Search results for: uncertain demand
2907 The Effects of Self-Efficacy on Challenge and Threat States
Authors: Nadine Sammy, Mark Wilson, Samuel Vine
Abstract:
The Theory of Challenge and Threat States in Athletes (TCTSA) states that self-efficacy is an antecedent of challenge and threat. These states result from conscious and unconscious evaluations of situational demands and personal resources and are represented by both cognitive and physiological markers. Challenge is considered a more adaptive stress response as it is associated with a more efficient cardiovascular profile, as well as better performance and attention effects compared with threat. Self-efficacy is proposed to influence challenge/threat because an individual’s belief that they have the skills necessary to execute the courses of action required to succeed contributes to a perception that they can cope with the demands of the situation. This study experimentally examined the effects of self-efficacy on cardiovascular responses (challenge and threat), demand and resource evaluations, performance and attention under pressurised conditions. Forty-five university students were randomly assigned to either a control (n=15), low self-efficacy (n=15) or high self-efficacy (n=15) group and completed baseline and pressurised golf putting tasks. Self-efficacy was manipulated using false feedback adapted from previous studies. Measures of self-efficacy, cardiovascular reactivity, demand and resource evaluations, task performance and attention were recorded. The high self-efficacy group displayed more favourable cardiovascular reactivity, indicative of a challenge state, compared with the low self-efficacy group. The former group also reported high resource evaluations, but no task performance or attention effects were detected. These findings demonstrate that levels of self-efficacy influence cardiovascular reactivity and perceptions of resources under pressurised conditions.Keywords: cardiovascular, challenge, performance, threat
Procedia PDF Downloads 2322906 Supplier Selection in a Scenario Based Stochastic Model with Uncertain Defectiveness and Delivery Lateness Rates
Authors: Abeer Amayri, Akif A. Bulgak
Abstract:
Due to today’s globalization as well as outsourcing practices of the companies, the Supply Chain (SC) performances have become more dependent on the efficient movement of material among places that are geographically dispersed, where there is more chance for disruptions. One such disruption is the quality and delivery uncertainties of outsourcing. These uncertainties could lead the products to be unsafe and, as is the case in a number of recent examples, companies may have to end up in recalling their products. As a result of these problems, there is a need to develop a methodology for selecting suppliers globally in view of risks associated with low quality and late delivery. Accordingly, we developed a two-stage stochastic model that captures the risks associated with uncertainty in quality and delivery as well as a solution procedure for the model. The stochastic model developed simultaneously optimizes supplier selection and purchase quantities under price discounts over a time horizon. In particular, our target is the study of global organizations with multiple sites and multiple overseas suppliers, where the pricing is offered in suppliers’ local currencies. Our proposed methodology is applied to a case study for a US automotive company having two assembly plants and four potential global suppliers to illustrate how the proposed model works in practice.Keywords: global supply chains, quality, stochastic programming, supplier selection
Procedia PDF Downloads 4582905 Multi Attribute Failure Mode Analysis of the Catering Systems: A Case Study of Sefako Makgatho Health Sciences University in South Africa
Authors: Mokoena Oratilwe Penwell, Seeletse Solly Matshonisa
Abstract:
The demand for quality products is a vital factor determining the success of a producing company, and the reality of this demand influences customer satisfaction. In Sefako Makgatho Health Sciences University (SMU), concerns over the quality of food being sold have been raised by mostly students and staff who are primary consumers of food being sold by the cafeteria. Suspicions of food poisoning and the occurrence of diarrhea-related to food from the cafeteria, amongst others, have been raised. However, minimal measures have been taken to resolve the issue of food quality. New service providers have been appointed, and still, the same trends are being observed, the quality of food seems to depreciate continuously. This paper uses multi-attribute failure mode analysis (MAFMA) for failure detection and minimization on the machines used for food production by SMU catering company before being sold to both staff, and students so as to improve production plant reliability, and performance. Analytical Hierarchy Process (AHP) will be used for the severity ranking of the weight criterions and development of the hierarchical structure for the cafeteria company. Amongst other potential issues detected, maintenance of the machines and equipment used for food preparations was of concern. Also, the staff lacked sufficient hospitality skills, supervision, and management in the cafeteria needed greater attention to mitigate some of the failures occurring in the food production plant.Keywords: MAFMA, food quality, maintenance, supervision
Procedia PDF Downloads 1352904 Wind Power Assessment for Turkey and Evaluation by APLUS Code
Authors: Ibrahim H. Kilic, A. B. Tugrul
Abstract:
Energy is a fundamental component in economic development and energy consumption is an index of prosperity and the standard of living. The consumption of energy per capita has increased significantly over the last decades, as the standard of living has improved. Turkey’s geographical location has several advantages for extensive use of wind power. Among the renewable sources, Turkey has very high wind energy potential. Information such as installation capacity of wind power plants in installation, under construction and license stages in the country are reported in detail. Some suggestions are presented in order to increase the wind power installation capacity of Turkey. Turkey’s economic and social development has led to a massive increase in demand for electricity over the last decades. Since the Turkey has no major oil or gas reserves, it is highly dependent on energy imports and is exposed to energy insecurity in the future. But Turkey does have huge potential for renewable energy utilization. There has been a huge growth in the construction of wind power plants and small hydropower plants in recent years. To meet the growing energy demand, the Turkish Government has adopted incentives for investments in renewable energy production. Wind energy investments evaluated the impact of feed-in tariffs (FIT) based on three scenarios that are optimistic, realistic and pessimistic with APLUS software that is developed for rational evaluation for energy market. Results of the three scenarios are evaluated in the view of electricity market for Turkey.Keywords: APLUS, energy policy, renewable energy, wind power, Turkey
Procedia PDF Downloads 3032903 System Transformation: Transitioning towards Low Carbon, Resource Efficient, and Circular Economy for Global Sustainability
Authors: Anthony Halog
Abstract:
In the coming decades the world that we know today will be drastically transformed. Population and economic growth, particularly in developing countries, are radically changing the demand for food and natural resources. Due to the transformations caused by these megatrends, especially economic growth which is rapidly expanding the middle class and changing consumption patterns worldwide, it is expected that this will result to an increase of approximately 40 percent in the demand for food, water, energy and other resources in the next decades. To fulfill this demand in a sustainable and efficient manner while avoiding food and water scarcity as well as environmental catastrophes in the near future, some industries, particularly the ones involved in food and energy production, have to drastically change its current production systems towards circular and green economy. In Australia, the agri-food industry has played a very important role in the scenario described above. It is one of the major food exporters in the world, supplying fast growing international markets in Asia and the Middle East. Though the Australian food supply chains are economically and technologically developed, it has been facing enduring challenges about its international competitiveness and environmental burdens caused by its production processes. An integrated framework for sustainability assessment is needed to precisely identify inefficiencies and environmental impacts created during food production processes. This research proposes a combination of industrial ecology and systems science based methods and tools intending to develop a novel and useful methodological framework for life cycle sustainability analysis of the agri-food industry. The presentation highlights circular economy paradigm aiming to implement sustainable industrial processes to transform the current industrial model of agri-food supply chains. The results are expected to support government policy makers, business decision makers and other stakeholders involved in agri-food-energy production system in pursuit of green and circular economy. The framework will assist future life cycle and integrated sustainability analysis and eco-redesign of food and other industrial systems.Keywords: circular economy, eco-efficiency, agri-food systems, green economy, life cycle sustainability assessment
Procedia PDF Downloads 2812902 Review on Crew Scheduling of Bus Transit: A Case Study in Kolkata
Authors: Sapan Tiwari, Namrata Ghosh
Abstract:
In urban mass transit, crew scheduling always plays a significant role. It deals with the formulation of work timetables for its staff so that an organization can meet the demand for its products or services. The efficient schedules of a specified timetable have an enormous impact on staff demand. It implies that an urban mass transit company's financial outcomes are strongly associated with planning operations in the region. The research aims to demonstrate the state of the crew scheduling studies and its practical implementation in mass transit businesses in metropolitan areas. First, there is a short overview of past studies in the field. Subsequently, the restrictions and problems with crew scheduling and some models, which have been developed to solve the related issues with their mathematical formulation, are defined. The comments are completed by a description of the solution opportunities provided by computer-aided scheduling program systems for operational use and exposures from urban mass transit organizations. Furthermore, Bus scheduling is performed using the Hungarian technique of problem-solving tasks and mathematical modeling. Afterward, the crew scheduling problem, which consists of developing duties using predefined tasks with set start and end times and places, is resolved. Each duty has to comply with a set line of work. The objective is to minimize a mixture of fixed expenses (number of duties) and varying costs. After the optimization of cost, the outcome of the research is that the same frequency can be provided with fewer buses and less workforce.Keywords: crew scheduling, duty, optimization of cost, urban mass transit
