Search results for: decision tree model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20276

Search results for: decision tree model

13286 Analysis Rotor Bearing System Dynamic Interaction with Bearing Supports

Authors: V. T. Ngo, D. M. Xie

Abstract:

Frequently, in the design of machines, some of parameters that directly affect the rotor dynamics of the machines are not accurately known. In particular, bearing stiffness support is one such parameter. One of the most basic principles to grasp in rotor dynamics is the influence of the bearing stiffness on the critical speeds and mode shapes associated with a rotor-bearing system. Taking a rig shafting as an example, this paper studies the lateral vibration of the rotor with multi-degree-of-freedom by using Finite Element Method (FEM). The FEM model is created and the eigenvalues and eigenvectors are calculated and analyzed to find natural frequencies, critical speeds, mode shapes. Then critical speeds and mode shapes are analyzed by set bearing stiffness changes. The model permitted to identify the critical speeds and bearings that have an important influence on the vibration behavior.

Keywords: lateral vibration, finite element method, rig shafting, critical speed

Procedia PDF Downloads 343
13285 Modeling Core Flooding Experiments for Co₂ Geological Storage Applications

Authors: Avinoam Rabinovich

Abstract:

CO₂ geological storage is a proven technology for reducing anthropogenic carbon emissions, which is paramount for achieving the ambitious net zero emissions goal. Core flooding experiments are an important step in any CO₂ storage project, allowing us to gain information on the flow of CO₂ and brine in the porous rock extracted from the reservoir. This information is important for understanding basic mechanisms related to CO₂ geological storage as well as for reservoir modeling, which is an integral part of a field project. In this work, a different method for constructing accurate models of CO₂-brine core flooding will be presented. Results for synthetic cases and real experiments will be shown and compared with numerical models to exhibit their predictive capabilities. Furthermore, the various mechanisms which impact the CO₂ distribution and trapping in the rock samples will be discussed, and examples from models and experiments will be provided. The new method entails solving an inverse problem to obtain a three-dimensional permeability distribution which, along with the relative permeability and capillary pressure functions, constitutes a model of the flow experiments. The model is more accurate when data from a number of experiments are combined to solve the inverse problem. This model can then be used to test various other injection flow rates and fluid fractions which have not been tested in experiments. The models can also be used to bridge the gap between small-scale capillary heterogeneity effects (sub-core and core scale) and large-scale (reservoir scale) effects, known as the upscaling problem.

Keywords: CO₂ geological storage, residual trapping, capillary heterogeneity, core flooding, CO₂-brine flow

Procedia PDF Downloads 77
13284 Determination of Effect Factor for Effective Parameter on Saccharification of Lignocellulosic Material by Concentrated Acid

Authors: Sina Aghili, Ali Arasteh Nodeh

Abstract:

Tamarisk usage as a new group of lignocelluloses material to produce fermentable sugars in bio-ethanol process was studied. The overall aim of this work was to establish the optimum condition for acid hydrolysis of this new material and a mathematical model predicting glucose release as a function of operation variable. Sulfuric acid concentration in the range of 20 to 60%(w/w), process temperature between 60 to 95oC, hydrolysis time from 120 to 240 min and solid content 5,10,15%(w/w) were used as hydrolysis conditions. HPLC was used to analysis of the product. This analysis indicated that glucose was the main fermentable sugar and was increased with time, temperature and solid content and acid concentration was a parabola influence in glucose production.The process was modeled by a quadratic equation. Curve study and model were found that 42% acid concentration, 15 % solid content and 90oC were in optimum condition.

Keywords: fermentable sugar, saccharification, wood, hydrolysis

Procedia PDF Downloads 339
13283 Colour and Curcuminoids Removal from Turmeric Wastewater Using Activated Carbon Adsorption

Authors: Nattawat Thongpraphai, Anusorn Boonpoke

Abstract:

This study aimed to determine the removal of colour and curcuminoids from turmeric wastewater using granular activated carbon (GAC) adsorption. The adsorption isotherm and kinetic behavior of colour and curcuminoids was invested using batch and fixed bed columns tests. The results indicated that the removal efficiency of colour and curcuminoids were 80.13 and 78.64%, respectively at 8 hr of equilibrium time. The adsorption isotherm of colour and curcuminoids were well fitted with the Freundlich adsorption model. The maximum adsorption capacity of colour and curcuminoids were 130 Pt-Co/g and 17 mg/g, respectively. The continuous experiment data showed that the exhaustion concentration of colour and curcuminoids occurred at 39 hr of operation time. The adsorption characteristic of colour and curcuminoids from turmeric wastewater by GAC can be described by the Thomas model. The maximum adsorption capacity obtained from kinetic approach were 39954 Pt-Co/g and 0.0516 mg/kg for colour and curcuminoids, respectively. Moreover, the decrease of colour and curcuminoids concentration during the service time showed a similar trend.

