Search results for: future visions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7401

Search results for: future visions

441 Cultivating Students’ Competences through Social Innovation Education

Authors: Ioanna Garefi, Irene Kalemaki

Abstract:

Education is not solely about preparing young people for the world of work but also about equipping them with competences that will enable them to become socially proactive, empowered, responsible, and engaged citizens who will collectively contribute to and benefit from an inclusive and sustainable future. Hence, progress assessment towards competence development is an ongoing process where continuous efforts are needed. This paper abstract presents the work of the H2020 NEMESIS project that aims to investigate, experiment and co-create together with schools a model for introducing and embedding social innovation education (SIE henceforth) in European primary and secondary schools. All in all, during the 2018-2019 academic year, 8 schools from 5 European countries involving 56 teachers, 1030 students, and 80 external stakeholders, experimented with different methodologies for embedding SIE in their contexts. This paper captures briefly the impact of these efforts towards the cultivation and progression of students’ social innovation (SI henceforth) competences. As part of the model, 14 SI competences, whose progress was evaluated, have been introduced falling under 3 interrelated categories: competences for identifying opportunities for social and collective value creation, competences for developing collaborations and building meaningful relations and competences for taking action both on an individual and collective level. Methodologically wise, the evaluation strategy employed was informed by a realist approach, enabling the researchers to go beyond synthesizing 'what happened' and towards understanding 'why it happened', delving into ‘what works, for whom and in what circumstances’. The reason for choosing such an approach was because it goes beyond attempting to answer the basic yes or no question of evaluation and focus on an ‘explanatory quest’ tracing the limits of when and where intervention is effective. A rich mix of sources of evidence have been employed, from focus groups with 80 people from the 5 EU countries to an online survey to 206 students, classroom observations, students’ narratives granting them with the opportunity to freely express their opinions, short stories letting students express their feelings through their imagination and also, drawings so that younger children can express their perception of reality. All these evidences offered insights on the impact of SIE on the development of students’ competences. Research findings showed that students progressed in all 14 SI competences through their involvement in the different activities. This positive progression is attributed to the model’s three core principles: 1) the student-centered approach, rendering students active and self-determined producers of their own learning, 2) the co-creation process fostering intergenerational interactions, empowering thus students by making their voices heard and valued and also, 3) the transformative social action whereby through their projects, students are able to witness the impact they are bringing about with their actions. Concluding, these initial findings, together with the forthcoming evaluation research to a pool of 30 schools around Europe, have the potential to raise the dynamics of the under-investigated field of SIE and encourage its embeddedness in more schools around Europe.

Keywords: competence development, education, social innovation, students

Procedia PDF Downloads 99
440 Approaches to Inducing Obsessional Stress in Obsessive-Compulsive Disorder (OCD): An Empirical Study with Patients Undergoing Transcranial Magnetic Stimulation (TMS) Therapy

Authors: Lucia Liu, Matthew Koziol

Abstract:

Obsessive-compulsive disorder (OCD), a long-lasting anxiety disorder involving recurrent, intrusive thoughts, affects over 2 million adults in the United States. Transcranial magnetic stimulation (TMS) stands out as a noninvasive, cutting-edge therapy that has been shown to reduce symptoms in patients with treatment-resistant OCD. The Food and Drug Administration (FDA) approved protocol pairs TMS sessions with individualized symptom provocation, aiming to improve the susceptibility of brain circuits to stimulation. However, limited standardization or guidance exists on how to conduct symptom provocation and which methods are most effective. This study aims to compare the effect of internal versus external techniques to induce obsessional stress in a clinical setting during TMS therapy. Two symptom provocation methods, (i) Asking patients thought-provoking questions about their obsessions (internal) and (ii) Requesting patients to perform obsession-related tasks (external), were employed in a crossover design with repeated measurement. Thirty-six treatments of NeuroStar TMS were administered to each of two patients over 8 weeks in an outpatient clinic. Patient One received 18 sessions of internal provocation followed by 18 sessions of external provocation, while Patient Two received 18 sessions of external provocation followed by 18 sessions of internal provocation. The primary outcome was the level of self-reported obsessional stress on a visual analog scale from 1 to 10. The secondary outcome was self-reported OCD severity, collected biweekly in a four-level Likert-scale (1 to 4) of bad, fair, good and excellent. Outcomes were compared and tested between provocation arms through repeated measures ANOVA, accounting for intra-patient correlations. Ages were 42 for Patient One (male, White) and 57 for Patient Two (male, White). Both patients had similar moderate symptoms at baseline, as determined through the Yale-Brown Obsessive Compulsive Scale (YBOCS). When comparing obsessional stress induced across the two arms of internal and external provocation methods, the mean (SD) was 6.03 (1.18) for internal and 4.01 (1.28) for external strategies (P=0.0019); ranges were 3 to 8 for internal and 2 to 8 for external strategies. Internal provocation yielded 5 (31.25%) bad, 6 (33.33%) fair, 3 (18.75%) good, and 2 (12.5%) excellent responses for OCD status, while external provocation yielded 5 (31.25%) bad, 9 (56.25%) fair, 1 (6.25%) good, and 1 (6.25%) excellent responses (P=0.58). Internal symptom provocation tactics had a significantly stronger impact on inducing obsessional stress and led to better OCD status (non-significant). This could be attributed to the fact that answering questions may prompt patients to reflect more on their lived experiences and struggles with OCD. In the future, clinical trials with larger sample sizes are warranted to validate this finding. Results support the increased integration of internal methods into structured provocation protocols, potentially reducing the time required for provocation and achieving greater treatment response to TMS.

Keywords: obsessive-compulsive disorder, transcranial magnetic stimulation, mental health, symptom provocation

Procedia PDF Downloads 54
439 A Comparative Assessment of Information Value, Fuzzy Expert System Models for Landslide Susceptibility Mapping of Dharamshala and Surrounding, Himachal Pradesh, India

Authors: Kumari Sweta, Ajanta Goswami, Abhilasha Dixit

Abstract:

Landslide is a geomorphic process that plays an essential role in the evolution of the hill-slope and long-term landscape evolution. But its abrupt nature and the associated catastrophic forces of the process can have undesirable socio-economic impacts, like substantial economic losses, fatalities, ecosystem, geomorphologic and infrastructure disturbances. The estimated fatality rate is approximately 1person /100 sq. Km and the average economic loss is more than 550 crores/year in the Himalayan belt due to landslides. This study presents a comparative performance of a statistical bivariate method and a machine learning technique for landslide susceptibility mapping in and around Dharamshala, Himachal Pradesh. The final produced landslide susceptibility maps (LSMs) with better accuracy could be used for land-use planning to prevent future losses. Dharamshala, a part of North-western Himalaya, is one of the fastest-growing tourism hubs with a total population of 30,764 according to the 2011 census and is amongst one of the hundred Indian cities to be developed as a smart city under PM’s Smart Cities Mission. A total of 209 landslide locations were identified in using high-resolution linear imaging self-scanning (LISS IV) data. The thematic maps of parameters influencing landslide occurrence were generated using remote sensing and other ancillary data in the GIS environment. The landslide causative parameters used in the study are slope angle, slope aspect, elevation, curvature, topographic wetness index, relative relief, distance from lineaments, land use land cover, and geology. LSMs were prepared using information value (Info Val), and Fuzzy Expert System (FES) models. Info Val is a statistical bivariate method, in which information values were calculated as the ratio of the landslide pixels per factor class (Si/Ni) to the total landslide pixel per parameter (S/N). Using this information values all parameters were reclassified and then summed in GIS to obtain the landslide susceptibility index (LSI) map. The FES method is a machine learning technique based on ‘mean and neighbour’ strategy for the construction of fuzzifier (input) and defuzzifier (output) membership function (MF) structure, and the FR method is used for formulating if-then rules. Two types of membership structures were utilized for membership function Bell-Gaussian (BG) and Trapezoidal-Triangular (TT). LSI for BG and TT were obtained applying membership function and if-then rules in MATLAB. The final LSMs were spatially and statistically validated. The validation results showed that in terms of accuracy, Info Val (83.4%) is better than BG (83.0%) and TT (82.6%), whereas, in terms of spatial distribution, BG is best. Hence, considering both statistical and spatial accuracy, BG is the most accurate one.

Keywords: bivariate statistical techniques, BG and TT membership structure, fuzzy expert system, information value method, machine learning technique

Procedia PDF Downloads 127
438 Hunger and Health: The Acceptability and Development of Health Coaching in the Food Pantry Environment

Authors: Kelsey Fortin, Susan Harvey

Abstract:

The intersection between hunger and health outcomes is beginning to gain traction among the research community. With new interventions focusing on collaborations between the medical and social service sectors, this study aimed to understand the acceptability and approach of a health coaching intervention within a county-wide Midwest food pantry. Through formative research, the study used mixed methods to review secondary data and conduct surveys and semi-structured interviews with food pantry clients (n=30), staff (n=7), and volunteers (n=10). Supplemental secondary data collected and provided by pantry staff were reviewed to understand the broader pantry context of clientele health and health behaviors, annual food donations, and current pantry programming. Results from secondary data showed that the broader pantry client population reported high rates of chronic disease, low consumption of fruits and vegetables, and poor self-reported health, while annual donation data showed increases in produce availability on pantry shelves. This disconnect between produce availability, client health status, and behaviors was supported in the current study, with pantry staff and volunteers reporting lack of knowledge in produce selection and preparation being amongst the most common client inquiries and barriers to healthy food selection. Additional supports to secondary data came from pantry clients in the current study through self-reported high rates of both individual (60%, n=18) and household (43%, n=13 ) disease diagnosis, low consumption of fruits and vegetables averaging zero to one servings of vegetables (67%, n=20) and fruits (47%, n=14) per day, and low levels of physical activity averaging zero to 120 minutes per week (67%, n=20). Further, pantry clients provided health coaching programmatic recommendations through interviews with feedback such as non-judgmental coaching, accountability measures, and providing participant incentives as considerations for future program design and approach. Volunteers and staff reported the need for client education in food preparation, basic nutrition and physical activity, and the need for additional health expertise to educate and respond to diet related nutrition recommendations. All three stakeholder groups supported hosting a health coach within the pantry to focused on nutrition, physical activity, and health programming, with one client stating, 'I am hoping it really works out [the health coaching program]. I think it would be great for something like this to be offered for someone that isn’t knowledgeable like me.' In conclusion, high rates of chronic disease, partnered with low food, nutrition, and physical activity literacy among pantry clients, demonstrates the need to address health behaviors. With all three stakeholder groups showing acceptability of a health coaching program, partnered with existing literature showing health coaching success as a behavior change intervention, further research should be conducted to pilot the design and implementation of such a program in the pantry setting.

