Search results for: structural safety
459 Development Project, Land Acquisition and Rehabilitation: A Study of Navi Mumbai International Airport Project, India
Authors: Rahul Rajak, Archana Kumari Roy
Abstract:
Purpose: Development brings about structural change in the society. It is essential for socio-economic progress of the society, but it also causes pain to the people who are forced to displace from their motherland. Most of the people who are displaced due to development are poor and tribes. Development and displacement are interlinked with each other in the sense development sometimes leads to displacement of people. These studies mainly focus on socio-economic profile of villages and villagers likely to be affected by the Airport Project and they examine the issues of compensation and people’s level of satisfaction. Methodology: The study is based on Descriptive design; it is basically observational and correlation study. Primary data is used in this study. Considering the time and resource constrains, 100 people were interviewed covering socio-economic and demographic diversities from 6 out of 10 affected villages. Due to Navi Mumbai International Airport Project ten villages have to be displaced. Out of ten villages, this study is based on only six villages. These are Ulwe, Ganeshpuri, Targhar Komberbuje, Chincpada and Kopar. All six villages situated in Raigarh district under the Taluka Panvel in Maharashtra. Findings: It is revealed from the survey that there are three main castes of affected villages that are Agri, Koli, and Kradi. Entire village population of migrated person is very negligible. All three caste have main occupation are agricultural and fishing activities. People’s perception revealed that due to the establishment of the airport project, they may have more opportunities and scope of development rather than the adverse effect, but vigorously leave a motherland is psychological effect of the villagers. Research Limitation: This study is based on only six villages, the scenario of the entire ten affected villages is not explained by this research. Practical implication: The scenario of displacement and resettlement signifies more than a mere physical relocation. Compensation is not only hope for villagers, is it only give short time relief. There is a need to evolve institutions to protect and strengthen the right of Individuals. The development induced displacement exposed them to a new reality, the reality of their legality and illegality of stay on the land which belongs to the state. Originality: Mumbai has large population and high industrialized city have put land at the center of any policy implication. This paper demonstrates through the actual picture gathered from the field that how seriously the affected people suffered and are still suffering because of the land acquisition for the Navi Mumbai International Airport Project. The whole picture arise the question which is how long the government can deny the rights to farmers and agricultural laborers and remain unwilling to establish the balance between democracy and development.Keywords: compensation, displacement, land acquisition, project affected person (PAPs), rehabilitation
Procedia PDF Downloads 317458 Role of Psychological Capital in Organizational and Personal Outcomes: An Exploratory Study of Medical Professionals in Pakistan
Authors: Shazia Almas, Jaffar Iqbal, Nazia Almas
Abstract:
In most of the South Asian countries like Pakistan medical profession is one the most valued and respectful professions yet being a medical professional requires an enormous amount of responsibilities and work overload at the same time which possibly can be in contrast with family role of a doctor. Job and family are two primary spheres of a person's life no matter whatever the profession one adopts and the type of family one is running. There is a bi-directional relationship between job and family. The type and nature of work, time schedules, working shifts in medical profession are very demanding in the countries like Pakistan where number of patients is far more higher than the number of doctors available. The work life also have significant impact on family life and vice versa. Because of the sensitivity and interdependency of these relations, today’s overarching and competing demands remain dissatisfactory. The main objective of the current research is to investigate how interpersonal relationships affect work and work affects interpersonal relationships of medical professionals. In line with identifying these facts, the current study aimed to examine the predictive role of psychological capital (self-efficacy, hope, optimism, and resilience), in organizational outcome (job satisfaction) and personal outcome (family satisfaction) amongst male and medical professionals. A total of 350 participants from public and private sector hospitals of Pakistan were recruited through simple random and stratified sampling techniques, with age ranges from 26-50 years. The questionnaire including established and certified self-report measures of Psychological Capital Questionnaire, Job Satisfaction, and Family Satisfaction were adopted to collect the data. The reliability and validity of mentioned instruments were established through Cronbach’s alpha and factor analyses (exploratory and confirmatory) respectively using Structural Equation Modeling (SEM) by AMOS. The proposed hypotheses were tested using Pearson’s Correlation and Regression analyses for predicting effect whereas, t-Test was deployed to verify the difference between male and female health professionals. The results revealed that self-efficacy and optimism predicted job satisfaction while, self-efficacy, hope, and resilience predicted family satisfaction. Moreover, the results depicted significant gender differences in job satisfaction where females were higher on job satisfaction as compared to male medical professionals but no significant differences were observed in levels of family satisfaction between both genders. The study has implications for social, organizational and work policy designers. The study also paves for more researches with positive psychological approach to promote work-family harmony.Keywords: family satisfaction, job satisfaction, medical professionals, psychological capital
Procedia PDF Downloads 250457 Humanizing Industrial Architecture: When Form Meets Function and Emotion
Authors: Sahar Majed Asad
Abstract:
Industrial structures have historically focused on functionality and efficiency, often disregarding aesthetics and human experience. However, a new approach is emerging that prioritizes humanizing industrial architecture and creating spaces that promote well-being, sustainability, and social responsibility. This study explores the motivations and design strategies behind this shift towards more human-centered industrial environments, providing practical guidance for architects, designers, and other stakeholders interested in incorporating these principles into their work. Through in-depth interviews with architects, designers, and industry experts, as well as a review of relevant literature, this study uncovers the reasons for this change in industrial design. The findings reveal that this shift is driven by a desire to create environments that prioritize the needs and experiences of the people who use them. The study identifies strategies such as incorporating natural elements, flexible design, and advanced technologies as crucial in achieving human-centric industrial design. It also emphasizes that effective communication and collaboration among stakeholders are crucial for successful human-centered design outcomes. This paper provides a comprehensive analysis of the motivations and design strategies behind the humanization of industrial architecture. It begins by examining the history of industrial architecture and highlights the focus on functionality and efficiency. The paper then explores the emergence of human-centered design principles in industrial architecture, discussing the benefits of this approach, including creating more sustainable and socially responsible environments.The paper explains specific design strategies that prioritize the human experience of industrial spaces. It outlines how incorporating natural elements like greenery and natural lighting can create more visually appealing and comfortable environments for industrial workers. Flexible design solutions, such as movable walls and modular furniture, can make spaces more adaptable to changing needs and promote a sense of ownership and creativity among workers. Advanced technologies, such as sensors and automation, can improve the efficiency and safety of industrial spaces while also enhancing the human experience. To provide practical guidance, the paper offers recommendations for incorporating human-centered design principles into industrial structures. It emphasizes the importance of understanding the needs and experiences of the people who use these spaces and provides specific examples of how natural elements, flexible design, and advanced technologies can be incorporated into industrial structures to promote human well-being. In conclusion, this study demonstrates that the humanization of industrial architecture is a growing trend that offers tremendous potential for creating more sustainable and socially responsible built environments. By prioritizing the human experience of industrial spaces, designers can create environments that promote well-being, sustainability, and social responsibility. This research study provides practical guidance for architects, designers, and other stakeholders interested in incorporating human-centered design principles into their work, demonstrating that a human-centered approach can lead to functional and aesthetically pleasing industrial spaces that promote human well-being and contribute to a better future for all.Keywords: human-centered design, industrial architecture, sustainability, social responsibility
Procedia PDF Downloads 161456 Design Development and Qualification of a Magnetically Levitated Blower for C0₂ Scrubbing in Manned Space Missions
Authors: Larry Hawkins, Scott K. Sakakura, Michael J. Salopek
Abstract:
The Marshall Space Flight Center is designing and building a next-generation CO₂ removal system, the Four Bed Carbon Dioxide Scrubber (4BCO₂), which will use the International Space Station (ISS) as a testbed. The current ISS CO2 removal system has faced many challenges in both performance and reliability. Given that CO2 removal is an integral Environmental Control and Life Support System (ECLSS) subsystem, the 4BCO2 Scrubber has been designed to eliminate the shortfalls identified in the current ISS system. One of the key required upgrades was to improve the performance and reliability of the blower that provides the airflow through the CO₂ sorbent beds. A magnetically levitated blower, capable of higher airflow and pressure than the previous system, was developed to meet this need. The design and qualification testing of this next-generation blower are described here. The new blower features a high-efficiency permanent magnet motor, a five-axis, active magnetic bearing system, and a compact controller containing both a variable speed drive and a magnetic bearing controller. The blower uses a centrifugal impeller to pull air from the inlet port and drive it through an annular space around the motor and magnetic bearing components to the exhaust port. Technical challenges of the blower and controller development include survival of the blower system under launch random vibration loads, operation in microgravity, packaging under strict size and weight requirements, and successful operation during 4BCO₂ operational changeovers. An ANSYS structural dynamic model of the controller was used to predict response to the NASA defined random vibration spectrum and drive minor design changes. The simulation results are compared to measurements from qualification testing the controller on a vibration table. Predicted blower performance is compared to flow loop testing measurements. Dynamic response of the system to valve changeovers is presented and discussed using high bandwidth measurements from dynamic pressure probes, magnetic bearing position sensors, and actuator coil currents. The results presented in the paper show that the blower controller will survive launch vibration levels, the blower flow meets the requirements, and the magnetic bearings have adequate load capacity and control bandwidth to maintain the desired rotor position during the valve changeover transients.Keywords: blower, carbon dioxide removal, environmental control and life support system, magnetic bearing, permanent magnet motor, validation testing, vibration
