure the health data that are collected meet required quality standards. Routine health information system quality assurance practices ensure that data that are generated from the system are fit for use. This study considered quality assurance practices in the RHIS processes. Methods: A cross-sectional study was conducted in eight health facilities in Tarkwa Sub-Municipal Health Service in the western region of Ghana. The study involved routine quality assurance practices among the 90 health staff and management selected from facilities in Tarkwa Sub-Municipal who collected or used data routinely from 24th December 2019 to 20th January 2020. Results: Generally, Tarkwa Sub-Municipal health service appears to practice quality assurance during data collection, compilation, storage, analysis and dissemination. The results show some achievement in quality control performance in report dissemination (77.6%), data analysis (68.0%), data compilation (67.4%), report compilation (66.3%), data storage (66.3%) and collection (61.1%). Conclusions: Even though the Tarkwa Sub-Municipal Health Directorate engages in some control measures to ensure data quality, there is a need to strengthen the process to achieve the targeted percentage of performance (90.0%). There was a significant shortfall in quality assurance practices performance, especially during data collection, with respect to the expected performance.Keywords: quality assurance practices, assessment of routine health information system quality, routine health information system, data quality
Procedia PDF Downloads 7910048 The Impact of Website Quality on Customers' Usage and Purchasing Intentions: The Case of Airlines and Online Travel Agencies
Authors: Nermin A. Morsy, Amany N. Beshay
Abstract:
The tourism industry has seen considerable transformations due to the emergency of e-commerce. For instance, airlines are increasingly dependent on achieving online sales instead of their traditional platform. Online travel agencies’ (OTAs) websites have been able to reach a broader range of customers and generate more revenue. Therefore, website quality plays an important role in attaining website effectiveness. It is now considered as a critical factor in attracting customers' attention and build loyalty. Customers are more likely to visit and purchase at websites that exhibit highly desirable qualities. A user-friendly website can help tourists find their target information easily and make decisions quickly. This research focuses on analyzing the impact of airline and OTAs’ websites quality on the actual customer usage and purchase intentions. An online survey was distributed among internet users to assess the various dimensions of website quality in the context of online booking and their effect on customer’s usage and purchase intentions. The data from the survey was analyzed statistically using correlation, t-tests and other statistical tests. Results revealed the direct impact of website quality on customer usage and purchase intentions.Keywords: airlines, OTAs, purchasing intention, website quality
Procedia PDF Downloads 17910047 Estimation of Service Quality and Its Impact on Market Share Using Business Analytics
Authors: Haritha Saranga
Abstract:
Service quality has become an important driver of competition in manufacturing industries of late, as many products are being sold in conjunction with service offerings. With increase in computational power and data capture capabilities, it has become possible to analyze and estimate various aspects of service quality at the granular level and determine their impact on business performance. In the current study context, dealer level, model-wise warranty data from one of the top two-wheeler manufacturers in India is used to estimate service quality of individual dealers and its impact on warranty related costs and sales performance. We collected primary data on warranty costs, number of complaints, monthly sales, type of quality upgrades, etc. from the two-wheeler automaker. In addition, we gathered secondary data on various regions in India, such as petrol and diesel prices, geographic and climatic conditions of various regions where the dealers are located, to control for customer usage patterns. We analyze this primary and secondary data with the help of a variety of analytics tools such as Auto-Regressive Integrated Moving Average (ARIMA), Seasonal ARIMA and ARIMAX. Study results, after controlling for a variety of factors, such as size, age, region of the dealership, and customer usage pattern, show that service quality does influence sales of the products in a significant manner. A more nuanced analysis reveals the dynamics between product quality and service quality, and how their interaction affects sales performance in the Indian two-wheeler industry context. We also provide various managerial insights using descriptive analytics and build a model that can provide sales projections using a variety of forecasting techniques.Keywords: service quality, product quality, automobile industry, business analytics, auto-regressive integrated moving average
Procedia PDF Downloads 12010046 Data Quality as a Pillar of Data-Driven Organizations: Exploring the Benefits of Data Mesh
Authors: Marc Bachelet, Abhijit Kumar Chatterjee, José Manuel Avila
Abstract:
