Search results for: conventional power generation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11689

Search results for: conventional power generation

4789 Transmission Line Matrix (TLM) Modelling of Microstrip Circular Antenna

Authors: Jugoslav Jokovic, Tijana Dimitrijevic, Nebojsa Doncov

Abstract:

The goal of this paper is to investigate the possibilities and effectiveness of the TLM (Transmission Line Matrix) method for modelling of up-to-date microstrip antennas with circular geometry that have significant application in modern wireless communication systems. The coaxially fed microstrip antenna configurations with circular patch are analyzed by using the in-house 3DTLMcyl_cw solver based on computational electromagnetic TLM method adapted to the cylindrical grid and enhanced with the compact wire model. Opposed to the widely used rectangular TLM mesh, where a staircase approximation has to be used to describe curved boundaries, precise modelling of circular boundaries can be accomplished in the cylindrical grid irrespective of the mesh resolution. Using the compact wire model incorporated in cylindrical mesh, it is possible to model coaxial feed and include the influence of the real excitation in the antenna model. The conventional and inverted configuration of a coaxially fed circular patch antenna are considered, comparing the resonances obtained using TLM cylindrical model with results reached by the corresponding model in a rectangular grid as well as with experimental ones. Bearing in mind that accuracy of simulated results depends on a relevantly created model, besides structure geometry and dimensions, it is important to consider additional modelling issues, regarding appropriate mesh resolution and a relevant extension of a mesh around the considered structure that would provide convergence of the results.

Keywords: computational electromagnetic, coaxial feed, microstrip antenna, TLM modelling

Procedia PDF Downloads 277
4788 Empirical Research on Preference for Conflict Resolution Styles of Owners and Contractors in China

Authors: Junqi Zhao, Yongqiang Chen

Abstract:

The preference for different conflict resolution styles are influenced by cultural background and power distance of two parties involving in conflict. This research put forward 7 hypotheses and tested the preference differences of the five conflict resolution styles between Chinese owner and contractor as well as the preference differences concerning the same style between two parties. The research sample includes 202 practitioners from construction enterprises in mainland China. Research result found that theories concerning conflict resolution styles could be applied in the Chinese construction industry. Some results of this research were not in line with former research, and this research also gave explanation to the differences from the characteristics of construction projects. Based on the findings, certain suggestions were made to serve as a guidance for managers to choose appropriate conflict resolution styles for a better handling of conflict.

Keywords: Chinese owner and contractor, conflict, construction project, conflict resolution styles

Procedia PDF Downloads 523
4787 Effect of Printing Process on Mechanical Properties of Interface between 3D Printed Concrete Strips

Authors: Wei Chen, Jinlong Pan

Abstract:

3D concrete printing technology is a novel and highly efficient construction method that holds significant promise for advancing low-carbon initiatives within the construction industry. In contrast to traditional construction practices, 3D printing offers a manual and formwork-free approach, resulting in a transformative shift in labor requirements and fabrication techniques. This transition yields substantial reductions in carbon emissions during the construction phase, as well as decreased on-site waste generation. Furthermore, when compared to conventionally printed concrete, 3D concrete exhibits mechanical anisotropy due to its layer-by-layer construction methodology. Therefore, it becomes imperative to investigate the influence of the printing process on the mechanical properties of 3D printed strips and to optimize the mechanical characteristics of these coagulated strips. In this study, we conducted three-dimensional reconstructions of printed blocks using both circular and directional print heads, incorporating various overlap distances between strips, and employed CT scanning for comprehensive analysis. Our research focused on assessing mechanical properties and micro-pore characteristics under different loading orientations. Our findings reveal that increasing the overlap degree between strips leads to enhanced mechanical properties of the strips. However, it's noteworthy that once full overlap is achieved, further increases in the degree of coincidence do not lead to a decrease in porosity between strips. Additionally, due to its superior printing cross-sectional area, the square printing head exhibited the most favorable impact on mechanical properties.

Keywords: 3D printing concrete, mechanical anisotropy, micro-pore structure, printing technology

Procedia PDF Downloads 83
4786 Mitigation Measures for the Acid Mine Drainage Emanating from the Sabie Goldfield: Case Study of the Nestor Mine

Authors: Rudzani Lusunzi, Frans Waanders, Elvis Fosso-Kankeu, Robert Khashane Netshitungulwana

Abstract:

The Sabie Goldfield has a history of gold mining dating back more than a century. Acid mine drainage (AMD) from the Nestor mine tailings storage facility (MTSF) poses a serious threat to the nearby ecosystem, specifically the Sabie River system. This study aims at developing mitigation measures for the AMD emanating from the Nestor MTSF using materials from the Glynns Lydenburg MTSF. The Nestor MTSF (NM) and the Glynns Lydenburg MTSF (GM) each provided about 20 kg of bulk composite samples. Using samples from the Nestor MTSF and the Glynns Lydenburg MTSF, two mixtures were created. MIX-A is a mixture that contains 25% weight percent (GM) and 75% weight percent (NM). MIX-B is the name given to the second mixture, which contains 50% AN and 50% AG. The same static test, i.e., acid–base accounting (ABA), net acid generation (NAG), and acid buffering characteristics curve (ABCC) was used to estimate the acid-generating probabilities of samples NM and GM for MIX-A and MIX-B. Furthermore, the mineralogy of the Nestor MTSF samples consists of the primary acid-producing mineral pyrite as well as the secondary minerals ferricopiapite and jarosite, which are common in acidic conditions. The Glynns Lydenburg MTSF samples, on the other hand, contain primary acid-neutralizing minerals calcite and dolomite. Based on the assessment conducted, materials from the Glynns Lydenburg are capable of neutralizing AMD from Nestor MTSF. Therefore, the alkaline tailings materials from the Glynns Lydenburg MTSF can be used to rehabilitate the acidic Nestor MTSF.

