Search results for: distribution line
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7339

Search results for: distribution line

379 The Environmental Impact of Sustainability Dispersion of Chlorine Releases in Coastal Zone of Alexandra: Spatial-Ecological Modeling

Authors: Mohammed El Raey, Moustafa Osman Mohammed

Abstract:

The spatial-ecological modeling is relating sustainable dispersions with social development. Sustainability with spatial-ecological model gives attention to urban environments in the design review management to comply with Earth’s System. Naturally exchange patterns of ecosystems have consistent and periodic cycles to preserve energy flows and materials in Earth’s System. The probabilistic risk assessment (PRA) technique is utilized to assess the safety of industrial complex. The other analytical approach is the Failure-Safe Mode and Effect Analysis (FMEA) for critical components. The plant safety parameters are identified for engineering topology as employed in assessment safety of industrial ecology. In particular, the most severe accidental release of hazardous gaseous is postulated, analyzed and assessment in industrial region. The IAEA- safety assessment procedure is used to account the duration and rate of discharge of liquid chlorine. The ecological model of plume dispersion width and concentration of chlorine gas in the downwind direction is determined using Gaussian Plume Model in urban and ruler areas and presented with SURFER®. The prediction of accident consequences is traced in risk contour concentration lines. The local greenhouse effect is predicted with relevant conclusions. The spatial-ecological model is also predicted the distribution schemes from the perspective of pollutants that considered multiple factors of multi-criteria analysis. The data extends input–output analysis to evaluate the spillover effect, and conducted Monte Carlo simulations and sensitivity analysis. Their unique structure is balanced within “equilibrium patterns”, such as the biosphere and collective a composite index of many distributed feedback flows. These dynamic structures are related to have their physical and chemical properties and enable a gradual and prolonged incremental pattern. While this spatial model structure argues from ecology, resource savings, static load design, financial and other pragmatic reasons, the outcomes are not decisive in artistic/ architectural perspective. The hypothesis is an attempt to unify analytic and analogical spatial structure for development urban environments using optimization software and applied as an example of integrated industrial structure where the process is based on engineering topology as optimization approach of systems ecology.

Keywords: spatial-ecological modeling, spatial structure orientation impact, composite structure, industrial ecology

Procedia PDF Downloads 54
378 Boussinesq Model for Dam-Break Flow Analysis

Authors: Najibullah M, Soumendra Nath Kuiry

Abstract:

Dams and reservoirs are perceived for their estimable alms to irrigation, water supply, flood control, electricity generation, etc. which civilize the prosperity and wealth of society across the world. Meantime the dam breach could cause devastating flood that can threat to the human lives and properties. Failures of large dams remain fortunately very seldom events. Nevertheless, a number of occurrences have been recorded in the world, corresponding in an average to one to two failures worldwide every year. Some of those accidents have caused catastrophic consequences. So it is decisive to predict the dam break flow for emergency planning and preparedness, as it poses high risk to life and property. To mitigate the adverse impact of dam break, modeling is necessary to gain a good understanding of the temporal and spatial evolution of the dam-break floods. This study will mainly deal with one-dimensional (1D) dam break modeling. Less commonly used in the hydraulic research community, another possible option for modeling the rapidly varied dam-break flows is the extended Boussinesq equations (BEs), which can describe the dynamics of short waves with a reasonable accuracy. Unlike the Shallow Water Equations (SWEs), the BEs taken into account the wave dispersion and non-hydrostatic pressure distribution. To capture the dam-break oscillations accurately it is very much needed of at least fourth-order accurate numerical scheme to discretize the third-order dispersion terms present in the extended BEs. The scope of this work is therefore to develop an 1D fourth-order accurate in both space and time Boussinesq model for dam-break flow analysis by using finite-volume / finite difference scheme. The spatial discretization of the flux and dispersion terms achieved through a combination of finite-volume and finite difference approximations. The flux term, was solved using a finite-volume discretization whereas the bed source and dispersion term, were discretized using centered finite-difference scheme. Time integration achieved in two stages, namely the third-order Adams Basforth predictor stage and the fourth-order Adams Moulton corrector stage. Implementation of the 1D Boussinesq model done using PYTHON 2.7.5. Evaluation of the performance of the developed model predicted as compared with the volume of fluid (VOF) based commercial model ANSYS-CFX. The developed model is used to analyze the risk of cascading dam failures similar to the Panshet dam failure in 1961 that took place in Pune, India. Nevertheless, this model can be used to predict wave overtopping accurately compared to shallow water models for designing coastal protection structures.

Keywords: Boussinesq equation, Coastal protection, Dam-break flow, One-dimensional model

Procedia PDF Downloads 217
377 Pathogenic Escherichia Coli Strains and Their Antibiotic Susceptibility Profiles in Cases of Child Diarrhea at Addis Ababa University, College of Health Sciences, Tikur Anbessa Specialized Hospital, Addis Ababa, Ethiopia

Authors: Benyam Zenebe, Tesfaye Sisay, Gurja Belay, Workabeba Abebe

Abstract:

Background: The prevalence and antibiogram of pathogenic E. coli strains, which cause diarrhea vary from region to region, and even within countries in the same geographical area. In Ethiopia, diagnostic approaches to E. coli induced diarrhea in children less than five years of age are not standardized. The aim of this study was to determine the involvement of pathogenic E. coli strains in child diarrhea and determine the antibiograms of the isolates in children less than 5 years of age with diarrhea at Addis Ababa University College of Health Sciences TikurAnbessa Specialized Hospital, Addis Ababa, Ethiopia. Methods: A purposive study that included 98 diarrheic children less than five years of age was conducted at Addis Ababa University College of Health Sciences, TikurAnbessa Specialized Hospital, Addis Ababa, Ethiopia to detect pathogenic E. coli biotypes. Stool culture was used to identify presumptive E. coliisolates. Presumptive isolates were confirmed by biochemical tests, and antimicrobial susceptibility tests were performed on confirmed E. coli isolates by the disk diffusion method. DNA was extracted from confirmed isolates by a heating method and subjected to Polymerase Chain Reaction or the presence of virulence genes. Amplified PCR products were analyzed by agarose gel electrophoresis. Data were collected on child demographics and clinical conditions using administered questionnaires. The prevalence of E. coli strains from the total diarrheic children, and the prevalence of pathogenic strains from total E. coli isolates along with their susceptibility profiles; the distribution of pathogenic E.coli biotypes among different age groups and between the sexes were determined by using descriptive statistics. Result: Out of 98 stool specimens collected from diarrheic children less than 5 years of age, 75 presumptive E. coli isolates were identified by culture; further confirmation by biochemical tests showed that only 56 of the isolates were E. coli; 29 of the isolates were found in male children and 27 of them in female children. Out of the 58 isolates of E. coli, 25 pathotypes belonging to different classes of pathogenic strains: STEC, EPEC, EHEC, EAEC were detected by using the PCR technique. Pathogenic E. coli exhibited high rates of antibiotic resistance to many of the antibiotics tested. Moreover, they exhibited multiple drug resistance. Conclusion: This study found that the isolation rate of E. coli and the involvement of antibiotic-resistant pathogenic E. coli in diarrheic children is prominent, and hence focus should be given on the diagnosis and antimicrobial sensitivity testing of pathogenic E. coli at Addis Ababa University College of Health Sciences TikurAnbessa Specialized Hospital. Among antibiotics tested, Cefotitan could be a drug of choice to treat E. coli.

Keywords: antibiotic susceptibility profile, children, diarrhea, E. coli, pathogenic

Procedia PDF Downloads 201
376 Assessment of the Growth Enhancement Support Scheme in Adamawa State, Nigeria

Authors: Oto J. Okwu, Ornan Henry, Victor A. Otene

Abstract:

The agricultural sector contributes a great deal to the sustenance of Nigeria’s food security and economy, with an attendant impact on rural development. In spite of the relatively high number of farmers in the country, self-sufficiency in food production is still a challenge. Farmers are faced with myriad problems which hinder their production efficiency, one of which is their access to agricultural inputs required for optimum production. To meet the challenges faced by farmers, the government at the federal level has come up with many agricultural policies, one of which is the Agricultural Transformation Agenda (ATA). The Growth Enhancement Support Scheme (GESS) is one of the critical components of ATA, which is aimed at ensuring the effective distribution of agricultural inputs delivered directly to farmers, and at a regulated cost. After about 8 years of launching this policy, it will be necessary to carry out an assessment of GESS and determine the impact it has made on rural farmers with respect to their access to farm inputs. This study was carried out to assess the Growth Enhancement Support Scheme (GESS) in Adamawa State, Nigeria. Crop farmers who registered under the GESS in Adamawa State, Nigeria, formed the population for the study. Primary data for the study were obtained through a survey, and the use of a structured questionnaire. A sample size of 167 respondents was selected using multi-stage, purposive, and random sampling techniques. The validity and reliability of the research instrument (questionnaire) were obtained through pilot testing and test-retest method, respectively. The objectives of the study were to determine the difference in the level of access to agricultural inputs before and after GESS, determine the difference in cost of agricultural inputs before and after GESS, and to determine the challenges faced by rural farmers in accessing agricultural inputs through GESS. Both descriptive and inferential statistics were used in analyzing the collected data. Specifically, Mann-Whitney, student t-test, and factor analysis were used to test the stated hypotheses. Research findings revealed there was a significant difference in the level of access to farm inputs after the introduction of GESS (Z=14.216). Also, there was a significant difference in the cost of agro-inputs after the introduction of GESS (Pr |T| > |t|= 0.0000). The challenges faced by respondents in accessing agro-inputs through GESS were administrative and technical in nature. Based on the findings of the research, it was recommended that efforts be made by the government to sustain the GESS, as it has significantly improved the level of farmers’ access to agricultural inputs and has reduced the cost of agro-inputs, while administrative challenges faced by the respondents in accessing inputs be addressed by the government, and extension agents assist the farmers to overcome the technical challenges they face in accessing inputs.

