Search results for: culturally appropriate design principles
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14233

Search results for: culturally appropriate design principles

7183 Design and Development of Novel Anion Selective Chemosensors Derived from Vitamin B6 Cofactors

Authors: Darshna Sharma, Suban K. Sahoo

Abstract:

The detection of intracellular fluoride in human cancer cell HeLa was achieved by chemosensors derived from vitamin B6 cofactors using fluorescence imaging technique. These sensors were first synthesized by condensation of pyridoxal/pyridoxal phosphate with 2-amino(thio)phenol. The anion recognition ability was explored by experimental (UV-VIS, fluorescence and 1H NMR) and theoretical DFT [(B3LYP/6-31G(d,p)] methods in DMSO and mixed DMSO-H2O system. All the developed sensors showed both naked-eye detectable color change and remarkable fluorescence enhancement in the presence of F- and AcO-. The anion recognition was occurred through the formation of hydrogen bonded complexes between these anions and sensor, followed by the partial deprotonation of sensor. The detection limit of these sensors were down to micro(nano) molar level of F- and AcO-.

Keywords: chemosensors, fluoride, acetate, turn-on, live cells imaging, DFT

Procedia PDF Downloads 400
7182 A Multicopy Strategy for Improved Security Wireless Sensor Network

Authors: Tuğçe Yücel

Abstract:

A Wireless Sensor Network(WSN) is a collection of sensor nodes which are deployed randomly in an area for surveillance. Efficient utilization of limited battery energy of sensors for increased network lifetime as well as data security are major design objectives for WSN. Moreover secure transmission of data sensed to a base station for further processing. Producing multiple copies of data packets and sending them on different paths is one of the strategies for this purpose, which leads to redundant energy consumption and hence reduced network lifetime. In this work we develop a restricted multi-copy multipath strategy where data move through ‘frequently’ or ‘heavily’ used sensors is copied by the sensor incident to such central nodes and sent on node-disjoint paths. We develop a mixed integer programing(MIP) model and heuristic approach present some preleminary test results.

Keywords: MIP, sensor, telecommunications, WSN

Procedia PDF Downloads 510
7181 Evaluation Method for Fouling Risk Using Quartz Crystal Microbalance

Authors: Natsuki Kishizawa, Keiko Nakano, Hussam Organji, Amer Shaiban, Mohammad Albeirutty

Abstract:

One of the most important tasks in operating desalination plants using a reverse osmosis (RO) method is preventing RO membrane fouling caused by foulants found in seawater. Optimal design of the pre-treatment process of RO process for plants enables the reduction of foulants. Therefore, a quantitative evaluation of the fouling risk in pre-treated water, which is fed to RO, is required for optimal design. Some measurement methods for water quality such as silt density index (SDI) and total organic carbon (TOC) have been conservatively applied for evaluations. However, these methods have not been effective in some situations for evaluating the fouling risk of RO feed water. Furthermore, stable management of plants will be possible by alerts and appropriate control of the pre-treatment process by using the method if it can be applied to the inline monitoring system for the fouling risk of RO feed water. The purpose of this study is to develop a method to evaluate the fouling risk of RO feed water. We applied a quartz crystal microbalance (QCM) to measure the amount of foulants found in seawater using a sensor whose surface is coated with polyamide thin film, which is the main material of a RO membrane. The increase of the weight of the sensor after a certain length of time in which the sample water passes indicates the fouling risk of the sample directly. We classified the values as “FP: Fouling Potential”. The characteristics of the method are to measure the very small amount of substances in seawater in a short time: < 2h, and from a small volume of the sample water: < 50mL. Using some RO cell filtration units, a higher correlation between the pressure increase given by RO fouling and the FP from the method than SDI and TOC was confirmed in the laboratory-scale test. Then, to establish the correlation in the actual bench-scale RO membrane module, and to confirm the feasibility of the monitoring system as a control tool for the pre-treatment process, we have started a long-term test at an experimental desalination site by the Red Sea in Jeddah, Kingdom of Saudi Arabia. Implementing inline equipment for the method made it possible to measure FP intermittently (4 times per day) and automatically. Moreover, for two 3-month long operations, the RO operation pressure among feed water samples of different qualities was compared. The pressure increase through a RO membrane module was observed at a high FP RO unit in which feed water was treated by a cartridge filter only. On the other hand, the pressure increase was not observed at a low FP RO unit in which feed water was treated by an ultra-filter during the operation. Therefore, the correlation in an actual scale RO membrane was established in two runs of two types of feed water. The result suggested that the FP method enables the evaluation of the fouling risk of RO feed water.

Keywords: fouling, monitoring, QCM, water quality

Procedia PDF Downloads 212
7180 Sustainable Rehabilitation of Concrete Buildings in Iran: Harnessing Sunlight and Navigating Limited Water Resources

Authors: Amin Khamoosh, Hamed Faramarzifar

Abstract:

In the capital of Iran, Tehran, numerous buildings constructed when extreme climates were not prevalent now face the need for rehabilitation, typically within their first decade. Our data delves into the performance metrics and economic advantages of sustainable rehabilitation practices compared to traditional methods. With a focus on the scarcity of water resources, we specifically scrutinize water-efficient techniques throughout construction, rehabilitation, and usage. Examining design elements that optimize natural light while efficiently managing heat transmission is crucial, given the reliance on water for cooling devices in this region. The data aims to present a comprehensive strategy, addressing immediate structural concerns while harmonizing with Iran's unique environmental conditions.