Keywords: adsorption, turmeric, colour, curcuminoids, activated carbon

Procedia PDF Downloads 427
13282 Examining the Decision-Making Process of Hong Kong High School Students Regarding University Choices after 2019

Authors: Yuanyuan Song

Abstract:

Following the 2019 protests in Hong Kong, significant shifts occurred within society. This study aims to explore whether these events have had an impact on the university preferences of high school students. To delve into these questions, this research immerses itself in the forefront of Hong Kong's educational landscape. It encompasses field studies, interviews, and questionnaires administered to a diverse range of Hong Kong students, as well as their parents and teachers. The findings uncover that the majority of local Hong Kong students and parents possess a limited understanding of mainland China, and this perception has further soured since 2019. Interestingly, the inclination towards pursuing overseas education, particularly in countries like the UK and Australia, has experienced a steady rise. This trend persists despite the fact that esteemed Chinese universities extend preferential admissions policies to Hong Kong students.

Keywords: higher education, university choices, educational sociology, education in Hongkong

Procedia PDF Downloads 145
13281 Robust Fault Diagnosis for Wind Turbine Systems Subjected to Multi-Faults

Authors: Sarah Odofin, Zhiwei Gao, Sun Kai

Abstract:

Operations, maintenance and reliability of wind turbines have received much attention over the years due to rapid expansion of wind farms. This paper explores early fault diagnosis scale technique based on a unique scheme of a 5MW wind turbine system that is optimized by genetic algorithm to be very sensitive to faults and resilient to disturbances. A quantitative model based analysis is pragmatic for primary fault diagnosis monitoring assessment to minimize downtime mostly caused by components breakdown and exploit productivity consistency. Simulation results are computed validating the wind turbine model which demonstrates system performance in a practical application of fault type examples. The results show the satisfactory effectiveness of the applied performance investigated in a Matlab/Simulink/Gatool environment.

Keywords: disturbance robustness, fault monitoring and detection, genetic algorithm, observer technique

Procedia PDF Downloads 382
13280 Human Errors in IT Services, HFACS Model in Root Cause Categorization

Authors: Kari Saarelainen, Marko Jantti

Abstract:

IT service trending of root causes of service incidents and problems is an important part of proactive problem management and service improvement. Human error related root causes are an important root cause category also in IT service management, although it’s proportion among root causes is smaller than in the other industries. The research problem in this study is: How root causes of incidents related to human errors should be categorized in an ITSM organization to effectively support service improvement. Categorization based on IT service management processes and based on Human Factors Analysis and Classification System (HFACS) taxonomy was studied in a case study. HFACS is widely used in human error root cause categorization across many industries. Combining these two categorization models in a two dimensional matrix was found effective, yet impractical for daily work.

Keywords: IT service management, ITIL, incident, problem, HFACS, swiss cheese model

Procedia PDF Downloads 493
13279 Fuzzy Logic Control for Flexible Joint Manipulator: An Experimental Implementation

Authors: Sophia Fry, Mahir Irtiza, Alexa Hoffman, Yousef Sardahi

Abstract:

This study presents an intelligent control algorithm for a flexible robotic arm. Fuzzy control is used to control the motion of the arm to maintain the arm tip at the desired position while reducing vibration and increasing the system speed of response. The Fuzzy controller (FC) is based on adding the tip angular position to the arm deflection angle and using their sum as a feedback signal to the control algorithm. This reduces the complexity of the FC in terms of the input variables, number of membership functions, fuzzy rules, and control structure. Also, the design of the fuzzy controller is model-free and uses only our knowledge about the system. To show the efficacy of the FC, the control algorithm is implemented on the flexible joint manipulator (FJM) developed by Quanser. The results show that the proposed control method is effective in terms of response time, overshoot, and vibration amplitude.

Keywords: fuzzy logic control, model-free control, flexible joint manipulators, nonlinear control

Procedia PDF Downloads 131
13278 A Cost Effective Approach to Develop Mid-Size Enterprise Software Adopted the Waterfall Model

Authors: Mohammad Nehal Hasnine, Md Kamrul Hasan Chayon, Md Mobasswer Rahman

Abstract:

Organizational tendencies towards computer-based information processing have been observed noticeably in the third-world countries. Many enterprises are taking major initiatives towards computerized working environment because of massive benefits of computer-based information processing. However, designing and developing information resource management software for small and mid-size enterprises under budget costs and strict deadline is always challenging for software engineers. Therefore, we introduced an approach to design mid-size enterprise software by using the Waterfall model, which is one of the SDLC (Software Development Life Cycles), in a cost effective way. To fulfill research objectives, in this study, we developed mid-sized enterprise software named “BSK Management System” that assists enterprise software clients with information resource management and perform complex organizational tasks. Waterfall model phases have been applied to ensure that all functions, user requirements, strategic goals, and objectives are met. In addition, Rich Picture, Structured English, and Data Dictionary have been implemented and investigated properly in engineering manner. Furthermore, an assessment survey with 20 participants has been conducted to investigate the usability and performance of the proposed software. The survey results indicated that our system featured simple interfaces, easy operation and maintenance, quick processing, and reliable and accurate transactions.