Keywords: agricultural policy, agro-inputs, assessment, growth enhancement support scheme, rural farmers

Procedia PDF Downloads 84
375 Assessing the Impact of Frailty in Elderly Patients Undergoing Emergency Laparotomies in Singapore

Authors: Zhao Jiashen, Serene Goh, Jerry Goo, Anthony Li, Lim Woan Wui, Paul Drakeford, Chen Qing Yan

Abstract:

Introduction: Emergency laparotomy (EL) is one of the most common surgeries done in Singapore to treat acute abdominal pathologies. A significant proportion of these surgeries are performed in the geriatric population (65 years and older), who tend to have the highest postoperative morbidity, mortality, and highest utilization of intensive care resources. Frailty, the state of vulnerability to adverse outcomes from an accumulation of physiological deficits, has been shown to be associated with poorer outcomes after surgery and remains a strong driver of healthcare utilization and costs. To date, there is little understanding of the impact it has on emergency laparotomy outcomes. The objective of this study is to examine the impact of frailty on postoperative morbidity, mortality, and length of stay after EL. Methods: A retrospective study was conducted in two tertiary centres in Singapore, Tan Tock Seng Hospital and Khoo Teck Puat Hospital the period from January to December 2019. Patients aged 65 years and above who underwent emergency laparotomy for intestinal obstruction, perforated viscus, bowel ischaemia, adhesiolysis, gastrointestinal bleed, or another suspected acute abdomen were included. Laparotomies performed for trauma, cholecystectomy, appendectomy, vascular surgery, and non-GI surgery were excluded. The Clinical Frailty Score (CFS) developed by the Canadian Study of Health and Aging (CSHA) was used. A score of 1 to 4 was defined as non-frail and 5 to 7 as frail. We compared the clinical outcomes of elderly patients in the frail and non-frail groups. Results: There were 233 elderly patients who underwent EL during the study period. Up to 26.2% of patients were frail. Patients who were frail (CFS 5-9) tend to be older, 79 ± 7 vs 79 ± 5 years of age, p <0.01. Gender distribution was equal in both groups. Indication for emergency laparotomies, time from diagnosis to surgery, and presence of consultant surgeons and anaesthetists in the operating theatre were comparable (p>0.05). Patients in the frail group were more likely to receive postoperative geriatric assessment than in the non-frail group, 49.2% vs. 27.9% (p<0.01). The postoperative complications were comparable (p>0.05). The length of stay in the critical care unit was longer for the frail patients, 2 (IQR 1-6.5) versus 1 (IQR 0-4) days, p<0.01. Frailty was found to be an independent predictor of 90-day mortality but not age, OR 2.9 (1.1-7.4), p=0.03. Conclusion: Up to one-fourth of the elderly who underwent EL were frail. Patients who were frail were associated with a longer length of stay in the critical care unit and a 90-day mortality rate of more than three times that of their non-frail counterparts. PPOSSUM was a better predictor of 90-day mortality in the non-frail group than in the frail group. As frailty scoring was a significant predictor of 90-day mortality, its integration into acute surgical units to facilitate shared decision-making and discharge planning should be considered.

Keywords: frailty elderly, emergency, laparotomy

Procedia PDF Downloads 118
374 An Integrated Framework for Wind-Wave Study in Lakes

Authors: Moien Mojabi, Aurelien Hospital, Daniel Potts, Chris Young, Albert Leung

Abstract:

The wave analysis is an integral part of the hydrotechnical assessment carried out during the permitting and design phases for coastal structures, such as marinas. This analysis aims in quantifying: i) the Suitability of the coastal structure design against Small Craft Harbour wave tranquility safety criterion; ii) Potential environmental impacts of the structure (e.g., effect on wave, flow, and sediment transport); iii) Mooring and dock design and iv) Requirements set by regulatory agency’s (e.g., WSA section 11 application). While a complex three-dimensional hydrodynamic modelling approach can be applied on large-scale projects, the need for an efficient and reliable wave analysis method suitable for smaller scale marina projects was identified. As a result, Tetra Tech has developed and applied an integrated analysis framework (hereafter TT approach), which takes the advantage of the state-of-the-art numerical models while preserving the level of simplicity that fits smaller scale projects. The present paper aims to describe the TT approach and highlight the key advantages of using this integrated framework in lake marina projects. The core of this methodology is made by integrating wind, water level, bathymetry, and structure geometry data. To respond to the needs of specific projects, several add-on modules have been added to the core of the TT approach. The main advantages of this method over the simplified analytical approaches are i) Accounting for the proper physics of the lake through the modelling of the entire lake (capturing real lake geometry) instead of a simplified fetch approach; ii) Providing a more realistic representation of the waves by modelling random waves instead of monochromatic waves; iii) Modelling wave-structure interaction (e.g. wave transmission/reflection application for floating structures and piles amongst others); iv) Accounting for wave interaction with the lakebed (e.g. bottom friction, refraction, and breaking); v) Providing the inputs for flow and sediment transport assessment at the project site; vi) Taking in consideration historical and geographical variations of the wind field; and vii) Independence of the scale of the reservoir under study. Overall, in comparison with simplified analytical approaches, this integrated framework provides a more realistic and reliable estimation of wave parameters (and its spatial distribution) in lake marinas, leading to a realistic hydrotechnical assessment accessible to any project size, from the development of a new marina to marina expansion and pile replacement. Tetra Tech has successfully utilized this approach since many years in the Okanagan area.

Keywords: wave modelling, wind-wave, extreme value analysis, marina

Procedia PDF Downloads 57
373 Multiaxial Stress Based High Cycle Fatigue Model for Adhesive Joint Interfaces

Authors: Martin Alexander Eder, Sergei Semenov

Abstract:

Many glass-epoxy composite structures, such as large utility wind turbine rotor blades (WTBs), comprise of adhesive joints with typically thick bond lines used to connect the different components during assembly. Performance optimization of rotor blades to increase power output by simultaneously maintaining high stiffness-to-low-mass ratios entails intricate geometries in conjunction with complex anisotropic material behavior. Consequently, adhesive joints in WTBs are subject to multiaxial stress states with significant stress gradients depending on the local joint geometry. Moreover, the dynamic aero-elastic interaction of the WTB with the airflow generates non-proportional, variable amplitude stress histories in the material. Empiricism shows that a prominent failure type in WTBs is high cycle fatigue failure of adhesive bond line interfaces, which in fact over time developed into a design driver as WTB sizes increase rapidly. Structural optimization employed at an early design stage, therefore, sets high demands on computationally efficient interface fatigue models capable of predicting the critical locations prone for interface failure. The numerical stress-based interface fatigue model presented in this work uses the Drucker-Prager criterion to compute three different damage indices corresponding to the two interface shear tractions and the outward normal traction. The two-parameter Drucker-Prager model was chosen because of its ability to consider shear strength enhancement under compression and shear strength reduction under tension. The governing interface damage index is taken as the maximum of the triple. The damage indices are computed through the well-known linear Palmgren-Miner rule after separate rain flow-counting of the equivalent shear stress history and the equivalent pure normal stress history. The equivalent stress signals are obtained by self-similar scaling of the Drucker-Prager surface whose shape is defined by the uniaxial tensile strength and the shear strength such that it intersects with the stress point at every time step. This approach implicitly assumes that the damage caused by the prevailing multiaxial stress state is the same as the damage caused by an amplified equivalent uniaxial stress state in the three interface directions. The model was implemented as Python plug-in for the commercially available finite element code Abaqus for its use with solid elements. The model was used to predict the interface damage of an adhesively bonded, tapered glass-epoxy composite cantilever I-beam tested by LM Wind Power under constant amplitude compression-compression tip load in the high cycle fatigue regime. Results show that the model was able to predict the location of debonding in the adhesive interface between the webfoot and the cap. Moreover, with a set of two different constant life diagrams namely in shear and tension, it was possible to predict both the fatigue lifetime and the failure mode of the sub-component with reasonable accuracy. It can be concluded that the fidelity, robustness and computational efficiency of the proposed model make it especially suitable for rapid fatigue damage screening of large 3D finite element models subject to complex dynamic load histories.

Keywords: adhesive, fatigue, interface, multiaxial stress

Procedia PDF Downloads 147
372 Predictability of Kiremt Rainfall Variability over the Northern Highlands of Ethiopia on Dekadal and Monthly Time Scales Using Global Sea Surface Temperature

Authors: Kibrom Hadush

Abstract:

Countries like Ethiopia, whose economy is mainly rain-fed dependent agriculture, are highly vulnerable to climate variability and weather extremes. Sub-seasonal (monthly) and dekadal forecasts are hence critical for crop production and water resource management. Therefore, this paper was conducted to study the predictability and variability of Kiremt rainfall over the northern half of Ethiopia on monthly and dekadal time scales in association with global Sea Surface Temperature (SST) at different lag time. Trends in rainfall have been analyzed on annual, seasonal (Kiremt), monthly, and dekadal (June–September) time scales based on rainfall records of 36 meteorological stations distributed across four homogenous zones of the northern half of Ethiopia for the period 1992–2017. The results from the progressive Mann–Kendall trend test and the Sen’s slope method shows that there is no significant trend in the annual, Kiremt, monthly and dekadal rainfall total at most of the station's studies. Moreover, the rainfall in the study area varies spatially and temporally, and the distribution of the rainfall pattern increases from the northeast rift valley to northwest highlands. Methods of analysis include graphical correlation and multiple linear regression model are employed to investigate the association between the global SSTs and Kiremt rainfall over the homogeneous rainfall zones and to predict monthly and dekadal (June-September) rainfall using SST predictors. The results of this study show that in general, SST in the equatorial Pacific Ocean is the main source of the predictive skill of the Kiremt rainfall variability over the northern half of Ethiopia. The regional SSTs in the Atlantic and the Indian Ocean as well contribute to the Kiremt rainfall variability over the study area. Moreover, the result of the correlation analysis showed that the decline of monthly and dekadal Kiremt rainfall over most of the homogeneous zones of the study area are caused by the corresponding persistent warming of the SST in the eastern and central equatorial Pacific Ocean during the period 1992 - 2017. It is also found that the monthly and dekadal Kiremt rainfall over the northern, northwestern highlands and northeastern lowlands of Ethiopia are positively correlated with the SST in the western equatorial Pacific, eastern and tropical northern the Atlantic Ocean. Furthermore, the SSTs in the western equatorial Pacific and Indian Oceans are positively correlated to the Kiremt season rainfall in the northeastern highlands. Overall, the results showed that the prediction models using combined SSTs at various ocean regions (equatorial and tropical) performed reasonably well in the prediction (With R2 ranging from 30% to 65%) of monthly and dekadal rainfall and recommends it can be used for efficient prediction of Kiremt rainfall over the study area to aid with systematic and informed decision making within the agricultural sector.