Keywords: sustainable rehabilitation, concrete buildings, iran, solar energy, water-efficient techniques

Procedia PDF Downloads 56
7179 Modeling and Simulation of a Cycloconverter with a Bond Graph Approach

Authors: Gerardo Ayala-Jaimes, Gilberto Gonzalez-Avalos, Allen A. Castillo, Alejandra Jimenez

Abstract:

The modeling of a single-phase cycloconverter in Bond Graph is presented, which includes an alternating current power supply, hybrid dynamics, switch control, and resistive load; this approach facilitates the integration of systems across different energy domains and structural analysis. Cycloconverters, used in motor control, demonstrate the viability of graphical modeling. The use of Bonds is proposed to model the hybrid interaction of the system, and the results are displayed through simulations using 20Sim and Multisim software. The motivation behind developing these models with a graphical approach is to design and build low-cost energy converters, thereby making the main contribution of this document the modeling and simulation of a single-phase cycloconverter.

Keywords: bond graph, hybrid system, rectifier, cycloconverter, modelling

Procedia PDF Downloads 38
7178 An Argument for Agile, Lean, and Hybrid Project Management in Museum Conservation Practice: A Qualitative Evaluation of the Morris Collection Conservation Project at the Sainsbury Centre for Visual Arts

Authors: Maria Ledinskaya

Abstract:

This paper is part case study and part literature review. It seeks to introduce Agile, Lean, and Hybrid project management concepts from business, software development, and manufacturing fields to museum conservation by looking at their practical application on a recent conservation project at the Sainsbury Centre for Visual Arts. The author outlines the advantages of leaner and more agile conservation practices in today’s faster, less certain, and more budget-conscious museum climate where traditional project structures are no longer as relevant or effective. The Morris Collection Conservation Project was carried out in 2019-2021 in Norwich, UK, and concerned the remedial conservation of around 150 Abstract Constructivist artworks bequeathed to the Sainsbury Centre by private collectors Michael and Joyce Morris. It was a medium-sized conservation project of moderate complexity, planned and delivered in an environment with multiple known unknowns – unresearched collection, unknown conditions and materials, unconfirmed budget. The project was later impacted by the COVID-19 pandemic, introducing indeterminate lockdowns, budget cuts, staff changes, and the need to accommodate social distancing and remote communications. The author, then a staff conservator at the Sainsbury Centre who acted as project manager on the Morris Project, presents an incremental, iterative, and value-based approach to managing a conservation project in an uncertain environment. The paper examines the project from the point of view of Traditional, Agile, Lean, and Hybrid project management. The author argues that most academic writing on project management in conservation has focussed on a Traditional plan-driven approach – also known as Waterfall project management – which has significant drawbacks in today’s museum environment due to its over-reliance on prediction-based planning and its low tolerance to change. In the last 20 years, alternative Agile, Lean and Hybrid approaches to project management have been widely adopted in software development, manufacturing, and other industries, although their recognition in the museum sector has been slow. Using examples from the Morris Project, the author introduces key principles and tools of Agile, Lean, and Hybrid project management and presents a series of arguments on the effectiveness of these alternative methodologies in museum conservation, including the ethical and practical challenges to their implementation. These project management approaches are discussed in the context of consequentialist, relativist, and utilitarian developments in contemporary conservation ethics. Although not intentionally planned as such, the Morris Project had a number of Agile and Lean features which were instrumental to its successful delivery. These key features are identified as distributed decision-making, a co-located cross-disciplinary team, servant leadership, focus on value-added work, flexible planning done in shorter sprint cycles, light documentation, and emphasis on reducing procedural, financial, and logistical waste. Overall, the author’s findings point in favour of a hybrid model, which combines traditional and alternative project processes and tools to suit the specific needs of the project.

Keywords: agile project management, conservation, hybrid project management, lean project management, waterfall project management

Procedia PDF Downloads 71
7177 Integration of an Evidence-Based Medicine Curriculum into Physician Assistant Education: Teaching for Today and the Future

Authors: Martina I. Reinhold, Theresa Bacon-Baguley

Abstract:

Background: Medical knowledge continuously evolves and to help health care providers to stay up-to-date, evidence-based medicine (EBM) has emerged as a model. The practice of EBM requires new skills of the health care provider, including directed literature searches, the critical evaluation of research studies, and the direct application of the findings to patient care. This paper describes the integration and evaluation of an evidence-based medicine course sequence into a Physician Assistant curriculum. This course sequence teaches students to manage and use the best clinical research evidence to competently practice medicine. A survey was developed to assess the outcomes of the EBM course sequence. Methodology: The cornerstone of the three-semester sequence of EBM are interactive small group discussions that are designed to introduce students to the most clinically applicable skills to identify, manage and use the best clinical research evidence to improve the health of their patients. During the three-semester sequence, the students are assigned each semester to participate in small group discussions that are facilitated by faculty with varying background and expertise. Prior to the start of the first EBM course in the winter semester, PA students complete a knowledge-based survey that was developed by the authors to assess the effectiveness of the course series. The survey consists of 53 Likert scale questions that address the nine objectives for the course series. At the end of the three semester course series, the same survey was given to all students in the program and the results from before, and after the sequence of EBM courses are compared. Specific attention is paid to overall performance of students in the nine course objectives. Results: We find that students from the Class of 2016 and 2017 consistently improve (as measured by percent correct responses on the survey tool) after the EBM course series (Class of 2016: Pre- 62% Post- 75%; Class of 2017: Pre- 61 % Post-70%). The biggest increase in knowledge was observed in the areas of finding and evaluating the evidence, with asking concise clinical questions (Class of 2016: Pre- 61% Post- 81%; Class of 2017: Pre- 61 % Post-75%) and searching the medical database (Class of 2016: Pre- 24% Post- 65%; Class of 2017: Pre- 35 % Post-66 %). Questions requiring students to analyze, evaluate and report on the available clinical evidence regarding diagnosis showed improvement, but to a lesser extend (Class of 2016: Pre- 56% Post- 77%; Class of 2017: Pre- 56 % Post-61%). Conclusions: Outcomes identified that students did gain skills which will allow them to apply EBM principles. In addition, the outcomes of the knowledge-based survey allowed the faculty to focus on areas needing improvement, specifically the translation of best evidence into patient care. To address this area, the clinical faculty developed case scenarios that were incorporated into the lecture and discussion sessions, allowing students to better connect the research studies with patient care. Students commented that ‘class discussion and case examples’ contributed most to their learning and that ‘it was helpful to learn how to develop research questions and how to analyze studies and their significance to a potential client’. As evident by the outcomes, the EBM courses achieved the goals of the course and were well received by the students. 