Keywords: Nestor Mine, acid mine drainage, mitigation, Sabie River system

Procedia PDF Downloads 80
4785 Comparing Media-Based Strategies of Identity Formation in Chicanos and Cuban-Americans

Authors: Kwang Yeon Kim

Abstract:

This paper will explore the directly proportional relationship between the influence of Hispanophone media in U.S. markets and Hispanic population growth. Though this growth has origins across south and central America, in U.S. media markets Mexican and Cuban immigrants, have traditionally been considered the most influential. Having endured significant historical discrimination, disparagement, and ethnic framing from conventional Anglophone media, such groups have sought to form their own identities as media consuming and producing Americans of Latin American origin. Although immigrants to the U.S. have traditionally faced obstacles in access to education, children of Mexican-Americans (Chicanos) and Cuban-Americans have made significant progress in overcoming these obstacles, partly explaining their media dominance. This is particularly true in the case of Cuban-Americans, for whom such media presence is not predicted by share of population. By conducting comparative studies of Chicano media and Cuban-Americans media, common ground was found in strategies of reliance on media-driven identity formation. In contrast to the mainstream media portrayal of Latino/as with limiting, negative stereotypes, Spanish-language media’s goal is to form the identity of being Latino for those living in the United States. Providing both news from countries of origin and local news within the United States, Chicano and Cuban-American media performs rituals of recollection while rooting such populations in more proximate media paradigms.

Keywords: Chicano identity, Cuban-Americans, Hispanophone media, Latino/a community

Procedia PDF Downloads 201
4784 Two-Stage Anaerobic Digester for Biogas Production from Sewage Sludge: A Case Study in One of Kuwait’s Wastewater Treatment Plant

Authors: Abdullah Almatouq, Abdulla Abusam, Hussain Hussain, Mishari Khajah, Hussain Abdullah, Rashed Al-Yaseen, Mariam Al-Jumaa, Farah Al-Ajeel, Mohammad Aljassam

Abstract:

Due to the high demand for energy from unsustainable resources in Kuwait, the Kuwaiti government has focused recently on using sustainable resources for energy, such as solar and wind energy. In addition, sludge which is generated as a by-product of physical, chemical, and biological processes during wastewater treatment, can be used as a substrate to generate energy through anaerobic digestion. Kuwait’s wastewater treatment plants produce more than 1.7 million m3 of sludge per year, and this volume is accumulated in the treatment plants without any treatment. Therefore, a pilot-scale (3 m3) two-stage anaerobic digester was constructed in one of the largest treatment plants in Kuwait. The reactor was operated in batch mode, and the hydraulic retention time varied between 14 – 27 days. The main of this study is to evaluate the technical feasibility of a two-stage anaerobic digester for sludge treatability and energy generation in Kuwait. The anaerobic digester achieved a total biogas production of 37 m3, and the highest value of daily biogas production was 0.4 m3/day. The methane content ranged between 50 % and 66 %, and the other gases were as follows: CO2 20 %, H2S 13 %, and 1 % O2. The generated biogas was used on-site for cooking and lighting. In some batches, low C/N was noticed, and that lead to maintaining the concentration of CH4 between 50%-55%. In conclusion, an anaerobic digester is an environmentally friendly technology that can be applied in Kuwait, and the obtained results support the scale-up of the process in all the treatment plants.

Keywords: wastewater, metahne, biogas production potential, anaerobic digestion

Procedia PDF Downloads 105
4783 The Analysis of TRACE/FRAPTRAN in the Fuel Rods of Maanshan PWR for LBLOCA

Authors: J. R. Wang, W. Y. Li, H. T. Lin, J. H. Yang, C. Shih, S. W. Chen

Abstract:

Fuel rod analysis program transient (FRAPTRAN) code was used to study the fuel rod performance during a postulated large break loss of coolant accident (LBLOCA) in Maanshan nuclear power plant (NPP). Previous transient results from thermal hydraulic code, TRACE, with the same LBLOCA scenario, were used as input boundary conditions for FRAPTRAN. The simulation results showed that the peak cladding temperatures and the fuel center line temperatures were all below the 10CFR50.46 LOCA criteria. In addition, the maximum hoop stress was 18 MPa and the oxide thickness was 0.003 mm for the present simulation cases, which are all within the safety operation ranges. The present study confirms that this analysis method, the FRAPTRAN code combined with TRACE, is an appropriate approach to predict the fuel integrity under LBLOCA with operational ECCS.

Keywords: FRAPTRAN, TRACE, LOCA, PWR

Procedia PDF Downloads 507
4782 Design and Implementation of PD-NN Controller Optimized Neural Networks for a Quad-Rotor

Authors: Chiraz Ben Jabeur, Hassene Seddik

Abstract:

In this paper, a full approach of modeling and control of a four-rotor unmanned air vehicle (UAV), known as quad-rotor aircraft, is presented. In fact, a PD and a PD optimized Neural Networks Approaches (PD-NN) are developed to be applied to control a quad-rotor. The goal of this work is to concept a smart self-tuning PD controller based on neural networks able to supervise the quad-rotor for an optimized behavior while tracking the desired trajectory. Many challenges could arise if the quad-rotor is navigating in hostile environments presenting irregular disturbances in the form of wind added to the model on each axis. Thus, the quad-rotor is subject to three-dimensional unknown static/varying wind disturbances. The quad-rotor has to quickly perform tasks while ensuring stability and accuracy and must behave rapidly with regard to decision-making facing disturbances. This technique offers some advantages over conventional control methods such as PD controller. Simulation results are obtained with the use of Matlab/Simulink environment and are founded on a comparative study between PD and PD-NN controllers based on wind disturbances. These later are applied with several degrees of strength to test the quad-rotor behavior. These simulation results are satisfactory and have demonstrated the effectiveness of the proposed PD-NN approach. In fact, this controller has relatively smaller errors than the PD controller and has a better capability to reject disturbances. In addition, it has proven to be highly robust and efficient, facing turbulences in the form of wind disturbances.