Data quality is a key component of any data-driven organization. Without data quality, organizations cannot effectively make data-driven decisions, which often leads to poor business performance. Therefore, it is important for an organization to ensure that the data they use is of high quality. This is where the concept of data mesh comes in. Data mesh is an organizational and architectural decentralized approach to data management that can help organizations improve the quality of data. The concept of data mesh was first introduced in 2020. Its purpose is to decentralize data ownership, making it easier for domain experts to manage the data. This can help organizations improve data quality by reducing the reliance on centralized data teams and allowing domain experts to take charge of their data. This paper intends to discuss how a set of elements, including data mesh, are tools capable of increasing data quality. One of the key benefits of data mesh is improved metadata management. In a traditional data architecture, metadata management is typically centralized, which can lead to data silos and poor data quality. With data mesh, metadata is managed in a decentralized manner, ensuring accurate and up-to-date metadata, thereby improving data quality. Another benefit of data mesh is the clarification of roles and responsibilities. In a traditional data architecture, data teams are responsible for managing all aspects of data, which can lead to confusion and ambiguity in responsibilities. With data mesh, domain experts are responsible for managing their own data, which can help provide clarity in roles and responsibilities and improve data quality. Additionally, data mesh can also contribute to a new form of organization that is more agile and adaptable. By decentralizing data ownership, organizations can respond more quickly to changes in their business environment, which in turn can help improve overall performance by allowing better insights into business as an effect of better reports and visualization tools. Monitoring and analytics are also important aspects of data quality. With data mesh, monitoring, and analytics are decentralized, allowing domain experts to monitor and analyze their own data. This will help in identifying and addressing data quality problems in quick time, leading to improved data quality. Data culture is another major aspect of data quality. With data mesh, domain experts are encouraged to take ownership of their data, which can help create a data-driven culture within the organization. This can lead to improved data quality and better business outcomes. Finally, the paper explores the contribution of AI in the coming years. AI can help enhance data quality by automating many data-related tasks, like data cleaning and data validation. By integrating AI into data mesh, organizations can further enhance the quality of their data. The concepts mentioned above are illustrated by AEKIDEN experience feedback. AEKIDEN is an international data-driven consultancy that has successfully implemented a data mesh approach. By sharing their experience, AEKIDEN can help other organizations understand the benefits and challenges of implementing data mesh and improving data quality.Keywords: data culture, data-driven organization, data mesh, data quality for business success
Procedia PDF Downloads 13510045 The Impact of Supply Chain Relationship Quality on Cooperative Strategy and Visibility
Authors: Jung-Hsuan Hsu
Abstract:
Due to intense competition within the industry, companies have increasingly recognized partnerships with other companies. In addition, with outsourcing and globalization of the supply chain, it leads to companies' increasing reliance on external resources. Consequently, supply chain network becomes complex, so that it reduces the visibility of the manufacturing process. Therefore, this study is going to focus on the impact of supply chain relationship quality (SCRQ) on cooperative strategy and visibility. Questionnaire survey is going to be conducted as research method, using the organic food industry as the research subject, and the sampling method is random sampling. Finally, the data analysis will use SPSS statistical software and AMOS software to analyze and verify the hypothesis. The expected results in this study is to evaluate the supply chain relationship quality between Taiwan's food manufacturing and their suppliers regarding whether it has a positive impact for the persistence, frequency and diversity of cooperative strategy, as well as the dimensions of supply chain relationship quality on visibility regarding whether it has a positive effect.Keywords: supply chain relationship quality (SCRQ), cooperative strategy, visibility, competition
Procedia PDF Downloads 45110044 Alternate Approaches to Quality Measurement: An Exploratory Study in Differentiation of “Quality” Characteristics in Services and Supports
Authors: Caitlin Bailey, Marian Frattarola Saulino, Beth Steinberg
Abstract:
Today, virtually all programs offered to people with intellectual and developmental disabilities tout themselves as person-centered, community-based and inclusive, yet there is a vast range in type and quality of services that use these similar descriptors. The issue is exacerbated by the fields’ measurement practices around quality, inclusion, independent living, choice and person-centered outcomes. For instance, community inclusion for people with disabilities is often measured by the number of times person steps into his or her community. These measurement approaches set standards for quality too low so that agencies supporting group home residents to go bowling every week can report the same outcomes as an agency that supports one person to join a book club that includes people based on their literary interests rather than disability labels. Ultimately, lack of delineation in measurement contributes to the confusion between face value “quality” and true quality services and supports for many people with disabilities and their families. This exploratory study adopts alternative approaches to quality measurement including co-production methods and systems theoretical framework in order to identify the factors that 1) lead to high-quality supports and, 2) differentiate high-quality services. Project researchers have partnered with community practitioners who are all committed to providing quality services and supports but vary in the degree to which they are actually able to provide them. The study includes two parts; first, an online survey distributed to more than 500 agencies that have demonstrated commitment to providing high-quality services; and second, four in-depth case studies with agencies in three United States and Israel providing a variety of supports to children and adults with disabilities. Results from both the survey and in-depth case studies were thematically analyzed and coded. Results show that there are specific factors that differentiate service quality; however meaningful quality measurement practices also require that researchers explore the contextual factors that contribute to quality. These not only include direct services and interactions, but also characteristics of service users, their environments as well as organizations providing services, such as management and funding structures, culture and leadership. Findings from this study challenge researchers, policy makers and practitioners to examine existing quality service standards and measurements and to adopt alternate methodologies and solutions to differentiate and scale up evidence-based quality practices so that all people with disabilities have access to services that support them to live, work, and enjoy where and with whom they choose.Keywords: co-production, inclusion, independent living, quality measurement, quality supports
Procedia PDF Downloads 39910043 Image Segmentation with Deep Learning of Prostate Cancer Bone Metastases on Computed Tomography
Authors: Joseph M. Rich, Vinay A. Duddalwar, Assad A. Oberai
Abstract:
Prostate adenocarcinoma is the most common cancer in males, with osseous metastases as the commonest site of metastatic prostate carcinoma (mPC). Treatment monitoring is based on the evaluation and characterization of lesions on multiple imaging studies, including Computed Tomography (CT). Monitoring of the osseous disease burden, including follow-up of lesions and identification and characterization of new lesions, is a laborious task for radiologists. Deep learning algorithms are increasingly used to perform tasks such as identification and segmentation for osseous metastatic disease and provide accurate information regarding metastatic burden. Here, nnUNet was used to produce a model which can segment CT scan images of prostate adenocarcinoma vertebral bone metastatic lesions. nnUNet is an open-source Python package that adds optimizations to deep learning-based UNet architecture but has not been extensively combined with transfer learning techniques due to the absence of a readily available functionality of this method. The IRB-approved study data set includes imaging studies from patients with mPC who were enrolled in clinical trials at the University of Southern California (USC) Health Science Campus and Los Angeles County (LAC)/USC medical center. Manual segmentation of metastatic lesions was completed by an expert radiologist Dr. Vinay Duddalwar (20+ years in radiology and oncologic imaging), to serve as ground truths for the automated segmentation. Despite nnUNet’s success on some medical segmentation tasks, it only produced an average Dice Similarity Coefficient (DSC) of 0.31 on the USC dataset. DSC results fell in a bimodal distribution, with most scores falling either over 0.66 (reasonably accurate) or at 0 (no lesion detected). Applying more aggressive data augmentation techniques dropped the DSC to 0.15, and reducing the number of epochs reduced the DSC to below 0.1. Datasets have been identified for transfer learning, which involve balancing between size and similarity of the dataset. Identified datasets include the Pancreas data from the Medical Segmentation Decathlon, Pelvic Reference Data, and CT volumes with multiple organ segmentations (CT-ORG). Some of the challenges of producing an accurate model from the USC dataset include small dataset size (115 images), 2D data (as nnUNet generally performs better on 3D data), and the limited amount of public data capturing annotated CT images of bone lesions. Optimizations and improvements will be made by applying transfer learning and generative methods, including incorporating generative adversarial networks and diffusion models in order to augment the dataset. Performance with different libraries, including MONAI and custom architectures with Pytorch, will be compared. In the future, molecular correlations will be tracked with radiologic features for the purpose of multimodal composite biomarker identification. Once validated, these models will be incorporated into evaluation workflows to optimize radiologist evaluation. Our work demonstrates the challenges of applying automated image segmentation to small medical datasets and lays a foundation for techniques to improve performance. As machine learning models become increasingly incorporated into the workflow of radiologists, these findings will help improve the speed and accuracy of vertebral metastatic lesions detection.Keywords: deep learning, image segmentation, medicine, nnUNet, prostate carcinoma, radiomics