Procedia PDF Downloads 1502901 Maternal-Fetal Outcome in Pregnant Women with Ebola Virus Disease: A Systematic Review
Authors: Garba Iliyasu, Lamaran Dattijo
Abstract:
Introduction: Ebola virus disease (EVD) is a disease of humans and other primates caused by Ebola viruses. The most widespread epidemic of EVD in history occurred recently in several West African countries. The burden and outcome of EVD in pregnant women remains uncertain. There are very few studies to date reporting on maternal and fetal outcomes among pregnant women with EVD, hence the justification for this comprehensive review of these published studies. Methods: Published studies in English that reported on maternal and or fetal outcome among pregnant women with EVD up to May 2016 were searched in electronic databases (Google Scholar, Medline, Embase, PubMed, AJOL, and Scopus). Studies that did not satisfy the inclusion criteria were excluded. We extracted the following variables from each study: geographical location, year of the study, settings of the study, participants, maternal and fetal outcome.Result: There were 12 studies that reported on 108 pregnant women and 110 fetal outcomes. Six of the studies were case reports, 3 retrospective studies, 2 cross-sectional studies and 1 was a technical report. There were 91(84.3%) deaths out of the 108 pregnant women, while only 1(0.9%) fetal survival was reported out of 110. Survival rate among the 15 patients that had spontaneous abortion/stillbirth or induced delivery was 100%. Conclusion: There was a poor maternal and fetal outcome among pregnant women with EVD, and fetal evacuation significantly improves maternal survival.Keywords: Africa, ebola, maternofetal, outcome
Procedia PDF Downloads 2642900 LCA of Waste Disposal from Olive Oil Production: Anaerobic Digestion and Conventional Disposal on Soil
Authors: T. Tommasi, E. Batuecas, G. Mancini, G. Saracco, D. Fino
Abstract:
Extra virgin olive-oil (EVO) production is an important economic activity for several countries, especially in the Mediterranean area such as Spain, Italy, Greece and Tunisia. The two major by-products from olive oil production, solid-liquid Olive Pomace (OP) and the Olive Mill Waste Waters (OMWW), are still mainly disposed on soil, in spite of the existence of legislation which already limits this practice. The present study compares the environmental impacts associated with two different scenarios for the management of waste from olive oil production through a comparative Life Cycle Assessment (LCA). The two alternative scenarios are: (I) Anaerobic Digestion and (II) current Disposal on soil. The analysis was performed through SimaPro software and the assessment of the impact categories was based on International Life Cycle Data and Cumulative Energy Demand methods. Both the scenarios are mostly related to the cultivation and harvesting phase and are highly dependent on the irrigation practice and related energy demand. Results from the present study clearly show that as the waste disposal on soil causes the worst environmental performance of all the impact categories here considered. Important environmental benefits have been identified when anaerobic digestion is instead chosen as the final treatment. It was consequently demonstrated that anaerobic digestion should be considered a feasible alternative for olive mills, to produce biogas from common olive oil residues, reducing the environmental burden and adding value to the olive oil production chain.Keywords: anaerobic digestion, waste management, agro-food waste, biogas
Procedia PDF Downloads 1472899 Solving the Overheating on the Top Floor of Energy Efficient Houses: The Envelope Improvement
Authors: Sormeh Sharifi, Wasim Saman, Alemu Alemu, David Whaley
Abstract:
Although various energy rating schemes and compulsory building codes are using around the world, there are increasing reports on overheating in energy efficient dwellings. Given that the cooling demand of buildings is rising globally because of the climate change, it is more likely that the overheating issue will be observed more. This paper studied the summer indoor temperature in eight air-conditioned multi-level houses in Adelaide which have complied with the Australian Nationwide Houses Energy Rating Scheme (NatHERS) minimum energy performance of 7.5 stars. Through monitored temperature, this study explores that overheating is experienced on 75.5% of top floors during cooling periods while the air-conditioners were running. This paper found that the energy efficiency regulations have significantly improved thermal comfort in low floors, but not on top floors, and the energy-efficient house is not necessarily adapted with the air temperature fluctuations particularly on top floors. Based on the results, this study suggests that the envelope of top floors for multi-level houses in South Australian context need new criteria to make the top floor more heat resistance in order to: preventing the overheating, reducing the summer pick electricity demand and providing thermal comfort. Some methods are used to improve the envelope of the eight case studies. The results demonstrate that improving roofs was the most effective part of the top floors envelope in terms of reducing the overheating.Keywords: building code, climate change, energy-efficient building, energy rating, overheating, thermal comfort
Procedia PDF Downloads 2202898 Effect of Women`s Autonomy on Unmet Need for Contraception and Family Size in India
Authors: Anshita Sharma
Abstract:
India is one of the countries to initiate family planning with intention to control the growing population by reducing fertility. In effort to this, India had introduced the National family planning programme in 1952. The level of unmet need in India shows a reducing trend with increasing effectiveness of family planning services as in NFHS-1 the unmet need for limiting, spacing and total was 46 percent, 14 percent & 9 percent, respectively. The demand for spacing has reduced to at 8 percent, 8 percent for limiting and total unmet need was 16 percent in NFHS-2. The total unmet need has reduced to 13 percent in NFHS-3 for all currently married women and the demand for limiting and spacing is 7 percent and 6 percent respectively. The level of unmet need in India shows a reducing trend with increasing effectiveness of family planning services. Despite the progress, there is chunk of women who are deprived of controlling unintended and unwanted pregnancies. The present paper examines the socio-cultural and economic and demographic correlates of unmet need for contraception in India. It also examines the effect of women’s autonomy and unmet need for contraception on family size among different socio-economic groups of population. It uses data from national family health survey-3 carried out in 2005-06 and employs bi-variate techniques and multivariate techniques for analysis. The multiple regression analysis has done to seek the level and direction of relationship among various socio-economic and demographic factors. The result reveals that women with higher level of education and economic status have low level of unmet need for family planning. Women living in non-nuclear family have high unmet need for spacing and women living in nuclear family have high unmet need for limiting and family size is slightly higher of women of nuclear family. In India, the level of autonomy varies at different life point; usually women with higher age enjoy higher autonomy than their junior female member in the family. The finding shows that women with higher autonomy have large family size counter to women with low autonomy have low family size. Unmet need for family planning decrease with women’s increasing exposure to mass- media. The demographic factors like experience of child loss are directly related to family size. Women who experience higher child loss have low unmet need for spacing and limiting. Thus, It is established with the help that women’s autonomy status play substantial role in fulfilling demand of contraception for limiting and spacing which affect the family size.Keywords: family size, socio-economic correlates, unmet need for limiting, unmet need for spacing, women`s autonomy
Procedia PDF Downloads 2672897 Health Policies towards Refugees: A Comparison of Policy Implementations from the EU and Turkey
Authors: Pelin Sonmez
Abstract:
Health services provided to refugees and asylum seekers are very important and of priority due to their physical damages during the war and conflict situation, possible diseases in migration journey and negative psychological mood. However, there are very poor international standards in regards to providing health services to these people, which in return cause each country to differ their regulations. United Nations Sustainable Development Goals that are in effect as of 2016 assure that attention should be provided to non-citizen vulnerable groups in terms of health policies and they should be included in the global development, thereby aims to decrease the problems arising from providing health services to refugees. Though, we should not forget that these are the recent and yet uncertain attempts, mostly, as a result of Syrian War's forced migration wave. As an attempt to reveal different attitudes of international actors, this study compares/analyzes health services provided to refugees and asylum seekers on the basis of Turkey-EU policy implementations. While doing so, two research data will be focused upon. In this globe, results of the focus group interviews and a field study in a specific work (from its health related section) which was done in 2017 to 5000 Syrian women living in Turkey and presented to Republic of Turkey Disaster and Emergency Management Presidency will be utilized.Keywords: European Union, health policies, refugee, Syrian women, Turkey
Procedia PDF Downloads 1852896 Starchy Wastewater as Raw Material for Biohydrogen Production by Dark Fermentation: A Review
Authors: Tami A. Ulhiza, Noor I. M. Puad, Azlin S. Azmi, Mohd. I. A. Malek
Abstract:
High amount of chemical oxygen demand (COD) in starchy waste can be harmful to the environment. In common practice, starch processing wastewater is discharged to the river without proper treatment. However, starchy waste still contains complex sugars and organic acids. By the right pretreatment method, the complex sugar can be hydrolyzed into more readily digestible sugars which can be utilized to be converted into more valuable products. At the same time, the global demand of energy is inevitable. The continuous usage of fossil fuel as the main source of energy can lead to energy scarcity. Hydrogen is a renewable form of energy which can be an alternative energy in the future. Moreover, hydrogen is clean and carries the highest energy compared to other fuels. Biohydrogen produced from waste has significant advantages over chemical methods. One of the major problems in biohydrogen production is the raw material cost. The carbohydrate-rich starchy wastes such as tapioca, maize, wheat, potato, and sago wastes is a promising candidate to be used as a substrate in producing biohydrogen. The utilization of those wastes for biohydrogen production can provide cheap energy generation with simultaneous waste treatment. Therefore this paper aims to review variety source of starchy wastes that has been widely used to synthesize biohydrogen. The scope includes the source of waste, the performance in yielding hydrogen, the pretreatment method and the type of culture that is suitable for starchy waste.Keywords: biohydrogen, dark fermentation, renewable energy, starchy waste