Keywords: hostile environment, PD and PD-NN controllers, quad-rotor control, robustness against disturbance

Procedia PDF Downloads 131
4781 Comparison of Microstructure, Mechanical Properties and Residual Stresses in Laser and Electron Beam Welded Ti–5Al–2.5Sn Titanium Alloy

Authors: M. N. Baig, F. N. Khan, M. Junaid

Abstract:

Titanium alloys are widely employed in aerospace, medical, chemical, and marine applications. These alloys offer many advantages such as low specific weight, high strength to weight ratio, excellent corrosion resistance, high melting point and good fatigue behavior. These attractive properties make titanium alloys very unique and therefore they require special attention in all areas of processing, especially welding. In this work, 1.6 mm thick sheets of Ti-5Al-2,5Sn, an alpha titanium (α-Ti) alloy, were welded using electron beam (EBW) and laser beam (LBW) welding processes to achieve a full penetration Bead-on Plate (BoP) configuration. The weldments were studied using polarized optical microscope, SEM, EDS and XRD. Microhardness distribution across the weld zone and smooth and notch tensile strengths of the weldments were also recorded. Residual stresses using Hole-drill Strain Measurement (HDSM) method and deformation patterns of the weldments were measured for the purpose of comparison of the two welding processes. Fusion zone widths of both EBW and LBW weldments were found to be approximately equivalent owing to fairly similar high power densities of both the processes. Relatively less oxide content and consequently high joint quality were achieved in EBW weldment as compared to LBW due to vacuum environment and absence of any shielding gas. However, an increase in heat-affected zone width and partial ά-martensitic transformation infusion zone of EBW weldment were observed because of lesser cooling rates associated with EBW as compared with LBW. The microstructure infusion zone of EBW weldment comprised both acicular α and ά martensite within the prior β grains whereas complete ά martensitic transformation was observed within the fusion zone of LBW weldment. Hardness of the fusion zone in EBW weldment was found to be lower than the fusion zone of LBW weldment due to the observed microstructural differences. Notch tensile specimen of LBW exhibited higher load capacity, ductility, and absorbed energy as compared with EBW specimen due to the presence of high strength ά martensitic phase. It was observed that the sheet deformation and deformation angle in EBW weldment were more than LBW weldment due to relatively more heat retention in EBW which led to more thermal strains and hence higher deformations and deformation angle. The lowest residual stresses were found in LBW weldments which were tensile in nature. This was owing to high power density and higher cooling rates associated with LBW process. EBW weldment exhibited highest compressive residual stresses due to which the service life of EBW weldment is expected to improve.

Keywords: Laser and electron beam welding, Microstructure and mechanical properties, Residual stress and distortions, Titanium alloys

Procedia PDF Downloads 216
4780 Coastal Vulnerability Index and Its Projection for Odisha Coast, East Coast of India

Authors: Bishnupriya Sahoo, Prasad K. Bhaskaran

Abstract:

Tropical cyclone is one among the worst natural hazards that results in a trail of destruction causing enormous damage to life, property, and coastal infrastructures. In a global perspective, the Indian Ocean is considered as one of the cyclone prone basins in the world. Specifically, the frequency of cyclogenesis in the Bay of Bengal is higher compared to the Arabian Sea. Out of the four maritime states in the East coast of India, Odisha is highly susceptible to tropical cyclone landfall. Historical records clearly decipher the fact that the frequency of cyclones have reduced in this basin. However, in the recent decades, the intensity and size of tropical cyclones have increased. This is a matter of concern as the risk and vulnerability level of Odisha coast exposed to high wind speed and gusts during cyclone landfall have increased. In this context, there is a need to assess and evaluate the severity of coastal risk, area of exposure under risk, and associated vulnerability with a higher dimension in a multi-risk perspective. Changing climate can result in the emergence of a new hazard and vulnerability over a region with differential spatial and socio-economic impact. Hence there is a need to have coastal vulnerability projections in a changing climate scenario. With this motivation, the present study attempts to estimate the destructiveness of tropical cyclones based on Power Dissipation Index (PDI) for those cyclones that made landfall along Odisha coast that exhibits an increasing trend based on historical data. The study also covers the futuristic scenarios of integral coastal vulnerability based on the trends in PDI for the Odisha coast. This study considers 11 essential and important parameters; the cyclone intensity, storm surge, onshore inundation, mean tidal range, continental shelf slope, topo-graphic elevation onshore, rate of shoreline change, maximum wave height, relative sea level rise, rainfall distribution, and coastal geomorphology. The study signifies that over a decadal scale, the coastal vulnerability index (CVI) depends largely on the incremental change in variables such as cyclone intensity, storm surge, and associated inundation. In addition, the study also performs a critical analysis on the modulation of PDI on storm surge and inundation characteristics for the entire coastal belt of Odisha State. Interestingly, the study brings to light that a linear correlation exists between the storm-tide with PDI. The trend analysis of PDI and its projection for coastal Odisha have direct practical applications in effective coastal zone management and vulnerability assessment.