Keywords: dekadal, Kiremt rainfall, monthly, Northern Ethiopia, sea surface temperature

Procedia PDF Downloads 120
371 Carbon-Supported Pd Nano-Particles as Green Catalysts for the Production of Fuels from Biomass

Authors: Andrea Dragu, Solen Kinayyigit, Valerie Colliere, Karin Karin Philippot, Camelia Bala, Vasile I. Parvulescu

Abstract:

The production of transportation fuels from biomass has gained a growing attention due to diminishing fossil fuel reserves, rising petroleum prices and increasing concern about global warming. In recent years, renewable hydrocarbons that are completely fungible with fossil fuels have been suggested to be efficiently produced by catalytic deoxygenation of fatty acids and their derivatives viadecarboxylation / decarbonylation. Several triglycerides (tall oil fatty acids) and saturated/unsaturated fatty acids and their corresponding esters were used as feedstocks. Their impact together with the influence of the reaction conditions and the catalyst composition on the nature of the reaction pathways of the deoxygenation of vegetable oils and their derivatives were recently reviewed. Following this state of the art the aim of the present study was the investigation of Pd NPs deposited onto mesoporous carbon supports as active and stable catalysts for the deoxygenation of oleic acid. The catalysts were prepared by the deposition of Pd NPs synthesised following an organometallic route on mesoporous carbons with different characteristics. Experiments were carried out under both batch and flow conditions. They demonstrated that under batch conditions (200 atm; 573K), the extent of the reaction depended, firstly, on the Pd loading and then on the metal dispersion and the oxidation state of palladium, both influenced by the way the support has been treated before the NPs deposition and by the preparation/stabilization methodology of Pd NPs. No aromatic compounds were detected in the reaction products but octadecanol and octadecane were observed in large extents. Under flow conditions (4 atm; 573 K), the conversion of stearic acid was superior to that observed in batch conditions. The product mixture contained over 20% heptadecane. No octadecanol, octadecane, and aromatic compounds were detected. The maxima in performances are obtained after only 0.5 h. After that, the yields in heptadecane suffer from a severe decrease until 3h reaction time. However, at that time, stopping feeding the reactor with oleic acid and flushing the catalyst only with mesitylene recovered the activity and the selectivity of the catalysts. With the complete removal of H2, the analysis revealed the presence of heptadecene in high excess compared to heptadecane (almost 7 to 1), thus suggesting decarbonylation as the main route. ICP-OES measurements indicated no leaching of palladium and simple washing of catalysts with mesitylene allowed recycling without any change in conversion or product distribution. Noteworthy, mesitylene as solvent exhibited no effect in this reaction. In conclusion, this study demonstrates the feasibility of such catalysts for the green production of fuels from biomass.

Keywords: fuels from biomass, green catalyst, Pd nano-particles , recycble catalyst

Procedia PDF Downloads 286
370 Assessment of the Properties of Microcapsules with Different Polymeric Shells Containing a Reactive Agent for their Suitability in Thermoplastic Self-healing Materials

Authors: Małgorzata Golonka, Jadwiga Laska

Abstract:

Self-healing polymers are one of the most investigated groups of smart materials. As materials engineering has recently focused on the design, production and research of modern materials and future technologies, researchers are looking for innovations in structural, construction and coating materials. Based on available scientific articles, it can be concluded that most of the research focuses on the self-healing of cement, concrete, asphalt and anticorrosion resin coatings. In our study, a method of obtaining and testing the properties of several types of microcapsules for use in self-healing polymer materials was developed. A method to obtain microcapsules exhibiting various mechanical properties, especially compressive strength was developed. The effect was achieved by using various polymer materials to build the shell: urea-formaldehyde resin (UFR), melamine-formaldehyde resin (MFR), melamine-urea-formaldehyde resin (MUFR). Dicyclopentadiene (DCPD) was used as the core material due to the possibility of its polymerization according to the ring-opening olefin metathesis (ROMP) mechanism in the presence of a solid Grubbs catalyst showing relatively high chemical and thermal stability. The ROMP of dicyclopentadiene leads to a polymer with high impact strength, high thermal resistance, good adhesion to other materials and good chemical and environmental resistance, so it is potentially a very promising candidate for the self-healing of materials. The capsules were obtained by condensation polymerization of formaldehyde with urea, melamine or copolymerization with urea and melamine in situ in water dispersion, with different molar ratios of formaldehyde, urea and melamine. The fineness of the organic phase dispersed in water, and consequently the size of the microcapsules, was regulated by the stirring speed. In all cases, to establish such synthesis conditions as to obtain capsules with appropriate mechanical strength. The microcapsules were characterized by determining the diameters and their distribution and measuring the shell thickness using digital optical microscopy and scanning electron microscopy, as well as confirming the presence of the active substance in the core by FTIR and SEM. Compression tests were performed to determine mechanical strength of the microcapsules. The highest repeatability of microcapsule properties was obtained for UFR resin, while the MFR resin had the best mechanical properties. The encapsulation efficiency of MFR was much lower compared to UFR, though. Therefore, capsules with a MUFR shell may be the optimal solution. The chemical reaction between the active substance present in the capsule core and the catalyst placed outside the capsules was confirmed by FTIR spectroscopy. The obtained autonomous repair systems (microcapsules + catalyst) were introduced into polyethylene in the extrusion process and tested for the self-repair of the material.

Keywords: autonomic self-healing system, dicyclopentadiene, melamine-urea-formaldehyde resin, microcapsules, thermoplastic materials

Procedia PDF Downloads 13
369 Post Covid-19 Scenario and Contemporary International Security Challenges

Authors: Rubina Waseem

Abstract:

The research focuses on the major crises and major effects, largely unforeseen, to counter international security concerns. At the close of 2019, the Covid-19 pandemic broke out in the city of Wuhan in Hubei province, China. The coronavirus was initially seen as an inchoate danger, aimed at striking people randomly. Owing to the extraordinary transmissibility of the virus and the highly knitted nature of the international political world, the Covid-19 soon became a formidable global challenge. The once hustling and bustling avenues, city centers, and market places became deserted. Lockdown, self-isolation, hygiene and safety, social-distancing, and job losses became a new norm. The national economies gradually plunged into crisis. The pandemic has so far caused over 33 million cases and one million deaths. The virus continues to devastate social life, as there is yet no therapeutic available. While the world was preoccupied addressing the human and social toll, the pandemic has exacerbated despair, mistrust, and friction in international relations, diplomacy, and strategy. The research will discuss how the coronavirus has accelerated the trends of transition in the postwar security order constructed by the United States. China, Russia, European Union, and other lesser regional players are now increasingly changing their security orientations to undermine the United States standing and authority in world politics. The systemic level analyses will be adopted as a methodology to broaden the lens of the study, and the research will analyze the prevalent global power distribution, whether vulnerable or exposed. The trends of parochial nationalism and isolationism are increasingly replacing multilateralism and collectivism. Yet worse, military posturing is assuming a greater role in international interactions. Taken together, the pandemic has worsened the prospects of international peace and stability by mounting equal pressure across the channels of international relations, diplomacy, and strategy. It is yet unclear which country or collectivity will face the real brunt. Despite this jaded and pessimistic view, the lingering pandemic has the potential to reinforce cooperation, multilateralism, and collectivism in the realm of international politics. There is a renewed momentum for global efforts against the pandemic. States and societies are coming closer to act as a whole. Equally important, the world leaders are feeling tempted to revisit the traditional conception of national security. In this regard, they are exploring the possibility of according preference to non-traditional security issues. In essence, the research concludes that Covid-19 has put the international political system under a great trial.

Keywords: covid-19, global challenges, international politics, international security

Procedia PDF Downloads 147
368 Holistic Solutions for Overcoming Fluoride Contamination Challenges in West Bengal, India: A Socio-economic Study on Water Quality, Infrastructure, and Community Engagement

Authors: Rajkumar Ghosh, Shyama Pada Gorai

Abstract:

Access to safe drinking water is a fundamental human right; however, regions like Purulia, Bankura, Birbhum, Malda, Dinajpur in West Bengal, India, face formidable challenges due to heightened fluoride levels. This paper delves into the hurdles of fresh drinking water production, presenting comprehensive solutions derived from literature reviews, field surveys, and scientific analyses. Encompassing fluoride-affected areas in Purulia, Bankura, Birbhum, Malda, North-South Dinajpur, and South 24 Parganas, the study emphasizes an integrated and sustainable approach. Employing a multidisciplinary methodology, combining scientific analysis and community engagement, the study identifies key factors influencing water quality and proposes sustainable strategies. Elevated fluoride concentrations exceeding international health standards (Purulia: 0.126 – 8.16 mg/L, Bankura: 0.1 – 12.2 mg/L, Malda: 0.1 – 4.54 mg/L, Birbhum: 0.023 – 18 mg/L) necessitate urgent intervention. Infrastructure deficiencies impede water treatment and distribution, while limited awareness obstructs community participation. The proposed solutions embrace advanced water treatment technologies, infrastructure development, community education, and sustainable water management practices. This comprehensive effort aims to provide clean drinking water, safeguarding the health of affected populations. Building on these foundations, the study explores the potential of rooftop rainwater harvesting as an effective and sustainable strategy to mitigate challenges in fresh drinking water production. By addressing fluoride contamination concerns and promoting community involvement, this approach presents a holistic solution to water quality issues in affected regions. The findings underscore the importance of integrating sustainable practices with community engagement to achieve long-term water security in Purulia, Bankura, Birbhum, Malda, North-South Dinajpur, and South 24 Parganas. This study serves as a cornerstone for further research and policy development, addressing fluoride contamination's impact on public health in affected areas. Recommendations include the establishment of long-term monitoring programs to assess the effectiveness of implemented solutions and conducting health impact studies to understand the long-term effects of fluoride contamination on the local population.