Keywords: evidence-based medicine, clinical education, assessment tool, physician assistant

Procedia PDF Downloads 125
7176 Design and Implementation of a Wearable Artificial Kidney Prototype for Home Dialysis

Authors: R. A. Qawasma, F. M. Haddad, H. O. Salhab

Abstract:

Hemodialysis is a life-preserving treatment for a number of patients with kidney failure. The standard procedure of hemodialysis is three times a week during the hemodialysis procedure, the patient usually suffering from many inconvenient, exhausting feeling and effect on the heart and cardiovascular system are the most common signs. This paper provides a solution to reduce the previous problems by designing a wearable artificial kidney (WAK) taking in consideration a minimization the size of the dialysis machine. The WAK system consists of two circuits: blood circuit and dialysate circuit. The blood from the patient is filtered in the dialyzer before returning back to the patient. Several parameters using an advanced microcontroller and array of sensors. WAK equipped with visible and audible alarm system to aware the patients if there is any problem.

Keywords: artificial kidney, home dialysis, renal failure, wearable kidney

Procedia PDF Downloads 235
7175 Owning (up to) the 'Art of the Insane': Re-Claiming Personhood through Copyright Law

Authors: Mathilde Pavis

Abstract:

From Schumann to Van Gogh, Frida Kahlo, and Ray Charles, the stories narrating the careers of artists with physical or mental disabilities are becoming increasingly popular. From the emergence of ‘pathography’ at the end of 18th century to cinematographic portrayals, the work and lives of differently-abled creative individuals continue to fascinate readers, spectators and researchers. The achievements of those artists form the tip of the iceberg composed of complex politico-cultural movements which continue to advocate for wider recognition of disabled artists’ contribution to western culture. This paper envisages copyright law as a potential tool to such end. It investigates the array of rights available to artists with intellectual disabilities to assert their position as authors of their artwork in the twenty-first-century looking at international and national copyright laws (UK and US). Put simply, this paper questions whether an artist’s intellectual disability could be a barrier to assert their intellectual property rights over their creation. From a legal perspective, basic principles of non-discrimination would contradict the representation of artists’ disability as an obstacle to authorship as granted by intellectual property laws. Yet empirical studies reveal that artists with intellectual disabilities are often denied the opportunity to exercise their intellectual property rights or any form of agency over their work. In practice, it appears that, unlike other non-disabled artists, the prospect for differently-abled creators to make use of their right is contingent to the context in which the creative process takes place. Often will the management of such rights rest with the institution, art therapist or mediator involved in the artists’ work as the latter will have necessitated greater support than their non-disabled peers for a variety of reasons, either medical or practical. Moreover, the financial setbacks suffered by medical institutions and private therapy practices have renewed administrators’ and physicians’ interest in monetising the artworks produced under their supervision. Adding to those economic incentives, the rise of criminal and civil litigation in psychiatric cases has also encouraged the retention of patients’ work by therapists who feel compelled to keep comprehensive medical records to shield themselves from liability in the event of a lawsuit. Unspoken transactions, contracts, implied agreements and consent forms have thus progressively made their way into the relationship between those artists and their therapists or assistants, disregarding any notions of copyright. The question of artists’ authorship finds itself caught in an unusually multi-faceted web of issues formed by tightening purse strings, ethical concerns and the fear of civil or criminal liability. Whilst those issues are playing out behind closed doors, the popularity of what was once called the ‘Art of the Insane’ continues to grow and open new commercial avenues. This socio-economic context exacerbates the need to devise a legal framework able to help practitioners, artists and their advocates navigate through those issues in such a way that neither this minority nor our cultural heritage suffers from the fragmentation of the legal protection available to them.

Keywords: authorship, copyright law, intellectual disabilities, art therapy and mediation

Procedia PDF Downloads 150
7174 Comparative Analysis of Identity Semiotics in Iran’s Modern and Traditional House Design

Authors: Maryam Ghasemi

Abstract:

One of the most significant components that provide comfort and protection is having a shelter called a house. Even if components and regions are changed or restored to meet new functions, the house's identity must be preserved. In the contemporary era, houses are increasingly being built regardless of cultural identity. This misunderstanding caused a sense of unease. This study analyses archaic and modern architecture to find semiotic areas and qualities in the latter, using the former as a reference. This study's technique used an exploratory assessment of architectural components from both periods. The Abbasid residence and the Ekbatan architectural complex were used as case studies. The identity of Iranian architecture does not correlate with current buildings. The other part is privacy, which is a missing link between traditional and modern Iranian architecture because it is directly related to the identities of homes based on the cultures of their residents.

Keywords: housing, traditional, contemporary, privacy, semiotic

Procedia PDF Downloads 107
7173 Experimental Study of a Solar Still with Four Glass Cover

Authors: Zakaria Haddad, Azzedine Nahoui, Mohamed Salmi, Ali Djagham

Abstract:

Solar distillation is an effective and practical method for the production of drinking water in arid and semi-arid areas; however, this production is very limited. The aim of this work is to increase the latter by means of single slope solar still with four glass cover without augmenting volume and surface of a conventional solar still, using local materials and simple design. The equipment was tested under the climatic condition of Msila city (35°70′ N, 4°54′ E), Algeria. Performance of the use of four glass cover was studied, and exhaustive data were collected, analyzed, and presented. To show the effectiveness of the system, its performance was compared with that of the conventional solar still. The experimental study shows that the production of the proposed system achieves 5.3 l/m²/day and 5.8 l/m²/day respectively for the months of April and May, with an increase of 10% and 17% compared to the conventional solar still.