Keywords: food insecurity, formative research, food pantries, health coaching, hunger and health

Procedia PDF Downloads 129
437 Behavioral Analysis of Anomalies in Intertemporal Choices Through the Concept of Impatience and Customized Strategies for Four Behavioral Investor Profiles With an Application of the Analytic Hierarchy Process: A Case Study

Authors: Roberta Martino, Viviana Ventre

Abstract:

The Discounted Utility Model is the essential reference for calculating the utility of intertemporal prospects. According to this model, the value assigned to an outcome is the smaller the greater the distance between the moment in which the choice is made and the instant in which the outcome is perceived. This diminution determines the intertemporal preferences of the individual, the psychological significance of which is encapsulated in the discount rate. The classic model provides a discount rate of linear or exponential nature, necessary for temporally consistent preferences. Empirical evidence, however, has proven that individuals apply discount rates with a hyperbolic nature generating the phenomenon of intemporal inconsistency. What this means is that individuals have difficulty managing their money and future. Behavioral finance, which analyzes the investor's attitude through cognitive psychology, has made it possible to understand that beyond individual financial competence, there are factors that condition choices because they alter the decision-making process: behavioral bias. Since such cognitive biases are inevitable, to improve the quality of choices, research has focused on a personalized approach to strategies that combines behavioral finance with personality theory. From the considerations, it emerges the need to find a procedure to construct the personalized strategies that consider the personal characteristics of the client, such as age or gender, and his personality. The work is developed in three parts. The first part discusses and investigates the weight of the degree of impatience and impatience decrease in the anomalies of the discounted utility model. Specifically, the degree of decrease in impatience quantifies the impact that emotional factors generated by haste and financial market agitation have on decision making. The second part considers the relationship between decision making and personality theory. Specifically, four behavioral categories associated with four categories of behavioral investors are considered. This association allows us to interpret intertemporal choice as a combination of bias and temperament. The third part of the paper presents a method for constructing personalized strategies using Analytic Hierarchy Process. Briefly: the first level of the analytic hierarchy process considers the goal of the strategic plan; the second level considers the four temperaments; the third level compares the temperaments with the anomalies of the discounted utility model; and the fourth level contains the different possible alternatives to be selected. The weights of the hierarchy between level 2 and level 3 are constructed considering the degrees of decrease in impatience derived for each temperament with an experimental phase. The results obtained confirm the relationship between temperaments and anomalies through the degree of decrease in impatience and highlight that the actual impact of emotions in decision making. Moreover, it proposes an original and useful way to improve financial advice. Inclusion of additional levels in the Analytic Hierarchy Process can further improve strategic personalization.

Keywords: analytic hierarchy process, behavioral finance anomalies, intertemporal choice, personalized strategies

Procedia PDF Downloads 89
436 Policy Views of Sustainable Integrated Solution for Increased Synergy between Light Railways and Electrical Distribution Network

Authors: Mansoureh Zangiabadi, Shamil Velji, Rajendra Kelkar, Neal Wade, Volker Pickert

Abstract:

The EU has set itself a long-term goal of reducing greenhouse gas emissions by 80-95% of the 1990 levels by 2050 as set in the Energy Roadmap 2050. This paper reports on the European Union H2020 funded E-Lobster project which demonstrates tools and technologies, software and hardware in integrating the grid distribution, and the railway power systems with power electronics technologies (Smart Soft Open Point - sSOP) and local energy storage. In this context this paper describes the existing policies and regulatory frameworks of the energy market at European level with a special focus then at National level, on the countries where the members of the consortium are located, and where the demonstration activities will be implemented. By taking into account the disciplinary approach of E-Lobster, the main policy areas investigated includes electricity, energy market, energy efficiency, transport and smart cities. Energy storage will play a key role in enabling the EU to develop a low-carbon electricity system. In recent years, Energy Storage System (ESSs) are gaining importance due to emerging applications, especially electrification of the transportation sector and grid integration of volatile renewables. The need for storage systems led to ESS technologies performance improvements and significant price decline. This allows for opening a new market where ESSs can be a reliable and economical solution. One such emerging market for ESS is R+G management which will be investigated and demonstrated within E-Lobster project. The surplus of energy in one type of power system (e.g., due to metro braking) might be directly transferred to the other power system (or vice versa). However, it would usually happen at unfavourable instances when the recipient does not need additional power. Thus, the role of ESS is to enhance advantages coming from interconnection of the railway power systems and distribution grids by offering additional energy buffer. Consequently, the surplus/deficit of energy in, e.g. railway power systems, is not to be immediately transferred to/from the distribution grid but it could be stored and used when it is really needed. This will assure better energy management exchange between the railway power systems and distribution grids and lead to more efficient loss reduction. In this framework, to identify the existing policies and regulatory frameworks is crucial for the project activities and for the future development of business models for the E-Lobster solutions. The projections carried out by the European Commission, the Member States and stakeholders and their analysis indicated some trends, challenges, opportunities and structural changes needed to design the policy measures to provide the appropriate framework for investors. This study will be used as reference for the discussion in the envisaged workshops with stakeholders (DSOs and Transport Managers) in the E-Lobster project.

Keywords: light railway, electrical distribution network, Electrical Energy Storage, policy

Procedia PDF Downloads 135
435 Enhancing the Structural and Electrochemical Performance of Li-Rich Layered Metal Oxides Cathodes for Li-Ion Battery by Coating with the Active Material

Authors: Cyril O. Ehi-Eromosele, Ajayi Kayode

Abstract:

The Li-rich layered metal oxides (LLO) are the most promising candidates for promising electrodes of high energy Li-ion battery (LIB). In literature, these electrode system has either been designed as a hetero-structure of the primary components (composite) or as a core-shell structure with improved electrochemistry reported for both configurations when compared with its primary components. With the on-going efforts to improve on the electrochemical performance of the LIB, it is important to investigate comparatively the structural and electrochemical characteristics of the core-shell like and ‘composite’ forms of these materials with the same compositions and synthesis conditions which could influence future engineering of these materials. Therefore, this study concerns the structural and electrochemical properties of the ‘composite’ and core-shell like LLO cathode materials with the same nominal composition of 0.5Li₂MnO₃-0.5LiNi₀.₅Mn₀.₃Co₀.₂O₂ (LiNi₀.₅Mn₀.₃Co₀.₂O₂ as core and Li₂MnO₃ as the shell). The results show that the core-shell sample (–CS) gave better electrochemical performance than the ‘composite’ sample (–C). Both samples gave the same initial charge capacity of ~300 mAh/g when cycled at 10 mA/g and comparable charge capacity (246 mAh/g for the –CS sample and 240 mAh/g for the –C sample) when cycled at 200 mA/g. However, the –CS sample gave a higher initial discharge capacity at both current densities. The discharge capacity of the –CS sample was 232 mAh/g and 164 mAh/g while the –C sample is 208 mAh/g and 143 mAh/g at the current densities of 10 mA/g and 200 mA/g, respectively. Electrochemical impedance spectroscopy (EIS) results show that the –CS sample generally exhibited a smaller resistance than the –C sample both for the uncycled and after 50th cycle. Detailed structural analysis is on-going, but preliminary results show that the –CS sample had bigger unit cell volume and a higher degree of cation mixing. The thermal stability of the –CS sample was higher than the –C sample. XPS investigation also showed that the pristine –C sample gave a more reactive surface (showing formation of carbonate species to a greater degree) which could result in the greater resistance seen in the EIS result. To reinforce the results obtained for the 0.5Li₂MnO₃-0.5LiNi₀.₅Mn₀.₃Co₀.₃O₂ composition, the same investigations were extended to another ‘composite’ and core-shell like LLO cathode materials also with the same nominal composition of 0.5Li₂MnO₃-0.5LiNi₀.₃Mn₀.₃Co₀.₃O₂. In this case, the aim was to determine the electrochemical performance of the material using a low Ni content (LiNi₀.₃Mn₀.₃Co₀.₃O₂) as the core to clarify the contributions of the core-shell configuration to the electrochemical performance of these materials. Ni-rich layered oxides show active catalytic surface leading to electrolyte oxidation resulting in poor thermal stability and cycle life. Here, the core-shell sample also gave better electrochemical performance than the ‘composite’ sample with 0.5Li₂MnO₃-0.5LiNi₀.₃Mn₀.₃Co₀.₃O₂ composition. Furthermore, superior electrochemical performance was also recorded for the core-shell like spinel modified LLO (0.5Li₂MnO₃-0.45LiNi₀.₅Mn₀.₃Co₀.₂O₂-0.05LiNi₀.₅Mn₁.₅O₄) when compared to the composite system. These results show that the core-shell configuration can generally be used to improve the structural and electrochemical properties of the LLO and spinel modified LLO materials.