Keywords: end-user application development, enterprise software design, information resource management, usability

Procedia PDF Downloads 443
13277 Effects of Mechanical Test and Shape of Grain Boundary on Martensitic Transformation in Fe-Ni-C Steel

Authors: Mounir Gaci, Salim Meziani, Atmane Fouathia

Abstract:

The purpose of the present paper is to model the behavior of metal alloy, type TRIP steel (Transformation Induced Plasticity), during solid/solid phase transition. A two-dimensional micromechanical model is implemented in finite element software (ZEBULON) to simulate the martensitic transformation in Fe-Ni-C steel grain under mechanical tensile stress of 250 MPa. The effects of non-uniform grain boundary and the criterion of mechanical shear load on the transformation and on the TRIP value during martensitic transformation are studied. The suggested mechanical criterion is favourable to the influence of the shear phenomenon on the progression of the martensitic transformation (Magee’s mechanism). The obtained results are in satisfactory agreement with experimental ones and show the influence of the grain boundary shape and the chosen mechanical criterion (SMF) on the transformation parameters.

Keywords: martensitic transformation, non-uniform Grain Boundary, TRIP, shear Mechanical force (SMF)

Procedia PDF Downloads 263
13276 Simulation of Surface Runoff in Mahabad Dam Basin, Iran

Authors: Leila Khosravi

Abstract:

A major part of the drinking water in North West of Iran is supplied from Mahabad reservoir 80 km northwest of Mahabad. This reservoir collects water from 750 km-catchment which is undergoing accelerated changes due to deforestation and urbanization. The main objective of this study is to develop a catchment modeling platform which translates ongoing land-use changes, soil data, precipitation and evaporation into surface runoff of the river discharging into the reservoir: Soil and Water Assessment Tool, SWAT, model along with hydro -meteorological records of 1997–2011. A variety of statistical indices were used to evaluate the simulation results for both calibration and validation periods; among them, the robust Nash–Sutcliffe coefficients were found to be 0.52 and 0.62 in the calibration and validation periods, respectively. This project has developed a reliable modeling platform with the benchmark land physical conditions of the Mahabad dam basin.

Keywords: simulation, surface runoff, Mahabad dam, SWAT model

Procedia PDF Downloads 208
13275 Method of Estimating Absolute Entropy of Municipal Solid Waste

Authors: Francis Chinweuba Eboh, Peter Ahlström, Tobias Richards

Abstract:

Entropy, as an outcome of the second law of thermodynamics, measures the level of irreversibility associated with any process. The identification and reduction of irreversibility in the energy conversion process helps to improve the efficiency of the system. The entropy of pure substances known as absolute entropy is determined at an absolute reference point and is useful in the thermodynamic analysis of chemical reactions; however, municipal solid waste (MSW) is a structurally complicated material with unknown absolute entropy. In this work, an empirical model to calculate the absolute entropy of MSW based on the content of carbon, hydrogen, oxygen, nitrogen, sulphur, and chlorine on a dry ash free basis (daf) is presented. The proposed model was derived from 117 relevant organic substances which represent the main constituents in MSW with known standard entropies using statistical analysis. The substances were divided into different waste fractions; namely, food, wood/paper, textiles/rubber and plastics waste and the standard entropies of each waste fraction and for the complete mixture were calculated. The correlation of the standard entropy of the complete waste mixture derived was found to be somsw= 0.0101C + 0.0630H + 0.0106O + 0.0108N + 0.0155S + 0.0084Cl (kJ.K-1.kg) and the present correlation can be used for estimating the absolute entropy of MSW by using the elemental compositions of the fuel within the range of 10.3%  C 95.1%, 0.0%  H  14.3%, 0.0%  O  71.1%, 0.0  N  66.7%, 0.0%  S  42.1%, 0.0%  Cl  89.7%. The model is also applicable for the efficient modelling of a combustion system in a waste-to-energy plant.

Keywords: absolute entropy, irreversibility, municipal solid waste, waste-to-energy

Procedia PDF Downloads 312
13274 Understanding Chronic Pain: Missing the Mark

Authors: Rachid El Khoury

Abstract:

Chronic pain is perhaps the most burdensome health issue facing the planet. Our understanding of the pathophysiology of chronic pain has increased substantially over the past 25 years, including but not limited to changes in the brain. However, we still do not know why chronic pain develops in some people and not in others. Most of the recent developments in pain science, that have direct relevance to clinical management, relate to our understanding of the role of the brain, the role of the immune system, or the role of cognitive and behavioral factors. Although the Biopsychosocial model of pain management was presented decades ago, the Bio-reductionist model remains, unfortunately, at the heart of many practices across professional and geographic boundaries. A large body of evidence shows that nociception is neither sufficient nor necessary for pain. Pain is a conscious experience that can certainly be, and often is, associated with nociception, however, always modulated by countless neurobiological, environmental, and cognitive factors. This study will clarify the current misconceptions of chronic pain concepts, and their misperceptions by clinicians. It will also attempt to bridge the considerable gap between what we already know on pain but somehow disregarded, the development in pain science, and clinical practice.