Keywords: drinking water, four glass cover, production, solar distillation

Procedia PDF Downloads 137
7172 Passive Seismic Energy Dissipation Mechanisms for Smart Green Structural System (SGSS)

Authors: Daniel Y. Abebe, Jaehyouk Choi

Abstract:

The design philosophy of building structure has been changing over time. The reason behind this is an increase in human interest regarding the improvements in building materials and technology that will affect how we live, the aim to speed up construction period, and the environmental effect which includes earthquakes and other natural disasters. One technique which takes into account the above case is using a prefabricable structural system, in which each and every structural element is designed and prefabricated and assembled on a site so that the construction speed is increased and the environmental impact is also enhanced. This system has immense advantages such as reduced construction cost, reusability, recyclability, faster construction period and less enviromental effect. In this study, some of the developed and evaluated structural elements of building structures are presented.

Keywords: eccentrically braced frame, natural disaster, prefabricable structural system, removable link, SGSS

Procedia PDF Downloads 432
7171 Field Study for Evaluating Winter Thermal Performance of Auckland School Buildings

Authors: Bin Su

Abstract:

Auckland has a temperate climate with comfortable warm, dry summers and mild, wet winters. An Auckland school normally does not need air conditioning for cooling during the summer and only needs heating during the winter. The Auckland school building thermal design should more focus on winter thermal performance and indoor thermal comfort for energy efficiency. This field study of testing indoor and outdoor air temperatures, relative humidity and indoor surface temperatures of three classrooms with different envelopes were carried out in the Avondale College during the winter months in 2013. According to the field study data, this study is to compare and evaluate winter thermal performance and indoor thermal conditions of school buildings with different envelopes.

Keywords: building envelope, building mass effect, building thermal comfort, building thermal performance, school building

Procedia PDF Downloads 428
7170 Optimization of FGM Sandwich Beams Using Imperialist Competitive Algorithm

Authors: Saeed Kamarian, Mahmoud Shakeri

Abstract:

Sandwich structures are used in a variety of engineering applications including aircraft, construction and transportation where strong, stiff and light structures are required. In this paper, frequency maximization of Functionally Graded Sandwich (FGS) beams resting on Pasternak foundations is investigated. A generalized power-law distribution with four parameters is considered for material distribution through the thicknesses of face layers. Since the search space is large, the optimization processes becomes so complicated and too much time consuming. Thus a novel meta–heuristic called Imperialist Competitive Algorithm (ICA) which is a socio-politically motivated global search strategy is implemented to improve the speed of optimization process. Results show the success of applying ICA for engineering problems especially for design optimization of FGM sandwich beams.

Keywords: sandwich beam, functionally graded materials, optimization, imperialist competitive algorithm

Procedia PDF Downloads 569
7169 Design and Optimization of Soil Nailing Construction

Authors: Fereshteh Akbari, Farrokh Jalali Mosalam, Ali Hedayatifar, Amirreza Aminjavaheri

Abstract:

The soil nailing is an effective method to stabilize slopes and retaining structures. Consequently, the lateral and vertical displacement of retaining walls are important criteria to evaluate the safety risks of adjacent structures. This paper is devoted to the optimization problems of retaining walls based on ABAQOUS Software. The various parameters such as nail length, orientation, arrangement, horizontal spacing, and bond skin friction, on lateral and vertical displacement of retaining walls are investigated. In order to ensure accuracy, the mobilized shear stress acting around the perimeter of the nail-soil interface is also modeled in ABAQOUS software. The observed trend of results is compared to the previous researches.

Keywords: retaining walls, soil nailing, ABAQOUS software, lateral displacement, vertical displacement

Procedia PDF Downloads 132
7168 Stealth Laser Dicing Process Improvement via Shuffled Frog Leaping Algorithm

Authors: Pongchanun Luangpaiboon, Wanwisa Sarasang

Abstract:

In this paper, a performance of shuffled frog leaping algorithm was investigated on the stealth laser dicing process. Effect of problem on the performance of the algorithm was based on the tolerance of meandering data. From the customer specification it could be less than five microns with the target of zero microns. Currently, the meandering levels are unsatisfactory when compared to the customer specification. Firstly, the two-level factorial design was applied to preliminary study the statistically significant effects of five process variables. In this study one influential process variable is integer. From the experimental results, the new operating condition from the algorithm was superior when compared to the current manufacturing condition.

Keywords: stealth laser dicing process, meandering, meta-heuristics, shuffled frog leaping algorithm

Procedia PDF Downloads 341
7167 Cultivating Concentration and Flow: Evaluation of a Strategy for Mitigating Digital Distractions in University Education

Authors: Vera G. Dianova, Lori P. Montross, Charles M. Burke

Abstract:

In the digital age, the widespread and frequently excessive use of mobile phones amongst university students is recognized as a significant distractor which interferes with their ability to enter a deep state of concentration during studies and diminishes their prospects of experiencing the enjoyable and instrumental state of flow, as defined and described by psychologist M. Csikszentmihalyi. This study has targeted 50 university students with the aim of teaching them to cultivate their ability to engage in deep work and to attain the state of flow, fostering more effective and enjoyable learning experiences. Prior to the start of the intervention, all participating students completed a comprehensive survey based on a variety of validated scales assessing their inclination toward lifelong learning, frequency of flow experiences during study, frustration tolerance, sense of agency, as well as their love of learning and daily time devoted to non-academic mobile phone activities. Several days after this initial assessment, students received a 90-minute lecture on the principles of flow and deep work, accompanied by a critical discourse on the detrimental effects of excessive mobile phone usage. They were encouraged to practice deep work and strive for frequent flow states throughout the semester. Subsequently, students submitted weekly surveys, including the 10-item CORE Dispositional Flow Scale, a 3-item agency scale and furthermore disclosed their average daily hours spent on non-academic mobile phone usage. As a final step, at the end of the semester students engaged in reflective report writing, sharing their experiences and evaluating the intervention's effectiveness. They considered alterations in their love of learning, reflected on the implications of their mobile phone usage, contemplated improvements in their tolerance for boredom and perseverance in complex tasks, and pondered the concept of lifelong learning. Additionally, students assessed whether they actively took steps towards managing their recreational phone usage and towards improving their commitment to becoming lifelong learners. Employing a mixed-methods approach our study offers insights into the dynamics of concentration, flow, mobile phone usage and attitudes towards learning among undergraduate and graduate university students. The findings of this study aim to promote profound contemplation, on the part of both students and instructors, on the rapidly evolving digital-age higher education environment. In an era defined by digital and AI advancements, the ability to concentrate, to experience the state of flow, and to love learning has never been more crucial. This study underscores the significance of addressing mobile phone distractions and providing strategies for cultivating deep concentration. The insights gained can guide educators in shaping effective learning strategies for the digital age. By nurturing a love for learning and encouraging lifelong learning, educational institutions can better prepare students for a rapidly changing labor market, where adaptability and continuous learning are paramount for success in a dynamic career landscape.

Keywords: deep work, flow, higher education, lifelong learning, love of learning

Procedia PDF Downloads 68
7166 A Practical Approach and Implementation of Digital Library Towards Best Practice in Malaysian Academic Library

Authors: Zainab Ajab Mohideen, Kiran Kaur, A. Basheer Ahamadhu, Noor Azlinda Wan Jan, Sukmawati Muhammad

Abstract:

The corpus in the digital library is to provide an overview and evidence from library automation that can be used to justify the needs of the digital library. This paper disperses the approach and implementation of the digital library as part of best practices by the Automation Division at Hamzah Sendut Library of the University Science Malaysia (USM). The implemented digital library model emphasizes on the entire library collections, technical perspective, and automation solution. This model served as a foundation for digital library services as part of information delivery in the USM digital library. The approach to digital library includes discussion on key factors, design, architecture, and pragmatic model that has been collected, captured, and identified during the implementation stages. At present, the USM digital library has achieved the status of an Institutional Repository (IR).

Keywords: academic digital library, digital information system, digital library best practice, digital library model

Procedia PDF Downloads 555
7165 Software Defined Storage: Object Storage over Hadoop Platform

Authors: Amritesh Srivastava, Gaurav Sharma

Abstract:

The purpose of this project is to develop an open source object storage system that is highly durable, scalable and reliable. There are two representative systems in cloud computing: Google and Amazon. Their storage systems for Google GFS and Amazon S3 provide high reliability, performance and stability. Our proposed system is highly inspired from Amazon S3. We are using Hadoop Distributed File System (HDFS) Java API to implement our system. We propose the architecture of object storage system based on Hadoop. We discuss the requirements of our system, what we expect from our system and what problems we may encounter. We also give detailed design proposal along with the abstract source code to implement it. The final goal of the system is to provide REST based access to our object storage system that exists on top of HDFS.

Keywords: Hadoop, HBase, object storage, REST

Procedia PDF Downloads 339
7164 Unmasking Virtual Empathy: A Philosophical Examination of AI-Mediated Emotional Practices in Healthcare

Authors: Eliana Bergamin

Abstract:

This philosophical inquiry, influenced by the seminal works of Annemarie Mol and Jeannette Pols, critically examines the transformative impact of artificial intelligence (AI) on emotional caregiving practices within virtual healthcare. Rooted in the traditions of philosophy of care, philosophy of emotions, and applied philosophy, this study seeks to unravel nuanced shifts in the moral and emotional fabric of healthcare mediated by AI-powered technologies. Departing from traditional empirical studies, the approach embraces the foundational principles of care ethics and phenomenology, offering a focused exploration of the ethical and existential dimensions of AI-mediated emotional caregiving. At its core, this research addresses the introduction of AI-powered technologies mediating emotional and care practices in the healthcare sector. By drawing on Mol and Pols' insights, the study offers a focused exploration of the ethical and existential dimensions of AI-mediated emotional caregiving. Anchored in ethnographic research within a pioneering private healthcare company in the Netherlands, this critical philosophical inquiry provides a unique lens into the dynamics of AI-mediated emotional practices. The study employs in-depth, semi-structured interviews with virtual caregivers and care receivers alongside ongoing ethnographic observations spanning approximately two and a half months. Delving into the lived experiences of those at the forefront of this technological evolution, the research aims to unravel subtle shifts in the emotional and moral landscape of healthcare, critically examining the implications of AI in reshaping the philosophy of care and human connection in virtual healthcare. Inspired by Mol and Pols' relational approach, the study prioritizes the lived experiences of individuals within the virtual healthcare landscape, offering a deeper understanding of the intertwining of technology, emotions, and the philosophy of care. In the realm of philosophy of care, the research elucidates how virtual tools, particularly those driven by AI, mediate emotions such as empathy, sympathy, and compassion—the bedrock of caregiving. Focusing on emotional nuances, the study contributes to the broader discourse on the ethics of care in the context of technological mediation. In the philosophy of emotions, the investigation examines how the introduction of AI alters the phenomenology of emotional experiences in caregiving. Exploring the interplay between human emotions and machine-mediated interactions, the nuanced analysis discerns implications for both caregivers and caretakers, contributing to the evolving understanding of emotional practices in a technologically mediated healthcare environment. Within applied philosophy, the study transcends empirical observations, positioning itself as a reflective exploration of the moral implications of AI in healthcare. The findings are intended to inform ethical considerations and policy formulations, bridging the gap between technological advancements and the enduring values of caregiving. In conclusion, this focused philosophical inquiry aims to provide a foundational understanding of the evolving landscape of virtual healthcare, drawing on the works of Mol and Pols to illuminate the essence of human connection, care, and empathy amid technological advancements.