Keywords: lithium-ion battery, lithium rich oxide cathode, core-shell structure, composite structure

Procedia PDF Downloads 122
434 Interval Functional Electrical Stimulation Cycling and Nutritional Counseling Improves Lean Mass to Fat Mass Ratio and Decreases Cardiometabolic Disease Risk in Individuals with Spinal Cord Injury

Authors: David Dolbow, Daniel Credeur, Mujtaba Rahimi, Dobrivoje Stokic, Jennifer Lemacks, Andrew Courtner

Abstract:

Introduction: Obesity is at epidemic proportions in the spinal cord injury (SCI) population (66-75%), as individuals who suffer from paralysis undergo a dramatic decrease in muscle mass and a dramatic increase in adipose deposition. Obesity is a major public health concern which includes a doubling of the risk of heart disease, stroke and type II diabetes mellitus. It has been demonstrated that physical activity, and especially HIIT, can promote a healthy body composition and decrease the risk cardiometabolic disease in the able-bodied population. However, SCI typically limits voluntary exercise to the arms, but a high prevalence of shoulder pain in persons with chronic SCI (60-90%) can cause increased arm exercise to be problematic. Functional electrical stimulation (FES) cycling has proven to be a safe and effective way to exercise paralyzed leg muscles in clinical and home settings, saving the often overworked arms. Yet, HIIT-FES cycling had not been investigated prior to the current study. The purpose of this study was to investigate the body composition changes with combined HIIT-FES cycling and nutritional counseling on individuals with SCI. Design: A matched (level of injury, time since injury, body mass index) and controlled trail. Setting: University exercise performance laboratory. Subjects: Ten individuals with chronic SCI (C5-T9) ASIA impairment classification (A & B) were divided into the treatment group (n=5) for 30 minutes of HIIT-FES cycling 3 times per week for 8 weeks and nutritional counseling over the phone for 30 minutes once per week for 8 weeks and the control group (n=5) who received nutritional counseling only. Results: There was a statistically significant difference between the HIIT-FES group and the control group in mean body fat percentage change (-1.14 to +0.24) respectively, p = .030). There was also a statistically significant difference between the HIIT-FES and control groups in mean change in legs lean mass (+0.78 kg to -1.5 kg) respectively, p = 0.004. There was a nominal decrease in weight, BMI, total fat mass and a nominal increase in total lean mass for the HIIT-FES group over the control group. However, these changes were not found to be statistically significant. Additionally, there was a nominal decrease in the mean blood glucose levels for both groups 101.8 to 97.8 mg/dl for the HIIT-FES group and 94.6 to 93 mg/dl for the Nutrition only group, however, neither were found to be statistically significant. Conclusion: HIIT-FES cycling combined with nutritional counseling can provide healthful body composition changes including decreased body fat percentage in just 8 weeks. Future study recommendations include a greater number of participants, a primer electrical stimulation exercise program to better ready participants for HIIT-FES cycling and a greater volume of training above 30 minutes, 3 times per week for 8 weeks.

Keywords: body composition, functional electrical stimulation cycling, high-intensity interval training, spinal cord injury

Procedia PDF Downloads 116
433 The Importance and Necessity for Acquiring Pedagogical Skills by the Practice Tutors for the Training of the General Nurses

Authors: Maria Luiza Fulga, Georgeta Truca, Mihaela Alexandru, Andriescu Mariana, Crin Marcean

Abstract:

The significance of nursing as a subject in the post-secondary healthcare curriculum is a major. We aimed to enable our students to assess the patient's risk, to establish prevention measures and to adapt to a specific learning context, in order to acquire the skills and abilities necessary for the nursing profession. In order to achieve these objectives, during the three years of study, teachers put an emphasis on acquiring communication skills, because in our country after the first cycle of hospital accreditation concluded in 2016, the National Authority for Quality of Health Management has introduced the criteria for the implementation and application of the nursing process according to the accreditation standards. According to these requirements, the nurse has to carry out the nursing assessment, based on communication as a distinct component, so that they can identify nursing diagnoses and implement the nursing plan. In this respect, we, the teachers, have refocused, by approaching various teaching strategies and preparing students for the real context of learning and applying what they learn. In the educational process, the tutors in the hospitals have an important role to play in acquiring professional skills. Students perform their activity in the hospital in accordance with the curriculum, in order to verify the practical applicability of the theoretical knowledge acquired in the school classes and also have the opportunity to acquire their skills in a real learning context. In clinical education, the student nurse learns in the middle of a guidance team which includes a practice tutor, who is a nurse that takes responsibility for the practical/clinical learning of the students in their field of activity. In achieving this objective, the tutor's abilities involve pedagogical knowledge, knowledge for the good of the individual and nursing theory, in order to be able to guide clinical practice in accordance with current requirements. The aim of this study is to find out the students’ confidence level in practice tutors in hospitals, the students’ degree of satisfaction in the pedagogical skills of the tutors and the practical applicability of the theoretical knowledge. In this study, we used as a method of investigation a student satisfaction questionnaire regarding the clinical practice in the hospital and the sample of the survey consisted of 100 students aged between 20 and 50 years, from the first, second and third year groups, with the General Nurse specialty (nurses responsible for general care), from 'Fundeni' Healthcare Post-Secondary School, Bucharest, Romania. Following the analysis of the data provided, we arrived the conclusion that the hospital tutor needs to improve his/her pedagogical skills, the knowledge of nursing diagnostics, and the implementation of the nursing plan, so that the applicability of the theoretical notions would be increased. Future plans include the pedagogical training of the medical staff, as well as updating the knowledge needed to implement the nursing process in order to meet current requirements.

Keywords: clinical training, nursing process, pedagogical skills, tutor

Procedia PDF Downloads 160
432 Application of Laser-Induced Breakdown Spectroscopy for the Evaluation of Concrete on the Construction Site and in the Laboratory

Authors: Gerd Wilsch, Tobias Guenther, Tobias Voelker

Abstract:

In view of the ageing of vital infrastructure facilities, a reliable condition assessment of concrete structures is becoming of increasing interest for asset owners to plan timely and appropriate maintenance and repair interventions. For concrete structures, reinforcement corrosion induced by penetrating chlorides is the dominant deterioration mechanism affecting the serviceability and, eventually, structural performance. The determination of the quantitative chloride ingress is required not only to provide valuable information on the present condition of a structure, but the data obtained can also be used for the prediction of its future development and associated risks. At present, wet chemical analysis of ground concrete samples by a laboratory is the most common test procedure for the determination of the chloride content. As the chloride content is expressed by the mass of the binder, the analysis should involve determination of both the amount of binder and the amount of chloride contained in a concrete sample. This procedure is laborious, time-consuming, and costly. The chloride profile obtained is based on depth intervals of 10 mm. LIBS is an economically viable alternative providing chloride contents at depth intervals of 1 mm or less. It provides two-dimensional maps of quantitative element distributions and can locate spots of higher concentrations like in a crack. The results are correlated directly to the mass of the binder, and it can be applied on-site to deliver instantaneous results for the evaluation of the structure. Examples for the application of the method in the laboratory for the investigation of diffusion and migration of chlorides, sulfates, and alkalis are presented. An example for the visualization of the Li transport in concrete is also shown. These examples show the potential of the method for a fast, reliable, and automated two-dimensional investigation of transport processes. Due to the better spatial resolution, more accurate input parameters for model calculations are determined. By the simultaneous detection of elements such as carbon, chlorine, sodium, and potassium, the mutual influence of the different processes can be determined in only one measurement. Furthermore, the application of a mobile LIBS system in a parking garage is demonstrated. It uses a diode-pumped low energy laser (3 mJ, 1.5 ns, 100 Hz) and a compact NIR spectrometer. A portable scanner allows a two-dimensional quantitative element mapping. Results show the quantitative chloride analysis on wall and floor surfaces. To determine the 2-D distribution of harmful elements (Cl, C), concrete cores were drilled, split, and analyzed directly on-site. Results obtained were compared and verified with laboratory measurements. The results presented show that the LIBS method is a valuable addition to the standard procedures - the wet chemical analysis of ground concrete samples. Currently, work is underway to develop a technical code of practice for the application of the method for the determination of chloride concentration in concrete.

Keywords: chemical analysis, concrete, LIBS, spectroscopy

Procedia PDF Downloads 105
431 Beyond Personal Evidence: Using Learning Analytics and Student Feedback to Improve Learning Experiences

Authors: Shawndra Bowers, Allie Brandriet, Betsy Gilbertson

Abstract:

This paper will highlight how Auburn Online’s instructional designers leveraged student and faculty data to update and improve online course design and instructional materials. When designing and revising online courses, it can be difficult for faculty to know what strategies are most likely to engage learners and improve educational outcomes in a specific discipline. It can also be difficult to identify which metrics are most useful for understanding and improving teaching, learning, and course design. At Auburn Online, the instructional designers use a suite of data based student’s performance, participation, satisfaction, and engagement, as well as faculty perceptions, to inform sound learning and design principles that guide growth-mindset consultations with faculty. The consultations allow the instructional designer, along with the faculty member, to co-create an actionable course improvement plan. Auburn Online gathers learning analytics from a variety of sources that any instructor or instructional design team may have access to at their own institutions. Participation and performance data, such as page: views, assignment submissions, and aggregate grade distributions, are collected from the learning management system. Engagement data is pulled from the video hosting platform, which includes unique viewers, views and downloads, the minutes delivered, and the average duration each video is viewed. Student satisfaction is also obtained through a short survey that is embedded at the end of each instructional module. This survey is included in each course every time it is taught. The survey data is then analyzed by an instructional designer for trends and pain points in order to identify areas that can be modified, such as course content and instructional strategies, to better support student learning. This analysis, along with the instructional designer’s recommendations, is presented in a comprehensive report to instructors in an hour-long consultation where instructional designers collaborate with the faculty member on how and when to implement improvements. Auburn Online has developed a triage strategy of priority 1 or 2 level changes that will be implemented in future course iterations. This data-informed decision-making process helps instructors focus on what will best work in their teaching environment while addressing which areas need additional attention. As a student-centered process, it has created improved learning environments for students and has been well received by faculty. It has also shown to be effective in addressing the need for improvement while removing the feeling the faculty’s teaching is being personally attacked. The process that Auburn Online uses is laid out, along with the three-tier maintenance and revision guide that will be used over a three-year implementation plan. This information can help others determine what components of the maintenance and revision plan they want to utilize, as well as guide them on how to create a similar approach. The data will be used to analyze, revise, and improve courses by providing recommendations and models of good practices through determining and disseminating best practices that demonstrate an impact on student success.