Keywords: chronic pain, nociception, biopsychosocial, neuroplasticity

Procedia PDF Downloads 66
13273 Using a Design Structure Method to Support Technology Roadmapping for Product-Service Integrated Systems

Authors: Heungwook Son, Sungjoo Lee

Abstract:

Recently, due to intensifying competition in several industries, the importance of meeting customer requirements has increased. The role that service plays in satisfying customer‘s requirements is key area of focus. Thus, the concept of using product development-research in the service system has been actively practiced. As strategic decision making tool, various types of the technology roadmap were suggested in the product-service system (PSS). However, the technology roadmap was configured a top-down form around the technologies of the elements. The limitation is that it hard for it to indicate a variety of interrelations. In response, this paper suggests using the planning support tool of PSS for a DSM for the technology roadmap; it consists of the relationship of product-service-technology as a bottom-up form. Therefore, nine types of the technology roadmap of PSS exist. The first defines the relationship of product-service-technology. The second phase identifies output when of the technology roadmaps are adapted to the DSM process. Finally, the DSM-based forms of each type of technology roadmap are presented through case studies.

Keywords: DSM, technology roadmap, PSS, product-service system, bottom-up

Procedia PDF Downloads 384
13272 Derivation of Fragility Functions of Marine Drilling Risers Under Ocean Environment

Authors: Pranjal Srivastava, Piyali Sengupta

Abstract:

The performance of marine drilling risers is crucial in the offshore oil and gas industry to ensure safe drilling operation with minimum downtime. Experimental investigations on marine drilling risers are limited in the literature owing to the expensive and exhaustive test setup required to replicate the realistic riser model and ocean environment in the laboratory. Therefore, this study presents an analytical model of marine drilling riser for determining its fragility under ocean environmental loading. In this study, the marine drilling riser is idealized as a continuous beam having a concentric circular cross-section. Hydrodynamic loading acting on the marine drilling riser is determined by Morison’s equations. By considering the equilibrium of forces on the marine drilling riser for the connected and normal drilling conditions, the governing partial differential equations in terms of independent variables z (depth) and t (time) are derived. Subsequently, the Runge Kutta method and Finite Difference Method are employed for solving the partial differential equations arising from the analytical model. The proposed analytical approach is successfully validated with respect to the experimental results from the literature. From the dynamic analysis results of the proposed analytical approach, the critical design parameters peak displacements, upper and lower flex joint rotations and von Mises stresses of marine drilling risers are determined. An extensive parametric study is conducted to explore the effects of top tension, drilling depth, ocean current speed and platform drift on the critical design parameters of the marine drilling riser. Thereafter, incremental dynamic analysis is performed to derive the fragility functions of shallow water and deep-water marine drilling risers under ocean environmental loading. The proposed methodology can also be adopted for downtime estimation of marine drilling risers incorporating the ranges of uncertainties associated with the ocean environment, especially at deep and ultra-deepwater.

Keywords: drilling riser, marine, analytical model, fragility

Procedia PDF Downloads 151
13271 Impact Evaluation and Technical Efficiency in Ethiopia: Correcting for Selectivity Bias in Stochastic Frontier Analysis

Authors: Tefera Kebede Leyu

Abstract:

The purpose of this study was to estimate the impact of LIVES project participation on the level of technical efficiency of farm households in three regions of Ethiopia. We used household-level data gathered by IRLI between February and April 2014 for the year 2013(retroactive). Data on 1,905 (754 intervention and 1, 151 control groups) sample households were analyzed using STATA software package version 14. Efforts were made to combine stochastic frontier modeling with impact evaluation methodology using the Heckman (1979) two-stage model to deal with possible selectivity bias arising from unobservable characteristics in the stochastic frontier model. Results indicate that farmers in the two groups are not efficient and operate below their potential frontiers i.e., there is a potential to increase crop productivity through efficiency improvements in both groups. In addition, the empirical results revealed selection bias in both groups of farmers confirming the justification for the use of selection bias corrected stochastic frontier model. It was also found that intervention farmers achieved higher technical efficiency scores than the control group of farmers. Furthermore, the selectivity bias-corrected model showed a different technical efficiency score for the intervention farmers while it more or less remained the same for that of control group farmers. However, the control group of farmers shows a higher dispersion as measured by the coefficient of variation compared to the intervention counterparts. Among the explanatory variables, the study found that farmer’s age (proxy to farm experience), land certification, frequency of visit to improved seed center, farmer’s education and row planting are important contributing factors for participation decisions and hence technical efficiency of farmers in the study areas. We recommend that policies targeting the design of development intervention programs in the agricultural sector focus more on providing farmers with on-farm visits by extension workers, provision of credit services, establishment of farmers’ training centers and adoption of modern farm technologies. Finally, we recommend further research to deal with this kind of methodological framework using a panel data set to test whether technical efficiency starts to increase or decrease with the length of time that farmers participate in development programs.

Keywords: impact evaluation, efficiency analysis and selection bias, stochastic frontier model, Heckman-two step

Procedia PDF Downloads 81
13270 Potential Impacts of Climate Change on Hydrological Droughts in the Limpopo River Basin

Authors: Nokwethaba Makhanya, Babatunde J. Abiodun, Piotr Wolski

Abstract:

Climate change possibly intensifies hydrological droughts and reduces water availability in river basins. Despite this, most research on climate change effects in southern Africa has focused exclusively on meteorological droughts. This thesis projects the potential impact of climate change on the future characteristics of hydrological droughts in the Limpopo River Basin (LRB). The study uses regional climate model (RCM) measurements (from the Coordinated Regional Climate Downscaling Experiment, CORDEX) and a combination of hydrological simulations (using the Soil and Water Assessment Tool Plus model, SWAT+) to predict the impacts at four global warming levels (GWLs: 1.5℃, 2.0℃, 2.5℃, and 3.0℃) under the RCP8.5 future climate scenario. The SWAT+ model was calibrated and validated with a streamflow dataset observed over the basin, and the sensitivity of model parameters was investigated. The performance of the SWAT+LRB model was verified using the Nash-Sutcliffe efficiency (NSE), Percent Bias (PBIAS), Root Mean Square Error (RMSE), and coefficient of determination (R²). The Standardized Precipitation Evapotranspiration Index (SPEI) and the Standardized Precipitation Index (SPI) have been used to detect meteorological droughts. The Soil Water Index (SSI) has been used to define agricultural drought, while the Water Yield Drought Index (WYLDI), the Surface Run-off Index (SRI), and the Streamflow Index (SFI) have been used to characterise hydrological drought. The performance of the SWAT+ model simulations over LRB is sensitive to the parameters CN2 (initial SCS runoff curve number for moisture condition II) and ESCO (soil evaporation compensation factor). The best simulation generally performed better during the calibration period than the validation period. In calibration and validation periods, NSE is ≤ 0.8, while PBIAS is ≥ ﹣80.3%, RMSE ≥ 11.2 m³/s, and R² ≤ 0.9. The simulations project a future increase in temperature and potential evapotranspiration over the basin, but they do not project a significant future trend in precipitation and hydrological variables. However, the spatial distribution of precipitation reveals a projected increase in precipitation in the southern part of the basin and a decline in the northern part of the basin, with the region of reduced precipitation projected to increase with GWLs. A decrease in all hydrological variables is projected over most parts of the basin, especially over the eastern part of the basin. The simulations predict meteorological droughts (i.e., SPEI and SPI), agricultural droughts (i.e., SSI), and hydrological droughts (i.e., WYLDI, SRI) would become more intense and severe across the basin. SPEI-drought has a greater magnitude of increase than SPI-drought, and agricultural and hydrological droughts have a magnitude of increase between the two. As a result, this research suggests that future hydrological droughts over the LRB could be more severe than the SPI-drought projection predicts but less severe than the SPEI-drought projection. This research can be used to mitigate the effects of potential climate change on basin hydrological drought.

Keywords: climate change, CORDEX, drought, hydrological modelling, Limpopo River Basin

Procedia PDF Downloads 133
13269 Chest Pain as a Predictor for Heart Issues in Geriatrics

Authors: Leila Kargar, Homa Abri, Golsa Safai

Abstract:

The occurrence of chest pain among geriatrics could be considered as a predictor of heart issues. There is a need for attention to this pain among this population. This review paper has tried to collect the recent data with attention to the chest pain among geriatrics. This review paper has focused on specific keywords, including chest pain, heart issues, and geriatrics, among published papers from 2015 till 2020. To collect data for this purpose, Scopus, Web of Sciences, and PubMed were used. After inserting related papers to the Endnote, an independent researcher checked the abstract, and papers with unclear methods or non-English language were excluded. Finally, 7-papers were included in this review paper. The findings of those papers showed that chest pain could be a predictor for heart issues, and also, there is a direct relationship between chest pain and heart issues among geriatrics. So, early detection and an accurate decision could be helpful to prevent heart issues in this population.

Keywords: pain, heart issue, geriatrics, health

Procedia PDF Downloads 224
13268 Optimization of Process Parameters Affecting Biogas Production from Organic Fraction of Municipal Solid Waste via Anaerobic Digestion

Authors: B. Sajeena Beevi, P. P. Jose, G. Madhu

Abstract:

The aim of this study was to obtain the optimal conditions for biogas production from anaerobic digestion of organic fraction of municipal solid waste (OFMSW) using response surface methodology (RSM). The parameters studied were initial pH, substrate concentration and total organic carbon (TOC). The experimental results showed that the linear model terms of initial pH and substrate concentration and the quadratic model terms of the substrate concentration and TOC had significant individual effect (p < 0.05) on biogas yield. However, there was no interactive effect between these variables (p > 0.05). The highest level of biogas produced was 53.4 L/Kg VS at optimum pH, substrate concentration and total organic carbon of 6.5, 99gTS/L, and 20.32 g/L respectively.

Keywords: anaerobic digestion, biogas, optimization, response surface methodology

Procedia PDF Downloads 440
13267 Examining the Dynamics of FDI Inflows in Both BRICS and G7 Economies: Dissecting the Influence of Geopolitical Risk versus Economic Policy Uncertainty

Authors: Adelakun O. Johnson

Abstract:

The quest to mitigate the probable adverse effects of geopolitical risk on FDI inflows tends to result in more frequent changes in economic policies and, as a result, heightened policy uncertainty. In this regard, we extend the literature on the dynamics of FDI inflows to include the hypothesis of the possibility of geopolitical risk escalating the adverse effects of economic policy uncertainty on FDI inflows. To test the robustness of this hypothesis, we use the cases of different economic groups characterized by different levels of economic development and varying degrees of FDI confidence. Employing an ARDL-based dynamic panel data model that accounts for both non-stationarity and heterogeneity effects, we show result that suggests GPR and EPU retard the inflows of FDI in both economies but mainly in the short-run situation. In the long run, however, higher EPU not attributed to GPR is likely to boost the inflows of FDI rather than retarding, at least in the case of the G7 economy.