Keywords: applied philosophy, artificial intelligence, healthcare, philosophy of care, philosophy of emotions

Procedia PDF Downloads 58
7163 Numerical Analysis of Reinforced Embankment on Algeria Sabkha Subgrade

Authors: N. Benmebarek, F. Berrabah, S. Benmebarek

Abstract:

This paper is interested by numerical analysis using PLAXIS code of geosynthetic reinforced embankment crossing a section about 11 km on sabkha soil of Chott El Hodna in Algeria. The site observations indicated that the surface soil of this sabkha is very sensitive to moisture and complicated by the presence of locally weak zones. Therefore, serious difficulties were encountered during building the first embankment layer. This paper focuses on the use of geosynthetic to mitigate the difficulty encountered. Due to the absence of an accepted design methods, parametric studies are carried out to assess the effect of basal embankment reinforcement on both the bearing capacity and compaction conditions. The results showed the contribution conditions of geosynthetics to improve the bearing capacity of sabkha soil.

Keywords: reinforced embankment, numerical modelling, geosynthetics, weak bearing capacity

Procedia PDF Downloads 297
7162 Architectural Wind Data Maps Using an Array of Wireless Connected Anemometers

Authors: D. Serero, L. Couton, J. D. Parisse, R. Leroy

Abstract:

In urban planning, an increasing number of cities require wind analysis to verify comfort of public spaces and around buildings. These studies are made using computer fluid dynamic simulation (CFD). However, this technique is often based on wind information taken from meteorological stations located at several kilometers of the spot of analysis. The approximated input data on project surroundings produces unprecise results for this type of analysis. They can only be used to get general behavior of wind in a zone but not to evaluate precise wind speed. This paper presents another approach to this problem, based on collecting wind data and generating an urban wind cartography using connected ultrasound anemometers. They are wireless devices that send immediate data on wind to a remote server. Assembled in array, these devices generate geo-localized data on wind such as speed, temperature, pressure and allow us to compare wind behavior on a specific site or building. These Netatmo-type anemometers communicate by wifi with central equipment, which shares data acquired by a wide variety of devices such as wind speed, indoor and outdoor temperature, rainfall, and sunshine. Beside its precision, this method extracts geo-localized data on any type of site that can be feedback looped in the architectural design of a building or a public place. Furthermore, this method allows a precise calibration of a virtual wind tunnel using numerical aeraulic simulations (like STAR CCM + software) and then to develop the complete volumetric model of wind behavior over a roof area or an entire city block. The paper showcases connected ultrasonic anemometers, which were implanted for an 18 months survey on four study sites in the Grand Paris region. This case study focuses on Paris as an urban environment with multiple historical layers whose diversity of typology and buildings allows considering different ways of capturing wind energy. The objective of this approach is to categorize the different types of wind in urban areas. This, particularly the identification of the minimum and maximum wind spectrum, helps define the choice and performance of wind energy capturing devices that could be implanted there. The localization on the roof of a building, the type of wind, the altimetry of the device in relation to the levels of the roofs, the potential nuisances generated. The method allows identifying the characteristics of wind turbines in order to maximize their performance in an urban site with turbulent wind.

Keywords: computer fluid dynamic simulation in urban environment, wind energy harvesting devices, net-zero energy building, urban wind behavior simulation, advanced building skin design methodology

Procedia PDF Downloads 101
7161 Experimental Studies on the Effect of Rake Angle on Turning Ti-6Al-4V with TiAlN Coated Carbides

Authors: Satyanarayana Kosaraju, Venu Gopal Anne, Sateesh Nagari

Abstract:

In this paper, the effect of cutting speed, feedrate and rake angle in tool geometry on cutting forces and temperature generated on the tool tip in turning were investigated. The data used for the investigation derived from experiments conducted on precision lathe according to the full factorial design to observe the effect of each factor level on the process performance. During the tests, depth of cut were kept constant and each test was conducted with a sharp coated tool insert. Ti-6Al-4V was used as the workpiece material. The effects of cutting parameters and tool geometry on cutting forces and tool tip temperature were analyzed. The main cutting force was observed to have a decreasing trend and temperature found to be increasing trend as the rake angle increased.

Keywords: cutting force, tool tip temperature, rake angle, machining

Procedia PDF Downloads 507
7160 Hybrid Multipath Congestion Control

Authors: Akshit Singhal, Xuan Wang, Zhijun Wang, Hao Che, Hong Jiang

Abstract:

Multiple Path Transmission Control Protocols (MPTCPs) allow flows to explore path diversity to improve the throughput, reliability and network resource utilization. However, the existing solutions may discourage users to adopt the solutions in the face of multipath scenario where different paths are charged based on different pricing structures, e.g., WiFi vs cellular connections, widely available for mobile phones. In this paper, we propose a Hybrid MPTCP (H-MPTCP) with a built-in mechanism to incentivize users to use multiple paths with different pricing structures. In the meantime, H-MPTCP preserves the nice properties enjoyed by the state-of-the-art MPTCP solutions. Extensive real Linux implementation results verify that H-MPTCP can indeed achieve the design objectives.