Keywords: data-driven, improvement, online courses, faculty development, analytics, course design

Procedia PDF Downloads 60
430 Humanizing Industrial Architecture: When Form Meets Function and Emotion

Authors: Sahar Majed Asad

Abstract:

Industrial structures have historically focused on functionality and efficiency, often disregarding aesthetics and human experience. However, a new approach is emerging that prioritizes humanizing industrial architecture and creating spaces that promote well-being, sustainability, and social responsibility. This study explores the motivations and design strategies behind this shift towards more human-centered industrial environments, providing practical guidance for architects, designers, and other stakeholders interested in incorporating these principles into their work. Through in-depth interviews with architects, designers, and industry experts, as well as a review of relevant literature, this study uncovers the reasons for this change in industrial design. The findings reveal that this shift is driven by a desire to create environments that prioritize the needs and experiences of the people who use them. The study identifies strategies such as incorporating natural elements, flexible design, and advanced technologies as crucial in achieving human-centric industrial design. It also emphasizes that effective communication and collaboration among stakeholders are crucial for successful human-centered design outcomes. This paper provides a comprehensive analysis of the motivations and design strategies behind the humanization of industrial architecture. It begins by examining the history of industrial architecture and highlights the focus on functionality and efficiency. The paper then explores the emergence of human-centered design principles in industrial architecture, discussing the benefits of this approach, including creating more sustainable and socially responsible environments.The paper explains specific design strategies that prioritize the human experience of industrial spaces. It outlines how incorporating natural elements like greenery and natural lighting can create more visually appealing and comfortable environments for industrial workers. Flexible design solutions, such as movable walls and modular furniture, can make spaces more adaptable to changing needs and promote a sense of ownership and creativity among workers. Advanced technologies, such as sensors and automation, can improve the efficiency and safety of industrial spaces while also enhancing the human experience. To provide practical guidance, the paper offers recommendations for incorporating human-centered design principles into industrial structures. It emphasizes the importance of understanding the needs and experiences of the people who use these spaces and provides specific examples of how natural elements, flexible design, and advanced technologies can be incorporated into industrial structures to promote human well-being. In conclusion, this study demonstrates that the humanization of industrial architecture is a growing trend that offers tremendous potential for creating more sustainable and socially responsible built environments. By prioritizing the human experience of industrial spaces, designers can create environments that promote well-being, sustainability, and social responsibility. This research study provides practical guidance for architects, designers, and other stakeholders interested in incorporating human-centered design principles into their work, demonstrating that a human-centered approach can lead to functional and aesthetically pleasing industrial spaces that promote human well-being and contribute to a better future for all.

Keywords: human-centered design, industrial architecture, sustainability, social responsibility

Procedia PDF Downloads 161
429 Monsoon Controlled Mercury Transportation in Ganga Alluvial Plain, Northern India and Its Implication on Global Mercury Cycle

Authors: Anjali Singh, Ashwani Raju, Vandana Devi, Mohmad Mohsin Atique, Satyendra Singh, Munendra Singh

Abstract:

India is the biggest consumer of mercury and, consequently, a major emitter too. The increasing mercury contamination in India’s water resources has gained widespread attention and, therefore, atmospheric deposition is of critical concern. However, little emphasis was placed on the role of precipitation in the aquatic mercury cycle of the Ganga Alluvial Plain which provides drinking water to nearly 7% of the world’s human population. A majority of the precipitation here occurs primarily in 10% duration of the year in the monsoon season. To evaluate the sources and transportation of mercury, water sample analysis has been conducted from two selected sites near Lucknow, which have a strong hydraulic gradient towards the river. 31 groundwater samples from Jehta village (26°55’15’’N; 80°50’21’’E; 119 m above mean sea level) and 31 river water samples from the Behta Nadi (a tributary of the Gomati River draining into the Ganga River) were collected during the monsoon season on every alternate day between 01 July to 30 August 2019. The total mercury analysis was performed by using Flow Injection Atomic Absorption Spectroscopy (AAS)-Mercury Hybride System, and daily rainfall data was collected from the India Meteorological Department, Amausi, Lucknow. The ambient groundwater and river-water concentrations were both 2-4 ng/L as there is no known geogenic source of mercury found in the area. Before the onset of the monsoon season, the groundwater and the river-water recorded mercury concentrations two orders of magnitude higher than the ambient concentrations, indicating the regional transportation of the mercury from the non-point source into the aquatic environment. Maximum mercury concentrations in groundwater and river-water were three orders of magnitude higher than the ambient concentrations after the onset of the monsoon season characterizing the considerable mobilization and redistribution of mercury by monsoonal precipitation. About 50% of both of the water samples were reported mercury below the detection limit, which can be mostly linked to the low intensity of precipitation in August and also with the dilution factor by precipitation. The highest concentration ( > 1200 ng/L) of mercury in groundwater was reported after 6-days lag from the first precipitation peak. Two high concentration peaks (>1000 ng/L) in river-water were separately correlated with the surface flow and groundwater outflow of mercury. We attribute the elevated mercury concentration in both of the water samples before the precipitation event to mercury originating from the extensive use of agrochemicals in mango farming in the plain. However, the elevated mercury concentration during the onset of monsoon appears to increase in area wetted with atmospherically deposited mercury, which migrated down from surface water to groundwater as downslope migration is a fundamental mechanism seen in rivers of the alluvial plain. The present study underscores the significance of monsoonal precipitation in the transportation of mercury to drinking water resources of the Ganga Alluvial Plain. This study also suggests that future research must be pursued for a better understand of the human health impact of mercury contamination and for quantification of the role of Ganga Alluvial Plain in the Global Mercury Cycle.

Keywords: drinking water resources, Ganga alluvial plain, india, mercury

Procedia PDF Downloads 145
428 Adapting an Accurate Reverse-time Migration Method to USCT Imaging

Authors: Brayden Mi

Abstract:

Reverse time migration has been widely used in the Petroleum exploration industry to reveal subsurface images and to detect rock and fluid properties since the early 1980s. The seismic technology involves the construction of a velocity model through interpretive model construction, seismic tomography, or full waveform inversion, and the application of the reverse-time propagation of acquired seismic data and the original wavelet used in the acquisition. The methodology has matured from 2D, simple media to present-day to handle full 3D imaging challenges in extremely complex geological conditions. Conventional Ultrasound computed tomography (USCT) utilize travel-time-inversion to reconstruct the velocity structure of an organ. With the velocity structure, USCT data can be migrated with the “bend-ray” method, also known as migration. Its seismic application counterpart is called Kirchhoff depth migration, in which the source of reflective energy is traced by ray-tracing and summed to produce a subsurface image. It is well known that ray-tracing-based migration has severe limitations in strongly heterogeneous media and irregular acquisition geometries. Reverse time migration (RTM), on the other hand, fully accounts for the wave phenomena, including multiple arrives and turning rays due to complex velocity structure. It has the capability to fully reconstruct the image detectable in its acquisition aperture. The RTM algorithms typically require a rather accurate velocity model and demand high computing powers, and may not be applicable to real-time imaging as normally required in day-to-day medical operations. However, with the improvement of computing technology, such a computational bottleneck may not present a challenge in the near future. The present-day (RTM) algorithms are typically implemented from a flat datum for the seismic industry. It can be modified to accommodate any acquisition geometry and aperture, as long as sufficient illumination is provided. Such flexibility of RTM can be conveniently implemented for the application in USCT imaging if the spatial coordinates of the transmitters and receivers are known and enough data is collected to provide full illumination. This paper proposes an implementation of a full 3D RTM algorithm for USCT imaging to produce an accurate 3D acoustic image based on the Phase-shift-plus-interpolation (PSPI) method for wavefield extrapolation. In this method, each acquired data set (shot) is propagated back in time, and a known ultrasound wavelet is propagated forward in time, with PSPI wavefield extrapolation and a piece-wise constant velocity model of the organ (breast). The imaging condition is then applied to produce a partial image. Although each image is subject to the limitation of its own illumination aperture, the stack of multiple partial images will produce a full image of the organ, with a much-reduced noise level if compared with individual partial images.

Keywords: illumination, reverse time migration (RTM), ultrasound computed tomography (USCT), wavefield extrapolation

Procedia PDF Downloads 74
427 4D Monitoring of Subsurface Conditions in Concrete Infrastructure Prior to Failure Using Ground Penetrating Radar

Authors: Lee Tasker, Ali Karrech, Jeffrey Shragge, Matthew Josh

Abstract:

Monitoring for the deterioration of concrete infrastructure is an important assessment tool for an engineer and difficulties can be experienced with monitoring for deterioration within an infrastructure. If a failure crack, or fluid seepage through such a crack, is observed from the surface often the source location of the deterioration is not known. Geophysical methods are used to assist engineers with assessing the subsurface conditions of materials. Techniques such as Ground Penetrating Radar (GPR) provide information on the location of buried infrastructure such as pipes and conduits, positions of reinforcements within concrete blocks, and regions of voids/cavities behind tunnel lining. This experiment underlines the application of GPR as an infrastructure-monitoring tool to highlight and monitor regions of possible deterioration within a concrete test wall due to an increase in the generation of fractures; in particular, during a time period of applied load to a concrete wall up to and including structural failure. A three-point load was applied to a concrete test wall of dimensions 1700 x 600 x 300 mm³ in increments of 10 kN, until the wall structurally failed at 107.6 kN. At each increment of applied load, the load was kept constant and the wall was scanned using GPR along profile lines across the wall surface. The measured radar amplitude responses of the GPR profiles, at each applied load interval, were reconstructed into depth-slice grids and presented at fixed depth-slice intervals. The corresponding depth-slices were subtracted from each data set to compare the radar amplitude response between datasets and monitor for changes in the radar amplitude response. At lower values of applied load (i.e., 0-60 kN), few changes were observed in the difference of radar amplitude responses between data sets. At higher values of applied load (i.e., 100 kN), closer to structural failure, larger differences in radar amplitude response between data sets were highlighted in the GPR data; up to 300% increase in radar amplitude response at some locations between the 0 kN and 100 kN radar datasets. Distinct regions were observed in the 100 kN difference dataset (i.e., 100 kN-0 kN) close to the location of the final failure crack. The key regions observed were a conical feature located between approximately 3.0-12.0 cm depth from surface and a vertical linear feature located approximately 12.1-21.0 cm depth from surface. These key regions have been interpreted as locations exhibiting an increased change in pore-space due to increased mechanical loading, or locations displaying an increase in volume of micro-cracks, or locations showing the development of a larger macro-crack. The experiment showed that GPR is a useful geophysical monitoring tool to assist engineers with highlighting and monitoring regions of large changes of radar amplitude response that may be associated with locations of significant internal structural change (e.g. crack development). GPR is a non-destructive technique that is fast to deploy in a production setting. GPR can assist with reducing risk and costs in future infrastructure maintenance programs by highlighting and monitoring locations within the structure exhibiting large changes in radar amplitude over calendar-time.