Keywords: fluoride mitigation, rainwater harvesting, water quality, sustainable water management, community engagement

Procedia PDF Downloads 31
367 Fe3O4 Decorated ZnO Nanocomposite Particle System for Waste Water Remediation: An Absorptive-Photocatalytic Based Approach

Authors: Prateek Goyal, Archini Paruthi, Superb K. Misra

Abstract:

Contamination of water resources has been a major concern, which has drawn attention to the need to develop new material models for treatment of effluents. Existing conventional waste water treatment methods remain ineffective sometimes and uneconomical in terms of remediating contaminants like heavy metal ions (mercury, arsenic, lead, cadmium and chromium); organic matter (dyes, chlorinated solvents) and high salt concentration, which makes water unfit for consumption. We believe that nanotechnology based strategy, where we use nanoparticles as a tool to remediate a class of pollutants would prove to be effective due to its property of high surface area to volume ratio, higher selectivity, sensitivity and affinity. In recent years, scientific advancement has been made to study the application of photocatalytic (ZnO, TiO2 etc.) nanomaterials and magnetic nanomaterials in remediating contaminants (like heavy metals and organic dyes) from water/wastewater. Our study focuses on the synthesis and monitoring remediation efficiency of ZnO, Fe3O4 and Fe3O4 coated ZnO nanoparticulate system for the removal of heavy metals and dyes simultaneously. Multitude of ZnO nanostructures (spheres, rods and flowers) using multiple routes (microwave & hydrothermal approach) offers a wide range of light active photo catalytic property. The phase purity, morphology, size distribution, zeta potential, surface area and porosity in addition to the magnetic susceptibility of the particles were characterized by XRD, TEM, CPS, DLS, BET and VSM measurements respectively. Further on, the introduction of crystalline defects into ZnO nanostructures can also assist in light activation for improved dye degradation. Band gap of a material and its absorbance is a concrete indicator for photocatalytic activity of the material. Due to high surface area, high porosity and affinity towards metal ions and availability of active surface sites, iron oxide nanoparticles show promising application in adsorption of heavy metal ions. An additional advantage of having magnetic based nanocomposite is, it offers magnetic field responsive separation and recovery of the catalyst. Therefore, we believe that ZnO linked Fe3O4 nanosystem would be efficient and reusable. Improved photocatalytic efficiency in addition to adsorption for environmental remediation has been a long standing challenge, and the nano-composite system offers the best of features which the two individual metal oxides provide for nanoremediation.

Keywords: adsorption, nanocomposite, nanoremediation, photocatalysis

Procedia PDF Downloads 215
366 Laying the Proto-Ontological Conditions for Floating Architecture as a Climate Adaptation Solution for Rising Sea Levels: Conceptual Framework and Definition of a Performance Based Design

Authors: L. Calcagni, A. Battisti, M. Hensel, D. S. Hensel

Abstract:

Since the beginning of the 21st century, we have seen a dynamic growth of water-based (WB) architecture, mainly due to the increasing threat of floods caused by sea level rise and heavy rains, all correlated with climate change. At the same time, the shortage of land available for urban development also led architects, engineers, and policymakers to reclaim the seabed or to build floating structures. Furthermore, the drive to produce energy from renewable resources has expanded the sector of offshore research, mining, and energy industry which seeks new types of WB structures. In light of these considerations, the time is ripe to consider floating architecture as a full-fledged building typology. Currently, there is no universally recognized academic definition of a floating building. Research on floating architecture lacks a proper, commonly shared vocabulary and typology distinction. Moreover, there is no global international legal framework for urban development on water, and there is no structured performance based building design (PBBD) approach for floating architecture in most countries, let alone national regulatory systems. Thus, first of all, the research intends to overcome the semantic and typological issues through the conceptualization of floating architecture, laying the proto-ontological conditions for floating development, and secondly to identify the parameters to be considered in the definition of a specific PBBD framework, setting the scene for national planning strategies. The theoretical overview and re-semanticization process involve the attribution of a new meaning to the term floating architecture. This terminological work of semantic redetermination is carried out through a systematic literature review and involves quantitative and historical research as well as logical argumentation methods. As it is expected that floating urban development is most likely to take place as an extension of coastal areas, the needs and design criteria are definitely more similar to those of the urban environment than to those of the offshore industry. Therefore, the identification and categorization of parameters –looking towards the potential formation of a PBBD framework for floating development– takes the urban and architectural guidelines and regulations as the starting point, taking the missing aspects, such as hydrodynamics (i.e. stability and buoyancy) from the offshore and shipping regulatory frameworks. This study is carried out through an evidence-based assessment of regulatory systems that are effective in different countries around the world, addressing on-land and on-water architecture as well as offshore and shipping industries. It involves evidence-based research and logical argumentation methods. Overall, inhabiting water is proposed not only as a viable response to the problem of rising sea levels, thus as a resilient frontier for urban development, but also as a response to energy insecurity, clean water, and food shortages, environmental concerns, and urbanization, in line with Blue Economy principles and the Agenda 2030. This review shows how floating architecture is to all intents and purposes, an urban adaptation measure and a solution towards self-sufficiency and energy-saving objectives. Moreover, the adopted methodology is, to all extents, open to further improvements and integrations, thus not rigid and already completely determined. Along with new designs and functions that will come into play in the practice field, eventually, life on water will seem no more unusual than life on land, especially by virtue of the multiple advantages it provides not only to users but also to the environment.

Keywords: adaptation measures, building typology, floating architecture, performance based building design, rising sea levels

Procedia PDF Downloads 66
365 Empowering Learners: From Augmented Reality to Shared Leadership

Authors: Vilma Zydziunaite, Monika Kelpsiene

Abstract:

In early childhood and preschool education, play has an important role in learning and cognitive processes. In the context of a changing world, personal autonomy and the use of technology are becoming increasingly important for the development of a wide range of learner competencies. By integrating technology into learning environments, the educational reality is changed, promoting unusual learning experiences for children through play-based activities. Alongside this, teachers are challenged to develop encouragement and motivation strategies that empower children to act independently. The aim of the study was to reveal the changes in the roles and experiences of teachers in the application of AR technology for the enrichment of the learning process. A quantitative research approach was used to conduct the study. The data was collected through an electronic questionnaire. Participants: 319 teachers of 5-6-year-old children using AR technology tools in their educational process. Methods of data analysis: Cronbach alpha, descriptive statistical analysis, normal distribution analysis, correlation analysis, regression analysis (SPSS software). Results. The results of the study show a significant relationship between children's learning and the educational process modeled by the teacher. The strongest predictor of child learning was found to be related to the role of the educator. Other predictors, such as pedagogical strategies, the concept of AR technology, and areas of children's education, have no significant relationship with child learning. The role of the educator was found to be a strong determinant of the child's learning process. Conclusions. The greatest potential for integrating AR technology into the teaching-learning process is revealed in collaborative learning. Teachers identified that when integrating AR technology into the educational process, they encourage children to learn from each other, develop problem-solving skills, and create inclusive learning contexts. A significant relationship has emerged - how the changing role of the teacher relates to the child's learning style and the aspiration for personal leadership and responsibility for their learning. Teachers identified the following key roles: observer of the learning process, proactive moderator, and creator of the educational context. All these roles enable the learner to become an autonomous and active participant in the learning process. This provides a better understanding and explanation of why it becomes crucial to empower the learner to experiment, explore, discover, actively create, and foster collaborative learning in the design and implementation of the educational content, also for teachers to integrate AR technologies and the application of the principles of shared leadership. No statistically significant relationship was found between the understanding of the definition of AR technology and the teacher’s choice of role in the learning process. However, teachers reported that their understanding of the definition of AR technology influences their choice of role, which has an impact on children's learning.

Keywords: teacher, learner, augmented reality, collaboration, shared leadership, preschool education

Procedia PDF Downloads 19
364 Characterization of Phenolic Compounds from Carménère Wines during Aging with Oak Wood (Staves, Chips and Barrels)

Authors: E. Obreque-Slier, J. Laqui-Estaña, A. Peña-Neira, M. Medel-Marabolí

Abstract:

Wine is an important source of polyphenols. Red wines show important concentrations of nonflavonoid (gallic acid, ellagic acid, caffeic acid and coumaric acid) and flavonoid compounds [(+)-catechin, (-)-epicatechin, (+)-gallocatechin and (-)-epigallocatechin]. However, a significant variability in the quantitative and qualitative distribution of chemical constituents in wine has to be expected depending on an array of important factors, such as the varietal differences of Vitis vinifera and cultural practices. It has observed that Carménère grapes present a differential composition and evolution of phenolic compounds when compared to other varieties and specifically with Cabernet Sauvignon grapes. Likewise, among the cultural practices, the aging in contact with oak wood is a high relevance factor. Then, the extraction of different polyphenolic compounds from oak wood into wine during its ageing process produces both qualitative and quantitative changes. Recently, many new techniques have been introduced in winemaking. One of these involves putting new pieces of wood (oak chips or inner staves) into inert containers. It offers some distinct and previously unavailable flavour advantages, as well as new options in wine handling. To our best knowledge, there is not information about the behaviour of Carménère wines (Chilean emblematic cultivar) in contact with oak wood. In addition, the effect of aging time and wood product (barrels, chips or staves) on the phenolic composition in Carménère wines has not been studied. This study aims at characterizing the condensed and hydrolyzable tannins from Carménère wines during the aging with staves, chips and barrels from French oak wood. The experimental design was completely randomized with two independent assays: aging time (0-12 month) and different formats of wood (barrel, chips and staves). The wines were characterized by spectrophotometric (total tannins and fractionation of proanthocyanidins into monomers, oligomers and polymers) and HPLC-DAD (ellagitannins) analysis. The wines in contact with different products of oak wood showed a similar content of total tannins during the study, while the control wine (without oak wood) presented a lower content of these compounds. In addition, it was observed that the polymeric proanthocyanidin fraction was the most abundant, while the monomeric fraction was the less abundant fraction in all treatments in two sample. However, significative differences in each fractions were observed between wines in contact from barrel, chips, and staves in two sample dates. Finally, the wine from barrels presented the highest content of the ellagitannins from the fourth to the last sample date. In conclusion, the use of alternative formats of oak wood affects the chemical composition of wines during aging, and these enological products are an interesting alternative to contribute with tannins to wine.