Keywords: network, TCP, WiFi, cellular, congestion control

Procedia PDF Downloads 718
7159 The Origin and Development of Entrepreneurial Cognition: The Impact of Entrepreneurship Education on Cognitive Style and Subsequent Entrepreneurial Intention

Authors: Salma Hussein, Hadia Aziz

Abstract:

Entrepreneurship plays a significant and imperative role in economic and social growth, and therefore, is stimulated and encouraged by governments and academics as a mean of creating job opportunities, innovation, and wealth. Indicative of its importance, it is essential to identify factors that encourage and promote entrepreneurial behavior. This is particularly true for developing countries where the need for entrepreneurial development is high and the resources are scarce, thus, there is a need to maximize the outcomes of investing in entrepreneurial development. Entrepreneurial education has been the center of attention and interest among researchers as it is believed to be one of the most critical factors in promoting entrepreneurship over the long run. Accordingly, the urgency to encourage entrepreneurship education and develop an enterprise culture is now a main concern in Egypt. Researchers have postulated that cognition has the potential to make a significant contribution to the study of entrepreneurship. One such contribution that future studies need to consider in entrepreneurship research is the cognitive processes that occur within the individual such as cognitive style. During the past decade, there has been an increasing interest in cognitive style among researchers and practitioners specifically in innovation and entrepreneurship field. Limited studies pay attention to study the antecedent dynamics that fuel entrepreneurial cognition to better understand its role in entrepreneurship. Moreover, while many studies were conducted on entrepreneurship education, scholars are still hesitant regarding the teachability of entrepreneurship due to the lack of clear evidence of its impact. Furthermore, the relation between cognitive style and entrepreneurial intentions, has yet to be discovered. Hence, this research aims to test the impact of entrepreneurship education on cognitive style and subsequent intention in order to evaluate whether student’s and potential entrepreneur’s cognitive styles are affected by entrepreneurial education and in turn affect their intentions. Understanding the impact of Entrepreneurship Education on ways of thinking and intention is critical for the development of effective education and training in entrepreneurship field. It is proposed that students who are exposed to entrepreneurship education programs will have a more balanced thinking style compared to those students who are not exposed. Moreover, it is hypothesized that students having a balanced cognitive style will exhibit higher levels of entrepreneurial intentions than students having an intuitive or analytical cognitive style. Finally, it is proposed that non-formal entrepreneurship education will be more positively associated with entrepreneurial intentions than will formal entrepreneurship education. The proposed methodology is a pre and post Experimental Design. The sample will include young adults, their age range from 18 till 35 years old including both students enrolled in formal entrepreneurship education programs in private universities as well as young adults who are willing to participate in a Non-Formal entrepreneurship education programs in Egypt. Attention is now given on how far individuals are analytical or intuitive in their cognitive style, to what extent it is possible to have a balanced thinking style and whether or not this can be aided by training or education. Therefore, there is an urge need for further research on entrepreneurial cognition in educational contexts.

Keywords: cognitive style, entrepreneurial intention, entrepreneurship education, experimental design

Procedia PDF Downloads 201
7158 Rational Approach to Analysis and Construction of Curved Composite Box Girders in Bridges

Authors: Dongming Feng, Fangyin Zhang, Liling Cao

Abstract:

Horizontally curved steel-concrete composite box girders are extensively used in highway bridges. They consist of reinforced concrete deck on top of prefabricated steel box section beam which exhibits a high torsional rigidity to resist torsional effects induced by the curved structural geometry. This type of structural system is often constructed in two stages. The composite section will take the tension mainly by the steel box and, the compression by the concrete deck. The steel girders are delivered in large pre-fabricated U-shaped sections that are designed for ease of construction. They are then erected on site and overlaid by cast-in-place reinforced concrete deck. The functionality of the composite section is not achieved until the closed section is formed by fully cured concrete. Since this kind of composite section is built in two stages, the erection of the open steel box presents some challenges to contractors. When the reinforced concrete slab is cast-in-place, special care should be taken on bracings that can prevent the open U-shaped steel box from global and local buckling. In the case of multiple steel boxes, the design detailing should pay enough attention to the installation requirement of the bracings connecting adjacent steel boxes to prevent the global buckling. The slope in transverse direction and grade in longitudinal direction will result in some local deformation of the steel boxes that affect the connection of the bracings. During the design phase, it is common for engineers to model the curved composite box girder using one-dimensional beam elements. This is adequate to analyze the global behavior, however, it is unable to capture the local deformation which affects the installation of the field bracing connection. The presence of the local deformation may become a critical component to control the construction tolerance, and overlooking this deformation will produce inadequate structural details that eventually cause misalignment in field and erection failure. This paper will briefly describe the construction issues we encountered in real structures, investigate the difference between beam element modeling and shell/solid element modeling, and their impact on the different construction stages. P-delta effect due to the slope and curvature of the composite box girder is analyzed, and the secondary deformation is compared to the first-order response and evaluated for its impact on installation of lateral bracings. The paper will discuss the rational approach to prepare construction documents and recommendations are made on the communications between engineers, erectors, and fabricators to smooth out construction process.