Keywords: 4D GPR, engineering geophysics, ground penetrating radar, infrastructure monitoring

Procedia PDF Downloads 179
426 Radish Sprout Growth Dependency on LED Color in Plant Factory Experiment

Authors: Tatsuya Kasuga, Hidehisa Shimada, Kimio Oguchi

Abstract:

Recent rapid progress in ICT (Information and Communication Technology) has advanced the penetration of sensor networks (SNs) and their attractive applications. Agriculture is one of the fields well able to benefit from ICT. Plant factories control several parameters related to plant growth in closed areas such as air temperature, humidity, water, culture medium concentration, and artificial lighting by using computers and AI (Artificial Intelligence) is being researched in order to obtain stable and safe production of vegetables and medicinal plants all year anywhere, and attain self-sufficiency in food. By providing isolation from the natural environment, a plant factory can achieve higher productivity and safe products. However, the biggest issue with plant factories is the return on investment. Profits are tenuous because of the large initial investments and running costs, i.e. electric power, incurred. At present, LED (Light Emitting Diode) lights are being adopted because they are more energy-efficient and encourage photosynthesis better than the fluorescent lamps used in the past. However, further cost reduction is essential. This paper introduces experiments that reveal which color of LED lighting best enhances the growth of cultured radish sprouts. Radish sprouts were cultivated in the experimental environment formed by a hydroponics kit with three cultivation shelves (28 samples per shelf) each with an artificial lighting rack. Seven LED arrays of different color (white, blue, yellow green, green, yellow, orange, and red) were compared with a fluorescent lamp as the control. Lighting duration was set to 12 hours a day. Normal water with no fertilizer was circulated. Seven days after germination, the length, weight and area of leaf of each sample were measured. Electrical power consumption for all lighting arrangements was also measured. Results and discussions: As to average sample length, no clear difference was observed in terms of color. As regards weight, orange LED was less effective and the difference was significant (p < 0.05). As to leaf area, blue, yellow and orange LEDs were significantly less effective. However, all LEDs offered higher productivity per W consumed than the fluorescent lamp. Of the LEDs, the blue LED array attained the best results in terms of length, weight and area of leaf per W consumed. Conclusion and future works: An experiment on radish sprout cultivation under 7 different color LED arrays showed no clear difference in terms of sample size. However, if electrical power consumption is considered, LEDs offered about twice the growth rate of the fluorescent lamp. Among them, blue LEDs showed the best performance. Further cost reduction e.g. low power lighting remains a big issue for actual system deployment. An automatic plant monitoring system with sensors is another study target.

Keywords: electric power consumption, LED color, LED lighting, plant factory

Procedia PDF Downloads 188
425 Tasting and Touring: Chinese Consumers’ Experiences with Australian Wine and Winery Tour: A Case Study of Sirromet Wines, Queensland

Authors: Ning Niu

Abstract:

The study hinges on consumer taste, food industry (wine production) and cultural consumption (vineyard tourism) which are related to the Chinese market, consumers, and visitors traveling to Australian vineyards. The research topic can be summed up as: the economic importance of the Chinese market on Australian wine production; the economic importance of the Chinese market have an impact on how Australian wine is produced or packaged; the impact of mass Chinese wine tourism on Australian vineyards; the gendered and cultured experience of wine tourism for Chines visitors. This study aims to apply the theories of Pierre Bourdieu into the research in food industry and cultural consumption; investigate Chinese experiences with Australian wine products and vineyard tours; to explore the cultural, gendered and class influences on their experiences. The academic background covers the concepts of habitus, taste, capital proposed by Pierre Bourdieu along with long-lasting concepts within China’s cultural context including mianzi (face, dignity/honor/hierarchy) and guanxi (connections/social network), in order to develop new perspectives to study the tastes of Chinese tourists coming to Australia for wine experiences. The documents cited from Australian government or industries will be interpreted, and the analysis of data will constitute the economic background for this current study. The study applies qualitative research and draws from the fieldwork, choosing ethnographic observation, interviews, personal experiences and discursive analysis of government documents and tourism documents. The expected sample size includes three tourism professionals, two or three local Australian wine producers, and 20 to 30 Chinese wine consumers and visitors travelling to Australian vineyards. An embodied ethnography will be used to observe the Chinese participants’ feelings, thoughts, and experiences of their engagement with Australian wine and vineyards. The researcher will interview with Chinese consumers, tourism professionals, and Australian winemakers to collect primary data. Note-taking, picture-taking, and audio-recording will be adopted with informants’ permissions. Personal or group interview will be last for 30 and 60 minutes respectively. Personal experiences of the researcher have been analyzed to respond to some research questions, and have accumulated part of primary data (e.g., photos and stories) to discover how 'mianzi' and 'guanxi' influence Australian wine and tourism industries to meet the demands’ of Chinese consumers. At current stage, the secondary data from analysis of official and industrial documents has proved the economic importance of Chinese market is influencing Australian wine and tourism industries. And my own experiences related to this study, in some sense, has proved the Chinese cultural concepts (mianzi and guanxi) are influencing the Australian wine production and package along with vineyard tours. Future fieldwork will discover more in this research realm, contribute more to knowledge.

Keywords: habitus, taste, capital, mianzi, guanxi

Procedia PDF Downloads 130
424 Measuring Enterprise Growth: Pitfalls and Implications

Authors: N. Šarlija, S. Pfeifer, M. Jeger, A. Bilandžić

Abstract:

Enterprise growth is generally considered as a key driver of competitiveness, employment, economic development and social inclusion. As such, it is perceived to be a highly desirable outcome of entrepreneurship for scholars and decision makers. The huge academic debate resulted in the multitude of theoretical frameworks focused on explaining growth stages, determinants and future prospects. It has been widely accepted that enterprise growth is most likely nonlinear, temporal and related to the variety of factors which reflect the individual, firm, organizational, industry or environmental determinants of growth. However, factors that affect growth are not easily captured, instruments to measure those factors are often arbitrary, causality between variables and growth is elusive, indicating that growth is not easily modeled. Furthermore, in line with heterogeneous nature of the growth phenomenon, there is a vast number of measurement constructs assessing growth which are used interchangeably. Differences among various growth measures, at conceptual as well as at operationalization level, can hinder theory development which emphasizes the need for more empirically robust studies. In line with these highlights, the main purpose of this paper is twofold. Firstly, to compare structure and performance of three growth prediction models based on the main growth measures: Revenues, employment and assets growth. Secondly, to explore the prospects of financial indicators, set as exact, visible, standardized and accessible variables, to serve as determinants of enterprise growth. Finally, to contribute to the understanding of the implications on research results and recommendations for growth caused by different growth measures. The models include a range of financial indicators as lag determinants of the enterprises’ performances during the 2008-2013, extracted from the national register of the financial statements of SMEs in Croatia. The design and testing stage of the modeling used the logistic regression procedures. Findings confirm that growth prediction models based on different measures of growth have different set of predictors. Moreover, the relationship between particular predictors and growth measure is inconsistent, namely the same predictor positively related to one growth measure may exert negative effect on a different growth measure. Overall, financial indicators alone can serve as good proxy of growth and yield adequate predictive power of the models. The paper sheds light on both methodology and conceptual framework of enterprise growth by using a range of variables which serve as a proxy for the multitude of internal and external determinants, but are unlike them, accessible, available, exact and free of perceptual nuances in building up the model. Selection of the growth measure seems to have significant impact on the implications and recommendations related to growth. Furthermore, the paper points out to potential pitfalls of measuring and predicting growth. Overall, the results and the implications of the study are relevant for advancing academic debates on growth-related methodology, and can contribute to evidence-based decisions of policy makers.

Keywords: growth measurement constructs, logistic regression, prediction of growth potential, small and medium-sized enterprises

Procedia PDF Downloads 252
423 Optimization of Territorial Spatial Functional Partitioning in Coal Resource-based Cities Based on Ecosystem Service Clusters - The Case of Gujiao City in Shanxi Province

Authors: Gu Sihao

Abstract:

The coordinated development of "ecology-production-life" in cities has been highly concerned by the country, and the transformation development and sustainable development of resource-based cities have become a hot research topic at present. As an important part of China's resource-based cities, coal resource-based cities have the characteristics of large number and wide distribution. However, due to the adjustment of national energy structure and the gradual exhaustion of urban coal resources, the development vitality of coal resource-based cities is gradually reduced. In many studies, the deterioration of ecological environment in coal resource-based cities has become the main problem restricting their urban transformation and sustainable development due to the "emphasis on economy and neglect of ecology". Since the 18th National Congress of the Communist Party of China (CPC), the Central Government has been deepening territorial space planning and development. On the premise of optimizing territorial space development pattern, it has completed the demarcation of ecological protection red lines, carried out ecological zoning and ecosystem evaluation, which have become an important basis and scientific guarantee for ecological modernization and ecological civilization construction. Grasp the regional multiple ecosystem services is the precondition of the ecosystem management, and the relationship between the multiple ecosystem services study, ecosystem services cluster can identify the interactions between multiple ecosystem services, and on the basis of the characteristics of the clusters on regional ecological function zoning, to better Social-Ecological system management. Based on this cognition, this study optimizes the spatial function zoning of Gujiao, a coal resource-based city, in order to provide a new theoretical basis for its sustainable development. This study is based on the detailed analysis of characteristics and utilization of Gujiao city land space, using SOFM neural networks to identify local ecosystem service clusters, according to the cluster scope and function of ecological function zoning of space partition balance and coordination between different ecosystem services strength, establish a relationship between clusters and land use, and adjust the functions of territorial space within each zone. Then, according to the characteristics of coal resources city and national spatial function zoning characteristics, as the driving factors of land change, by cellular automata simulation program, such as simulation under different restoration strategy situation of urban future development trend, and provides relevant theories and technical methods for the "third-line" demarcations of Gujiao's territorial space planning, optimizes territorial space functions, and puts forward targeted strategies for the promotion of regional ecosystem services, providing theoretical support for the improvement of human well-being and sustainable development of resource-based cities.