Procedia PDF Downloads 2232895 Comparison of the Effects of Continuous Flow Microwave Pre-Treatment with Different Intensities on the Anaerobic Digestion of Sewage Sludge for Sustainable Energy Recovery from Sewage Treatment Plant
Authors: D. Hephzibah, P. Kumaran, N. M. Saifuddin
Abstract:
Anaerobic digestion is a well-known technique for sustainable energy recovery from sewage sludge. However, sewage sludge digestion is restricted due to certain factors. Pre-treatment methods have been established in various publications as a promising technique to improve the digestibility of the sewage sludge and to enhance the biogas generated which can be used for energy recovery. In this study, continuous flow microwave (MW) pre-treatment with different intensities were compared by using 5 L semi-continuous digesters at a hydraulic retention time of 27 days. We focused on the effects of MW at different intensities on the sludge solubilization, sludge digestibility, and biogas production of the untreated and MW pre-treated sludge. The MW pre-treatment demonstrated an increase in the ratio of soluble chemical oxygen demand to total chemical oxygen demand (sCOD/tCOD) and volatile fatty acid (VFA) concentration. Besides that, the total volatile solid (TVS) removal efficiency and tCOD removal efficiency also increased during the digestion of the MW pre-treated sewage sludge compared to the untreated sewage sludge. Furthermore, the biogas yield also subsequently increases due to the pre-treatment effect. A higher MW power level and irradiation time generally enhanced the biogas generation which has potential for sustainable energy recovery from sewage treatment plant. However, the net energy balance tabulation shows that the MW pre-treatment leads to negative net energy production.Keywords: anaerobic digestion, biogas, microwave pre-treatment, sewage sludge
Procedia PDF Downloads 3202894 The Effect of Mathematical Modeling of Damping on the Seismic Energy Demands
Authors: Selamawit Dires, Solomon Tesfamariam, Thomas Tannert
Abstract:
Modern earthquake engineering and design encompass performance-based design philosophy. The main objective in performance-based design is to achieve a system performing precisely to meet the design objectives so to reduce unintended seismic risks and associated losses. Energy-based earthquake-resistant design is one of the design methodologies that can be implemented in performance-based earthquake engineering. In energy-based design, the seismic demand is usually described as the ratio of the hysteretic to input energy. Once the hysteretic energy is known as a percentage of the input energy, it is distributed among energy-dissipating components of a structure. The hysteretic to input energy ratio is highly dependent on the inherent damping of a structural system. In numerical analysis, damping can be modeled as stiffness-proportional, mass-proportional, or a linear combination of stiffness and mass. In this study, the effect of mathematical modeling of damping on the estimation of seismic energy demands is investigated by considering elastic-perfectly-plastic single-degree-of-freedom systems representing short to long period structures. Furthermore, the seismicity of Vancouver, Canada, is used in the nonlinear time history analysis. According to the preliminary results, the input energy demand is not sensitive to the type of damping models deployed. Hence, consistent results are achieved regardless of the damping models utilized in the numerical analyses. On the other hand, the hysteretic to input energy ratios vary significantly for the different damping models.Keywords: damping, energy-based seismic design, hysteretic energy, input energy
Procedia PDF Downloads 1682893 Linkages between Postponement Strategies and Flexibility in Organizations
Authors: Polycarpe Feussi
Abstract:
Globalization, technological and customer increasing changes, amongst other drivers, result in higher levels of uncertainty and unpredictability for organizations. In order for organizations to cope with the uncertain and fast-changing economic and business environment, these organizations need to innovate in order to achieve flexibility. In simple terms, the organizations must develop strategies leading to the ability of these organizations to provide horizontal information connections across the supply chain to create and deliver products that meet customer needs by synchronization of customer demands with product creation. The generated information will create efficiency and effectiveness throughout the whole supply chain regarding production, storage, and distribution, as well as eliminating redundant activities and reduction in response time. In an integrated supply chain, spanning activities include coordination with distributors and suppliers. This paper explains how through postponement strategies, flexibility can be achieved in an organization. In order to achieve the above, a thorough literature review was conducted via the search of online websites that contains material from scientific journal data-bases, articles, and textbooks on the subject of postponement and flexibility. The findings of the research are found in the last part of the paper. The first part introduces the concept of postponement and its importance in supply chain management. The second part of the paper provides the methodology used in the process of writing the paper.Keywords: postponement strategies, supply chain management, flexibility, logistics