Procedia PDF Downloads 9610042 Improvment Efficiency of Fitness Clubs Operation
Authors: E. V. Kuzmicheva
Abstract:
An attention is concentrated on a service quality estimation of sport services. A typical mathematical model was developed at the base of the «general economic theory of mass service» accounting pedagogical requirements of fitness services. Also it took into account a dependence of the club member number versus on a value of square of sport facilities. Final recommendations were applied to the fitness club resulted in some improvement of the quality sport service, an increasing of the revenue from club members and profit of clubs.Keywords: fitness club, efficiency of operation, facilities, service quality, mass service
Procedia PDF Downloads 50910041 Adoption and Diffusion of E-Government Services in India: The Impact of User Demographics and Service Quality
Authors: Sayantan Khanra, Rojers P. Joseph
Abstract:
This study attempts to analyze the impact of demography and service quality on the adoption and diffusion of e-Government services in the context of India. The objective of this paper is to study the users' perception about e-Government services and investigate the key variables that are most salient to the Indian populace. At the completion of this study, a research model that would help to understand the relationship involving the demographic variables and service quality dimensions, and the willingness to adopt e-Government services is expected to be developed. Dedicated authorities, particularly those in developing economies, may use that model or its augmented versions to design and update e-Government services and promote their use among citizens. After all, enhanced public participation is required to improve efficiency, engagement and transparency in the implementation of the aforementioned services.Keywords: adoption and diffusion of e-government services, demographic variables, hierarchical regression analysis, service quality dimensions
Procedia PDF Downloads 29010040 Quality and Quantity in the Strategic Network of Higher Education Institutions
Authors: Juha Kettunen
Abstract:
This study analyzes the quality and the size of the strategic network of higher education institutions. The study analyses the concept of fitness for purpose in quality assurance. It also analyses the transaction costs of networking that have consequences on the number of members in the network. Empirical evidence is presented of the Consortium on Applied Research and Professional Education, which is a European strategic network of six higher education institutions. The results of the study support the argument that the number of members in the strategic network should be relatively small to provide high quality results. The practical importance is that networking has been able to promote international research and development projects. The results of this study are important for those who want to design and improve international networks in higher education.
Keywords: balanced scorecard, higher education, social networking, strategic planning
Procedia PDF Downloads 34810039 Quality of Romanian Food Products on Rapid Alert System for Food and Feed Notifications
Authors: Silvius Stanciu
Abstract:
Romanian food products sold on European markets have been accused of several non-conformities of quality and safety. Most products incriminated last period were those of animal origin, especially meat and meat products. The study proposed an analysis of the notifications made by network members through Rapid Alert System for Food and Feed on products originating in Romania. As a source of information, the Rapid Alert System portal and the official communications of the National Sanitary Veterinary and Food Safety Authority were used. The research results showed that nearly a quarter of network notifications were rejected and were withdrawn by the European Authority. Although national authorities present these issues as success stories of national quality policies, the large number of notifications related to the volume of exported products is worrying. The paper is of practical and applicative importance for both the business environment and the academic environment, laying the basis for a wider research on the quality differences between Romanian and imported products.Keywords: food, quality, RASFF, Rapid Alert System for Food and Feed, Romania
Procedia PDF Downloads 16010038 Disparities Versus Similarities; WHO Good Practices for Pharmaceutical Quality Control Laboratories and ISO/IEC 17025:2017: International Standards for Quality Management Systems in Pharmaceutical Laboratories