Keywords: enological inputs, oak wood aging, polyphenols, red wine

Procedia PDF Downloads 140
363 Internet of Assets: A Blockchain-Inspired Academic Program

Authors: Benjamin Arazi

Abstract:

Blockchain is the technology behind cryptocurrencies like Bitcoin. It revolutionizes the meaning of trust in the sense of offering total reliability without relying on any central entity that controls or supervises the system. The Wall Street Journal states: “Blockchain Marks the Next Step in the Internet’s Evolution”. Blockchain was listed as #1 in Linkedin – The Learning Blog “most in-demand hard skills needed in 2020”. As stated there: “Blockchain’s novel way to store, validate, authorize, and move data across the internet has evolved to securely store and send any digital asset”. GSMA, a leading Telco organization of mobile communications operators, declared that “Blockchain has the potential to be for value what the Internet has been for information”. Motivated by these seminal observations, this paper presents the foundations of a Blockchain-based “Internet of Assets” academic program that joins under one roof leading application areas that are characterized by the transfer of assets over communication lines. Two such areas, which are pillars of our economy, are Fintech – Financial Technology and mobile communications services. The next application in line is Healthcare. These challenges are met based on available extensive professional literature. Blockchain-based assets communication is based on extending the principle of Bitcoin, starting with the basic question: If digital money that travels across the universe can ‘prove its own validity’, can this principle be applied to digital content. A groundbreaking positive answer here led to the concept of “smart contract” and consequently to DLT - Distributed Ledger Technology, where the word ‘distributed’ relates to the non-existence of reliable central entities or trusted third parties. The terms Blockchain and DLT are frequently used interchangeably in various application areas. The World Bank Group compiled comprehensive reports, analyzing the contribution of DLT/Blockchain to Fintech. The European Central Bank and Bank of Japan are engaged in Project Stella, “Balancing confidentiality and auditability in a distributed ledger environment”. 130 DLT/Blockchain focused Fintech startups are now operating in Switzerland. Blockchain impact on mobile communications services is treated in detail by leading organizations. The TM Forum is a global industry association in the telecom industry, with over 850 member companies, mainly mobile operators, that generate US$2 trillion in revenue and serve five billion customers across 180 countries. From their perspective: “Blockchain is considered one of the digital economy’s most disruptive technologies”. Samples of Blockchain contributions to Fintech (taken from a World Bank document): Decentralization and disintermediation; Greater transparency and easier auditability; Automation & programmability; Immutability & verifiability; Gains in speed and efficiency; Cost reductions; Enhanced cyber security resilience. Samples of Blockchain contributions to the Telco industry. Establishing identity verification; Record of transactions for easy cost settlement; Automatic triggering of roaming contract which enables near-instantaneous charging and reduction in roaming fraud; Decentralized roaming agreements; Settling accounts per costs incurred in accordance with agreement tariffs. This clearly demonstrates an academic education structure where fundamental technologies are studied in classes together with these two application areas. Advanced courses, treating specific implementations then follow separately. All are under the roof of “Internet of Assets”.

Keywords: blockchain, education, financial technology, mobile telecommunications services

Procedia PDF Downloads 155
362 Aerosol Characterization in a Coastal Urban Area in Rimini, Italy

Authors: Dimitri Bacco, Arianna Trentini, Fabiana Scotto, Flavio Rovere, Daniele Foscoli, Cinzia Para, Paolo Veronesi, Silvia Sandrini, Claudia Zigola, Michela Comandini, Marilena Montalti, Marco Zamagni, Vanes Poluzzi

Abstract:

The Po Valley, in the north of Italy, is one of the most polluted areas in Europe. The air quality of the area is linked not only to anthropic activities but also to its geographical characteristics and stagnant weather conditions with frequent inversions, especially in the cold season. Even the coastal areas present high values of particulate matter (PM10 and PM2.5) because the area closed between the Adriatic Sea and the Apennines does not favor the dispersion of air pollutants. The aim of the present work was to identify the main sources of particulate matter in Rimini, a tourist city in northern Italy. Two sampling campaigns were carried out in 2018, one in winter (60 days) and one in summer (30 days), in 4 sites: an urban background, a city hotspot, a suburban background, and a rural background. The samples are characterized by the concentration of the ionic composition of the particulates and of the main a hydro-sugars, in particular levoglucosan, a marker of the biomass burning, because one of the most important anthropogenic sources in the area, both in the winter and surprisingly even in the summer, is the biomass burning. Furthermore, three sampling points were chosen in order to maximize the contribution of a specific biomass source: a point in a residential area (domestic cooking and domestic heating), a point in the agricultural area (weed fires), and a point in the tourist area (restaurant cooking). In these sites, the analyzes were enriched with the quantification of the carbonaceous component (organic and elemental carbon) and with measurement of the particle number concentration and aerosol size distribution (6 - 600 nm). The results showed a very significant impact of the combustion of biomass due to domestic heating in the winter period, even though many intense peaks were found attributable to episodic wood fires. In the summer season, however, an appreciable signal was measured linked to the combustion of biomass, although much less intense than in winter, attributable to domestic cooking activities. Further interesting results were the verification of the total absence of sea salt's contribution in the particulate with the lower diameter (PM2.5), and while in the PM10, the contribution becomes appreciable only in particular wind conditions (high wind from north, north-east). Finally, it is interesting to note that in a small town, like Rimini, in summer, the traffic source seems to be even more relevant than that measured in a much larger city (Bologna) due to tourism.

Keywords: aerosol, biomass burning, seacoast, urban area

Procedia PDF Downloads 106
361 Study of the Impact of Quality Management System on Chinese Baby Dairy Product Industries

Authors: Qingxin Chen, Liben Jiang, Andrew Smith, Karim Hadjri

Abstract:

Since 2007, the Chinese food industry has undergone serious food contamination in the baby dairy industry, especially milk powder contamination. One of the milk powder products was found to contain melamine and a significant number (294,000) of babies were affected by kidney stones. Due to growing concerns among consumers about food safety and protection, and high pressure from central government, companies must take radical action to ensure food quality protection through the use of an appropriate quality management system. Previously, though researchers have investigated the health and safety aspects of food industries and products, quality issues concerning food products in China have been largely over-looked. Issues associated with baby dairy products and their quality issues have not been discussed in depth. This paper investigates the impact of quality management systems on the Chinese baby dairy product industry. A literature review was carried out to analyse the use of quality management systems within the Chinese milk power market. Moreover, quality concepts, relevant standards, laws, regulations and special issues (such as Melamine, Flavacin M1 contamination) have been analysed in detail. A qualitative research approach is employed, whereby preliminary analysis was conducted by interview, and data analysis based on interview responses from four selected Chinese baby dairy product companies was carried out. Through the analysis of literature review and data findings, it has been revealed that for quality management system that has been designed by many practitioners, many theories, models, conceptualisation, and systems are present. These standards and procedures should be followed in order to provide quality products to consumers, but the implementation is lacking in the Chinese baby dairy industry. Quality management systems have been applied by the selected companies but the implementation still needs improvement. For instance, the companies have to take measures to improve their processes and procedures with relevant standards. The government need to make more interventions and take a greater supervisory role in the production process. In general, this research presents implications for the regulatory bodies, Chinese Government and dairy food companies. There are food safety laws prevalent in China but they have not been widely practiced by companies. Regulatory bodies must take a greater role in ensuring compliance with laws and regulations. The Chinese government must also play a special role in urging companies to implement relevant quality control processes. The baby dairy companies not only have to accept the interventions from the regulatory bodies and government, they also need to ensure that production, storage, distribution and other processes will follow the relevant rules and standards.

Keywords: baby dairy product, food quality, milk powder contamination, quality management system

Procedia PDF Downloads 449
360 Peak Constituent Fluxes from Small Arctic Rivers Generated by Late Summer Episodic Precipitation Events

Authors: Shawn G. Gallaher, Lilli E. Hirth

Abstract:

As permafrost thaws with the continued warming of the Alaskan North Slope, a progressively thicker active thaw layer is evidently releasing previously sequestered nutrients, metals, and particulate matter exposed to fluvial transport. In this study, we estimate material fluxes on the North Slope of Alaska during the 2019-2022 melt seasons. The watershed of the Alaskan North Slope can be categorized into three regions: mountains, tundra, and coastal plain. Precipitation and discharge data were collected from repeat visits to 14 sample sites for biogeochemical surface water samples, 7 point discharge measurements, 3 project deployed meteorology stations, and 2 U. S. Geological Survey (USGS) continuous discharge observation sites. The timing, intensity, and spatial distribution of precipitation determine the material flux composition in the Sagavanirktok and surrounding bodies of water, with geogenic constituents (e.g., dissolved inorganic carbon (DIC)) expected from mountain flushed events and biogenic constituents (e.g., dissolved organic compound (DOC)) expected from transitional tundra precipitation events. Project goals include connecting late summer precipitation events to peak discharge to determine the responses of the watershed to localized atmospheric forcing. Field study measurements showed widespread precipitation in August 2019, generating an increase in total suspended solids, dissolved organic carbon, and iron fluxes from the tundra, shifting the main-stem mountain river biogeochemistry toward tundra source characteristics typically only observed during the spring floods. Intuitively, a large-scale precipitation event (as defined by this study as exceeding 12.5 mm of precipitation on a single observation day) would dilute a body of water; however, in this study, concentrations increased with higher discharge responses on several occasions. These large-scale precipitation events continue to produce peak constituent fluxes as the thaw layer increases in depth and late summer precipitation increases, evidenced by 6 large-scale events in July 2022 alone. This increase in late summer events is in sharp contrast to the 3 or fewer large events in July in each of the last 10 years. Changes in precipitation intensity, timing, and location have introduced late summer peak constituent flux events previously confined to the spring freshet.