Procedia PDF Downloads 135455 Synergistic Effect of Chondroinductive Growth Factors and Synovium-Derived Mesenchymal Stem Cells on Regeneration of Cartilage Defects in Rabbits
Authors: M. Karzhauov, А. Mukhambetova, M. Sarsenova, E. Raimagambetov, V. Ogay
Abstract:
Regeneration of injured articular cartilage remains one of the most difficult and unsolved problems in traumatology and orthopedics. Currently, for the treatment of cartilage defects surgical techniques for stimulation of the regeneration of cartilage in damaged joints such as multiple microperforation, mosaic chondroplasty, abrasion and microfractures is used. However, as shown by clinical practice, they can not provide a full and sustainable recovery of articular hyaline cartilage. In this regard, the current high hopes in the regeneration of cartilage defects reasonably are associated with the use of tissue engineering approaches to restore the structural and functional characteristics of damaged joints using stem cells, growth factors and biopolymers or scaffolds. The purpose of the present study was to investigate the effects of chondroinductive growth factors and synovium-derived mesenchymal stem cells (SD-MSCs) on the regeneration of cartilage defects in rabbits. SD-MSCs were isolated from the synovium membrane of Flemish giant rabbits, and expanded in complete culture medium α-MEM. Rabbit SD-MSCs were characterized by CFU-assay and by their ability to differentiate into osteoblasts, chondrocytes and adipocytes. The effects of growth factors (TGF-β1, BMP-2, BMP-4 and IGF-I) on MSC chondrogenesis were examined in micromass pellet cultures using histological and biochemical analysis. Articular cartilage defect (4mm in diameter) in the intercondylar groove of the patellofemoral joint was performed with a kit for the mosaic chondroplasty. The defect was made until subchondral bone plate. Delivery of SD-MSCs and growth factors was conducted in combination with hyaloronic acid (HA). SD-MSCs, growth factors and control groups were compared macroscopically and histologically at 10, 30, 60 and 90 days aftrer intra-articular injection. Our in vitro comparative study revealed that TGF-β1 and BMP-4 are key chondroinductive factors for both the growth and chondrogenesis of SD-MSCs. The highest effect on MSC chondrogenesis was observed with the synergistic interaction of TGF-β1 and BMP-4. In addition, biochemical analysis of the chondrogenic micromass pellets also revealed that the levels of glycosaminoglycans and DNA after combined treatment with TGF-β1 and BMP-4 was significantly higher in comparison to individual application of these factors. In vivo study showed that for complete regeneration of cartilage defects with intra-articular injection of SD-MSCs with HA takes time 90 days. However, single injection of SD-MSCs in combiantion with TGF-β1, BMP-4 and HA significantly promoted regeneration rate of the cartilage defects in rabbits. In this case, complete regeneration of cartilage defects was observed in 30 days after intra-articular injection. Thus, our in vitro and in vivo study demonstrated that combined application of rabbit SD-MSC with chondroinductive growth factors and HA results in strong synergistic effect on the chondrogenesis significantly enhancing regeneration of the damaged cartilage.Keywords: Mesenchymal stem cells, synovium, chondroinductive factors, TGF-β1, BMP-2, BMP-4, IGF-I
Procedia PDF Downloads 306454 Mechanical Properties of Diamond Reinforced Ni Nanocomposite Coatings Made by Co-Electrodeposition with Glycine as Additive
Authors: Yanheng Zhang, Lu Feng, Yilan Kang, Donghui Fu, Qian Zhang, Qiu Li, Wei Qiu
Abstract:
Diamond-reinforced Ni matrix composite has been widely applied in engineering for coating large-area structural parts owing to its high hardness, good wear resistance and corrosion resistance compared with those features of pure nickel. The mechanical properties of Ni-diamond composite coating can be promoted by the high incorporation and uniform distribution of diamond particles in the nickel matrix, while the distribution features of particles are affected by electrodeposition process parameters, especially the additives in the plating bath. Glycine has been utilized as an organic additive during the preparation of pure nickel coating, which can effectively increase the coating hardness. Nevertheless, to author’s best knowledge, no research about the effects of glycine on the Ni-diamond co-deposition has been reported. In this work, the diamond reinforced Ni nanocomposite coatings were fabricated by a co-electrodeposition technique from a modified Watt’s type bath in the presence of glycine. After preparation, the SEM morphology of the composite coatings was observed combined with energy dispersive X-ray spectrometer, and the diamond incorporation was analyzed. The surface morphology and roughness were obtained by a three-dimensional profile instrument. 3D-Debye rings formed by XRD were analyzed to characterize the nickel grain size and orientation in the coatings. The average coating thickness was measured by a digital micrometer to deduce the deposition rate. The microhardness was tested by automatic microhardness tester. The friction coefficient and wear volume were measured by reciprocating wear tester to characterize the coating wear resistance and cutting performance. The experimental results confirmed that the presence of glycine effectively improved the surface morphology and roughness of the composite coatings. By optimizing the glycine concentration, the incorporation of diamond particles was increased, while the nickel grain size decreased with increasing glycine. The hardness of the composite coatings was increased as the glycine concentration increased. The friction and wear properties were evaluated as the glycine concentration was optimized, showing a decrease in the wear volume. The wear resistance of the composite coatings increased as the glycine content was increased to an optimum value, beyond which the wear resistance decreased. Glycine complexation contributed to the nickel grain refinement and improved the diamond dispersion in the coatings, both of which made a positive contribution to the amount and uniformity of embedded diamond particles, thus enhancing the microhardness, reducing the friction coefficient, and hence increasing the wear resistance of the composite coatings. Therefore, additive glycine can be used during the co-deposition process to improve the mechanical properties of protective coatings.Keywords: co-electrodeposition, glycine, mechanical properties, Ni-diamond nanocomposite coatings
Procedia PDF Downloads 125453 Clastic Sequence Stratigraphy of Late Jurassic to Early Cretaceous Formations of Jaisalmer Basin, Rajasthan
Authors: Himanshu Kumar Gupta
Abstract:
The Jaisalmer Basin is one of the parts of the Rajasthan basin in northwestern India. The presence of five major unconformities/hiatuses of varying span i.e. at the top of Archean basement, Cambrian, Jurassic, Cretaceous, and Eocene have created the foundation for constructing a sequence stratigraphic framework. Based on basin formative tectonic events and their impact on sedimentation processes three first-order sequences have been identified in Rajasthan Basin. These are Proterozoic-Early Cambrian rift sequence, Permian to Middle-Late Eocene shelf sequence and Pleistocene - Recent sequence related to Himalayan Orogeny. The Permian to Middle Eocene I order sequence is further subdivided into three-second order sequences i.e. Permian to Late Jurassic II order sequence, Early to Late Cretaceous II order sequence and Paleocene to Middle-Late Eocene II order sequence. In this study, Late Jurassic to Early Cretaceous sequence was identified and log-based interpretation of smaller order T-R cycles have been carried out. A log profile from eastern margin to western margin (up to Shahgarh depression) has been taken. The depositional environment penetrated by the wells interpreted from log signatures gave three major facies association. The blocky and coarsening upward (funnel shape), the blocky and fining upward (bell shape) and the erratic (zig-zag) facies representing distributary mouth bar, distributary channel and marine mud facies respectively. Late Jurassic Formation (Baisakhi-Bhadasar) and Early Cretaceous Formation (Pariwar) shows a lesser number of T-R cycles in shallower and higher number of T-R cycles in deeper bathymetry. Shallowest well has 3 T-R cycles in Baisakhi-Bhadasar and 2 T-R cycles in Pariwar, whereas deeper well has 4 T-R cycles in Baisakhi-Bhadasar and 8 T-R cycles in Pariwar Formation. The Maximum Flooding surfaces observed from the stratigraphy analysis indicate major shale break (high shale content). The study area is dominated by the alternation of shale and sand lithologies, which occurs in an approximate ratio of 70:30. A seismo-geological cross section has been prepared to understand the stratigraphic thickness variation and structural disposition of the strata. The formations are quite thick to the west, the thickness of which reduces as we traverse towards the east. The folded and the faulted strata indicated the compressional tectonics followed by the extensional tectonics. Our interpretation is supported with seismic up to second order sequence indicates - Late Jurassic sequence is a Highstand Systems Tract (Baisakhi - Bhadasar formations), and the Early Cretaceous sequence is Regressive to Lowstand System Tract (Pariwar Formation).Keywords: Jaisalmer Basin, sequence stratigraphy, system tract, T-R cycle
Procedia PDF Downloads 134452 Maritime English Communication Training for Japanese VTS Operators in the Congested Area Including the Narrow Channel of Akashi Strait
Authors: Kenji Tanaka, Kazumi Sugita, Yuto Mizushima
Abstract:
This paper introduces a noteworthy form of English communication training for the officers and operators of the Osaka-Bay Marine Traffic Information Service (Osaka MARTIS) of the Japan Coast Guard working in the congested area at the Akashi Strait in Hyogo Prefecture, Japan. The authors of this paper, Marine Technical College’s (MTC) English language instructors, have been holding about forty lectures and exercises in basic and normal Maritime English (ME) for several groups of MARTIS personnel at Osaka MARTIS annually since they started the training in 2005. Trainees are expected to be qualified Maritime Third-Class Radio Operators who are responsible for providing safety information to a daily average of seven to eight hundred vessels that pass through the Akashi Strait, one of Japan’s narrowest channels. As of 2022, the instructors are conducting 55 remote lessons at MARTIS. One lesson is 90 minutes long. All 26 trainees are given oral and written assessments. The trainees need to pass the examination to become qualified operators every year, requiring them to train and maintain their linguistic levels even during the pandemic of Corona Virus Disease-19 (COVID-19). The vessel traffic information provided by Osaka MARTIS in Maritime English language is essential to the work involving the use of very high frequency (VHF) communication between MARTIS and vessels in the area. ME is the common language mainly used on board merchant, fishing, and recreational vessels, normally at sea. ME was edited and recommended by the International Maritime Organization in the 1970s, was revised in 2002, and has undergone continual revision. The vessel’s circumstances are much more serious at the strait than those at the open sea, so these vessels need ME to receive guidance from the center when passing through the narrow strait. The imminent and challenging situations at the strait necessitate that textbooks’ contents include the basics of the phrase book for seafarers as well as specific and additional navigational information, pronunciation exercises, notes on keywords and phrases, explanations about collocations, sample sentences, and explanations about the differences between synonyms especially those focusing on terminologies necessary for passing through the strait. Additionally, short Japanese-English translation quizzes about these topics, as well as prescribed readings about the maritime sector, are include in the textbook. All of these exercises have been trained in the remote education system since the outbreak of COVID-19. According to the guidelines of ME edited in 2009, the lowest level necessary for seafarers is B1 (lower individual users) of The Common European Framework of Reference for Languages: Learning, Teaching, Assessment (CEFR). Therefore, this vocational ME language training at Osaka MARTIS aims for its trainees to communicate at levels higher than B1. A noteworthy proof of improvement from this training is that most of the trainees have become qualified marine radio communication officers.Keywords: akashi strait, B1 of CEFR, maritime english communication training, osaka martis
Procedia PDF Downloads 123451 An Integrated Theoretical Framework on Mobile-Assisted Language Learning: User’s Acceptance Behavior
Authors: Gyoomi Kim, Jiyoung Bae
Abstract:
In the field of language education research, there are not many tries to empirically examine learners’ acceptance behavior and related factors of mobile-assisted language learning (MALL). This study is one of the few attempts to propose an integrated theoretical framework that explains MALL users’ acceptance behavior and potential factors. Constructs from technology acceptance model (TAM) and MALL research are tested in the integrated framework. Based on previous studies, a hypothetical model was developed. Four external variables related to the MALL user’s acceptance behavior were selected: subjective norm, content reliability, interactivity, self-regulation. The model was also composed of four other constructs: two latent variables, perceived ease of use and perceived usefulness, were considered as cognitive constructs; attitude toward MALL as an affective construct; behavioral intention to use MALL as a behavioral construct. The participants were 438 undergraduate students who enrolled in an intensive English program at one university in Korea. This particular program was held in January 2018 using the vacation period. The students were given eight hours of English classes each day from Monday to Friday for four weeks and asked to complete MALL courses for practice outside the classroom. Therefore, all participants experienced blended MALL environment. The instrument was a self-response questionnaire, and each construct was measured by five questions. Once the questionnaire was developed, it was distributed to the participants at the final ceremony of the intensive program in order to collect the data from a large number of the participants at a time. The data showed significant evidence to support the hypothetical model. The results confirmed through structural equation modeling analysis are as follows: First, four external variables such as subjective norm, content reliability, interactivity, and self-regulation significantly affected perceived ease of use. Second, subjective norm, content reliability, self-regulation, perceived ease of use significantly affected perceived usefulness. Third, perceived usefulness and perceived ease of use significantly affected attitude toward MALL. Fourth, attitude toward MALL and perceived usefulness significantly affected behavioral intention to use MALL. These results implied that the integrated framework from TAM and MALL could be useful when adopting MALL environment to university students or adult English learners. Key constructs except interactivity showed significant relationships with one another and had direct and indirect impacts on MALL user’s acceptance behavior. Therefore, the constructs and validated metrics is valuable for language researchers and educators who are interested in MALL.Keywords: blended MALL, learner factors/variables, mobile-assisted language learning, MALL, technology acceptance model, TAM, theoretical framework
Procedia PDF Downloads 238450 The Politics of Fantasy Meet Precarity of Place
Authors: Claudia Popescu, Adriana Mihaela Soaita
Abstract:
Within the EU accession process, Romania, as well as other CEE countries, have embarked on the post-1990 urbanization wave aiming to reduce the gaps between ‘older’ and ‘new’ EU member states. While post-socialist urban transitions have been extensively scrutinized, little is known about the developing trajectories of these new towns across the CEE region. To start addressing this knowledge gap, we wish to bring to the fore one of the most humble expressions of urbanism, that of the small, new towns of Romania. Despite rural-to-urban reclassification, urbanization levels have remained persistently low over the last three decades. In this context, it is timely and legitimate to ask about the prospects of new towns for a ‘successful’ socioeconomic performance within the urban network and avoidance of precarity and marginalization and adequate measure of place performance within the urban/settlement network and understanding the drivers that trigger towns’ socioeconomic performances. To answer these, we create a socioeconomic index of the place in order to compare the profile of the 60 new towns with large cities, old small towns and rural. We conceive ‘successful’ and ‘precarious’ performance in terms of a locality’s index value being above or below all small towns’ index average. Second, we performed logistic regression to interrogate the relevance of some key structural factors to the new towns’ socioeconomic performance (i.e. population size, urban history, regional location, connectivity and political determination of their local governments). Related to the first research question, our findings highlight the precarity of place as a long-standing condition of living and working in the new towns of Romania, particularly evident through our cross-comparative analysis across key category along the rural-urban continuum. We have substantiated the socioeconomic condition of precarity in rural places, with the new towns still maintaining features of ‘rurality’ rather than ‘urbanity’ - except a few successful satellites of economically striving large cities, particularly the country capital of Bucharest, which benefited from spillover effects. Related to our second research question, we found that the new towns of Romania have significantly higher odds of being characterized by precarity as a socioeconomic condition than all other small towns and urban places, but less so compared to the even more marginalized rural areas. Many new towns contain resource-dependent rural communities with a poor response to the context of change. Therefore, issues pertaining to local capacity building to adapt to the new urban environment should be addressed by the spatial planning policy. Our approach allowed us to bring to the fore the idea of precarity as a condition of whole localities. Thinking of precarity of place is important as it brings the whole institutional and political apparatus of spatial planning, urban and regional, into conversation with other causative or substantive axes of precarity developed in the literature. We recommend future research on the new towns in Romania and elsewhere.Keywords: politics of fantasy, precarity of place, urbanization, Romania
Procedia PDF Downloads 15449 Optimizing the Pair Carbon Xerogels-Electrolyte for High Performance Supercapacitors
Authors: Boriana Karamanova, Svetlana Veleva, Luybomir Soserov, Ana Arenillas, Francesco Lufrano, Antonia Stoyanova
Abstract:
Supercapacitors have received a lot of research attention and are promising energy storage devices due to their high power and long cycle life. In order to developed an advanced device with significant capacity for storing charge and cheap carbon materials, efforts must focus not only on improving synthesis by controlling the morphology and pore size but also on improving electrode-electrolyte compatibility of the resulting systems. The present study examines the relationship between the surface chemistry of two activated carbon xerogels, the electrolyte type, and the electrochemical properties of supercapacitors. Activated carbon xerogels were prepared by varying the initial pH of the resorcinol-formaldehyde aqueous solution. The materials produced are physicochemical characterized by DTA/TGA, porous characterization, and SEM analysis. The carbon xerogel based electrodes were prepared by spreading over glass plate a slurry containing the carbon gel, graphite, and poly vinylidene difluoride (PVDF) binder. The layer formed was dried consecutively at different temperatures and then detached by water. After, the layer was dried again to improve its mechanical stability. The developed electrode materials and the Aquivion® E87-05S membrane (Solvay Specialty Polymers), socked in Na2SO4 as a polymer electrolyte, were used to assembly the solid-state supercapacitor. Symmetric supercapacitor cells composed by same electrodes and 1 M KOH electrolytes are also assembled and tested for comparison. The supercapacitor performances are verified by different electrochemical methods - cyclic voltammetry, galvanostatic charge/discharge measurements, electrochemical impedance spectroscopy, and long-term durability tests in neutral and alkaline electrolytes. Specific capacitances, energy, and power density, energy efficiencies, and durability were compared into studied supercapacitors. Ex-situ physicochemical analyses on the synthesized materials have also been performed, which provide information about chemical and structural changes in the electrode morphology during charge / discharge durability tests. They are discussed on the basis of electrode-electrolyte interaction. The obtained correlations could be of significance in order to design sustainable solid-state supercapacitors with high power and energy density. Acknowledgement: This research is funded by the Ministry of Education and Science of Bulgaria under the National Program "European Scientific Networks" (Agreement D01-286 / 07.10.2020, D01-78/30.03.2021). Authors gratefully acknowledge.Keywords: carbon xerogel, electrochemical tests, neutral and alkaline electrolytes, supercapacitors
Procedia PDF Downloads 136448 Molecular Modeling and Prediction of the Physicochemical Properties of Polyols in Aqueous Solution
Authors: Maria Fontenele, Claude-Gilles Dussap, Vincent Dumouilla, Baptiste Boit
Abstract:
Roquette Frères is a producer of plant-based ingredients that employs many processes to extract relevant molecules and often transforms them through chemical and physical processes to create desired ingredients with specific functionalities. In this context, Roquette encounters numerous multi-component complex systems in their processes, including fibers, proteins, and carbohydrates, in an aqueous environment. To develop, control, and optimize both new and old processes, Roquette aims to develop new in silico tools. Currently, Roquette uses process modelling tools which include specific thermodynamic models and is willing to develop computational methodologies such as molecular dynamics simulations to gain insights into the complex interactions in such complex media, and especially hydrogen bonding interactions. The issue at hand concerns aqueous mixtures of polyols with high dry matter content. The polyols mannitol and sorbitol molecules are diastereoisomers that have nearly identical chemical structures but very different physicochemical properties: for example, the solubility of sorbitol in water is 2.5 kg/kg of water, while mannitol has a solubility of 0.25 kg/kg of water at 25°C. Therefore, predicting liquid-solid equilibrium properties in this case requires sophisticated solution models that cannot be based solely on chemical group contributions, knowing that for mannitol and sorbitol, the chemical constitutive groups are the same. Recognizing the significance of solvation phenomena in polyols, the GePEB (Chemical Engineering, Applied Thermodynamics, and Biosystems) team at Institut Pascal has developed the COSMO-UCA model, which has the structural advantage of using quantum mechanics tools to predict formation and phase equilibrium properties. In this work, we use molecular dynamics simulations to elucidate the behavior of polyols in aqueous solution. Specifically, we employ simulations to compute essential metrics such as radial distribution functions and hydrogen bond autocorrelation functions. Our findings illuminate a fundamental contrast: sorbitol and mannitol exhibit disparate hydrogen bond lifetimes within aqueous environments. This observation serves as a cornerstone in elucidating the divergent physicochemical properties inherent to each compound, shedding light on the nuanced interplay between their molecular structures and water interactions. We also present a methodology to predict the physicochemical properties of complex solutions, taking as sole input the three-dimensional structure of the molecules in the medium. Finally, by developing knowledge models, we represent some physicochemical properties of aqueous solutions of sorbitol and mannitol.Keywords: COSMO models, hydrogen bond, molecular dynamics, thermodynamics
Procedia PDF Downloads 42447 Floating Building Potential for Adaptation to Rising Sea Levels: Development of a Performance Based Building Design Framework
Authors: Livia Calcagni
Abstract:
Most of the largest cities in the world are located in areas that are vulnerable to coastal erosion and flooding, both linked to climate change and rising sea levels (RSL). Nevertheless, more and more people are moving to these vulnerable areas as cities keep growing. Architects, engineers and policy makers are called to rethink the way we live and to provide timely and adequate responses not only by investigating measures to improve the urban fabric, but also by developing strategies capable of planning change, exploring unusual and resilient frontiers of living, such as floating architecture. Since the beginning of the 21st century we have seen a dynamic growth of water-based architecture. At the same time, the shortage of land available for urban development also led to reclaim the seabed or to build floating structures. In light of these considerations, time is ripe to consider floating architecture not only as a full-fledged building typology but especially as a full-fledged adaptation solution for RSL. Currently, there is no global international legal framework for urban development on water and there is no structured performance based building design (PBBD) approach for floating architecture in most countries, let alone national regulatory systems. Thus, the research intends to identify the technological, morphological, functional, economic, managerial requirements that must be considered in a the development of the PBBD framework conceived as a meta-design tool. As it is expected that floating urban development is mostly likely to take place as extension of coastal areas, the needs and design criteria are definitely more similar to those of the urban environment than of the offshore industry. Therefor, the identification and categorization of parameters takes the urban-architectural guidelines and regulations as the starting point, taking the missing aspects, such as hydrodynamics, from the offshore and shipping regulatory frameworks. This study is carried out through an evidence-based assessment of performance guidelines and regulatory systems that are effective in different countries around the world addressing on-land and on-water architecture as well as offshore and shipping industries. It involves evidence-based research and logical argumentation methods. Overall, this paper highlights how inhabiting water is not only a viable response to the problem of RSL, thus a resilient frontier for urban development, but also a response to energy insecurity, clean water and food shortages, environmental concerns and urbanization, in line with Blue Economy principles and the Agenda 2030. Moreover, the discipline of architecture is presented as a fertile field for investigating solutions to cope with climate change and its effects on life safety and quality. Future research involves the development of a decision support system as an information tool to guide the user through the decision-making process, emphasizing the logical interaction between the different potential choices, based on the PBBD.Keywords: adaptation measures, floating architecture, performance based building design, resilient architecture, rising sea levels
Procedia PDF Downloads 86446 Analyzing Temperature and Pressure Performance of a Natural Air-Circulation System
Authors: Emma S. Bowers
Abstract:
Perturbations in global environments and temperatures have heightened the urgency of creating cost-efficient, energy-neutral building techniques. Structural responses to this thermal crisis have included designs (including those of the building standard PassivHaus) with airtightness, window placement, insulation, solar orientation, shading, and heat-exchange ventilators as potential solutions or interventions. Limitations in the predictability of the circulation of cooled air through the ambient temperature gradients throughout a structure are one of the major obstacles facing these enhanced building methods. A diverse range of air-cooling devices utilizing varying technologies is implemented around the world. Many of them worsen the problem of climate change by consuming energy. Using natural ventilation principles of air buoyancy and density to circulate fresh air throughout a building with no energy input can combat these obstacles. A unique prototype of an energy-neutral air-circulation system was constructed in order to investigate potential temperature and pressure gradients related to the stack effect (updraft of air through a building due to changes in air pressure). The stack effect principle maintains that since warmer air rises, it will leave an area of low pressure that cooler air will rush in to fill. The result is that warmer air will be expelled from the top of the building as cooler air is directed through the bottom, creating an updraft. Stack effect can be amplified by cooling the air near the bottom of a building and heating the air near the top. Using readily available, mostly recyclable or biodegradable materials, an insulated building module was constructed. A tri-part construction model was utilized: a subterranean earth-tube heat exchanger constructed of PVC pipe and placed in a horizontally oriented trench, an insulated, airtight cube aboveground to represent a building, and a solar chimney (painted black to increase heat in the out-going air). Pressure and temperature sensors were placed at four different heights within the module as well as outside, and data was collected for a period of 21 days. The air pressures and temperatures over the course of the experiment were compared and averaged. The promise of this design is that it represents a novel approach which directly addresses the obstacles of air flow and expense, using the physical principle of stack effect to draw a continuous supply of fresh air through the structure, using low-cost and readily available materials (and zero manufactured energy). This design serves as a model for novel approaches to creating temperature controlled buildings using zero energy and opens the door for future research into the effects of increasing module scale, increasing length and depth of the earth tube, and shading the building. (Model can be provided).Keywords: air circulation, PassivHaus, stack effect, thermal gradient
Procedia PDF Downloads 154445 Features of Composites Application in Shipbuilding
Authors: Valerii Levshakov, Olga Fedorova
Abstract:
Specific features of ship structures, made from composites, i.e. simultaneous shaping of material and structure, large sizes, complicated outlines and tapered thickness have defined leading role of technology, integrating test results from material science, designing and structural analysis. Main procedures of composite shipbuilding are contact molding, vacuum molding and winding. Now, the most demanded composite shipbuilding technology is the manufacture of structures from fiberglass and multilayer hybrid composites by means of vacuum molding. This technology enables the manufacture of products with improved strength properties (in comparison with contact molding), reduction of production duration, weight and secures better environmental conditions in production area. Mechanized winding is applied for the manufacture of parts, shaped as rotary bodies – i.e. parts of ship, oil and other pipelines, deep-submergence vehicles hulls, bottles, reservoirs and other structures. This procedure involves processing of reinforcing fiberglass, carbon and polyaramide fibers. Polyaramide fibers have tensile strength of 5000 MPa, elastic modulus value of 130 MPa and rigidity of the same can be compared with rigidity of fiberglass, however, the weight of polyaramide fiber is 30% less than weight of fiberglass. The same enables to the manufacture different structures, including that, using both – fiberglass and organic composites. Organic composites are widely used for the manufacture of parts with size and weight limitations. High price of polyaramide fiber restricts the use of organic composites. Perspective area of winding technology development is the manufacture of carbon fiber shafts and couplings for ships. JSC ‘Shipbuilding & Shiprepair Technology Center’ (JSC SSTC) developed technology of dielectric uncouplers for cryogenic lines, cooled by gaseous or liquid cryogenic agents (helium, nitrogen, etc.) for temperature range 4.2-300 K and pressure up to 30 MPa – the same is used for separating components of electro physical equipment with different electrical potentials. Dielectric uncouplers were developed, the manufactured and tested in accordance with International Thermonuclear Experimental Reactor (ITER) Technical specification. Spiral uncouplers withstand operating voltage of 30 kV, direct-flow uncoupler – 4 kV. Application of spiral channel instead of rectilinear enables increasing of breakdown potential and reduction of uncouplers sizes. 95 uncouplers were successfully the manufactured and tested. At the present time, Russian the manufacturers of ship composite structures have started absorption of technology of manufacturing the same using automated prepreg laminating; this technology enables the manufacture of structures with improved operational specifications.Keywords: fiberglass, infusion, polymeric composites, winding
Procedia PDF Downloads 238444 Optimisation of Energy Harvesting for a Composite Aircraft Wing Structure Bonded with Discrete Macro Fibre Composite Sensors