Procedia PDF Downloads 1932892 Second Generation Biofuels: A Futuristic Green Deal for Lignocellulosic Waste
Authors: Nivedita Sharma
Abstract:
The global demand for fossil fuels is very high, but their use is not sustainable since its reserves are declining. Additionally, fossil fuels are responsible for the accumulation of greenhouse gases. The emission of greenhouse gases from the transport sector can be reduced by substituting fossil fuels by biofuels. Thus, renewable fuels capable of sequestering carbon dioxide are in high demand. Second‐generation biofuels, which require lignocellulosic biomass as a substrate and ultimately producing ethanol, fall largely in this category. Bioethanol is a favorable and near carbon-neutral renewable biofuel leading to reduction in tailpipe pollutant emission and improving the ambient air quality. Lignocellulose consists of three main components: cellulose, hemicellulose and lignin which can be converted to ethanol with the help of microbial enzymes. Enzymatic hydrolysis of lignocellulosic biomass in 1st step is considered as the most efficient and least polluting methods for generating fermentable hexose and pentose sugars which subsequently are fermented to power alcohol by yeasts in 2nd step of the process. In the present technology, a complete bioconversion process i.e. potential hydrolytic enzymes i.e. cellulase and xylanase producing microorganisms have been isolated from different niches, screened for enzyme production, identified using phenotyping and genotyping, enzyme production, purification and application of enzymes for saccharification of different lignocellulosic biomass followed by fermentation of hydrolysate to ethanol with high yield is to be presented in detail.Keywords: cellulase, xylanase, lignocellulose, bioethanol, microbial enzymes
Procedia PDF Downloads 982891 Efficacy of Modified Bottom Boards to Control Varroa Mite (Varroa Destructor) in Honeybee Colonies
Authors: Marwan Keshlaf, Hassan Fellah
Abstract:
This study was designed to test whether hive bottom boards modified with polyvinyl chloride pipe or screen-mesh reduces number of Varroa mites in naturally infested honeybee colonies comparing to chemical control. Fifty six colonies distributed equally between two location each received one of four experimental treatment 1) conventional solid board “control”, 2) Apistan in conventional solid board, 3) Mesh bottom board and 4) tube bottom board. Varroa infestation level on both adult bees and on capped brood was estimated. Stored pollen, capped brood area and honey production were also measured. Results of varroa infestation were inconsistent between apiaries. In apiary 1, colonies with Apistan had fewer Varroa destructor than other treatments, but this benefit was not apparent in Apiary 2. There were no effects of modified bottom boards on bee flight activity, brood production, honey yield and stored pollen. We conclude that the efficacy of modified bottom boards in reducing varroa mites population in bee colonies remains uncertain due to observed differences of hygienic behavior.Keywords: Apis mellifera, modified bottom boards, Varroa destructor, Honeybee colonies
Procedia PDF Downloads 3732890 Comparative Assessment of Rainwater Management Alternatives for Dhaka City: Case Study of North South University
Authors: S. M. Islam, Wasi Uddin, Nazmun Nahar
Abstract:
Dhaka, the capital of Bangladesh, faces two contrasting problems; excess of water during monsoon season and scarcity of water during dry season. The first problem occurs due to rapid urbanization and mismanagement of rainwater whereas the second problem is related to climate change and increasing urban population. Inadequate drainage system also worsens the overall water management scenario in Dhaka city. Dhaka has a population density of 115,000 people per square miles. This results in a 2.5 billion liter water demand every day, 87% of which is fulfilled by groundwater. Over dependency on groundwater has resulted in more than 200 feet drop in the last 50 years and continues to decline at a rate of 9 feet per year. Considering the gravity of the problem, it is high time that practitioners, academicians and policymakers consider different water management practices and look into their cumulative impacts at different scales. The present study assesses different rainwater management options for North South University of Bangladesh and recommends the most feasible and sustainable rainwater management measure. North South University currently accommodates over 20,000 students, faculty members, and administrative staffs. To fulfill the water demand, there are two deep tube wells, which bring up approximately 150,000 liter of water every hour. The annual water demand is approximately 103 million liters. Dhaka receives approximately 1800 mm of rainfall every year. For the current study, two academic buildings and one administrative building consist of 4924 square meters of rooftop area was selected as catchment area. Both rainwater harvesting and groundwater recharge options were analyzed separately. It was estimated that by rainwater harvesting, annually a total of 7.2 million liters of water can be reused which is approximately 7% of the total annual water usage. In the monsoon, rainwater harvesting fulfills 12.2% of the monthly water demand. The approximate cost of the rainwater harvesting system is estimated to be 940975 bdt (USD 11500). For direct groundwater recharge, a system comprises of one de-siltation tank, two recharge tanks and one siltation tank were designed that requires approximately 532788 bdt (USD 6500). The payback period is approximately 7 years and 4 months for the groundwater recharge system whereas the payback period for rainwater harvesting option is approximately 12 years and 4 months. Based on the cost-benefit analysis, the present study finds the groundwater recharge system to be most suitable for North South University. The present study also demonstrates that if only one institution like North South University can add up a substantial amount of water to the aquifer, bringing other institutions in the network has the potential to create significant cumulative impact on replenishing the declining groundwater level of Dhaka city. As an additional benefit, it also prevents large amount of water being discharged into the storm sewers which results in severe flooding in Dhaka city during monsoon.Keywords: Dhaka, groundwater, harvesting, rainwater, recharge