Keywords: coal resource-based city, territorial spatial planning, ecosystem service cluster, gmop model, geosos-FLUS model, functional zoning optimization and upgrading

Procedia PDF Downloads 61
422 Freight Time and Cost Optimization in Complex Logistics Networks, Using a Dimensional Reduction Method and K-Means Algorithm

Authors: Egemen Sert, Leila Hedayatifar, Rachel A. Rigg, Amir Akhavan, Olha Buchel, Dominic Elias Saadi, Aabir Abubaker Kar, Alfredo J. Morales, Yaneer Bar-Yam

Abstract:

The complexity of providing timely and cost-effective distribution of finished goods from industrial facilities to customers makes effective operational coordination difficult, yet effectiveness is crucial for maintaining customer service levels and sustaining a business. Logistics planning becomes increasingly complex with growing numbers of customers, varied geographical locations, the uncertainty of future orders, and sometimes extreme competitive pressure to reduce inventory costs. Linear optimization methods become cumbersome or intractable due to a large number of variables and nonlinear dependencies involved. Here we develop a complex systems approach to optimizing logistics networks based upon dimensional reduction methods and apply our approach to a case study of a manufacturing company. In order to characterize the complexity in customer behavior, we define a “customer space” in which individual customer behavior is described by only the two most relevant dimensions: the distance to production facilities over current transportation routes and the customer's demand frequency. These dimensions provide essential insight into the domain of effective strategies for customers; direct and indirect strategies. In the direct strategy, goods are sent to the customer directly from a production facility using box or bulk trucks. In the indirect strategy, in advance of an order by the customer, goods are shipped to an external warehouse near a customer using trains and then "last-mile" shipped by trucks when orders are placed. Each strategy applies to an area of the customer space with an indeterminate boundary between them. Specific company policies determine the location of the boundary generally. We then identify the optimal delivery strategy for each customer by constructing a detailed model of costs of transportation and temporary storage in a set of specified external warehouses. Customer spaces help give an aggregate view of customer behaviors and characteristics. They allow policymakers to compare customers and develop strategies based on the aggregate behavior of the system as a whole. In addition to optimization over existing facilities, using customer logistics and the k-means algorithm, we propose additional warehouse locations. We apply these methods to a medium-sized American manufacturing company with a particular logistics network, consisting of multiple production facilities, external warehouses, and customers along with three types of shipment methods (box truck, bulk truck and train). For the case study, our method forecasts 10.5% savings on yearly transportation costs and an additional 4.6% savings with three new warehouses.

Keywords: logistics network optimization, direct and indirect strategies, K-means algorithm, dimensional reduction

Procedia PDF Downloads 139
421 Climate Change and Rural-Urban Migration in Brazilian Semiarid Region

Authors: Linda Márcia Mendes Delazeri, Dênis Antônio Da Cunha

Abstract:

Over the past few years, the evidence that human activities have altered the concentration of greenhouse gases in the atmosphere have become stronger, indicating that this accumulation is the most likely cause of climate change observed so far. The risks associated with climate change, although uncertain, have the potential to increase social vulnerability, exacerbating existing socioeconomic challenges. Developing countries are potentially the most affected by climate change, since they have less potential to adapt and are those most dependent on agricultural activities, one of the sectors in which the major negative impacts are expected. In Brazil, specifically, it is expected that the localities which form the semiarid region are among the most affected, due to existing irregularity in rainfall and high temperatures, in addition to economic and social factors endemic to the region. Given the strategic limitations to handle the environmental shocks caused by climate change, an alternative adopted in response to these shocks is migration. Understanding the specific features of migration flows, such as duration, destination and composition is essential to understand the impacts of migration on origin and destination locations and to develop appropriate policies. Thus, this study aims to examine whether climatic factors have contributed to rural-urban migration in semiarid municipalities in the recent past and how these migration flows will be affected by future scenarios of climate change. The study was based on microeconomic theory of utility maximization, in which, to decide to leave the countryside and move on to the urban area, the individual seeks to maximize its utility. Analytically, we estimated an econometric model using the modeling of Fixed Effects and the results confirmed the expectation that climate drivers are crucial for the occurrence of the rural-urban migration. Also, other drivers of the migration process, as economic, social and demographic factors were also important. Additionally, predictions about the rural-urban migration motivated by variations in temperature and precipitation in the climate change scenarios RCP 4.5 and 8.5 were made for the periods 2016-2035 and 2046-2065, defined by the Intergovernmental Panel on Climate Change (IPCC). The results indicate that there will be increased rural-urban migration in the semiarid region in both scenarios and in both periods. In general, the results of this study reinforce the need for formulations of public policies to avoid migration for climatic reasons, such as policies that give support to the productive activities generating income in rural areas. By providing greater incentives for family agriculture and expanding sources of credit for the farmer, it will have a better position to face climate adversities and to settle in rural areas. Ultimately, if migration becomes necessary, there must be the adoption of policies that seek an organized and planned development of urban areas, considering migration as an adaptation strategy to adverse climate effects. Thus, policies that act to absorb migrants in urban areas and ensure that they have access to basic services offered to the urban population would contribute to the social costs reduction of climate variability.

Keywords: climate change, migration, rural productivity, semiarid region

Procedia PDF Downloads 350
420 Revolutionary Wastewater Treatment Technology: An Affordable, Low-Maintenance Solution for Wastewater Recovery and Energy-Saving

Authors: Hady Hamidyan

Abstract:

As the global population continues to grow, the demand for clean water and effective wastewater treatment becomes increasingly critical. By 2030, global water demand is projected to exceed supply by 40%, driven by population growth, increased water usage, and climate change. Currently, about 4.2 billion people lack access to safely managed sanitation services. The wastewater treatment sector faces numerous challenges, including the need for energy-efficient solutions, cost-effectiveness, ease of use, and low maintenance requirements. This abstract presents a groundbreaking wastewater treatment technology that addresses these challenges by offering an energy-saving approach, wastewater recovery capabilities, and a ready-made, affordable, and user-friendly package with minimal maintenance costs. The unique design of this ready-made package made it possible to eliminate the need for pumps, filters, airlift, and other common equipment. Consequently, it enables sustainable wastewater treatment management with exceptionally low energy and cost requirements, minimizing investment and maintenance expenses. The operation of these packages is based on continuous aeration, which involves injecting oxygen gas or air into the aeration chamber through a tubular diffuser with very small openings. This process supplies the necessary oxygen for aerobic bacteria. The recovered water, which amounts to almost 95% of the input, can be treated to meet specific quality standards, allowing safe reuse for irrigation, industrial processes, or even potable purposes. This not only reduces the strain on freshwater resources but also provides economic benefits by offsetting the costs associated with freshwater acquisition and wastewater discharge. The ready-made, affordable, and user-friendly nature of this technology makes it accessible to a wide range of users, including small communities, industries, and decentralized wastewater treatment systems. The system incorporates user-friendly interfaces, simplified operational procedures, and integrated automation, facilitating easy implementation and operation. Additionally, the use of durable materials, efficient equipment, and advanced monitoring systems significantly reduces maintenance requirements, resulting in low overall life-cycle costs and alleviating the burden on operators and maintenance personnel. In conclusion, the presented wastewater treatment technology offers a comprehensive solution to the challenges faced by the industry. Its energy-saving approach, combined with wastewater recovery capabilities, ensures sustainable resource management and enhances environmental stewardship. This affordable, ready-made, and low-maintenance package promotes broad adoption across various sectors and communities, contributing to a more sustainable future for water and wastewater management.

Keywords: wastewater treatment, energy saving, wastewater recovery, affordable package, low maintenance costs, sustainable resource management, environmental stewardship

Procedia PDF Downloads 92
419 Effective Health Promotion Interventions Help Young Children to Maximize Their Future Well-Being by Early Childhood Development

Authors: Nadeesha Sewwandi, Dilini Shashikala, R. Kanapathy, S. Viyasan, R. M. S. Kumara, Duminda Guruge

Abstract:

Early childhood development is important to the emotional, social, and physical development of young children and it has a direct effect on their overall development and on the adult they become. Play is so important to optimal child developments including skill development, social development, imagination, creativity and it fulfills a baby’s inborn need to learn. So, health promotion approach empowers people about the development of early childhood. Play area is a new concept and this study focus how this play areas helps to the development of early childhood of children in rural villages in Sri Lanka. This study was conducted with a children society in a rural village called Welankulama in Sri Lanka. Survey was conducted with children society about emotional, social and physical development of young children (Under age eight) in this village using questionnaires. It described most children under eight years age have poor level of emotional, social and physical development in this village. Then children society wanted to find determinants for this problem and among them they prioritized determinants like parental interactions, learning environment and social interaction and address them using an innovative concept called play area. In this village there is a common place as play area under a big tamarind tree. It consists of a playhouse, innovative playing toys, mobile library, etc. Twice a week children, parents, grandparents gather to this nice place. Collective feeding takes place in this area once a week and it was conducted by several mothers groups in this village. Mostly grandparents taught about handicrafts and this is a very nice place to share their experiences with all. Healthy competitions were conducted in this place through playing to motivate the children. Happy calendar (mood of the children) was marked by children before and after coming to the play area. In terms of results qualitative changes got significant place in this study. By learning about colors and counting through playing the thinking and reasoning skills got developed among children. Children were widening their imagination by means of storytelling. We observed there were good developments of fine and gross motor skills of two differently abled children in this village. Children learn to empathize with other people, sharing, collaboration, team work and following of rules. And also children gain knowledge about fairness, through role playing, obtained insight on the right ways of displaying emotions such as stress, fear, anger, frustration, and develops knowledge of how they can manage their feelings. The reading and writing ability of the children got improved by 83% because of the mobile library. The weight of children got increased by 81% in the village. Happiness was increased by 76% among children in the society. Playing is very important for learning during early childhood period of a person. Health promotion interventions play a major role to the development of early childhood and it help children to adjust to the school setting and even to enhance children’s learning readiness, learning behaviors and problem solving skills.