Keywords: Alaska North Slope, arctic rivers, material flux, precipitation

Procedia PDF Downloads 59
359 Predicting the Exposure Level of Airborne Contaminants in Occupational Settings via the Well-Mixed Room Model

Authors: Alireza Fallahfard, Ludwig Vinches, Stephane Halle

Abstract:

In the workplace, the exposure level of airborne contaminants should be evaluated due to health and safety issues. It can be done by numerical models or experimental measurements, but the numerical approach can be useful when it is challenging to perform experiments. One of the simplest models is the well-mixed room (WMR) model, which has shown its usefulness to predict inhalation exposure in many situations. However, since the WMR is limited to gases and vapors, it cannot be used to predict exposure to aerosols. The main objective is to modify the WMR model to expand its application to exposure scenarios involving aerosols. To reach this objective, the standard WMR model has been modified to consider the deposition of particles by gravitational settling and Brownian and turbulent deposition. Three deposition models were implemented in the model. The time-dependent concentrations of airborne particles predicted by the model were compared to experimental results conducted in a 0.512 m3 chamber. Polystyrene particles of 1, 2, and 3 µm in aerodynamic diameter were generated with a nebulizer under two air changes per hour (ACH). The well-mixed condition and chamber ACH were determined by the tracer gas decay method. The mean friction velocity on the chamber surfaces as one of the input variables for the deposition models was determined by computational fluid dynamics (CFD) simulation. For the experimental procedure, the particles were generated until reaching the steady-state condition (emission period). Then generation stopped, and concentration measurements continued until reaching the background concentration (decay period). The results of the tracer gas decay tests revealed that the ACHs of the chamber were: 1.4 and 3.0, and the well-mixed condition was achieved. The CFD results showed the average mean friction velocity and their standard deviations for the lowest and highest ACH were (8.87 ± 0.36) ×10-2 m/s and (8.88 ± 0.38) ×10-2 m/s, respectively. The numerical results indicated the difference between the predicted deposition rates by the three deposition models was less than 2%. The experimental and numerical aerosol concentrations were compared in the emission period and decay period. In both periods, the prediction accuracy of the modified model improved in comparison with the classic WMR model. However, there is still a difference between the actual value and the predicted value. In the emission period, the modified WMR results closely follow the experimental data. However, the model significantly overestimates the experimental results during the decay period. This finding is mainly due to an underestimation of the deposition rate in the model and uncertainty related to measurement devices and particle size distribution. Comparing the experimental and numerical deposition rates revealed that the actual particle deposition rate is significant, but the deposition mechanisms considered in the model were ten times lower than the experimental value. Thus, particle deposition was significant and will affect the airborne concentration in occupational settings, and it should be considered in the airborne exposure prediction model. The role of other removal mechanisms should be investigated.

Keywords: aerosol, CFD, exposure assessment, occupational settings, well-mixed room model, zonal model

Procedia PDF Downloads 82
358 3D Nanostructured Assembly of 2D Transition Metal Chalcogenide/Graphene as High Performance Electrocatalysts

Authors: Sunil P. Lonkar, Vishnu V. Pillai, Saeed Alhassan

Abstract:

Design and development of highly efficient, inexpensive, and long-term stable earth-abundant electrocatalysts hold tremendous promise for hydrogen evolution reaction (HER) in water electrolysis. The 2D transition metal dichalcogenides, especially molybdenum disulfide attracted a great deal of interests due to its high electrocatalytic activity. However, due to its poor electrical conductivity and limited exposed active sites, the performance of these catalysts is limited. In this context, a facile and scalable synthesis method for fabrication nanostructured electrocatalysts composed 3D graphene porous aerogels supported with MoS₂ and WS₂ is highly desired. Here we developed a highly active and stable electrocatalyst catalyst for the HER by growing it into a 3D porous architecture on conducting graphene. The resulting nanohybrids were thoroughly investigated by means of several characterization techniques to understand structure and properties. Moreover, the HER performance of these 3D catalysts is expected to greatly improve in compared to other, well-known catalysts which mainly benefits from the improved electrical conductivity of the by graphene and porous structures of the support. This technologically scalable process can afford efficient electrocatalysts for hydrogen evolution reactions (HER) and hydrodesulfurization catalysts for sulfur-rich petroleum fuels. Owing to the lower cost and higher performance, the resulting materials holds high potential for various energy and catalysis applications. In typical hydrothermal method, sonicated GO aqueous dispersion (5 mg mL⁻¹) was mixed with ammonium tetrathiomolybdate (ATTM) and tungsten molybdate was treated in a sealed Teflon autoclave at 200 ◦C for 4h. After cooling, a black solid macroporous hydrogel was recovered washed under running de-ionized water to remove any by products and metal ions. The obtained hydrogels were then freeze-dried for 24 h and was further subjected to thermal annealing driven crystallization at 600 ◦C for 2h to ensure complete thermal reduction of RGO into graphene and formation of highly crystalline MoS₂ and WoS₂ phases. The resulting 3D nanohybrids were characterized to understand the structure and properties. The SEM-EDS clearly reveals the formation of highly porous material with a uniform distribution of MoS₂ and WS₂ phases. In conclusion, a novice strategy for fabrication of 3D nanostructured MoS₂-WS₂/graphene is presented. The characterizations revealed that the in-situ formed promoters uniformly dispersed on to few layered MoS₂¬-WS₂ nanosheets that are well-supported on graphene surface. The resulting 3D hybrids hold high promise as potential electrocatalyst and hydrodesulfurization catalyst.

Keywords: electrocatalysts, graphene, transition metal chalcogenide, 3D assembly

Procedia PDF Downloads 110
357 Knowledge of Sexually Transmitted Infections and Socio-Demographic Factors Affecting High Risk Sex among Unmarried Youths in Nigeria

Authors: Obasanjo Afolabi Bolarinwa

Abstract:

This study assesses the levels of knowledge of sexually transmitted infections among unmarried youths in Nigeria; examines the pattern of high risk sex among unmarried youths in Nigeria; investigate the socio-demographic factors (age, place of residence, religion, level of education, wealth index and employment status) affecting the practice of high-risk sexual behaviour and ascertain the relationships between knowledge of sexually transmitted infections and practice of high risk sex. The goal of the study is to identify the factors associated with the practice of high risk sex among youth. These were with a view to identifying critical actions needed to reduce high risk sexual behaviour among youths. The study employed secondary data. The data for the study were extracted from the 2013 Nigeria Demographic and Health Survey (NDHS). The 2013 NDHS collected information from 38,948 Women ages 15-49 years and 17,359 men ages 15-49. A total of 7,744 female and 6,027 male respondents were utilized in the study. In order to adjust for the effect of oversampling of the population, the weighting factor provided by Measure DHS was applied. The data were analysed using frequency distribution and logistic regression. The results show that both male (92.2%) and female (93.6%) have accurate knowledge of sexually transmitted infections. The study also revealed that prevalence of high risk sexual behavior is high among Nigerian youths; this is evident as 77.7% (female) and 78.4% (male) are engaging in high risk sexual behavior. The bivariate analysis shows that age of respondent (χ2=294.2; p < 0.05), religion (χ2=136.64; p < 0.05), wealth index (χ2=17.38; p < 0.05), level of education (χ2=34.73; p < 0.05) and employment status (χ2=94.54; p < 0.05) were individual factors significantly associated with high risk sexual behaviour among male while age of respondent (χ2=327.07; p < 0.05), place of residence (χ2=6.71; p < 0.05), religion (χ2=81.04; p < 0.05), wealth index (χ2=7.41; p < 0.05), level of education (χ2=18.12; p < 0.05) and employment status (χ2=51.02; p < 0.05) were individual factors significantly associated with high risk sexual behaviour among female. Furthermore, the study shows that there is a relationship between knowledge of sexually transmitted infections and high risk sex among male (χ2=38.32; p < 0.05) and female (χ2=18.37; p < 0.05). At multivariate level, the study revealed that individual characteristics such as age, religion, place of residence, wealth index, levels of education and employment status were statistically significantly related with high risk sexual behaviour among male and female (p < 0.05). Lastly, the study shows that knowledge of sexually transmitted infection was significantly related to high risk sexual behaviour among youths (p < 0.05). The study concludes that there is a high level of knowledge of sexually transmitted infections among unmarried youths in Nigeria. The practice of high risk sex is high among unmarried youths but higher among male youths. The prevalence of high risk sexual activity is higher for males when they are at disadvantage and higher for females when they are at advantage. Socio-demographic factors like age of respondents, religion, wealth index, place of residence, employment status and highest level of education are factors influencing high risk sexual behaviour among youths.