Procedia PDF Downloads 1242889 Development of a Plug-In Hybrid Powertrain System with Double Continuously Variable Transmissions
Authors: Cheng-Chi Yu, Chi-Shiun Chiou
Abstract:
This study developed a plug-in hybrid powertrain system which consisted of two continuous variable transmissions. By matching between the engine, motor, generator, and dual continuous variable transmissions, this integrated power system can take advantages of the components. The hybrid vehicle can be driven by the internal combustion engine, or electric motor alone, or by these two power sources together when the vehicle is driven in hard acceleration or high load. The energy management of this integrated hybrid system controls the power systems based on rule-based control strategy to achieve better fuel economy. When the vehicle driving power demand is low, the internal combustion engine is operating in the low efficiency region, so the internal combustion engine is shut down, and the vehicle is driven by motor only. When the vehicle driving power demand is high, internal combustion engine would operate in the high efficiency region; then the vehicle could be driven by internal combustion engine. This strategy would operate internal combustion engine only in optimal efficiency region to improve the fuel economy. In this research, the vehicle simulation model was built in MATLAB/ Simulink environment. The analysis results showed that the power coupled efficiency of the hybrid powertrain system with dual continuous variable transmissions was better than that of the Honda hybrid system on the market.Keywords: plug-in hybrid power system, fuel economy, performance, continuously variable transmission
Procedia PDF Downloads 2902888 Design of Demand Pacemaker Using an Embedded Controller
Authors: C. Bala Prashanth Reddy, B. Abhinay, C. Sreekar, D. V. Shobhana Priscilla
Abstract:
The project aims in designing an emergency pacemaker which is capable of giving shocks to a human heart which has stopped working suddenly. A pacemaker is a machine commonly used by cardiologists. This machine is used in order to shock a human’s heart back into usage. The way the heart works is that there are small cells called pacemakers sending electrical pulses to cardiac muscles that tell the heart when to pump blood. When these electrical pulses stop, the heart stops beating. When this happens, a pacemaker is used to shock the heart muscles and the pacemakers back into action. The way this is achieved is by rubbing the two panels of the pacemaker together to create an adequate electrical current, and then the heart gets back to the normal state. The project aims in designing a system which is capable of continuously displaying the heart beat and blood pressure of a person on LCD. The concerned doctor gets the heart beat and also the blood pressure details continuously through the GSM Modem in the form of SMS alerts. In case of abnormal condition, the doctor sends message format regarding the amount of electric shock needed. Automatically the microcontroller gives the input to the pacemaker which in turn gives the shock to the patient. Heart beat monitor and display system is a portable and a best replacement for the old model stethoscope which is less efficient. The heart beat rate is calculated manually using stethoscope where the probability of error is high because the heart beat rate lies in the range of 70 to 90 per minute whose occurrence is less than 1 sec, so this device can be considered as a very good alternative instead of a stethoscope.Keywords: missing R wave, PWM, demand pacemaker, heart
Procedia PDF Downloads 4822887 Vulnerability Assessment of Reinforced Concrete Frames Based on Inelastic Spectral Displacement
Authors: Chao Xu
Abstract:
Selecting ground motion intensity measures reasonably is one of the very important issues to affect the input ground motions selecting and the reliability of vulnerability analysis results. In this paper, inelastic spectral displacement is used as an alternative intensity measure to characterize the ground motion damage potential. The inelastic spectral displacement is calculated based modal pushover analysis and inelastic spectral displacement based incremental dynamic analysis is developed. Probability seismic demand analysis of a six story and an eleven story RC frame are carried out through cloud analysis and advanced incremental dynamic analysis. The sufficiency and efficiency of inelastic spectral displacement are investigated by means of regression and residual analysis, and compared with elastic spectral displacement. Vulnerability curves are developed based on inelastic spectral displacement. The study shows that inelastic spectral displacement reflects the impact of different frequency components with periods larger than fundamental period on inelastic structural response. The damage potential of ground motion on structures with fundamental period prolonging caused by structural soften can be caught by inelastic spectral displacement. To be compared with elastic spectral displacement, inelastic spectral displacement is a more sufficient and efficient intensity measure, which reduces the uncertainty of vulnerability analysis and the impact of input ground motion selection on vulnerability analysis result.Keywords: vulnerability, probability seismic demand analysis, ground motion intensity measure, sufficiency, efficiency, inelastic time history analysis