Authors: Ali H. Daraji, Ye Jianqiao
Abstract:
The micro electrical devices of the wireless sensor network are continuously developed and become very small and compact with low electric power requirements using limited period life conventional batteries. The low power requirement for these devices, cost of conventional batteries and its replacement have encouraged researcher to find alternative power supply represented by energy harvesting system to provide an electric power supply with infinite period life. In the last few years, the investigation of energy harvesting for structure health monitoring has increased to powering wireless sensor network by converting waste mechanical vibration into electricity using piezoelectric sensors. Optimisation of energy harvesting is an important research topic to ensure a flowing of efficient electric power from structural vibration. The harvesting power is mainly based on the properties of piezoelectric material, dimensions of piezoelectric sensor, its position on a structure and value of an external electric load connected between sensor electrodes. Larger surface area of sensor is not granted larger power harvesting when the sensor area is covered positive and negative mechanical strain at the same time. Thus lead to reduction or cancellation of piezoelectric output power. Optimisation of energy harvesting is achieved by locating these sensors precisely and efficiently on the structure. Limited published work has investigated the energy harvesting for aircraft wing. However, most of the published studies have simplified the aircraft wing structure by a cantilever flat plate or beam. In these studies, the optimisation of energy harvesting was investigated by determination optimal value of an external electric load connected between sensor electrode terminals or by an external electric circuit or by randomly splitting piezoelectric sensor to two segments. However, the aircraft wing structures are complex than beam or flat plate and mostly constructed from flat and curved skins stiffened by stringers and ribs with more complex mechanical strain induced on the wing surfaces. This aircraft wing structure bonded with discrete macro fibre composite sensors was modelled using multiphysics finite element to optimise the energy harvesting by determination of the optimal number of sensors, location and the output resistance load. The optimal number and location of macro fibre sensors were determined based on the maximization of the open and close loop sensor output voltage using frequency response analysis. It was found different optimal distribution, locations and number of sensors bounded on the top and the bottom surfaces of the aircraft wing.Keywords: energy harvesting, optimisation, sensor, wing
Procedia PDF Downloads 301443 A Kunitz-Type Serine Protease Inhibitor from Rock Bream, Oplegnathus fasciatus Involved in Immune Responses
Authors: S. D. N. K. Bathige, G. I. Godahewa, Navaneethaiyer Umasuthan, Jehee Lee
Abstract:
Kunitz-type serine protease inhibitors (KTIs) are identified in various organisms including animals, plants and microbes. These proteins shared single or multiple Kunitz inhibitory domains link together or associated with other types of domains. Characteristic Kunitz type domain composed of around 60 amino acid residues with six conserved cysteine residues to stabilize by three disulfide bridges. KTIs are involved in various physiological processes, such as ion channel blocking, blood coagulation, fibrinolysis and inflammation. In this study, two Kunitz-type domain containing protein was identified from rock bream database and designated as RbKunitz. The coding sequence of RbKunitz encoded for 507 amino acids with 56.2 kDa theoretical molecular mass and 5.7 isoelectric point (pI). There are several functional domains including MANEC superfamily domain, PKD superfamily domain, and LDLa domain were predicted in addition to the two characteristic Kunitz domain. Moreover, trypsin interaction sites were also identified in Kunitz domain. Homology analysis revealed that RbKunitz shared highest identity (77.6%) with Takifugu rubripes. Completely conserved 28 cysteine residues were recognized, when comparison of RbKunitz with other orthologs from different taxonomical groups. These structural evidences indicate the rigidity of RbKunitz folding structure to achieve the proper function. The phylogenetic tree was constructed using neighbor-joining method and exhibited that the KTIs from fish and non-fish has been evolved in separately. Rock bream was clustered with Takifugu rubripes. The SYBR Green qPCR was performed to quantify the RbKunitz transcripts in different tissues and challenged tissues. The mRNA transcripts of RbKunitz were detected in all tissues (muscle, spleen, head kidney, blood, heart, skin, liver, intestine, kidney and gills) analyzed and highest transcripts level was detected in gill tissues. Temporal transcription profile of RbKunitz in rock bream blood tissues was analyzed upon LPS (lipopolysaccharide), Poly I:C (Polyinosinic:polycytidylic acid) and Edwardsiella tarda challenge to understand the immune responses of this gene. Compare to the unchallenged control RbKunitz exhibited strong up-regulation at 24 h post injection (p.i.) after LPS and E. tarda injection. Comparatively robust expression of RbKunits was observed at 3 h p.i. upon Poly I:C challenge. Taken together all these data indicate that RbKunitz may involve into to immune responses upon pathogenic stress, in order to protect the rock bream.Keywords: Kunitz-type, rock bream, immune response, serine protease inhibitor
Procedia PDF Downloads 379442 Evolution of Microstructure through Phase Separation via Spinodal Decomposition in Spinel Ferrite Thin Films
Authors: Nipa Debnath, Harinarayan Das, Takahiko Kawaguchi, Naonori Sakamoto, Kazuo Shinozaki, Hisao Suzuki, Naoki Wakiya
Abstract:
Nowadays spinel ferrite magnetic thin films have drawn considerable attention due to their interesting magnetic and electrical properties with enhanced chemical and thermal stability. Spinel ferrite magnetic films can be implemented in magnetic data storage, sensors, and spin filters or microwave devices. It is well established that the structural, magnetic and transport properties of the magnetic thin films are dependent on microstructure. Spinodal decomposition (SD) is a phase separation process, whereby a material system is spontaneously separated into two phases with distinct compositions. The periodic microstructure is the characteristic feature of SD. Thus, SD can be exploited to control the microstructure at the nanoscale level. In bulk spinel ferrites having general formula, MₓFe₃₋ₓ O₄ (M= Co, Mn, Ni, Zn), phase separation via SD has been reported only for cobalt ferrite (CFO); however, long time post-annealing is required to occur the spinodal decomposition. We have found that SD occurs in CoF thin film without using any post-deposition annealing process if we apply magnetic field during thin film growth. Dynamic Aurora pulsed laser deposition (PLD) is a specially designed PLD system through which in-situ magnetic field (up to 2000 G) can be applied during thin film growth. The in-situ magnetic field suppresses the recombination of ions in the plume. In addition, the peak’s intensity of the ions in the spectra of the plume also increases when magnetic field is applied to the plume. As a result, ions with high kinetic energy strike into the substrate. Thus, ion-impingement occurred under magnetic field during thin film growth. The driving force of SD is the ion-impingement towards the substrates that is induced by in-situ magnetic field. In this study, we report about the occurrence of phase separation through SD and evolution of microstructure after phase separation in spinel ferrite thin films. The surface morphology of the phase separated films show checkerboard like domain structure. The cross-sectional microstructure of the phase separated films reveal columnar type phase separation. Herein, the decomposition wave propagates in lateral direction which has been confirmed from the lateral composition modulations in spinodally decomposed films. Large magnetic anisotropy has been found in spinodally decomposed nickel ferrite (NFO) thin films. This approach approves that magnetic field is also an important thermodynamic parameter to induce phase separation by the enhancement of up-hill diffusion in thin films. This thin film deposition technique could be a more efficient alternative for the fabrication of self-organized phase separated thin films and employed in controlling of the microstructure at nanoscale level.Keywords: Dynamic Aurora PLD, magnetic anisotropy, spinodal decomposition, spinel ferrite thin film
Procedia PDF Downloads 366441 Effect of Two Types of Shoe Insole on the Dynamics of Lower Extremities Joints in Individuals with Leg Length Discrepancy during Stance Phase of Walking
Authors: Mansour Eslami, Fereshte Habibi
Abstract:
Limb length discrepancy (LLD), or anisomeric, is defined as a condition in which paired limbs are noticeably unequal. Individuals with LLD during walking use compensatory mechanisms to dynamically lengthen the short limb and shorten the long limb to minimize the displacement of the body center of mass and consequently reduce body energy expenditure. Due to the compensatory movements created, LLD greater than 1 cm increases the odds of creating lumbar problems and hip and knee osteoarthritis. Insoles are non-surgical therapies that are recommended to improve the walking pattern, pain and create greater symmetry between the two lower limbs. However, it is not yet clear what effect insoles have on the variables related to injuries during walking. The aim of the present study was to evaluate the effect of internal and external heel lift insoles on pelvic kinematic in sagittal and frontal planes and lower extremity joint moments in individuals with mild leg length discrepancy during the stance phase of walking. Biomechanical data of twenty-eight men with structural leg length discrepancy of 10-25 mm were collected while they walked under three conditions: shoes without insole (SH), with internal heel lift insoles (IHLI) in shoes, and with external heal lift insole (EHLI). The tests were performed for both short and long legs. The pelvic kinematic and joint moment were measured with a motion capture system and force plate. Five walking trials were performed for each condition. The average value of five successful trials was used for further statistical analysis. Repeated measures ANCOVA with Bonferroni post hoc test were used for between-group comparisons (p ≤ 0.05). In both internal and external heel lift insoles (IHLI, EHLI), there was a significant decrease in the peak values of lateral and anterior pelvic tilts of the long leg, hip, and knee moments of a long leg and ankle moment of short leg (p ≤ 0.05). Furthermore, significant increases in peak values of lateral and anterior pelvic tilt of short leg in IHLI and EHLI were observed as compared to Shoe (SH) condition (p ≤ 0.01). In addition, a significant difference was observed between the IHLI and EHLI conditions in peak anterior pelvic tilt of long leg and plantar flexor moment of short leg (p=0.04; p= 0.04 respectively). Our findings indicate that both IHLI and EHLI can play an important role in controlling excessive pelvic movements in the sagittal and frontal planes in individuals with mild LLD during walking. Furthermore, the EHLI may have a better effect in preventing musculoskeletal injuries compared to the IHLI.Keywords: kinematic, leg length discrepancy, shoe insole, walking
Procedia PDF Downloads 119440 Interdigitated Flexible Li-Ion Battery by Aerosol Jet Printing
Authors: Yohann R. J. Thomas, Sébastien Solan
Abstract:
Conventional battery technology includes the assembly of electrode/separator/electrode by standard techniques such as stacking or winding, depending on the format size. In that type of batteries, coating or pasting techniques are only used for the electrode process. The processes are suited for large scale production of batteries and perfectly adapted to plenty of application requirements. Nevertheless, as the demand for both easier and cost-efficient production modes, flexible, custom-shaped and efficient small sized batteries is rising. Thin-film, printable batteries are one of the key areas for printed electronics. In the frame of European BASMATI project, we are investigating the feasibility of a new design of lithium-ion battery: interdigitated planar core design. Polymer substrate is used to produce bendable and flexible rechargeable accumulators. Direct fully printed batteries lead to interconnect the accumulator with other electronic functions for example organic solar cells (harvesting function), printed sensors (autonomous sensors) or RFID (communication function) on a common substrate to produce fully integrated, thin and flexible new devices. To fulfill those specifications, a high resolution printing process have been selected: Aerosol jet printing. In order to fit with this process parameters, we worked on nanomaterials formulation for current collectors and electrodes. In addition, an advanced printed polymer-electrolyte is developed to be implemented directly in the printing process in order to avoid the liquid electrolyte filling step and to improve safety and flexibility. Results: Three different current collectors has been studied and printed successfully. An ink of commercial copper nanoparticles has been formulated and printed, then a flash sintering was applied to the interdigitated design. A gold ink was also printed, the resulting material was partially self-sintered and did not require any high temperature post treatment. Finally, carbon nanotubes were also printed with a high resolution and well defined patterns. Different electrode materials were formulated and printed according to the interdigitated design. For cathodes, NMC and LFP were efficaciously printed. For anodes, LTO and graphite have shown to be good candidates for the fully printed battery. The electrochemical performances of those materials have been evaluated in a standard coin cell with lithium-metal counter electrode and the results are similar with those of a traditional ink formulation and process. A jellified plastic crystal solid state electrolyte has been developed and showed comparable performances to classical liquid carbonate electrolytes with two different materials. In our future developments, focus will be put on several tasks. In a first place, we will synthesize and formulate new specific nano-materials based on metal-oxyde. Then a fully printed device will be produced and its electrochemical performance will be evaluated.Keywords: high resolution digital printing, lithium-ion battery, nanomaterials, solid-state electrolytes
Procedia PDF Downloads 251439 Sustainable Pavements with Reflective and Photoluminescent Properties
Authors: A.H. Martínez, T. López-Montero, R. Miró, R. Puig, R. Villar
Abstract:
An alternative to mitigate the heat island effect is to pave streets and sidewalks with pavements that reflect incident solar energy, keeping their surface temperature lower than conventional pavements. The “Heat island mitigation to prevent global warming by designing sustainable pavements with reflective and photoluminescent properties (RELUM) Project” has been carried out with this intention in mind. Its objective has been to develop bituminous mixtures for urban pavements that help in the fight against global warming and climate change, while improving the quality of life of citizens. The technology employed has focused on the use of reflective pavements, using bituminous mixes made with synthetic bitumens and light pigments that provide high solar reflectance. In addition to this advantage, the light surface colour achieved with these mixes can improve visibility, especially at night. In parallel and following the latter approach, an appropriate type of treatment has also been developed on bituminous mixtures to make them capable of illuminating at night, giving rise to photoluminescent applications, which can reduce energy consumption and increase road safety due to improved night-time visibility. The work carried out consisted of designing different bituminous mixtures in which the nature of the aggregate was varied (porphyry, granite and limestone) and also the colour of the mixture, which was lightened by adding pigments (titanium dioxide and iron oxide). The reflectance of each of these mixtures was measured, as well as the temperatures recorded throughout the day, at different times of the year. The results obtained make it possible to propose bituminous mixtures whose characteristics can contribute to the reduction of urban heat islands. Among the most outstanding results is the mixture made with synthetic bitumen, white limestone aggregate and a small percentage of titanium dioxide, which would be the most suitable for urban surfaces without road traffic, given its high reflectance and the greater temperature reduction it offers. With this solution, a surface temperature reduction of 9.7°C is achieved at the beginning of the night in the summer season with the highest radiation. As for luminescent pavements, paints with different contents of strontium aluminate and glass microspheres have been applied to asphalt mixtures, and the luminance of all the applications designed has been measured by exciting them with electric bulbs that simulate the effect of sunlight. The results obtained at this stage confirm the ability of all the designed dosages to emit light for a certain time, varying according to the proportions used. Not only the effect of the strontium aluminate and microsphere content has been observed, but also the influence of the colour of the base on which the paint is applied; the lighter the base, the higher the luminance. Ongoing studies are focusing on the evaluation of the durability of the designed solutions in order to determine their lifetime.Keywords: heat island, luminescent paints, reflective pavement, temperature reduction
Procedia PDF Downloads 30438 An Inquiry into the Usage of Complex Systems Models to Examine the Effects of the Agent Interaction in a Political Economic Environment
Authors: Ujjwall Sai Sunder Uppuluri
Abstract:
Group theory is a powerful tool that researchers can use to provide a structural foundation for their Agent Based Models. These Agent Based models are argued by this paper to be the future of the Social Science Disciplines. More specifically, researchers can use them to apply evolutionary theory to the study of complex social systems. This paper illustrates one such example of how theoretically an Agent Based Model can be formulated from the application of Group Theory, Systems Dynamics, and Evolutionary Biology to analyze the strategies pursued by states to mitigate risk and maximize usage of resources to achieve the objective of economic growth. This example can be applied to other social phenomena and this makes group theory so useful to the analysis of complex systems, because the theory provides the mathematical formulaic proof for validating the complex system models that researchers build and this will be discussed by the paper. The aim of this research, is to also provide researchers with a framework that can be used to model political entities such as states on a 3-dimensional plane. The x-axis representing resources (tangible and intangible) available to them, y the risks, and z the objective. There also exist other states with different constraints pursuing different strategies to climb the mountain. This mountain’s environment is made up of risks the state faces and resource endowments. This mountain is also layered in the sense that it has multiple peaks that must be overcome to reach the tallest peak. A state that sticks to a single strategy or pursues a strategy that is not conducive to the climbing of that specific peak it has reached is not able to continue advancement. To overcome the obstacle in the state’s path, it must innovate. Based on the definition of a group, we can categorize each state as being its own group. Each state is a closed system, one which is made up of micro level agents who have their own vectors and pursue strategies (actions) to achieve some sub objectives. The state also has an identity, the inverse being anarchy and/or inaction. Finally, the agents making up a state interact with each other through competition and collaboration to mitigate risks and achieve sub objectives that fall within the primary objective. Thus, researchers can categorize the state as an organism that reflects the sum of the output of the interactions pursued by agents at the micro level. When states compete, they employ a strategy and that state which has the better strategy (reflected by the strategies pursued by her parts) is able to out-compete her counterpart to acquire some resource, mitigate some risk or fulfil some objective. This paper will attempt to illustrate how group theory combined with evolutionary theory and systems dynamics can allow researchers to model the long run development, evolution, and growth of political entities through the use of a bottom up approach.Keywords: complex systems, evolutionary theory, group theory, international political economy
Procedia PDF Downloads 139437 Nudging the Criminal Justice System into Listening to Crime Victims in Plea Agreements
Authors: Dana Pugach, Michal Tamir
Abstract:
Most criminal cases end with a plea agreement, an issue whose many aspects have been discussed extensively in legal literature. One important feature, however, has gained little notice, and that is crime victims’ place in plea agreements following the federal Crime Victims Rights Act of 2004. This law has provided victims some meaningful and potentially revolutionary rights, including the right to be heard in the proceeding and a right to appeal against a decision made while ignoring the victim’s rights. While victims’ rights literature has always emphasized the importance of such right, references to this provision in the general literature about plea agreements are sparse, if existing at all. Furthermore, there are a few cases only mentioning this right. This article purports to bridge between these two bodies of legal thinking – the vast literature concerning plea agreements and victims’ rights research– by using behavioral economics. The article will, firstly, trace the possible structural reasons for the failure of this right to be materialized. Relevant incentives of all actors involved will be identified as well as their inherent consequential processes that lead to the victims’ rights malfunction. Secondly, the article will use nudge theory in order to suggest solutions that will enhance incentives for the repeat players in the system (prosecution, judges, defense attorneys) and lead to the strengthening of weaker group’s interests – the crime victims. Behavioral psychology literature recognizes that the framework in which an individual confronts a decision can significantly influence his decision. Richard Thaler and Cass Sunstein developed the idea of ‘choice architecture’ - ‘the context in which people make decisions’ - which can be manipulated to make particular decisions more likely. Choice architectures can be changed by adjusting ‘nudges,’ influential factors that help shape human behavior, without negating their free choice. The nudges require decision makers to make choices instead of providing a familiar default option. In accordance with this theory, we suggest a rule, whereby a judge should inquire the victim’s view prior to accepting the plea. This suggestion leaves the judge’s discretion intact; while at the same time nudges her not to go directly to the default decision, i.e. automatically accepting the plea. Creating nudges that force actors to make choices is particularly significant when an actor intends to deviate from routine behaviors but experiences significant time constraints, as in the case of judges and plea bargains. The article finally recognizes some far reaching possible results of the suggestion. These include meaningful changes to the earlier stages of criminal process even before reaching court, in line with the current criticism of the plea agreements machinery.Keywords: plea agreements, victims' rights, nudge theory, criminal justice