Keywords: Bay of Bengal, coastal vulnerability index, power dissipation index, tropical cyclone

Procedia PDF Downloads 232
4779 Starchy Wastewater as Raw Material for Biohydrogen Production by Dark Fermentation: A Review

Authors: Tami A. Ulhiza, Noor I. M. Puad, Azlin S. Azmi, Mohd. I. A. Malek

Abstract:

High amount of chemical oxygen demand (COD) in starchy waste can be harmful to the environment. In common practice, starch processing wastewater is discharged to the river without proper treatment. However, starchy waste still contains complex sugars and organic acids. By the right pretreatment method, the complex sugar can be hydrolyzed into more readily digestible sugars which can be utilized to be converted into more valuable products. At the same time, the global demand of energy is inevitable. The continuous usage of fossil fuel as the main source of energy can lead to energy scarcity. Hydrogen is a renewable form of energy which can be an alternative energy in the future. Moreover, hydrogen is clean and carries the highest energy compared to other fuels. Biohydrogen produced from waste has significant advantages over chemical methods. One of the major problems in biohydrogen production is the raw material cost. The carbohydrate-rich starchy wastes such as tapioca, maize, wheat, potato, and sago wastes is a promising candidate to be used as a substrate in producing biohydrogen. The utilization of those wastes for biohydrogen production can provide cheap energy generation with simultaneous waste treatment. Therefore this paper aims to review variety source of starchy wastes that has been widely used to synthesize biohydrogen. The scope includes the source of waste, the performance in yielding hydrogen, the pretreatment method and the type of culture that is suitable for starchy waste.

Keywords: biohydrogen, dark fermentation, renewable energy, starchy waste

Procedia PDF Downloads 220
4778 The Review of Permanent Downhole Monitoring System

Authors: Jing Hu, Dong Yang

Abstract:

With the increasingly difficult development and operating environment of exploration, there are many new challenges and difficulties in developing and exploiting oil and gas resources. These include the ability to dynamically monitor wells and provide data and assurance for the completion and production of high-cost and complex wells. A key technology in providing these assurances and maximizing oilfield profitability is real-time permanent reservoir monitoring. The emergence of optical fiber sensing systems has gradually begun to replace traditional electronic systems. Traditional temperature sensors can only achieve single-point temperature monitoring, but fiber optic sensing systems based on the Bragg grating principle have a high level of reliability, accuracy, stability, and resolution, enabling cost-effective monitoring, which can be done in real-time, anytime, and without well intervention. Continuous data acquisition is performed along the entire wellbore. The integrated package with the downhole pressure gauge, packer, and surface system can also realize real-time dynamic monitoring of the pressure in some sections of the downhole, avoiding oil well intervention and eliminating the production delay and operational risks of conventional surveys. Real-time information obtained through permanent optical fibers can also provide critical reservoir monitoring data for production and recovery optimization.

Keywords: PDHM, optical fiber, coiled tubing, photoelectric composite cable, digital-oilfield

Procedia PDF Downloads 71
4777 A Bathtub Curve from Nonparametric Model

Authors: Eduardo C. Guardia, Jose W. M. Lima, Afonso H. M. Santos

Abstract:

This paper presents a nonparametric method to obtain the hazard rate “Bathtub curve” for power system components. The model is a mixture of the three known phases of a component life, the decreasing failure rate (DFR), the constant failure rate (CFR) and the increasing failure rate (IFR) represented by three parametric Weibull models. The parameters are obtained from a simultaneous fitting process of the model to the Kernel nonparametric hazard rate curve. From the Weibull parameters and failure rate curves the useful lifetime and the characteristic lifetime were defined. To demonstrate the model the historic time-to-failure of distribution transformers were used as an example. The resulted “Bathtub curve” shows the failure rate for the equipment lifetime which can be applied in economic and replacement decision models.

Keywords: bathtub curve, failure analysis, lifetime estimation, parameter estimation, Weibull distribution

Procedia PDF Downloads 440
4776 Loving and Letting Go: Bounded Attachment in Creative Work

Authors: Greg Fetzer

Abstract:

One of the fundamental tensions of creative work is between the need to be passionate and persistent in advancing novel and risky ideas and the need to be flexible, revising, or even abandoning ideas in favor of others. The tension becomes fraught in part because of the attachment that creators have toward their ideas. Idea attachment is defined here as a multifaceted concept referring to affection, passion, and connection toward a target—in this case, one’s projects or ideas. Yet feeling attached can make creators resistant to feedback, making them less flexible and leading them to escalate commitment. Despite a growing understanding of how attachment develops and evolves in response to project changes, feedback, and creative jolts, we still know relatively little about the organizational dynamics that may shape idea attachment. Through a qualitative, inductive study of early-stage R&D scientists in the pharmaceutical industry, this research finds that scientists develop bounded attachment, a mindset that limits emotional attachment to ideas while still fostering engagement in idea development. This research develops a process model of how bounded attachment is developed and enacted across three stages of the creative process, idea generation, idea evaluation, and outcome assessment, as well as the role that organizational practices and professional identity play in shaping this process: these collective practices provided structures to ensure ideas were evaluated in a rational (i.e. non-emotional way) while also providing socioemotional support in the face of setbacks. Together, this process led to continued creative engagement across ideas in a portfolio and helped scientists construct a sense of meaningful work despite a high likelihood (and frequency) of failure.