Keywords: high risk sex, wealth index, sexual behaviour, knowledge

Procedia PDF Downloads 234
356 Multiple Primary Pulmonary Meningiomas: A Case Report

Authors: Wellemans Isabelle, Remmelink Myriam, Foucart Annick, Rusu Stefan, Compère Christophe

Abstract:

Primary pulmonary meningioma (PPM) is a very rare tumor, and its occurrence has been reported only sporadically. Multiple PPMs are even more exceptional, and herein, we report, to the best of our knowledge, the fourth case, focusing on the clinicopathological features of the tumor. Moreover, the possible relationship between the use of progesterone–only contraceptives and the development of these neoplasms will be discussed. Case Report: We report a case of a 51-year-old female presenting three solid pulmonary nodules, with the following localizations: right upper lobe, middle lobe, and left lower lobe, described as incidental findings on computed tomography (CT) during a pre-bariatric surgery check-up. The patient revealed no drinking or smoking history. The physical exam was unremarkable except for the obesity. The lesions ranged in size between 6 and 24 mm and presented as solid nodules with lobulated contours. The largest lesion situated in the middle lobe had mild fluorodeoxyglucose (FDG) uptake on F-18 FDG positron emission tomography (PET)/CT, highly suggestive of primary lung neoplasm. For pathological assessment, video-assisted thoracoscopic middle lobectomy and wedge resection of the right upper nodule was performed. Histological examination revealed relatively well-circumscribed solid proliferation of bland meningothelial cells growing in whorls and lobular nests, presenting intranuclear pseudo-inclusions and psammoma bodies. No signs of anaplasia were observed. The meningothelial cells expressed diffusely Vimentin, focally Progesterone receptors and were negative for epithelial (cytokeratin (CK) AE1/AE3, CK7, CK20, Epithelial Membrane Antigen (EMA)), neuroendocrine markers (Synaptophysin, Chromogranin, CD56) and Estrogenic receptors. The proliferation labelling index Ki-67 was low (<5%). Metastatic meningioma was ruled out by brain and spine magnetic resonance imaging (MRI) scans. The third lesion localized in the left lower lobe was followed-up and resected three years later because of its slow but significant growth (14 mm to 16 mm), alongside two new infra centimetric lesions. Those three lesions showed a morphological and immunohistochemical profile similar to previously resected lesions. The patient was disease-free one year post-last surgery. Discussion: Although PPMs are mostly benign and slow-growing tumors with an excellent prognosis, they do not present specific radiological characteristics, and it is difficult to differentiate it from other lung tumors, histopathologic examination being essential. Aggressive behavior is associated with atypical or anaplastic features (WHO grades II–III) The etiology is still uncertain and different mechanisms have been proposed. A causal connection between sexual hormones and meningothelial proliferation has long been suspected and few studies examining progesterone only contraception and meningioma risk have all suggested an association. In line with this, our patient was treated with Levonorgestrel, a progesterone agonist, intra-uterine device (IUD). Conclusions: PPM, defined by the typical histological and immunohistochemical features of meningioma in the lungs and the absence of central nervous system lesions, is an extremely rare neoplasm, mainly solitary and associating, and indolent growth. Because of the unspecific radiologic findings, it should always be considered in the differential diagnosis of lung neoplasms. Regarding multiple PPM, only three cases are reported in the literature, and this is the first described in a woman treated by a progesterone-only IUD to the best of our knowledge.

Keywords: pulmonary meningioma, multiple meningioma, meningioma, pulmonary nodules

Procedia PDF Downloads 87
355 Generation and Migration of CO₂ in the Bahi Sandstone Reservoir within the Ennaga Sub Basin, Sirte Basin, Libya

Authors: Moaawia Abdulgader Gdara

Abstract:

This work presents a study of Carbone dioxide generation and migration in the Bahi sandstone reservoir over the EPSA 120/136 (conc 72). En Naga Sub Basin, Sirte Basin Libya. The Lower Cretaceous Bahi Sandstone is the result of deposition that occurred between the start of the Cretaceous rifting that formed the area's Horsts, Grabens and Cenomanian marine transgression. Bahi sediments were derived mainly from those Nubian sediments exposed on the structurally higher blocks, transported short distances into newly forming depocenters such as the En Naga Sub-basin and were deposited by continental processes over the Sirte Unconformity (pre-Late Cretaceous surface) Bahi Sandstone facies are recognized in the En Naga Sub-basin within different lithofacies distribution over this sub-base. One of the two lithofacies recognized in the Bahi is a very fine to very coarse, subangular to angular, pebbly and occasionally conglomeratic quartz sandstone, which is commonly described as being compacted but friable. This sandstone may contain pyrite and minor kaolinite. This facies was encountered at 11,042 feet in F1-72 well, and at 9,233 feet in L1-72. Good, reservoir quality sandstones are associated with paleotopographic highs within the sub-basin and around its margins where winnowing and/or deflationary processes occurred. The second Bahi Lithofacies is a thinly bedded sequence dominated by shales and siltstones with subordinate sandstones and carbonates. The sandstones become more abundant with depth. This facies was encountered at 12,580 feet in P1 -72 and at 11,850 feet in G1a -72. This argillaceous sequence is likely the Bahi sandstone's lateral facies equivalent deposited in paleotopographic lows, which received finer-grained material. The Bahi sandstones are generally described as a good reservoir rock, which after prolific production tests for the drilled wells makes Bahi sandstones the principal reservoir rocks for CO₂ where large volumes of CO₂ gas have been discovered in the Bahi Formation on and near EPSA 120/136, (conc 72). CO₂ occurs in this area as a result of the igneous activity of the Al Harouge Al Aswad complex. Igneous extrusive have been pierced in the subsurface and are exposed at the surface. Bahi CO₂ prospectivity is thought to be excellent in the central to western areas of EPSA 120/136 (CONC 72) where there are better reservoir quality sandstones associated with Paleostructural highs. Condensate and gas prospectivity increases to the east as the CO₂ productivity decreases with distance away from the Al Haruj Al Aswad igneous complex. To date, it has not been possible to accurately determine the volume of these strategically valuable reserves, although there are positive indications that they are very large. Three main structures (Barrut I, En Naga A and En Naga O) are thought to be prospective for the lower Cretaceous Bahi sandstone development. These leads are the most attractive on EPSA 120/136 for the deep potential.

Keywords: En Naga Sub Basin, Al Harouge Al Aswad's Igneous complex, carbon dioxide generation, migration in the Bahi sandstone reservoir, lower cretaceous Bahi Sandstone

Procedia PDF Downloads 77
354 Investigation of Residual Stress Relief by in-situ Rolling Deposited Bead in Directed Laser Deposition

Authors: Ravi Raj, Louis Chiu, Deepak Marla, Aijun Huang

Abstract:

Hybridization of the directed laser deposition (DLD) process using an in-situ micro-roller to impart a vertical compressive load on the deposited bead at elevated temperatures can relieve tensile residual stresses incurred in the process. To investigate this stress relief mechanism and its relationship with the in-situ rolling parameters, a fully coupled dynamic thermo-mechanical model is presented in this study. A single bead deposition of Ti-6Al-4V alloy with an in-situ roller made of mild steel moving at a constant speed with a fixed nominal bead reduction is simulated using the explicit solver of the finite element software, Abaqus. The thermal model includes laser heating during the deposition process and the heat transfer between the roller and the deposited bead. The laser heating is modeled using a moving heat source with a Gaussian distribution, applied along the pre-formed bead’s surface using the VDFLUX Fortran subroutine. The bead’s cross-section is assumed to be semi-elliptical. The interfacial heat transfer between the roller and the bead is considered in the model. Besides, the roller is cooled internally using axial water flow, considered in the model using convective heat transfer. The mechanical model for the bead and substrate includes the effects of rolling along with the deposition process, and their elastoplastic material behavior is captured using the J2 plasticity theory. The model accounts for strain, strain rate, and temperature effects on the yield stress based on Johnson-Cook’s theory. Various aspects of this material behavior are captured in the FE software using the subroutines -VUMAT for elastoplastic behavior, VUHARD for yield stress, and VUEXPAN for thermal strain. The roller is assumed to be elastic and does not undergo any plastic deformation. Also, contact friction at the roller-bead interface is considered in the model. Based on the thermal results of the bead, the distance between the roller and the deposition nozzle (roller o set) can be determined to ensure rolling occurs around the beta-transus temperature for the Ti-6Al-4V alloy. It is identified that roller offset and the nominal bead height reduction are crucial parameters that influence the residual stresses in the hybrid process. The results obtained from a simulation at roller offset of 20 mm and nominal bead height reduction of 7% reveal that the tensile residual stresses decrease to about 52% due to in-situ rolling throughout the deposited bead. This model can be used to optimize the rolling parameters to minimize the residual stresses in the hybrid DLD process with in-situ micro-rolling.

Keywords: directed laser deposition, finite element analysis, hybrid in-situ rolling, thermo-mechanical model

Procedia PDF Downloads 84
353 Farm-Women in Technology Transfer to Foster the Capacity Building of Agriculture: A Forecast from a Draught-Prone Rural Setting in India

Authors: Pradipta Chandra, Titas Bhattacharjee, Bhaskar Bhowmick

Abstract:

The foundation of economy in India is primarily based on agriculture while this is the most neglected in the rural setting. More significantly, household women take part in agriculture with higher involvement. However, because of lower education of women they have limited access towards financial decisions, land ownership and technology but they have vital role towards the individual family level. There are limited studies on the institution-wise training barriers with the focus of gender disparity. The main purpose of this paper is to find out the factors of institution-wise training (non-formal education) barriers in technology transfer with the focus of participation of rural women in agriculture. For this study primary and secondary data were collected in the line of qualitative and quantitative approach. Qualitative data were collected by several field visits in the adjacent areas of Seva-Bharati, Seva Bharati Krishi Vigyan Kendra through semi-structured questionnaires. In the next level detailed field surveys were conducted with close-ended questionnaires scored on the seven-point Likert scale. Sample size was considered as 162. During the data collection the focus was to include women although some biasness from the end of respondents and interviewer might exist due to dissimilarity in observation, views etc. In addition to that the heterogeneity of sample is not very high although female participation is more than fifty percent. Data were analyzed using Exploratory Factor Analysis (EFA) technique with the outcome of three significant factors of training barriers in technology adoption by farmers: (a) Failure of technology transfer training (TTT) comprehension interprets that the technology takers, i.e., farmers can’t understand the technology either language barrier or way of demonstration exhibited by the experts/ trainers. (b) Failure of TTT customization, articulates that the training for individual farmer, gender crop or season-wise is not tailored. (c) Failure of TTT generalization conveys that absence of common training methods for individual trainers for specific crops is more prominent at the community level. The central finding is that the technology transfer training method can’t fulfill the need of the farmers under an economically challenged area. The impact of such study is very high in the area of dry lateritic and resource crunch area of Jangalmahal under Paschim Medinipur district, West Bengal and areas with similar socio-economy. Towards the policy level decision this research may help in framing digital agriculture for implementation of the appropriate information technology for the farming community, effective and timely investment by the government with the selection of beneficiary, formation of farmers club/ farm science club etc. The most important research implication of this study lies upon the contribution towards the knowledge diffusion mechanism of the agricultural sector in India. Farmers may overcome the barriers to achieve higher productivity through adoption of modern farm practices. Corporates will be interested in agro-sector through investment under corporate social responsibility (CSR). The research will help in framing public or industry policy and land use pattern. Consequently, a huge mass of rural farm-women will be empowered and farmer community will be benefitted.