Authors: Mercy Okezue, Kari Clase, Stephen Byrn, Paddy Shivanand
Abstract:
Medicines regulatory authorities expect pharmaceutical companies and contract research organizations to seek ways to certify that their laboratory control measurements are reliable. Establishing and maintaining laboratory quality standards are essential in ensuring the accuracy of test results. ‘ISO/IEC 17025:2017’ and ‘WHO Good Practices for Pharmaceutical Quality Control Laboratories (GPPQCL)’ are two quality standards commonly employed in developing laboratory quality systems. A review was conducted on the two standards to elaborate on areas on convergence and divergence. The goal was to understand how differences in each standard's requirements may influence laboratories' choices as to which document is easier to adopt for quality systems. A qualitative review method compared similar items in the two standards while mapping out areas where there were specific differences in the requirements of the two documents. The review also provided a detailed description of the clauses and parts covering management and technical requirements in these laboratory standards. The review showed that both documents share requirements for over ten critical areas covering objectives, infrastructure, management systems, and laboratory processes. There were, however, differences in standard expectations where GPPQCL emphasizes system procedures for planning and future budgets that will ensure continuity. Conversely, ISO 17025 was more focused on the risk management approach to establish laboratory quality systems. Elements in the two documents form common standard requirements to assure the validity of laboratory test results that promote mutual recognition. The ISO standard currently has more global patronage than GPPQCL.Keywords: ISO/IEC 17025:2017, laboratory standards, quality control, WHO GPPQCL
Procedia PDF Downloads 19710037 Adoption of International Financial Reporting Standards and Earnings Quality in Listed Deposit Money Banks in Nigeria
Authors: Shehu Usman Hassan
Abstract:
Published accounting information in financial statements are required to provide various users - shareholders, employees, suppliers, creditors, financial analysts, stockbrokers and government agencies – with timely and reliable information useful for making prudent, effective and efficient decisions. The widespread failure in the financial information quality has created the need to improve the financial information quality and to strengthen the control of managers by setting up good firms structures. This paper investigates firm attributes from perspective of structure, monitoring, performance elements of listed deposit money banks in Nigeria. The study adopted correlational research design with balanced panel data of 14 banks as sample of the study using multiple regression as a tool of analysis. The result reveals that firms attributes (leverage, profitability, liquidity, bank size and bank growth) has as significant influence on earnings quality of listed deposit money banks in Nigeria after the adoption of IFRS, while the pre period shows that the selected firm attributes has no significant impact on earnings quality. It is therefore concluded that the adoption of IFRS is right and timely.Keywords: earnings quality, firm attributes, listed deposit money bank, Nigeria
Procedia PDF Downloads 51110036 Stable Diffusion, Context-to-Motion Model to Augmenting Dexterity of Prosthetic Limbs
Authors: André Augusto Ceballos Melo
Abstract:
Design to facilitate the recognition of congruent prosthetic movements, context-to-motion translations guided by image, verbal prompt, users nonverbal communication such as facial expressions, gestures, paralinguistics, scene context, and object recognition contributes to this process though it can also be applied to other tasks, such as walking, Prosthetic limbs as assistive technology through gestures, sound codes, signs, facial, body expressions, and scene context The context-to-motion model is a machine learning approach that is designed to improve the control and dexterity of prosthetic limbs. It works by using sensory input from the prosthetic limb to learn about the dynamics of the environment and then using this information to generate smooth, stable movements. This can help to improve the performance of the prosthetic limb and make it easier for the user to perform a wide range of tasks. There are several key benefits to using the context-to-motion model for prosthetic limb control. First, it can help to improve the naturalness and smoothness of prosthetic limb movements, which can make them more comfortable and easier to use for the user. Second, it can help to improve the accuracy and precision of prosthetic limb movements, which can be particularly useful for tasks that require fine motor control. Finally, the context-to-motion model can be trained using a variety of different sensory inputs, which makes it adaptable to a wide range of prosthetic limb designs and environments. Stable diffusion is a machine learning method that can be used to improve the control and stability of movements in robotic and prosthetic systems. It works by using sensory feedback to learn about the dynamics of the environment and then using this information