Keywords: early childhood development, health promotion approach, play and learning, working with children

Procedia PDF Downloads 138
418 Photonic Dual-Microcomb Ranging with Extreme Speed Resolution

Authors: R. R. Galiev, I. I. Lykov, A. E. Shitikov, I. A. Bilenko

Abstract:

Dual-comb interferometry is based on the mixing of two optical frequency combs with slightly different lines spacing which results in the mapping of the optical spectrum into the radio-frequency domain for future digitizing and numerical processing. The dual-comb approach enables diverse applications, including metrology, fast high-precision spectroscopy, and distance range. Ordinary frequency-modulated continuous-wave (FMCW) laser-based Light Identification Detection and Ranging systems (LIDARs) suffer from two main disadvantages: slow and unreliable mechanical, spatial scan and a rather wide linewidth of conventional lasers, which limits speed measurement resolution. Dual-comb distance measurements with Allan deviations down to 12 nanometers at averaging times of 13 microseconds, along with ultrafast ranging at acquisition rates of 100 megahertz, allowing for an in-flight sampling of gun projectiles moving at 150 meters per second, was previously demonstrated. Nevertheless, pump lasers with EDFA amplifiers made the device bulky and expensive. An alternative approach is a direct coupling of the laser to a reference microring cavity. Backscattering can tune the laser to the eigenfrequency of the cavity via the so-called self-injection locked (SIL) effect. Moreover, the nonlinearity of the cavity allows a solitonic frequency comb generation in the very same cavity. In this work, we developed a fully integrated, power-efficient, electrically driven dual-micro comb source based on the semiconductor lasers SIL to high-quality integrated Si3N4 microresonators. We managed to obtain robust 1400-1700 nm combs generation with a 150 GHz or 1 THz lines spacing and measure less than a 1 kHz Lorentzian withs of stable, MHz spaced beat notes in a GHz band using two separated chips, each pumped by its own, self-injection locked laser. A deep investigation of the SIL dynamic allows us to find out the turn-key operation regime even for affordable Fabry-Perot multifrequency lasers used as a pump. It is important that such lasers are usually more powerful than DFB ones, which were also tested in our experiments. In order to test the advantages of the proposed techniques, we experimentally measured a minimum detectable speed of a reflective object. It has been shown that the narrow line of the laser locked to the microresonator provides markedly better velocity accuracy, showing velocity resolution down to 16 nm/s, while the no-SIL diode laser only allowed 160 nm/s with good accuracy. The results obtained are in agreement with the estimations and open up ways to develop LIDARs based on compact and cheap lasers. Our implementation uses affordable components, including semiconductor laser diodes and commercially available silicon nitride photonic circuits with microresonators.

Keywords: dual-comb spectroscopy, LIDAR, optical microresonator, self-injection locking

Procedia PDF Downloads 72
417 Teacher Training for Bilingual Education of Deaf Students in Brazil

Authors: Mara Aparecida De Castilho Lopes. Maria Eliza Mattosinho Bernardes

Abstract:

The education of deaf individuals in Brazil is grounded in the bilingual approach, which presupposes Brazilian Sign Language (Libras) as the first language for these students. In this perspective, Portuguese should be taught as a second language in its written form, ensuring that deaf students also have access to various academic subjects in sign language. Brazilian legislation (Federal Decree No. 5626 of 2005) mandates the teaching of Brazilian Sign Language in university teacher training programs, but there is no pre-established minimum workload. As a result, there is a significant disparity in the teaching and quality of teacher education across the Brazilian territory. Added to this fact is the general lack of awareness within society regarding the linguistic status of Libras, leading to a shortage of competent teachers for its use and instruction, particularly in higher education. Recently, Federal Law No. 14191 of 2021 established bilingual education for the deaf as a mode of instruction, indicating the need for adjustments in teacher training within higher education teacher preparation programs. Given this context, the objective of the present study was to analyze the teaching proposals for Brazilian Sign Language for students in teacher training programs at public universities in Brazil, presenting alternatives to overcome the current models and academic pathways of teaching and learning. In addition to analyzing Brazilian teaching models, an analysis of a continuing education model for teachers in a French institution was also conducted - considering the historical Franco-Brazilian path of deaf education in Brazil. The analysis of the current teacher training model for deaf education in Brazil revealed that initial exposure to sign language and its linguistic structure is not sufficient to provide future teachers with opportunities to reflect on bilingual teaching methods and practices, as seen in other definitions of bilingualism - bilingual education for proficient listeners in two oral languages. As a result, a training proposal was developed for an experimental interdisciplinary course, integrating the curriculum of an initial and continuing teacher training program alongside the Alfredo Bossi Chair at the University of São Paulo. This proposal is structured into three disciplines, which constitute consecutive moments in teacher education: Fundamental Aspects of Brazilian Sign Language, Bilingual Teaching Methodology, and Teaching Investigation Project - interdisciplinary engagement in the field of deafness. The last offered discipline represents an interdisciplinary supervised internship proposal, considering the multi-professional context that constitutes deaf education within a bilingual approach. In interdisciplinary work within the field of deafness, dialogue between teachers and other professionals who work with deaf students from different perspectives - teachers, speech therapists, and sign language interpreters - is frequently necessary. Through alternative avenues, these actions aim to direct the linguistic development of deaf students within their learning processes. Based on the innovative curriculum proposal described here, the intention is to contribute to the enhancement of teacher education in Brazil, with the goal of ensuring bilingual education for deaf students.

Keywords: bilingual education, teacher training, historical-cultural approach, interdisciplinary education, inclusive education

Procedia PDF Downloads 91
416 “It’s All in Your Head”: Epistemic Injustice, Prejudice, and Power in the Modern Healthcare System

Authors: David Tennison

Abstract:

Epistemic injustice, an injustice done to a person specifically in their capacity as a “knower”, is a subtle form of discrimination, yet its effects can be as dehumanizing and damaging as more overt forms of discrimination. The lens of epistemic injustice has, in recent years, been fruitfully applied to the field of healthcare, examining questions of agency, power, credibility and belief in doctor-patient interactions. Contested illness patients (e.g., those with illnesses lacking scientific consensuses such as fibromyalgia (FM), Myalgic Encephalomyelitis/ Chronic Fatigue Syndrome (ME/CFS) and Long Covid) face higher levels of scrutiny than other patient groups and are often disbelieved or dismissed when their ailments cannot be easily imaged or tested for- often encapsulated by the expression “it’s all in your head”. Using the case study of FM, the trials of contested illness patients in healthcare can be conceptualized in terms of epistemic injustice, and what is going wrong in these doctor-patient relationships can be effectively diagnosed. This case study also helps reveal epistemic dysfunction (structural epistemic issues embedded in the healthcare system), how this relates to stigma identity-based prejudice, and how the healthcare system upholds existing societal hierarchies and disenfranchises the most vulnerable. In the modern landscape, where cases of these chronic illnesses are not only on the rise but future pandemics threaten to add to their number, this conversation is crucial for the well-being of patients and providers. This presentation will cover what epistemic injustice is and how it can be applied to the politics of the doctor-patient interaction on a micro level and the politics of the healthcare system more broadly. Contested illnesses will be explored in terms of how the “contested” label causes the patient to experience disease stigma and lowers their credibility in healthcare and across other aspects of life. This will be explored in tandem with a discussion of existing identity-based prejudice in the healthcare system and how social identities (such as those of gender, race, and socioeconomic status) intersect with the contested illness label. The effects of epistemic injustice, which include worsening patients’ symptoms of mental health and potentially disenfranchising them from the healthcare system altogether, will be presented alongside the potential ethical quandaries this poses for providers. Finally, issues with the way healthcare appointments and the modern NHS function will be explored in terms of epistemic injustice and solutions to improve doctor-patient communication and patient care will be discussed. The relationship between contested illness patients and healthcare providers is notoriously poor, and while this can mean frustration or feelings of unfulfillment in providers, the negative effects for patients are much more severe. The purpose of this research, then, is to highlight these issues and suggest ways in which to improve the healthcare experience for these patients, along with improving doctor-patient communication and mending the doctor-patient relationship in a tangible and realistic way. This research also aims to provoke important conversations about belief and hierarchy in medical settings and how these aspects intersect with identity prejudices.