Keywords: dry lateritic zone, institutional barriers, technology transfer in India, farm-women participation

Procedia PDF Downloads 350
352 Investigation of the Effects of Visually Disabled and Typical Development Students on Their Multiple Intelligence by Applying Abacus and Right Brain Training

Authors: Sidika Di̇lşad Kaya, Ahmet Seli̇m Kaya, Ibrahi̇m Eri̇k, Havva Yaldiz, Yalçin Kaya

Abstract:

The aim of this study was to reveal the effects of right brain development on reading, comprehension, learning and concentration levels and rapid processing skills in students with low vision and students with standard development, and to explore the effects of right and left brain integration on students' academic success and the permanence of the learned knowledge. A total of 68 students with a mean age of 10.01±0.12 were included in the study, 58 of them with standard development, 9 partially visually impaired and 1 totally visually disabled student. The student with a total visual impairment could not participate in the reading speed test due to her total visual impairment. The following data were measured in the participant students before the project; Reading speed measurement in 1 minute, Reading comprehension questions, Burdon attention test, 50 questions of math quiz timed with a stopwatch. Participants were trained for 3 weeks, 5 days a week, for a total of two hours a day. In this study, right-brain developing exercises were carried out with the use of an abacus, and it was aimed to develop both mathematical and attention of students with questions prepared with numerical data taken from fairy tale activities. Among these problems, the study was supported with multiple-choice, 5W (what, where, who, why, when?), 1H (how?) questions along with true-false and fill-in-the-blank activities. By using memory cards, students' short-term memories were strengthened, photographic memory studies were conducted and their visual intelligence was supported. Auditory intelligence was supported by aiming to make calculations by using the abacus in the minds of the students with the numbers given aurally. When calculating the numbers by touching the real abacus, the development of students' tactile intelligence is enhanced. Research findings were analyzed in SPSS program, Kolmogorov Smirnov test was used for normality analysis. Since the variables did not show normal distribution, Wilcoxon test, one of the non-parametric tests, was used to compare the dependent groups. Statistical significance level was accepted as 0.05. The reading speed of the participants was 83.54±33.03 in the pre-test and 116.25±38.49 in the post-test. Narration pre-test 69.71±25.04 post-test 97.06±6.70; BURDON pretest 84.46±14.35 posttest 95.75±5.67; rapid math processing skills pretest 90.65±10.93, posttest 98.18±2.63 (P<0.05). It was determined that the pre-test and post-test averages of students with typical development and students with low vision were also significant for all four values (p<0.05). As a result of the data obtained from the participants, it is seen that the study was effective in terms of measurement parameters, and the findings were statistically significant. Therefore, it is recommended to use the method widely.

Keywords: Abacus, reading speed, multiple intelligences, right brain training, visually impaired

Procedia PDF Downloads 152
351 Predicting Long-Term Performance of Concrete under Sulfate Attack

Authors: Elakneswaran Yogarajah, Toyoharu Nawa, Eiji Owaki

Abstract:

Cement-based materials have been using in various reinforced concrete structural components as well as in nuclear waste repositories. The sulfate attack has been an environmental issue for cement-based materials exposed to sulfate bearing groundwater or soils, and it plays an important role in the durability of concrete structures. The reaction between penetrating sulfate ions and cement hydrates can result in swelling, spalling and cracking of cement matrix in concrete. These processes induce a reduction of mechanical properties and a decrease of service life of an affected structure. It has been identified that the precipitation of secondary sulfate bearing phases such as ettringite, gypsum, and thaumasite can cause the damage. Furthermore, crystallization of soluble salts such as sodium sulfate crystals induces degradation due to formation and phase changes. Crystallization of mirabilite (Na₂SO₄:10H₂O) and thenardite (Na₂SO₄) or their phase changes (mirabilite to thenardite or vice versa) due to temperature or sodium sulfate concentration do not involve any chemical interaction with cement hydrates. Over the past couple of decades, an intensive work has been carried out on sulfate attack in cement-based materials. However, there are several uncertainties still exist regarding the mechanism for the damage of concrete in sulfate environments. In this study, modelling work has been conducted to investigate the chemical degradation of cementitious materials in various sulfate environments. Both internal and external sulfate attack are considered for the simulation. In the internal sulfate attack, hydrate assemblage and pore solution chemistry of co-hydrating Portland cement (PC) and slag mixing with sodium sulfate solution are calculated to determine the degradation of the PC and slag-blended cementitious materials. Pitzer interactions coefficients were used to calculate the activity coefficients of solution chemistry at high ionic strength. The deterioration mechanism of co-hydrating cementitious materials with 25% of Na₂SO₄ by weight is the formation of mirabilite crystals and ettringite. Their formation strongly depends on sodium sulfate concentration and temperature. For the external sulfate attack, the deterioration of various types of cementitious materials under external sulfate ingress is simulated through reactive transport model. The reactive transport model is verified with experimental data in terms of phase assemblage of various cementitious materials with spatial distribution for different sulfate solution. Finally, the reactive transport model is used to predict the long-term performance of cementitious materials exposed to 10% of Na₂SO₄ for 1000 years. The dissolution of cement hydrates and secondary formation of sulfate-bearing products mainly ettringite are the dominant degradation mechanisms, but not the sodium sulfate crystallization.

Keywords: thermodynamic calculations, reactive transport, radioactive waste disposal, PHREEQC

Procedia PDF Downloads 138
350 Understanding the Diversity of Antimicrobial Resistance among Wild Animals, Livestock and Associated Environment in a Rural Ecosystem in Sri Lanka

Authors: B. M. Y. I. Basnayake, G. G. T. Nisansala, P. I. J. B. Wijewickrama, U. S. Weerathunga, K. W. M. Y. D. Gunasekara, N. K. Jayasekera, A. W. Kalupahana, R. S. Kalupahana, A. Silva- Fletcher, K. S. A. Kottawatta

Abstract:

Antimicrobial resistance (AMR) has attracted significant attention worldwide as an emerging threat to public health. Understanding the role of livestock and wildlife with the shared environment in the maintenance and transmission of AMR is of utmost importance due to its interactions with humans for combating the issue in one health approach. This study aims to investigate the extent of AMR distribution among wild animals, livestock, and environment cohabiting in a rural ecosystem in Sri Lanka: Hambegamuwa. One square km area at Hambegamuwa was mapped using GPS as the sampling area. The study was conducted for a period of five months from November 2020. Voided fecal samples were collected from 130 wild animals, 123 livestock: buffalo, cattle, chicken, and turkey, with 36 soil and 30 water samples associated with livestock and wildlife. From the samples, Escherichia coli (E. coli) was isolated, and their AMR profiles were investigated for 12 antimicrobials using the disk diffusion method following the CLSI standard. Seventy percent (91/130) of wild animals, 93% (115/123) of livestock, 89% (32/36) of soil, and 63% (19/30) of water samples were positive for E. coli. Maximum of two E. coli from each sample to a total of 467 were tested for the sensitivity of which 157, 208, 62, and 40 were from wild animals, livestock, soil, and water, respectively. The highest resistance in E. coli from livestock (13.9%) and wild animals (13.3%) was for ampicillin, followed by streptomycin. Apart from that, E. coli from livestock and wild animals revealed resistance mainly against tetracycline, cefotaxime, trimethoprim/ sulfamethoxazole, and nalidixic acid at levels less than 10%. Ten cefotaxime resistant E. coli were reported from wild animals, including four elephants, two land monitors, a pigeon, a spotted dove, and a monkey which was a significant finding. E. coli from soil samples reflected resistance primarily against ampicillin, streptomycin, and tetracycline at levels less than in livestock/wildlife. Two water samples had cefotaxime resistant E. coli as the only resistant isolates out of 30 water samples tested. Of the total E. coli isolates, 6.4% (30/467) was multi-drug resistant (MDR) which included 18, 9, and 3 isolates from livestock, wild animals, and soil, respectively. Among 18 livestock MDRs, the highest (13/ 18) was from poultry. Nine wild animal MDRs were from spotted dove, pigeon, land monitor, and elephant. Based on CLSI standard criteria, 60 E. coli isolates, of which 40, 16, and 4 from livestock, wild animal, and environment, respectively, were screened for Extended Spectrum β-Lactamase (ESBL) producers. Despite being a rural ecosystem, AMR and MDR are prevalent even at low levels. E. coli from livestock, wild animals, and the environment reflected a similar spectrum of AMR where ampicillin, streptomycin, tetracycline, and cefotaxime being the predominant antimicrobials of resistance. Wild animals may have acquired AMR via direct contact with livestock or via the environment, as antimicrobials are rarely used in wild animals. A source attribution study including the effects of the natural environment to study AMR can be proposed as this less contaminated rural ecosystem alarms the presence of AMR.

Keywords: AMR, Escherichia coli, livestock, wildlife

Procedia PDF Downloads 185