to generate smooth, stable movements. One key aspect of stable diffusion is that it is designed to be robust to noise and uncertainty in the sensory feedback. This means that it can continue to produce stable, smooth movements even when the sensory data is noisy or unreliable. To implement stable diffusion in a robotic or prosthetic system, it is typically necessary to first collect a dataset of examples of the desired movements. This dataset can then be used to train a machine learning model to predict the appropriate control inputs for a given set of sensory observations. Once the model has been trained, it can be used to control the robotic or prosthetic system in real-time. The model receives sensory input from the system and uses it to generate control signals that drive the motors or actuators responsible for moving the system. Overall, the use of the context-to-motion model has the potential to significantly improve the dexterity and performance of prosthetic limbs, making them more useful and effective for a wide range of users Hand Gesture Body Language Influence Communication to social interaction, offering a possibility for users to maximize their quality of life, social interaction, and gesture communication.Keywords: stable diffusion, neural interface, smart prosthetic, augmenting
Procedia PDF Downloads 10110035 Productive Engagements and Psychological Wellbeing of Older Adults; An Analysis of HRS Dataset
Authors: Mohammad Didar Hossain
Abstract:
Background/Purpose: The purpose of this study was to examine the associations between productive engagements and the psychological well-being of older adults in the U.S by analyzing cross-sectional data from a secondary dataset. Specifically, this paper analyzed the associations of 4 different types of productive engagements, including current work status, caregiving to the family members, volunteering and religious strengths with the psychological well-being as an outcome variable. Methods: Data and sample: The study used the data from the Health and Retirement Study (HRS). The HRS is a nationally representative prospective longitudinal cohort study that has been conducting biennial surveys since 1992 to community-dwelling individuals 50 years of age or older on diverse issues. This analysis was based on the 2016 wave (cross-sectional) of the HRS dataset and the data collection period was April 2016 through August 2017. The samples were recruited from a multistage, national area-clustered probability sampling frame. Measures: Four different variables were considered as the predicting variables in this analysis. Firstly, current working status was a binary variable that measured by 0=Yes and 1= No. The second and third variables were respectively caregiving and volunteering, and both of them were measured by; 0=Regularly, 1= Irregularly. Finally, find in strength was measured by 0= Agree and 1= Disagree. Outcome (Wellbeing) variable was measured by 0= High level of well-being, 1= Low level of well-being. Control variables including age were measured in years, education in the categories of 0=Low level of education, 1= Higher level of education and sex r in the categories 0=male, 1= female. Analysis and Results: Besides the descriptive statistics, binary logistic regression analyses were applied to examine the association between independent and dependent variables. The results showed that among the four independent variables, three of them including working status (OR: .392, p<.001), volunteering (OR: .471, p<.003) and strengths in religion (OR .588, p<.003), were significantly associated with psychological well-being while controlling for age, gender and education factors. Also, no significant association was found between the caregiving engagement of older adults and their psychological well-being outcome. Conclusions and Implications: The findings of this study are mostly consistent with the previous studies except for the caregiving engagements and their impact on older adults’ well-being outcomes. Therefore, the findings support the proactive initiatives from different micro to macro levels to facilitate opportunities for productive engagements for the older adults, and all of these may ultimately benefit their psychological well-being and life satisfaction in later life.Keywords: productive engagements, older adults, psychological wellbeing, productive aging
Procedia PDF Downloads 15510034 Determinants of Infrastructure Provision in Ghana
Authors: Clifford Kwakwa Amoah, De-Graft Owusu-Manu, Prince Antwi-Afari
Abstract:
Infrastructure is the lifeline for economic development of any country. Hence, obtaining infrastructure quality cannot be overemphasized. Nevertheless, challenges of infrastructure quality persist, and it is worse in developing countries despite the diverse study on the subject matter. Therefore, this study was formulated to identify the prevalent determinants of infrastructure quality using synthesis of extant literature (to identify key variables), and analysis of survey questionnaire of data collected by means of the inductive methodology approach, mean score ranking and descriptive statistics. The variables “partner with the private sector, growth stimulation and poverty reduction, and adherence to procurement core principles” were the most significant challenges that the government faces. Moreover, it would be of utmost concern to adopt some stringent measures to help improve and accelerate on the growth and development of the nation, thereby achieving the best quality required. This study is novel conducted to provide insight into some of the punitive measures, considered in ensuring that quality infrastructure is obtained in both developing (specifically) and developed economies. The research findings therefore provide some guidance for overcoming the accumulative challenges. Application of the stated findings will help bridge the gap of infrastructure challenges; this is because the study found strong empirical evidence that infrastructure plays a pivotal role in the productivity enhancement.Keywords: challenges, development, economic growth, government, infrastructure quality