Keywords: FDI inflows, geopolitical risk, economic policy uncertainty, panel ARDL model

Procedia PDF Downloads 31
13266 Formula Student Car: Design, Analysis and Lap Time Simulation

Authors: Rachit Ahuja, Ayush Chugh

Abstract:

Aerodynamic forces and moments, as well as tire-road forces largely affects the maneuverability of the vehicle. Car manufacturers are largely fascinated and influenced by various aerodynamic improvements made in formula cars. There is constant effort of applying these aerodynamic improvements in road vehicles. In motor racing, the key differentiating factor in a high performance car is its ability to maintain highest possible acceleration in appropriate direction. One of the main areas of concern in motor racing is balance of aerodynamic forces and stream line the flow of air across the body of the vehicle. At present, formula racing cars are regulated by stringent FIA norms, there are constrains for dimensions of the vehicle, engine capacity etc. So one of the fields in which there is a large scope of improvement is aerodynamics of the vehicle. In this project work, an attempt has been made to design a formula- student (FS) car, improve its aerodynamic characteristics through steady state CFD simulations and simultaneously calculate its lap time. Initially, a CAD model of a formula student car is made using SOLIDWORKS as per the given dimensions and a steady-state external air-flow simulation is performed on the baseline model of the formula student car without any add on device to evaluate and analyze the air-flow pattern around the car and aerodynamic forces using FLUENT Solver. A detailed survey on different add-on devices used in racing application like: - front wing, diffuser, shark pin, T- wing etc. is made and geometric model of these add-on devices are created. These add-on devices are assembled with the baseline model. Steady state CFD simulations are done on the modified car to evaluate the aerodynamic effects of these add-on devices on the car. Later comparison of lap time simulation of the formula student car with and without the add-on devices is done with the help of MATLAB. Aerodynamic performances like: - lift, drag and their coefficients are evaluated for different configuration and design of the add-on devices at different speed of the vehicle. From parametric CFD simulations on formula student car attached with add-on devices, there is a considerable amount of drag and lift force reduction besides streamlining the airflow across the car. The best possible configuration of these add-on devices is obtained from these CFD simulations and also use of these add-on devices have shown an improvement in performance of the car which can be compared by various lap time simulations of the car.

Keywords: aerodynamic performance, front wing, laptime simulation, t-wing

Procedia PDF Downloads 200
13265 Structural and Modal Analyses of an s1223 High-Lift Airfoil Wing for Drone Design

Authors: Johnson Okoduwa Imumbhon, Mohammad Didarul Alam, Yiding Cao

Abstract:

Structural analyses are commonly employed to test the integrity of aircraft component systems in the design stage to demonstrate the capability of the structural components to withstand what it was designed for, as well as to predict potential failure of the components. The analyses are also essential for weight minimization and selecting the most resilient materials that will provide optimal outcomes. This research focuses on testing the structural nature of a high-lift low Reynolds number airfoil profile design, the Selig S1223, under certain loading conditions for a drone model application. The wing (ribs, spars, and skin) of the drone model was made of carbon fiber-reinforced polymer and designed in SolidWorks, while the finite element analysis was carried out in ANSYS mechanical in conjunction with the lift and drag forces that were derived from the aerodynamic airfoil analysis. Additionally, modal analysis was performed to calculate the natural frequencies and the mode shapes of the wing structure. The structural strain and stress determined the minimal deformations under the wing loading conditions, and the modal analysis showed the prominent modes that were excited by the given forces. The research findings from the structural analysis of the S1223 high-lift airfoil indicated that it is applicable for use in an unmanned aerial vehicle as well as a novel reciprocating-airfoil-driven vertical take-off and landing (VTOL) drone model.

Keywords: CFRP, finite element analysis, high-lift, S1223, strain, stress, VTOL

Procedia PDF Downloads 235
13264 Machine Learning Approach for Stress Detection Using Wireless Physical Activity Tracker

Authors: B. Padmaja, V. V. Rama Prasad, K. V. N. Sunitha, E. Krishna Rao Patro

Abstract:

Stress is a psychological condition that reduces the quality of sleep and affects every facet of life. Constant exposure to stress is detrimental not only for mind but also body. Nevertheless, to cope with stress, one should first identify it. This paper provides an effective method for the cognitive stress level detection by using data provided from a physical activity tracker device Fitbit. This device gathers people’s daily activities of food, weight, sleep, heart rate, and physical activities. In this paper, four major stressors like physical activities, sleep patterns, working hours and change in heart rate are used to assess the stress levels of individuals. The main motive of this system is to use machine learning approach in stress detection with the help of Smartphone sensor technology. Individually, the effect of each stressor is evaluated using logistic regression and then combined model is built and assessed using variants of ordinal logistic regression models like logit, probit and complementary log-log. Then the quality of each model is evaluated using Akaike Information Criterion (AIC) and probit is assessed as the more suitable model for our dataset. This system is experimented and evaluated in a real time environment by taking data from adults working in IT and other sectors in India. The novelty of this work lies in the fact that stress detection system should be less invasive as possible for the users.