Keywords: creativity, innovation, organizational practices, qualitative, attachment

Procedia PDF Downloads 56
4775 Performance Evaluation of Hemispherical Basin Type Solar Still

Authors: Husham Mahmood Ahmed

Abstract:

For so many reasons, fresh water scarcity is one of major problems facing the world and in particularly in the third world in the Northern Africa, the Middle East, the Southwest of Asia, and many other desert areas. Solar distillation offers one of the most promising solutions of renewable energy to this aggravated situation. The main obstacle hindering the spread of the use of solar technology for fresh water production is its low efficiency. Therefore, enhancing the solar stills performances by studying the parameters affecting their productivity and implementing new ideas and a different design are the main goals of the investigators in recent years. The present research is experimental work that tests a new design of solar still with a hemispherical top cover for water desalination with and without external reflectors under the climate of the Kingdom of Bahrain during the autumn season. The hemispherical cover has a base diameter of 1m and a depth of 0.4m, die cast from a 6 mm thick Lexan plastic sheet. The net effective area was 0.785 m2. It has been found that the average daily production rate obtained from the hemispherical top cover solar still is 3.610 liter/day. This yield is 11.1% higher than the yield of a conventional simple type single slope solar still having 20ᴼ slope glass cover and a larger effective area of 1 m2 obtained in previous research under similar climatic conditions. It has also been found that adding 1.2m long by 0.15 curved reflectors increased the yield of the hemispherical solar still by 5.5 %, while the 1.2 long by 0.3m curved reflector increased the yield by about 8%.

Keywords: hemispherical solar still, solar desalination, solar energy, the Northern Africa

Procedia PDF Downloads 391
4774 The Role of Interest Groups in Foreign Policy: Assessing the Influence of the 'Pro-Jakarta Lobby' in Australia and Indonesia's Bilateral Relations

Authors: Bec Strating

Abstract:

This paper examines the ways that domestic politics and pressure–generated through lobbying, public diplomacy campaigns and other tools of soft power-contributes to the formation of short-term and long-term national interests, priorities and strategies of states in their international relations. It primarily addresses the conceptual problems regarding the kinds of influence that lobby groups wield in foreign policy and how this influence might be assessed. Scholarly attention has been paid to influential foreign policy lobbies and interest groups, particularly in the areas of US foreign policy. Less attention has been paid to how lobby groups might influence the foreign policy of a middle power such as Australia. This paper examines some of the methodological complexities in developing and conducting a research project that can measure the nature and influence of lobbies on foreign affairs priorities and activities. This paper will use Australian foreign policy in the context of its historical bilateral relationship with Indonesia as a case study for considering the broader issues of domestic influences on foreign policy. Specifically, this paper will use the so-called ‘pro-Jakarta lobby’ as an example of an interest group. The term ‘pro-Jakarta lobby’ is used in media commentary and scholarship to describe an amorphous collection of individuals who have sought to influence Australian foreign policy in favour of Indonesia. The term was originally applied to a group of Indonesian experts at the Australian National University in the 1980s but expanded to include journalists, think tanks and key diplomats. The concept of the ‘pro-Jakarta lobby’ was developed largely through criticisms of Australia’s support for Indonesia’s sovereignty of East Timor and West Papua. Pro-Independence supporters were integral for creating the ‘lobby’ in their rhetoric and criticisms about the influence on Australian foreign policy. In these critical narratives, the ‘pro-Jakarta lobby’ supported a realist approach to relations with Indonesia during the years of President Suharto’s regime, which saw appeasement of Indonesia as paramount to values of democracy and human rights. The lobby was viewed as integral in embedding a form of ‘foreign policy exceptionalism’ towards Indonesia in Australian policy-making circles. However, little critical and scholarly attention has been paid to nature, aims, strategies and activities of the ‘pro-Jakarta lobby.' This paper engages with methodological issues of foreign policy analysis: what was the ‘pro-Jakarta lobby’? Why was it considered more successful than other activist groups in shaping policy? And how can its influence on Australia’s approach to Indonesia be tested in relation to other contingent factors shaping policy? In addressing these questions, this case study will assist in addressing a broader scholarly concern about the capacities of collectives or individuals in shaping and directing the foreign policies of states.

Keywords: foreign policy, interests groups, Australia, Indonesia

Procedia PDF Downloads 337
4773 Barrier Characteristics of Molecular Semiconductor-Based Organic/Inorganic Au/C₄₂H₂₈/n-InP Hybrid Junctions

Authors: Bahattin Abay

Abstract:

Thin film of polycyclic aromatic hydrocarbon rubrene, C₄₂H₂₈ (5,6,11,12-tetraphenyltetracene), has been surfaced on Moderately Doped (MD) n-InP substrate as an interfacial layer by means of spin coating technique for the electronic modification of Au/MD n-InP structure. Ex situ annealing has been carried out at 150 °C for three minutes under a brisk flow of nitrogen for the better adhesion of the deposited film with the substrate surface. Room temperature electrical characterization has been performed on the C₄₂H₂₈/MD n-InP hybrid junctions by current-voltage (I-V) and capacitance-voltage (C-V) measurement in the dark. It has been seen that the C₄₂H₂₈/MD n-InP structure demonstrated extraordinary rectifying behavior. An effective barrier height (BH) as high as 0.743 eV, along with an ideality factor very close to unity (n=1.203), has been achieved for C₄₂H₂₈/n-InP organic/inorganic device. A thin C₄₂H₂₈ interfacial layer between Au and MD n-InP also reduce the reverse leakage current by almost four orders of magnitude and enhance the BH about 0.278 eV. This good performance of the device is ascribed to the passivation effect of organic interfacial layer between Au and n-InP. By using C-V measurement, in addition, the value of BH of the C₄₂H₂₈/n-InP organic/inorganic hybrid junctions have been obtained as 0.796 eV. It has been seen that both of the BH value (0.743 and 0.796 eV) for the organic/inorganic hybrid junction obtained I-V and C-V measurement, respectively are significantly larger than that of the conventional Au/n-InP structure (0.465 and 0.503 eV). It was also seen that the device had good sensitivity to the light under 100 mW/cm² illumination conditions. The obtained results indicated that modification of the interfacial potential barrier for Metal/n-InP junctions might be attained using polycyclic aromatic hydrocarbon thin interlayer C₄₂H₂₈.