Procedia PDF Downloads 322436 Design, Control and Implementation of 300Wp Single Phase Photovoltaic Micro Inverter for Village Nano Grid Application
Authors: Ramesh P., Aby Joseph
Abstract:
Micro Inverters provide Module Embedded Solution for harvesting energy from small-scale solar photovoltaic (PV) panels. In addition to higher modularity & reliability (25 years of life), the MicroInverter has inherent advantages such as avoidance of long DC cables, eliminates module mismatch losses, minimizes partial shading effect, improves safety and flexibility in installations etc. Due to the above-stated benefits, the renewable energy technology with Solar Photovoltaic (PV) Micro Inverter becomes more widespread in Village Nano Grid application ensuring grid independence for rural communities and areas without access to electricity. While the primary objective of this paper is to discuss the problems related to rural electrification, this concept can also be extended to urban installation with grid connectivity. This work presents a comprehensive analysis of the power circuit design, control methodologies and prototyping of 300Wₚ Single Phase PV Micro Inverter. This paper investigates two different topologies for PV Micro Inverters, based on the first hand on Single Stage Flyback/ Forward PV Micro-Inverter configuration and the other hand on the Double stage configuration including DC-DC converter, H bridge DC-AC Inverter. This work covers Power Decoupling techniques to reduce the input filter capacitor size to buffer double line (100 Hz) ripple energy and eliminates the use of electrolytic capacitors. The propagation of the double line oscillation reflected back to PV module will affect the Maximum Power Point Tracking (MPPT) performance. Also, the grid current will be distorted. To mitigate this issue, an independent MPPT control algorithm is developed in this work to reject the propagation of this double line ripple oscillation to PV side to improve the MPPT performance and grid side to improve current quality. Here, the power hardware topology accepts wide input voltage variation and consists of suitably rated MOSFET switches, Galvanically Isolated gate drivers, high-frequency magnetics and Film capacitors with a long lifespan. The digital controller hardware platform inbuilt with the external peripheral interface is developed using floating point microcontroller TMS320F2806x from Texas Instruments. The firmware governing the operation of the PV Micro Inverter is written in C language and was developed using code composer studio Integrated Development Environment (IDE). In this work, the prototype hardware for the Single Phase Photovoltaic Micro Inverter with Double stage configuration was developed and the comparative analysis between the above mentioned configurations with experimental results will be presented.Keywords: double line oscillation, micro inverter, MPPT, nano grid, power decoupling
Procedia PDF Downloads 133435 Multimodal Ophthalmologic Evaluation Can Detect Retinal Injuries in Asymptomatic Patients With Primary Antiphospholipid Syndrome
Authors: Taurino S. R. Neto, Epitácio D. S. Neto, Flávio Signorelli, Gustavo G. M. Balbi, Alex H. Higashi, Mário Luiz R. Monteiro, Eloisa Bonfá, Danieli C. O. Andrade, Leandro C. Zacharias
Abstract:
Purpose: To perform a multimodal evaluation, including the use of Optical Coherence Angiotomography (OCTA), in patients with primary antiphospholipid syndrome (PAPS) without ocular complaints and to compare them with healthy individuals. Methods: A complete structural and functional ophthalmological evaluation using OCTA and microperimetry (MP) exam in patients with PAPS, followed at a tertiary rheumatology outpatient clinic, was performed. All ophthalmologic manifestations were recorded and then statistical analysis was performed for comparative purposes; p <0.05 was considered statistically significant. Results: 104 eyes of 52 subjects (26 patients with PAPS without ocular complaints and 26 healthy individuals) were included. Among PAPS patients, 21 were female (80.8%) and 21 (80.8%) were Caucasians. Thrombotic PAPS was the main clinical criteria manifestation (100%); 65.4% had venous and 34.6% had arterial thrombosis. Obstetrical criteria were present in 34.6% of all thrombotic PAPS patients. Lupus anticoagulant was present in all patients. 19.2% of PAPS patients presented ophthalmologic findings against none of the healthy individuals. The most common retinal change was paracentral acute middle maculopathy (PAMM) (3 patients, 5 eyes), followed by drusen-like deposits (1 patient, 2 eyes) and pachychoroid pigment epitheliopathy (1 patient, 1 eye). Systemic hypertension and hyperlipidaemia were present in 100% of the PAPS patients with PAMM, while only six patients (26.1%) with PAPS without PAMM presented these two risk factors together. In the quantitative OCTA evaluation, we found significant differences between PAPS patients and controls in both the superficial vascular complex (SVC) and deep vascular complex (DVC) in the high-speed protocol, as well as in the SVC in the high-resolution protocol. In the analysis of the foveal avascular zone (FAZ) parameters, the PAPS group had a larger area of FAZ in the DVC using the high-speed method compared to the control group (p=0.047). In the quantitative analysis of the MP, the PAPS group had lower central (p=0.041) and global (p<0.001) retinal sensitivity compared to the control group, as well as in the sector analysis, with the exception of the inferior sector. In the quantitative evaluation of fixation stability, there was a trend towards worse stability in the PAPS subgroup with PAMM in both studied methods. Conclusions: PAMM was observed in 11.5% of PAPS patients with no previous ocular complaints. Systemic hypertension concomitant with hyperlipidemia was the most commonly associated risk factor for PAMM in patients with PAPS. PAPS patients present lower vascular density and retinal sensitivity compared to the control group, even in patients without PAMM.Keywords: antiphospholipid syndrome, optical coherence angio tomography, optical coherence tomography, retina
Procedia PDF Downloads 80434 Conditions That Brought Bounce-Back in Southern Europe: An Inter-Temporal and Cross-National Analysis on Female Labour Force Participation with Fuzzy Set Qualitative Comparative Analysis
Authors: A. Onur Kutlu, H. Tolga Bolukbasi
Abstract:
Since the 1990s, governments, international organizations and scholars have drawn increasing attention to the significance of women in the labour force. While advanced industrial countries in North Western Europe and North America have managed to increase female labour force participation (FLFP) in the early post world war two period, emerging economies of the 1970s have only been able to increase FLFP only a decade later. Among these areas, Southern Europe features a wave of remarkable bounce backs in FLFP. However, despite striking similarities between the features in Southern Europe and those in Turkey, Turkey has not been able to pull women into the labour force. Despite a host of institutional similarities, Turkey has failed to reach to the level of her Southern European neighbours. This paper addresses the puzzle why Turkey lag behind in FLFP in comparison to her Southern European neighbours. There are signs showing that FLFP is currently reaching a critical threshold at a time when structural factors may allow a trend. It is not known, however, the constellation of conditions which may bring rising FLFP in Turkey. In order to gain analytical leverage from similar transitions in countries that share similar labour market and welfare state regime characteristics, this paper identifies the conditions in Southern Europe that brought rising FLFP to be able to explore the prospects for Turkey. Second, this paper takes these variables in the fuzzy set Qualitative Comparative Analysis (fsQCA) as conditions which can potentially explain the outcome of rising FLFP in Portugal, Spain, Italy, Greece and Turkey. The purpose here is to identify any causal pathway there may exist that lead to rising FLFP in Southern Europe. In order to do so, this study analyses two time periods in all cases, which represent different periods for different countries. The first period is identified on the basis of low FLFP and the second period on the basis of the transition to significantly higher FLFP. Third, the conditions are treated following the standard procedures in fsQCA, which provide equifinal: two distinct paths to higher levels of FLFP in Southern Europe, each of which may potentially increase FLFP in Turkey. Based on this analysis, this paper proposes that there exist two distinct paths leading to higher levels of FLFP in Southern Europe. Among these paths, salience of left parties emerges as a sufficient condition. In cases where this condition was not present, a second path combining enlarging service sector employment, increased tertiary education among women and increased childcare enrolment rates led to increasing FLFP.Keywords: female labour force participation, fsQCA, Southern Europe, Turkey
Procedia PDF Downloads 326433 Climate Change and Perceived Socialization: The Role of Parents’ Climate Change Coping Style and Household Communication
Authors: Estefanya Vazquez-Casaubon, Veroline Cauberghe, Dieneke Van de Sompel, Hayley Pearce
Abstract:
Working together to reduce the anthropogenic impact should be a collective action, including effort within the household. In the matter, children are considered to have an important role in influencing the household to reduce the environmental impact through reversed socialization where children motivate and increase the concern of the parents towards environmental protection. Previous studies reveal that communication between parents and kids is key for effective reversed socialization. However, multiple barriers have been identified in the literature, such as the acceptance of the influence from the kids, the properties of the communication, among other factors. Based on the previous evidence, the present study aims to assess barriers and facilitators of communication at the household level that have an impact on reversed socialization. More precisely, the study examines how parents’ climate change coping strategy (problem-focused, meaning-focused, disregarding) influences the valence and the type of the communication related to climate change, and eventually the extent to which they report their beliefs and behaviours to be influenced by the pro-environmental perspectives of their children; i.e. reversed socialization. Via an online survey, 723 Belgian parents self-reported on communication about environmental protection and risk within their household (such as the frequency of exchange about topics related to climate change sourced from school, the household rules, imparting knowledge to the children, and outer factors like media or peer pressure, the emotional valence of the communication), their perceived socialization, and personal factors (coping mechanisms towards climate change). The results, using structural equation modelling, revealed that parents applying a problem-solving coping strategy related to climate change, appear to communicate more often in a positive than in a negative manner. Parents with a disregarding coping style towards climate change appear to communicate less often in a positive way within the household. Parents that cope via meaning-making of climate change showed to communicate less often in either a positive or negative way. Moreover, the perceived valence of the communication (positive or negative) influenced the frequency and type of household communication. Positive emotions increased the frequency of the communication overall. However, the direct effect of neither of the coping mechanisms on the reversed socialization was significant. High frequency of communication about the media, environmental views of the household members among other external topics had a positive impact on the perceived socialization, followed by discussions school-related; while parental instructing had a negative impact on the perceived socialization. Moreover, the frequency of communication was strongly affected by the perceived valence of the communication (positive or negative). The results go in line with previous evidence that a higher frequency of communication facilitates reversed socialization. Hence the results outstand how the coping mechanisms of the parents can be either a facilitator when they cope via problem-solving, while parents that disregard might avert frequent communication about climate change at the household.Keywords: communication, parents’ coping mechanisms, environmental protection, household, perceived socialization