Keywords: physical activity tracker, sleep pattern, working hours, heart rate, smartphone sensor

Procedia PDF Downloads 259
13263 Numerical Modelling of Effective Diffusivity in Bone Tissue Engineering

Authors: Ayesha Sohail, Khadija Maqbool, Anila Asif, Haroon Ahmad

Abstract:

The field of tissue engineering is an active area of research. Bone tissue engineering helps to resolve the clinical problems of critical size and non-healing defects by the creation of man-made bone tissue. We will design and validate an efficient numerical model, which will simulate the effective diffusivity in bone tissue engineering. Our numerical model will be based on the finite element analysis of the diffusion-reaction equations. It will have the ability to optimize the diffusivity, even at multi-scale, with the variation of time. It will also have a special feature, with which we will not only be able to predict the oxygen, glucose and cell density dynamics, more accurately, but will also sort the issues arising due to anisotropy. We will fix these problems with the help of modifying the governing equations, by selecting appropriate spatio-temporal finite element schemes, by adaptive grid refinement strategy and by transient analysis.

Keywords: scaffolds, porosity, diffusion, transient analysis

Procedia PDF Downloads 545
13262 iCount: An Automated Swine Detection and Production Monitoring System Based on Sobel Filter and Ellipse Fitting Model

Authors: Jocelyn B. Barbosa, Angeli L. Magbaril, Mariel T. Sabanal, John Paul T. Galario, Mikka P. Baldovino

Abstract:

The use of technology has become ubiquitous in different areas of business today. With the advent of digital imaging and database technology, business owners have been motivated to integrate technology to their business operation ranging from small, medium to large enterprises. Technology has been found to have brought many benefits that can make a business grow. Hog or swine raising, for example, is a very popular enterprise in the Philippines, whose challenges in production monitoring can be addressed through technology integration. Swine production monitoring can become a tedious task as the enterprise goes larger. Specifically, problems like delayed and inconsistent reports are most likely to happen if counting of swine per pen of which building is done manually. In this study, we present iCount, which aims to ensure efficient swine detection and counting that hastens the swine production monitoring task. We develop a system that automatically detects and counts swine based on Sobel filter and ellipse fitting model, given the still photos of the group of swine captured in a pen. We improve the Sobel filter detection result through 8-neigbhorhood rule implementation. Ellipse fitting technique is then employed for proper swine detection. Furthermore, the system can generate periodic production reports and can identify the specific consumables to be served to the swine according to schedules. Experiments reveal that our algorithm provides an efficient way for detecting swine, thereby providing a significant amount of accuracy in production monitoring.

Keywords: automatic swine counting, swine detection, swine production monitoring, ellipse fitting model, sobel filter

Procedia PDF Downloads 316
13261 Testing a Motivational Model of Physical Education on Contextual Outcomes and Total Moderate to Vigorous Physical Activity of Middle School Students

Authors: Arto Grasten

Abstract:

Given the rising trend in obesity in children and youth, age-related decline in moderate- to- vigorous-intensity physical activity (MVPA) in several Western, African, and Asian countries in addition to limited evidence of behavioral, affective, cognitive outcomes in physical education, it is important to clarify the motivational processes in physical education classes behind total MVPA engagement. The present study examined the full sequence of the Hierarchical Model of Motivation in physical education including motivational climate, basic psychological needs, intrinsic motivation, contextual behavior, affect, cognition, total MVPA, and associated links to body mass index (BMI) and gender differences. A cross-sectional data comprised self-reports and objective assessments of 770 middle school students (Mage = 13.99 ± .81 years, 52% of girls) in North-East Finland. In order to test the associations between motivational climate, psychological needs, intrinsic motivation, cognition, behavior, affect, and total MVPA, a path model was implemented. Indirect effects between motivational climate and cognition, behavior, affect and total MVPA were tested by setting basic needs and intrinsic motivation as mediators into the model. The findings showed that direct and indirect paths for girls and boys associated with different contextual outcomes and girls’ indirect paths were not related with total MVPA. Precisely, task-involving climate-mediated by physical competence and intrinsic motivation related to enjoyment, importance, and graded assessments within girls, whereas task-involving climate associated with enjoyment and importance via competence and autonomy, and total MVPA via autonomy, intrinsic motivation, and importance within boys. Physical education assessments appeared to be essential in motivating students to participate in greater total MVPA. BMI was negatively linked with competence and relatedness only among girls. Although, the current and previous empirical findings supported task-involving teaching methods in physical education, in some cases, ego-involving climate should not be totally avoided. This may indicate that girls and boys perceive physical education classes in a different way. Therefore, both task- and ego-involving teaching practices can be useful ways of driving behavior in physical education classes.