Keywords: buckling, curved composite box girder, stage construction, structural detailing

Procedia PDF Downloads 122
7157 Air–Water Two-Phase Flow Patterns in PEMFC Microchannels

Authors: Ibrahim Rassoul, A. Serir, E-K. Si Ahmed, J. Legrand

Abstract:

The acronym PEM refers to Proton Exchange Membrane or alternatively Polymer Electrolyte Membrane. Due to its high efficiency, low operating temperature (30–80 °C), and rapid evolution over the past decade, PEMFCs are increasingly emerging as a viable alternative clean power source for automobile and stationary applications. Before PEMFCs can be employed to power automobiles and homes, several key technical challenges must be properly addressed. One technical challenge is elucidating the mechanisms underlying water transport in and removal from PEMFCs. On one hand, sufficient water is needed in the polymer electrolyte membrane or PEM to maintain sufficiently high proton conductivity. On the other hand, too much liquid water present in the cathode can cause “flooding” (that is, pore space is filled with excessive liquid water) and hinder the transport of the oxygen reactant from the gas flow channel (GFC) to the three-phase reaction sites. The experimental transparent fuel cell used in this work was designed to represent actual full scale of fuel cell geometry. According to the operating conditions, a number of flow regimes may appear in the microchannel: droplet flow, blockage water liquid bridge /plug (concave and convex forms), slug/plug flow and film flow. Some of flow patterns are new, while others have been already observed in PEMFC microchannels. An algorithm in MATLAB was developed to automatically determine the flow structure (e.g. slug, droplet, plug, and film) of detected liquid water in the test microchannels and yield information pertaining to the distribution of water among the different flow structures. A video processing algorithm was developed to automatically detect dynamic and static liquid water present in the gas channels and generate relevant quantitative information. The potential benefit of this software allows the user to obtain a more precise and systematic way to obtain measurements from images of small objects. The void fractions are also determined based on images analysis. The aim of this work is to provide a comprehensive characterization of two-phase flow in an operating fuel cell which can be used towards the optimization of water management and informs design guidelines for gas delivery microchannels for fuel cells and its essential in the design and control of diverse applications. The approach will combine numerical modeling with experimental visualization and measurements.

Keywords: polymer electrolyte fuel cell, air-water two phase flow, gas diffusion layer, microchannels, advancing contact angle, receding contact angle, void fraction, surface tension, image processing

Procedia PDF Downloads 312
7156 Stability Analysis of Hossack Suspension Systems in High Performance Motorcycles

Authors: Ciro Moreno-Ramirez, Maria Tomas-Rodriguez, Simos A. Evangelou

Abstract:

A motorcycle's front end links the front wheel to the motorcycle's chassis and has two main functions: the front wheel suspension and the vehicle steering. Up to this date, several suspension systems have been developed in order to achieve the best possible front end behavior, being the telescopic fork the most common one and already subjected to several years of study in terms of its kinematics, dynamics, stability and control. A motorcycle telescopic fork suspension model consists of a couple of outer tubes which contain the suspension components (coil springs and dampers) internally and two inner tubes which slide into the outer ones allowing the suspension travel. The outer tubes are attached to the frame through two triple trees which connect the front end to the main frame through the steering bearings and allow the front wheel to turn about the steering axis. This system keeps the front wheel's displacement in a straight line parallel to the steering axis. However, there exist alternative suspension designs that allow different trajectories of the front wheel with the suspension travel. In this contribution, the authors investigate an alternative front suspension system (Hossack suspension) and its influence on the motorcycle nonlinear dynamics to identify and reduce stability risks that a new suspension systems may introduce in the motorcycle dynamics. Based on an existing high-fidelity motorcycle mathematical model, the front end geometry is modified to accommodate a Hossack suspension system. It is characterized by a double wishbone design that varies the front end geometry on certain maneuverings and, consequently, the machine's behavior/response. It consists of a double wishbone structure directly attached to the chassis. In here, the kinematics of this system and its impact on the motorcycle performance/stability are analyzed and compared to the well known telescopic fork suspension system. The framework of this research is the mathematical modelling and numerical simulation. Full stability analyses are performed in order to understand how the motorcycle dynamics may be affected by the newly introduced front end design. This study is carried out by a combination of nonlinear dynamical simulation and root-loci methods. A modal analysis is performed in order to get a deeper understanding of the different modes of oscillation and how the Hossack suspension system affects them. The results show that different kinematic designs of a double wishbone suspension systems do not modify the general motorcycle's stability. The normal modes properties remain unaffected by the new geometrical configurations. However, these normal modes differ from one suspension system to the other. It is seen that the normal modes behaviour depends on various important dynamic parameters, such as the front frame flexibility, the steering damping coefficient and the centre of mass location.

Keywords: nonlinear mechanical systems, motorcycle dynamics, suspension systems, stability

Procedia PDF Downloads 223
7155 A Photovoltaic Micro-Storage System for Residential Applications

Authors: Alia Al Nuaimi, Ayesha Al Aberi, Faiza Al Marzouqi, Shaikha Salem Ali Al Yahyaee, Ala Hussein

Abstract:

In this paper, a PV micro-storage system for residential applications is proposed. The term micro refers to the size of the PV storage system, which is in the range of few kilo-watts, compared to the grid size (~GWs). Usually, in a typical load profile of a residential unit, two peak demand periods exist: one at morning and the other at evening time. The morning peak can be partly covered by the PV energy directly, while the evening peak cannot be covered by the PV alone. Therefore, an energy storage system that stores solar energy during daytime and use this stored energy when the sun is absent is a must. A complete design procedure including theoretical analysis followed by simulation verification and economic feasibility evaluation is addressed in this paper.

Keywords: battery, energy storage, photovoltaic, peak shaving, smart grid

Procedia PDF Downloads 321
7154 Design and Implementation of Bluetooth Controlled Autonomous Vehicle

Authors: Amanuel Berhanu Kesamo

Abstract:

This paper presents both circuit simulation and hardware implementation of a robot vehicle that can be either controlled manually via Bluetooth with video streaming or navigate autonomously to a target point by avoiding obstacles. In manual mode, the user controls the mobile robot using C# windows form interfaced via Bluetooth. The camera mounted on the robot is used to capture and send the real time video to the user. In autonomous mode, the robot plans the shortest path to the target point while avoiding obstacles along the way. Ultrasonic sensor is used for sensing the obstacle in its environment. An efficient path planning algorithm is implemented to navigate the robot along optimal route.

Keywords: Arduino Uno, autonomous, Bluetooth module, path planning, remote controlled robot, ultra sonic sensor

Procedia PDF Downloads 142