Keywords: I-V and C-V measurements, heterojunction, n-InP, rubrene, surface passivation

Procedia PDF Downloads 159
4772 Engineered Reactor Components for Durable Iron Flow Battery

Authors: Anna Ivanovskaya, Alexandra E. L. Overland, Swetha Chandrasekaran, Buddhinie S. Jayathilake

Abstract:

Iron-based redox flow batteries (IRFB) are promising for grid-scale storage because of their low-cost and environmental safety. Earth-abundant iron can enable affordable grid-storage to meet DOE’s target material cost <$20/kWh and levelized cost for storage $0.05/kWh. In conventional redox flow batteries, energy is stored in external electrolyte tanks and electrolytes are circulated through the cell units to achieve electrochemical energy conversions. However, IRFBs are hybrid battery systems where metallic iron deposition at the negative side of the battery controls the storage capacity. This adds complexity to the design of a porous structure of 3D-electrodes to achieve a desired high storage capacity. In addition, there is a need to control parasitic hydrogen evolution reaction which accompanies the metal deposition process, increases the pH, lowers the energy efficiency, and limits the durability. To achieve sustainable operation of IRFBs, electrolyte pH, which affects the solubility of reactants and the rate of parasitic reactions, needs to be dynamically readjusted. In the present study we explore the impact of complexing agents on maintaining solubility of the reactants and find the optimal electrolyte conditions and battery operating regime, which are specific for IRFBs with additives, and demonstrate the robust operation.

Keywords: flow battery, iron-based redox flow battery, IRFB, energy storage, electrochemistry

Procedia PDF Downloads 74
4771 The Effect of Raindrop Kinetic Energy on Soil Erodibility

Authors: A. Moussouni, L. Mouzai, M. Bouhadef

Abstract:

Soil erosion is a very complex phenomenon, resulting from detachment and transport of soil particles by erosion agents. The kinetic energy of raindrop is the energy available for detachment and transport by splashing rain. The soil erodibility is defined as the ability of soil to resist to erosion. For this purpose, an experimental study was conducted in the laboratory using rainfall simulator to study the effect of the kinetic energy of rain (Ec) on the soil erodibility (K). The soil used was a sandy agricultural soil of 62.08% coarse sand, 19.14% fine sand, 6.39% fine silt, 5.18% coarse silt and 7.21% clay. The obtained results show that the kinetic energy of raindrops evolves as a power law with soil erodibility.

Keywords: erosion, runoff, raindrop kinetic energy, soil erodibility, rainfall intensity, raindrop fall velocity

Procedia PDF Downloads 496
4770 Predicting the Compressive Strength of Geopolymer Concrete Using Machine Learning Algorithms: Impact of Chemical Composition and Curing Conditions

Authors: Aya Belal, Ahmed Maher Eltair, Maggie Ahmed Mashaly

Abstract:

Geopolymer concrete is gaining recognition as a sustainable alternative to conventional Portland Cement concrete due to its environmentally friendly nature, which is a key goal for Smart City initiatives. It has demonstrated its potential as a reliable material for the design of structural elements. However, the production of Geopolymer concrete is hindered by batch-to-batch variations, which presents a significant challenge to the widespread adoption of Geopolymer concrete. To date, Machine learning has had a profound impact on various fields by enabling models to learn from large datasets and predict outputs accurately. This paper proposes an integration between the current drift to Artificial Intelligence and the composition of Geopolymer mixtures to predict their mechanical properties. This study employs Python software to develop machine learning model in specific Decision Trees. The research uses the percentage oxides and the chemical composition of the Alkali Solution along with the curing conditions as the input independent parameters, irrespective of the waste products used in the mixture yielding the compressive strength of the mix as the output parameter. The results showed 90 % agreement of the predicted values to the actual values having the ratio of the Sodium Silicate to the Sodium Hydroxide solution being the dominant parameter in the mixture.

Keywords: decision trees, geopolymer concrete, machine learning, smart cities, sustainability

Procedia PDF Downloads 80
4769 Temperature Evolution, Microstructure and Mechanical Properties of Heat-Treatable Aluminum Alloy Welded by Friction Stir Welding: Comparison with Tungsten Inert Gas

Authors: Saliha Gachi, Mouloud Aissani, Fouad Boubenider

Abstract:

Friction Stir Welding (FSW) is a solid-state welding technique that can join material without melting the plates to be welded. In this work, we are interested to demonstrate the potentiality of FSW for joining the heat-treatable aluminum alloy 2024-T3 which is reputed as difficult to be welded by fusion techniques. Thereafter, the FSW joint is compared with another one obtained from a conventional fusion process Tungsten Inert Gas (TIG). FSW welds are made up using an FSW tool mounted on a milling machine. Single pass welding was applied to fabricated TIG joint. The comparison between the two processes has been made on the temperature evolution, mechanical and microstructure behavior. The microstructural examination revealed that FSW weld is composed of four zones: Base metal (BM), Heat affected zone (HAZ), Thermo-mechanical affected zone (THAZ) and the nugget zone (NZ). The NZ exhibits a recrystallized equiaxed refined grains that induce better mechanical properties and good ductility compared to TIG joint where the grains have a larger size in the welded region compared with the BM due to the elevated heat input. The microhardness results show that, in FSW weld, the THAZ contains the lowest microhardness values and increase in the NZ; however, in TIG process, the lowest values are localized on the NZ.