Keywords: achievement goal theory, assessment, enjoyment, hierarchical model of motivation, physical activity, self-determination theory

Procedia PDF Downloads 283
13260 A Consensus Approach to the Formulation of a School ICT Policy: A Q-Methodology Case Study

Authors: Thiru Vandeyar

Abstract:

This study sets out to explore how teachers’ beliefs and attitudes about ICT policy influence a consensus approach to the formulation of a school ICT policy. This case study proposes Q- methodology as an innovative method to facilitate a school’s capacity to develop policy reflecting teacher beliefs and attitudes. Q-methodology is used as a constructivist approach to the formulation of an ICT policy. Data capture was a mix of Q-methodology and qualitative principles. Data was analyzed by means of document, content and cluster analysis methods. Findings were threefold: First, teachers’ beliefs and attitudes about ICT policy influenced a consensus approach by including teachers as policy decision-makers. Second, given the opportunity, teachers have the inherent ability to deconstruct and critically engage with policy statements according to their own professional beliefs and attitudes. And third, an inclusive approach to policy formulation may inform the practice of school leaders and policymakers alike on how schools may develop their own policy.

Keywords: ICT, policy, teacher beliefs, consensus

Procedia PDF Downloads 516
13259 A Behavioral Approach of Impulse Buying: Application to Algerian Food Stores

Authors: Amel Graa, Maachou Dani El Kebir

Abstract:

This paper investigates the impulse buying behavior of Algerian consumer. In that purpose, we try to better understand processes underlying impulsive buying experiences by examining the theoretical framework and using Mehrabian and Russell’s structure. A model is then proposed and tested on a sample of 1500 shoppers who were recruited among customers of food stores. This model aims to explain the role of some situational variables, personal variables, variables linked to the product characteristics and emotional states on the impulse buying behavior. Following to this empirical study, it was possible to conclude that Algerian consumer has a weak tendency toward impulse buying of food products. The results indicate that seller guidance has a significant impact on the impulse buying, whereas the price of the product was negatively related. According to the results; perception of crowding was associated with scarcity and it was positively linked with impulse buying behavior. This study can help marketers determine the in-store factors that impact purely spontaneous purchases of items that otherwise would not end up in the shopping cart. Our research findings offer important information for benchmarking managerial expectations with regard to product selection and merchandising decisions. As futures perspectives, we propose new research areas related to the impulse buying behavior such as studying different types of stores (for example supermarket), or other types of product (clothing), or studying consumption of food products in religious month of Muslims (Ramadan).

Keywords: impulse buying, situational variables, personal variables, emotional states, PAD model of Merhabian and Russell, Algerian consumer

Procedia PDF Downloads 423
13258 Convergence Results of Two-Dimensional Homogeneous Elastic Plates from Truncation of Potential Energy

Authors: Erick Pruchnicki, Nikhil Padhye

Abstract:

Plates are important engineering structures which have attracted extensive research since the 19th century. The subject of this work is statical analysis of a linearly elastic homogenous plate under small deformations. A 'thin plate' is a three-dimensional structure comprising of a small transverse dimension with respect to a flat mid-surface. The general aim of any plate theory is to deduce a two-dimensional model, in terms of mid-surface quantities, to approximately and accurately describe the plate's deformation in terms of mid-surface quantities. In recent decades, a common starting point for this purpose is to utilize series expansion of a displacement field across the thickness dimension in terms of the thickness parameter (h). These attempts are mathematically consistent in deriving leading-order plate theories based on certain a priori scaling between the thickness and the applied loads; for example, asymptotic methods which are aimed at generating leading-order two-dimensional variational problems by postulating formal asymptotic expansion of the displacement fields. Such methods rigorously generate a hierarchy of two-dimensional models depending on the order of magnitude of the applied load with respect to the plate-thickness. However, in practice, applied loads are external and thus not directly linked or dependent on the geometry/thickness of the plate; thus, rendering any such model (based on a priori scaling) of limited practical utility. In other words, the main limitation of these approaches is that they do not furnish a single plate model for all orders of applied loads. Following analogy of recent efforts of deploying Fourier-series expansion to study convergence of reduced models, we propose two-dimensional model(s) resulting from truncation of the potential energy and rigorously prove the convergence of these two-dimensional plate models to the parent three-dimensional linear elasticity with increasing truncation order of the potential energy.

Keywords: plate theory, Fourier-series expansion, convergence result, Legendre polynomials

Procedia PDF Downloads 115
13257 Effect of Runup over a Vertical Pile Supported Caisson Breakwater and Quarter Circle Pile Supported Caisson Breakwater

Authors: T. J. Jemi Jeya, V. Sriram

Abstract:

Pile Supported Caisson breakwater is an ecofriendly breakwater very useful in coastal zone protection. The model is developed by considering the advantages of both caisson breakwater and pile supported breakwater, where the top portion is a vertical or quarter circle caisson and the bottom portion consists of a pile supported breakwater defined as Vertical Pile Supported Breakwater (VPSCB) and Quarter-circle Pile Supported Breakwater (QPSCB). The study mainly focuses on comparison of run up over VPSCB and QPSCB under oblique waves. The experiments are carried out in a shallow wave basin under different water depths (d = 0.5 m & 0.55 m) and under different oblique regular waves (00, 150, 300). The run up over the surface is measured by placing two run up probes over the surface at 0.3 m on both sides from the centre of the model. The results show that the non-dimensional shoreward run up shows slight decrease with respect to increase in angle of wave attack.

Keywords: Caisson breakwater, pile supported breakwater, quarter circle breakwater, vertical breakwater

Procedia PDF Downloads 156