Keywords: epistemic injustice, fibromyalgia, contested illnesses, chronic illnesses, doctor-patient relationships, philosophy of medicine

Procedia PDF Downloads 60
415 The Influence of Mechanical and Physicochemical Characteristics of Perfume Microcapsules on Their Rupture Behaviour and How This Relates to Performance in Consumer Products

Authors: Andrew Gray, Zhibing Zhang

Abstract:

The ability for consumer products to deliver a sustained perfume response can be a key driver for a variety of applications. Many compounds in perfume oils are highly volatile, meaning they readily evaporate once the product is applied, and the longevity of the scent is poor. Perfume capsules have been introduced as a means of abating this evaporation once the product has been delivered. The impermeable capsules are aimed to be stable within the formulation, and remain intact during delivery to the desired substrate, only rupturing to release the core perfume oil through application of mechanical force applied by the consumer. This opens up the possibility of obtaining an olfactive response hours, weeks or even months after delivery, depending on the nature of the desired application. Tailoring the properties of the polymeric capsules to better address the needs of the application is not a trivial challenge and currently design of capsules is largely done by trial and error. The aim of this work is to have more predictive methods for capsule design depending on the consumer application. This means refining formulations such that they rupture at the right time for the specific consumer application, not too early, not too late. Finding the right balance between these extremes is essential if a benefit is sought with respect to neat addition of perfume to formulations. It is important to understand the forces that influence capsule rupture, first, by quantifying the magnitude of these different forces, and then by assessing bulk rupture in real-world applications to understand how capsules actually respond. Samples were provided by an industrial partner and the mechanical properties of individual capsules within the samples were characterized via a micromanipulation technique, developed by Professor Zhang at the University of Birmingham. The capsules were synthesized such as to change one particular physicochemical property at a time, such as core: wall material ratio, and the average size of capsules. Analysis of shell thickness via Transmission Electron Microscopy, size distribution via the use of a Mastersizer, as well as a variety of other techniques confirmed that only one particular physicochemical property was altered for each sample. The mechanical analysis was subsequently undertaken, showing the effect that changing certain capsule properties had on the response under compression. It was, however, important to link this fundamental mechanical response to capsule performance in real-world applications. As such, the capsule samples were introduced to a formulation and exposed to full scale stresses. GC-MS headspace analysis of the perfume oil released from broken capsules enabled quantification of what the relative strengths of capsules truly means for product performance. Correlations have been found between the mechanical strength of capsule samples and performance in terms of perfume release in consumer applications. Having a better understanding of the key parameters that drive performance benefits the design of future formulations by offering better guidelines on the parameters that can be adjusted without worrying about the performance effects, and singles out those parameters that are essential in finding the sweet spot for capsule performance.

Keywords: consumer products, mechanical and physicochemical properties, perfume capsules, rupture behaviour

Procedia PDF Downloads 131
414 The Establishment of Primary Care Networks (England, UK) Throughout the COVID-19 Pandemic: A Qualitative Exploration of Workforce Perceptions

Authors: Jessica Raven Gates, Gemma Wilson-Menzfeld, Professor Alison Steven

Abstract:

In 2019, the Primary Care system in the UK National Health Service (NHS) was subject to reform and restructuring. Primary Care Networks (PCNs) were established, which aligned with a trend towards integrated care both within the NHS and internationally. The introduction of PCNs brought groups of GP practices in a locality together, to operate as a network, build on existing services and collaborate at a larger scale. PCNs were expected to bring a range of benefits to patients and address some of the workforce pressures in the NHS, through an expanded and collaborative workforce. The early establishment of PCNs was disrupted by the emerging COVID-19 pandemic. This study, set in the context of the pandemic, aimed to explore experiences of the PCN workforce, and their perceptions of the establishment of PCNs. Specific objectives focussed on examining factors perceived as enabling or hindering the success of a PCN, the impact on day-to-day work, the approach to implementing change, and the influence of the COVID-19 pandemic upon PCN development. This study is part of a three-phase PhD project that utilized qualitative approaches and was underpinned by social constructionist philosophy. Phase 1: a systematic narrative review explored the provision of preventative healthcare services in UK primary settings and examined facilitators and barriers to delivery as experienced by the workforce. Phase 2: informed by the findings of phase 1, semi-structured interviews were conducted with fifteen participants (PCN workforce). Phase 3: follow-up interviews were conducted with original participants to examine any changes to their experiences and perceptions of PCNs. Three main themes span across phases 2 and 3 and were generated through a Framework Analysis approach: 1) working together at scale, 2) network infrastructure, and 3) PCN leadership. Findings suggest that through efforts to work together at scale and collaborate as a network, participants have broadly accepted the concept of PCNs. However, the workforce has been hampered by system design and system complexity. Operating against such barriers has led to a negative psychological impact on some PCN leaders and others in the PCN workforce. While the pandemic undeniably increased pressure on healthcare systems around the world, it also acted as a disruptor, offering a glimpse into how collaboration in primary care can work well. Through the integration of findings from all phases, a new theoretical model has been developed, which conceptualises the findings from this Ph.D. study and demonstrates how the workforce has experienced change associated with the establishment of PCNs. The model includes a contextual component of the COVID-19 pandemic and has been informed by concepts from Complex Adaptive Systems theory. This model is the original contribution to knowledge of the PhD project, alongside recommendations for practice, policy and future research. This study is significant in the realm of health services research, and while the setting for this study is the UK NHS, the findings will be of interest to an international audience as the research provides insight into how the healthcare workforce may experience imposed policy and service changes.

Keywords: health services research, qualitative research, NHS workforce, primary care

Procedia PDF Downloads 58
413 Role of Baseline Measurements in Assessing Air Quality Impact of Shale Gas Operations

Authors: Paula Costa, Ana Picado, Filomena Pinto, Justina Catarino

Abstract:

Environmental impact associated with large scale shale gas development is of major concern to the public, policy makers and other stakeholders. To assess this impact on the atmosphere, it is important to monitoring ambient air quality prior to and during all shale gas operation stages. Baseline observations can provide a standard of the pre-shale gas development state of the environment. The lack of baseline concentrations was identified as an important knowledge gap to assess the impact of emissions to the air due to shale gas operations. In fact baseline monitoring of air quality are missing in several regions, where there is a strong possibility of future shale gas exploration. This makes it difficult to properly identify, quantify and characterize environmental impacts that may be associated with shale gas development. The implementation of a baseline air monitoring program is imperative to be able to assess the total emissions related with shale gas operations. In fact, any monitoring programme should be designed to provide indicative information on background levels. A baseline air monitoring program should identify and characterize targeted air pollutants, most frequently described from monitoring and emission measurements, as well as those expected from hydraulic fracturing activities, and establish ambient air conditions prior to start-up of potential emission sources from shale gas operations. This program has to be planned for at least one year accounting for ambient variations. In the literature, in addition to GHG emissions of CH4, CO2 and nitrogen oxides (NOx), fugitive emissions from shale gas production can release volatile organic compounds (VOCs), aldehydes (formaldehyde, acetaldehyde) and hazardous air pollutants (HAPs). The VOCs include a.o., benzene, toluene, ethyl benzene, xylenes, hexanes, 2,2,4-trimethylpentane, styrene. The concentrations of six air pollutants (ozone, particulate matter (PM), carbon monoxide (CO), nitrogen oxides (NOx), sulphur oxides (SOx), and lead) whose regional ambient air levels are regulated by the Environmental Protection Agency (EPA), are often discussed. However, the main concern in the emissions to air associated to shale gas operations, seems to be the leakage of methane. Methane is identified as a compound of major concern due to its strong global warming potential. The identification of methane leakage from shale gas activities is complex due to the existence of several other CH4 sources (e.g. landfill, agricultural activity or gas pipeline/compressor station). An integrated monitoring study of methane emissions may be a suitable mean of distinguishing the contribution of different sources of methane to ambient levels. All data analysis needs to be carefully interpreted taking, also, into account the meteorological conditions of the site. This may require the implementation of a more intensive monitoring programme. So, it is essential the development of a low-cost sampling strategy, suitable for establishing pre-operations baseline data as well as an integrated monitoring program to assess the emissions from shale gas operation sites. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 640715.

Keywords: air emissions, baseline, green house gases, shale gas

Procedia PDF Downloads 330
412 A Strategic Approach in Utilising Limited Resources to Achieve High Organisational Performance

Authors: Collen Tebogo Masilo, Erik Schmikl

Abstract:

The demand for the DataMiner product by customers has presented a great challenge for the vendor in Skyline Communications in deploying its limited resources in the form of human resources, financial resources, and office space, to achieve high organisational performance in all its international operations. The rapid growth of the organisation has been unable to efficiently support its existing customers across the globe, and provide services to new customers, due to the limited number of approximately one hundred employees in its employ. The combined descriptive and explanatory case study research methods were selected as research design, making use of a survey questionnaire which was distributed to a sample of 100 respondents. A sample return of 89 respondents was achieved. The sampling method employed was non-probability sampling, using the convenient sampling method. Frequency analysis and correlation between the subscales (the four themes) were used for statistical analysis to interpret the data. The investigation was conducted into mechanisms that can be deployed to balance the high demand for products and the limited production capacity of the company’s Belgian operations across four aspects: demand management strategies, capacity management strategies, communication methods that can be used to align a sales management department, and reward systems in use to improve employee performance. The conclusions derived from the theme ‘demand management strategies’ are that the company is fully aware of the future market demand for its products. However, there seems to be no evidence that there is proper demand forecasting conducted within the organisation. The conclusions derived from the theme 'capacity management strategies' are that employees always have a lot of work to complete during office hours, and, also, employees seem to need help from colleagues with urgent tasks. This indicates that employees often work on unplanned tasks and multiple projects. Conclusions derived from the theme 'communication methods used to align sales management department with operations' are that communication is not good throughout the organisation. This means that information often stays with management, and does not reach non-management employees. This also means that there is a lack of smooth synergy as expected and a lack of good communication between the sales department and the projects office. This has a direct impact on the delivery of projects to customers by the operations department. The conclusions derived from the theme ‘employee reward systems’ are that employees are motivated, and feel that they add value in their current functions. There are currently no measures in place to identify unhappy employees, and there are also no proper reward systems in place which are linked to a performance management system. The research has made a contribution to the body of research by exploring the impact of the four sub-variables and their interaction on the challenges of organisational productivity, in particular where an organisation experiences a capacity problem during its growth stage during tough economic conditions. Recommendations were made which, if implemented by management, could further enhance the organisation’s sustained competitive operations.

Keywords: high demand for products, high organisational performance, limited production capacity, limited resources

Procedia PDF Downloads 143