Keywords: friction stir welding, tungsten inert gaz, aluminum, microstructure

Procedia PDF Downloads 271
4768 Optimization of Hydraulic Fracturing for Horizontal Wells in Enhanced Geothermal Reservoirs

Authors: Qudratullah Muradi

Abstract:

Geothermal energy is a renewable energy source that can be found in abundance on our planet. Only a small fraction of it is currently converted to electrical power, though in recent years installed geothermal capacity has increased considerably all over the world. In this paper, we assumed a model for designing of Enhanced Geothermal System, EGS. We used computer modeling group, CMG reservoir simulation software to create the typical Hot Dry Rock, HDR reservoir. In this research two wells, one injection of cold water and one production of hot water are included in the model. There are some hydraulic fractures created by the mentioned software. And cold water is injected in order to produce energy from the reservoir. The result of injecting cold water to the reservoir and extracting geothermal energy is defined by some graphs at the end of this research. The production of energy is quantified in a period of 10 years.

Keywords: geothermal energy, EGS, HDR, hydraulic fracturing

Procedia PDF Downloads 191
4767 The Impact of Two Factors on EFL Learners' Fluency

Authors: Alireza Behfar, Mohammad Mahdavi

Abstract:

Nowadays, in the light of progress in the world of science, technology and communications, mastery of learning international languages is a sure and needful matter. In learning any language as a second language, progress and achieving a desirable level in speaking is indeed important for approximately all learners. In this research, we find out how preparation can influence L2 learners' oral fluency with respect to individual differences in working memory capacity. The participants consisted of sixty-one advanced L2 learners including MA students of TEFL at Isfahan University as well as instructors teaching English at Sadr Institute in Isfahan. The data collection consisted of two phases: A working memory test (reading span test) and a picture description task, with a one-month interval between the two tasks. Speaking was elicited through speech generation task in which the individuals were asked to discuss four topics emerging in two pairs. The two pairs included one simple and one complex topic and was accompanied by planning time and without any planning time respectively. Each topic was accompanied by several relevant pictures. L2 fluency was assessed based on preparation. The data were then analyzed in terms of the number of syllables, the number of silent pauses, and the mean length of pauses produced per minute. The study offers implications for strategies to improve learners’ both fluency and working memory.

Keywords: two factors, fluency, working memory capacity, preparation, L2 speech production reading span test picture description

Procedia PDF Downloads 224
4766 Using TRACE and SNAP Codes to Establish the Model of Maanshan PWR for SBO Accident

Authors: B. R. Shen, J. R. Wang, J. H. Yang, S. W. Chen, C. Shih, Y. Chiang, Y. F. Chang, Y. H. Huang

Abstract:

In this research, TRACE code with the interface code-SNAP was used to simulate and analyze the SBO (station blackout) accident which occurred in Maanshan PWR (pressurized water reactor) nuclear power plant (NPP). There are four main steps in this research. First, the SBO accident data of Maanshan NPP were collected. Second, the TRACE/SNAP model of Maanshan NPP was established by using these data. Third, this TRACE/SNAP model was used to perform the simulation and analysis of SBO accident. Finally, the simulation and analysis of SBO with mitigation equipments was performed. The analysis results of TRACE are consistent with the data of Maanshan NPP. The mitigation equipments of Maanshan can maintain the safety of Maanshan in the SBO according to the TRACE predictions.

Keywords: pressurized water reactor (PWR), TRACE, station blackout (SBO), Maanshan

Procedia PDF Downloads 188
4765 Self Immolation and the Deactivation of State Necropower

Authors: Kate L. Yusi

Abstract:

This paper is an attempt to theoretically reframe the act of self-immolation beyond violence/non-violence discourse, to differentiate it from other paradigmatic examples of necropolitical activism like suicide bombing, in order to highlight its particular ontopolitical statement in relation to life and death and to re-energize its deactivating power. In this paper, the writer seeks to focus on self-immolation by Tibetan monks and other activists against Chinese imperialism, its continuing ethnic cleansing of the Tibetan people, forced assimilation, and territorial occupation. Here, the main driving force is this question: what does self-immolation mean to a people who are forced to live in deathspace? In other words, if one is reduced to nothingness that their deaths (as is their lives) become insignificant, in what ways does the reclamation of death/dying become a “way out” of this state-imposed enclave of death? To answer these questions, the writer engages with and put in conversation the works of Achille Mbembe, Elias Cannetti, and Giorgio Agamben.

Keywords: necropolitics, self immolation, tibetan people, chinese imperialism

Procedia PDF Downloads 108
4764 Evaluation of Mechanical Behavior of Gas Turbine Blade at High Temperature

Authors: Sung-Uk Wee, Chang-Sung Seok, Jae-Mean Koo, Jeong-Min Lee

Abstract:

Gas turbine blade is important part of power plant, so it is necessary to evaluate gas turbine reliability. For better heat efficiency, inlet temperature of gas turbine has been elevated more and more so gas turbine blade is exposed to high-temperature environment. Then, higher inlet temperature affects mechanical behavior of the gas turbine blade, so it is necessary that evaluation of mechanical property of gas turbine blade at high-temperature environment. In this study, tensile test and fatigue test were performed at various high temperature, and fatigue life was predicted by Coffin-Manson equation at each temperature. The experimental results showed that gas turbine blade has a lower elastic modulus and shorter fatigue life at higher temperature.