Procedia PDF Downloads 14510033 [Keynote Talk]: From Clinical Practice to Academic Setup, 'Quality Circles' for Quality Outputs in Both
Authors: Vandita Mishra
Abstract:
From the management of patients, reception, record, and assistants in a clinical practice; to the management of ongoing research, clinical cases and department profile in an academic setup, the healthcare provider has to deal with all of it. The victory lies in smooth running of the show in both the above situations with an apt solution of problems encountered and smooth management of crisis faced. Thus this paper amalgamates dental science with health administration by means of introduction of a concept for practice management and problem-solving called 'Quality Circles'. This concept uses various tools for problem solving given by experts from different fields. QC tools can be applied in both clinical and academic settings in dentistry for better productivity and for scientifically approaching the process of continuous improvement in both the categories. When approached through QC, our organization showed better patient outcomes and more patient satisfaction. Introduced in 1962 by Kaoru Ishikawa, this tool has been extensively applied in certain fields outside dentistry and healthcare. By exemplification of some clinical cases and virtual scenarios, the tools of Quality circles will be elaborated and discussed upon.Keywords: academics, dentistry, healthcare, quality
Procedia PDF Downloads 10110032 A Comparative Study on Deep Learning Models for Pneumonia Detection
Authors: Hichem Sassi
Abstract:
Pneumonia, being a respiratory infection, has garnered global attention due to its rapid transmission and relatively high mortality rates. Timely detection and treatment play a crucial role in significantly reducing mortality associated with pneumonia. Presently, X-ray diagnosis stands out as a reasonably effective method. However, the manual scrutiny of a patient's X-ray chest radiograph by a proficient practitioner usually requires 5 to 15 minutes. In situations where cases are concentrated, this places immense pressure on clinicians for timely diagnosis. Relying solely on the visual acumen of imaging doctors proves to be inefficient, particularly given the low speed of manual analysis. Therefore, the integration of artificial intelligence into the clinical image diagnosis of pneumonia becomes imperative. Additionally, AI recognition is notably rapid, with convolutional neural networks (CNNs) demonstrating superior performance compared to human counterparts in image identification tasks. To conduct our study, we utilized a dataset comprising chest X-ray images obtained from Kaggle, encompassing a total of 5216 training images and 624 test images, categorized into two classes: normal and pneumonia. Employing five mainstream network algorithms, we undertook a comprehensive analysis to classify these diseases within the dataset, subsequently comparing the results. The integration of artificial intelligence, particularly through improved network architectures, stands as a transformative step towards more efficient and accurate clinical diagnoses across various medical domains.Keywords: deep learning, computer vision, pneumonia, models, comparative study
Procedia PDF Downloads 6410031 Leather Quality of Some Sudan Goats under Range Condition
Authors: Mohammed Alhadi Ebrahiem
Abstract:
This study was designed to investigate the effect of breed and feeding level before slaughter on the skin\leather quality of the three main breeds of Sudan goats. Thirty (30) pieces of fresh skins from the three goat breeds (an average age 1-1.5 years) were chosen for the study purpose. For whole variations between the three breeds in two levels of feeding (poor and rich pastures) Complete Randomized Design (CRD) was used for data analysis. The results revealed that, leather weight (kg), elongation%, tensile strength (kg/cm2), cracking load (kg), thickness (mm), tear load (kg/cm) and chrome% findings were significantly affected (P≥0.05) by breed variation. Flexibility, moisture%, Ash% and fat % were not significantly affected (P ≥ 0.05) by breed. On the other hand, skin weight (kg), Cracking load (kg), Tear load (kg/cm) and Ash% were significantly affected (P≥0.05) by pasture quality. While Leather Elongation%, Tensile strength (kg/cm2), Thickness (mm), Flexibility, Moisture%, Fat % and Chrome% were not statistically (P ≥ 0.05) affected by pastures quality.Keywords: skin\leather quality, goats leather, natural pasture, Sudan
Procedia PDF Downloads 359