Procedia PDF Downloads 84432 Assessment of the Properties of Microcapsules with Different Polymeric Shells Containing a Reactive Agent for their Suitability in Thermoplastic Self-healing Materials
Authors: Małgorzata Golonka, Jadwiga Laska
Abstract:
Self-healing polymers are one of the most investigated groups of smart materials. As materials engineering has recently focused on the design, production and research of modern materials and future technologies, researchers are looking for innovations in structural, construction and coating materials. Based on available scientific articles, it can be concluded that most of the research focuses on the self-healing of cement, concrete, asphalt and anticorrosion resin coatings. In our study, a method of obtaining and testing the properties of several types of microcapsules for use in self-healing polymer materials was developed. A method to obtain microcapsules exhibiting various mechanical properties, especially compressive strength was developed. The effect was achieved by using various polymer materials to build the shell: urea-formaldehyde resin (UFR), melamine-formaldehyde resin (MFR), melamine-urea-formaldehyde resin (MUFR). Dicyclopentadiene (DCPD) was used as the core material due to the possibility of its polymerization according to the ring-opening olefin metathesis (ROMP) mechanism in the presence of a solid Grubbs catalyst showing relatively high chemical and thermal stability. The ROMP of dicyclopentadiene leads to a polymer with high impact strength, high thermal resistance, good adhesion to other materials and good chemical and environmental resistance, so it is potentially a very promising candidate for the self-healing of materials. The capsules were obtained by condensation polymerization of formaldehyde with urea, melamine or copolymerization with urea and melamine in situ in water dispersion, with different molar ratios of formaldehyde, urea and melamine. The fineness of the organic phase dispersed in water, and consequently the size of the microcapsules, was regulated by the stirring speed. In all cases, to establish such synthesis conditions as to obtain capsules with appropriate mechanical strength. The microcapsules were characterized by determining the diameters and their distribution and measuring the shell thickness using digital optical microscopy and scanning electron microscopy, as well as confirming the presence of the active substance in the core by FTIR and SEM. Compression tests were performed to determine mechanical strength of the microcapsules. The highest repeatability of microcapsule properties was obtained for UFR resin, while the MFR resin had the best mechanical properties. The encapsulation efficiency of MFR was much lower compared to UFR, though. Therefore, capsules with a MUFR shell may be the optimal solution. The chemical reaction between the active substance present in the capsule core and the catalyst placed outside the capsules was confirmed by FTIR spectroscopy. The obtained autonomous repair systems (microcapsules + catalyst) were introduced into polyethylene in the extrusion process and tested for the self-repair of the material.Keywords: autonomic self-healing system, dicyclopentadiene, melamine-urea-formaldehyde resin, microcapsules, thermoplastic materials
Procedia PDF Downloads 45431 Natural Dyes: A Global Perspective on Commercial Solutions and Industry Players
Authors: Laura Seppälä, Ana Nuutinen
Abstract:
Environmental concerns are increasing the interest in the potential uses of natural dyes. Natural dyes are more safe and environmentally friendly option than synthetic dyes. However, one must be also cautious with natural dyes, because, for example, some dyestuff such as plants or mushrooms, as well as some mordants are poisonous. By natural dyes we mean dyes that are derived from plants, fungi, bark, lichens, algae, insects, and minerals. Different plant parts, such as stems, leaves, flowers, roots, bark, berries, fruits, and cones, can be utilized for textile dyeing and printing, pigment manufacture, and other processes depending on the season. They may be utilized to produce distinctive colour tones that are challenging to do with synthetic dyes. This adds value to textiles and makes them stand out. Synthetic dyes quickly replaced natural dyes, after being developed in the middle of the 19th century, but natural dyes have remained the dyeing method of crafters until recently. This research examines the commercial solutions for natural dyes in many parts of the world, such as Europe, the United States, South America, Africa, Asia, New Zealand, and Australia. This study aims to determine the commercial status of natural dyes. Each continent has its own traditions and specific dyestuffs. The availability of natural dyes can vary depending on several aspects, including plant species, temperature, and harvesting techniques, which poses a challenge to the work of designers and crafters. While certain plants may only provide dyes during specific seasons, others may do so continuously. To find the ideal time to collect natural dyes, it is critical to research various plant species and their harvesting techniques. Furthermore, to guarantee the quality and colour of the dye, plant material must be handled and processed properly. This research was conducted via an internet search, and results were searched systematically for commercial stakeholders in the field. The research question looked at commercial players in the field of natural dyes. This qualitative case study interpreted the data using thematic analysis. Each webpage was screenshotted and analyzed in reflection on to research question. Online content analysis means systematically coding and analyzing qualitative data. The most evident result was that the natural dyes interest in different parts of the World. There are clothing collections dyed with natural dyes, dyestuff stores, and courses for natural dyeing. This article presents the designers who work with natural dyes and actors who are involved with the natural dye industry. Several websites emphasized the safety and environmental benefits of natural dyes. Many of them included eye-catching images of textiles dyed naturally, and the colours of such dyes are thought to be attractive since they are beautiful and natural hues. The search did not find big-scale industrial solutions for natural dyes, but there were several instances of dyeing with natural dyes. Understanding the players, designers, and stakeholders in the natural dye business is the purpose of this article. The comprehension of the current state of the art illustrates the direction that the natural dye business is currently taking.Keywords: commercial solutions, environmental issues, key stakeholders, natural dyes, sustainability, textile dyeing
Procedia PDF Downloads 65430 Quasi-Federal Structure of India: Fault-Lines Exposed in COVID-19 Pandemic
Authors: Shatakshi Garg
Abstract:
As the world continues to grapple with the COVID-19 pandemic, India, one of the most populous democratic federal developing nation, continues to report the highest active cases and deaths, as well as struggle to let its health infrastructure not succumb to the exponentially growing requirements of hospital beds, ventilators, oxygen to save thousands of lives daily at risk. In this context, the paper outlines the handling of the COVID-19 pandemic since it first hit India in January 2020 – the policy decisions taken by the Union and the State governments from the larger perspective of its federal structure. The Constitution of India adopted in 1950 enshrined the federal relations between the Union and the State governments by way of the constitutional division of revenue-raising and expenditure responsibilities. By way of the 72nd and 73rd Amendments in the Constitution, powers and functions were devolved further to the third tier, namely the local governments, with the intention of further strengthening the federal structure of the country. However, with time, several constitutional amendments have shifted the scales in favour of the union government. The paper briefly traces some of these major amendments as well as some policy decisions which made the federal relations asymmetrical. As a result, data on key fiscal parameters helps establish how the union government gained upper hand at the expense of weak state governments, reducing the local governments to mere constitutional bodies without adequate funds and fiscal autonomy to carry out the assigned functions. This quasi-federal structure of India with the union government amassing the majority of power in terms of ‘funds, functions and functionaries’ exposed the perils of weakening sub-national governments post COVID-19 pandemic. With a complex quasi-federal structure and a heterogeneous population of over 1.3 billion, the announcement of a sudden nationwide lockdown by the union government was followed by a plight of migrants struggling to reach homes safely in the absence of adequate arrangements for travel and safety-net made by the union government. With limited autonomy enjoyed by the states, they were mostly dictated by the union government on most aspects of handling the pandemic, including protocols for lockdown, re-opening post lockdown, and vaccination drive. The paper suggests that certain policy decisions like demonetization, the introduction of GST, etc., taken by the incumbent government since 2014 when they first came to power, have further weakened the states and local governments, which have amounted to catastrophic losses, both economic and human. The role of the executive, legislature and judiciary are explored to establish how all these three arms of the government have worked simultaneously to further weaken and expose the fault-lines of the federal structure of India, which has lent the nation incapacitated to handle this pandemic. The paper then suggests the urgency of re-looking at the federal structure of the country and undertaking measures that strengthen the sub-national governments and restore the federal spirit as was enshrined in the constitution to avoid mammoth human and economic losses from a pandemic of this sort.Keywords: COVID-19 pandemic, India, federal structure, economic losses
Procedia PDF Downloads 179