Keywords: gas turbine blade, tensile test, fatigue life, stress-strain

Procedia PDF Downloads 473
4763 Perceived Effect of Physical Exercise on Healthy Well-Being of Pregnant Women in Imo State

Authors: Roseline Chizoba Onuoha, Rose Ngozi Uzoka

Abstract:

This study aimed at investigating perceived effect of physical exercise on healthy well-being of pregnant mothers in Imo state. The study was guided by three research questions and three null hypotheses tested at 0.05 level of significance. The study was a quasi-experimental non-equivalent control group design involving pre and post tests. A sample of 92 pregnant women drawn from a total population of 922 registered pregnant women in ten randomly selected health centers in Imo State through multistage sampling technique was used. A 41 item structured instrument titled Physical Exercise Pregnancy Test (PEPT) was used for the study. The PEPT was validated by three experts from measurement and evaluation, educational psychology and health education. Crombach Alpha method was used to determine the reliability of Physical Exercise Pregnancy Test (PEPT) and reliability index of 0.82 was obtained. Mean and standard deviation were used to answer the research questions; while Analysis of Covariance (ANCOVA) was used in analyzing the hypotheses. Findings of the study revealed that physical exercise affects physical, social and emotional wellbeing scores of pregnant women. The study also indicated that intervention using physical exercise significantly enhanced healthy well-being scores of pregnant mothers who were exposed to physical exercise than those who received conventional health talks; Location has no significant interaction effect on the mean well-being scores of pregnant women via PEPT. Among recommendations made were that pregnant women should participate in physical exercise.

Keywords: educational psychology, Imo state, Physical exercise, pregnant women

Procedia PDF Downloads 132
4762 The Molecule Preserve Environment: Effects of Inhibitor of the Angiotensin Converting Enzyme on Reproductive Potential and Composition Contents of the Mediterranean Flour Moth, Ephestia kuehniella Zeller

Authors: Yezli-Touiker Samira, Amrani-Kirane Leila, Soltani Mazouni Nadia

Abstract:

Due to secondary effects of conventional insecticides on the environment, the agrochemical research has resulted in the discovery of novel molecules. That research work will help in the development of a new group of pesticides that may be cheaper and less hazardous to the environment and non-target organisms which is the main desired outcome of the present work. Angiotensin-converting enzyme as a target for the development of novel insect growth regulators. Captopril is an inhibitor of angiotensin converting enzyme (ACE) it was tested in vivo by topical application on reproduction of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). The compound is diluted in acetone and applied topically to newly emerged pupae (10µg/ 2µl). The effects of this molecule was studied,on the biochemistry of ovary (on amounts nucleic acid, proteins, the qualitative analysis of the ovarian proteins and the reproductive potential (duration of the pre-oviposition, duration of the oviposition, number of eggs laid and hatching percentage). Captopril reduces significantly quantity of ovarian proteins and nucleic acid. The electrophoresis profile reveals the absence of tree bands at the treated series. This molecule reduced the duration of the oviposition period, the fecundity and the eggviability.

Keywords: environment, ephestia kuehniella, captopril, reproduction, the agrochemical research

Procedia PDF Downloads 280
4761 Voice Liveness Detection Using Kolmogorov Arnold Networks

Authors: Arth J. Shah, Madhu R. Kamble

Abstract:

Voice biometric liveness detection is customized to certify an authentication process of the voice data presented is genuine and not a recording or synthetic voice. With the rise of deepfakes and other equivalently sophisticated spoofing generation techniques, it’s becoming challenging to ensure that the person on the other end is a live speaker or not. Voice Liveness Detection (VLD) system is a group of security measures which detect and prevent voice spoofing attacks. Motivated by the recent development of the Kolmogorov-Arnold Network (KAN) based on the Kolmogorov-Arnold theorem, we proposed KAN for the VLD task. To date, multilayer perceptron (MLP) based classifiers have been used for the classification tasks. We aim to capture not only the compositional structure of the model but also to optimize the values of univariate functions. This study explains the mathematical as well as experimental analysis of KAN for VLD tasks, thereby opening a new perspective for scientists to work on speech and signal processing-based tasks. This study emerges as a combination of traditional signal processing tasks and new deep learning models, which further proved to be a better combination for VLD tasks. The experiments are performed on the POCO and ASVSpoof 2017 V2 database. We used Constant Q-transform, Mel, and short-time Fourier transform (STFT) based front-end features and used CNN, BiLSTM, and KAN as back-end classifiers. The best accuracy is 91.26 % on the POCO database using STFT features with the KAN classifier. In the ASVSpoof 2017 V2 database, the lowest EER we obtained was 26.42 %, using CQT features and KAN as a classifier.

Keywords: Kolmogorov Arnold networks, multilayer perceptron, pop noise, voice liveness detection

Procedia PDF Downloads 33
4760 Atmospheric Circulation Drivers Of Nationally-Aggregated Wind Energy Production Over Greece

Authors: Kostas Philippopoulos, Chris G. Tzanis, Despina Deligiorgi

Abstract:

Climate change adaptation requires the exploitation of renewable energy sources such as wind. However, climate variability can affect the regional wind energy potential and consequently the available wind power production. The goal of the research project is to examine the impact of atmospheric circulation on wind energy production over Greece. In the context of synoptic climatology, the proposed novel methodology employs Self-Organizing Maps for grouping and classifying the atmospheric circulation and nationally-aggregated capacity factor time series for a 30-year period. The results indicate the critical effect of atmospheric circulation on the national aggregated wind energy production values and therefore address the issue of optimum distribution of wind farms for a specific region.

Keywords: wind energy, atmospheric circulation, capacity factor, self-organizing maps

Procedia PDF Downloads 155