Procedia PDF Downloads 3542886 Portable Water Treatment for Flood Resilience
Authors: Alireza Abbassi Monjezi, Mohammad Hasan Shaheed
Abstract:
Flood, caused by excessive rainfall, monsoon, cyclone and tsunami is a common disaster in many countries of the world especially sea connected low-lying countries. A stand-alone self-powered water filtration module for decontamination of floodwater has been designed and modeled. A combination forward osmosis – low pressure reverse osmosis (FO-LPRO) system powered by solar photovoltaic-thermal (PVT) energy is investigated which could overcome the main barriers to water supply for remote areas and ensure off-grid filtration. The proposed system is designed to be small scale and portable to provide on-site potable water to communities that are no longer themselves mobile nor can be reached quickly by the aid agencies. FO is an osmotically driven process that uses osmotic pressure gradients to drive water across a controlled pore membrane from a feed solution (low osmotic pressure) to a draw solution (high osmotic pressure). This drops the demand for high hydraulic pressures and therefore the energy demand. There is also a tendency for lower fouling, easier fouling layer removal and higher water recovery. In addition, the efficiency of the PVT unit will be maximized through freshwater cooling which is integrated into the system. A filtration module with the capacity of 5 m3/day is modeled to treat floodwater and provide drinking water. The module can be used as a tool for disaster relief, particularly in the aftermath of flood and tsunami events.Keywords: flood resilience, membrane desalination, portable water treatment, solar energy
Procedia PDF Downloads 2882885 Applicability of Overhangs for Energy Saving in Existing High-Rise Housing in Different Climates
Authors: Qiong He, S. Thomas Ng
Abstract:
Upgrading the thermal performance of building envelope of existing residential buildings is an effective way to reduce heat gain or heat loss. Overhang device is a common solution for building envelope improvement as it can cut down solar heat gain and thereby can reduce the energy used for space cooling in summer time. Despite that, overhang can increase the demand for indoor heating in winter due to its function of lowering the solar heat gain. Obviously, overhang has different impacts on energy use in different climatic zones which have different energy demand. To evaluate the impact of overhang device on building energy performance under different climates of China, an energy analysis model is built up in a computer-based simulation program known as DesignBuilder based on the data of a typical high-rise residential building. The energy simulation results show that single overhang is able to cut down around 5% of the energy consumption of the case building in the stand-alone situation or about 2% when the building is surrounded by other buildings in regions which predominantly rely on space cooling though it has no contribution to energy reduction in cold region. In regions with cold summer and cold winter, adding overhang over windows can cut down around 4% and 1.8% energy use with and without adjoining buildings, respectively. The results indicate that overhang might not an effective shading device to reduce the energy consumption in the mixed climate or cold regions.Keywords: overhang, energy analysis, computer-based simulation, design builder, high-rise residential building, climate, BIM model
Procedia PDF Downloads 3662884 Agile Implementation of 'PULL' Principles in a Manufacturing Process Chain for Aerospace Composite Parts
Authors: Torsten Mielitz, Dietmar Schulz, York C. Roth
Abstract:
Market forecasts show a significant increase in the demand for aircraft within the next two decades and production rates will be adapted accordingly. Improvements and optimizations in the industrial system are becoming more important to cope with future challenges in manufacturing and assembly. Highest quality standards have to be met for aerospace parts, whereas cost effective production in industrial systems and methodologies are also a key driver. A look at other industries like e.g., automotive shows well established processes to streamline existing manufacturing systems. In this paper, the implementation of 'PULL' principles in an existing manufacturing process chain for a large scale composite part is presented. A nonlinear extrapolation based on 'Little's Law' showed a risk of a significant increase of parts needed in the process chain to meet future demand. A project has been set up to mitigate the risk whereas the methodology has been changed from a traditional milestone approach in the beginning towards an agile way of working in the end in order to facilitate immediate benefits in the shop-floor. Finally, delivery rates could be increased avoiding more semi-finished parts in the process chain (work in progress & inventory) by the successful implementation of the 'PULL' philosophy in the shop-floor between the work stations. Lessons learned during the running project as well as implementation and operations phases are discussed in order to share best practices.Keywords: aerospace composite part manufacturing, PULL principles, shop-floor implementation, lessons learned
Procedia PDF Downloads 1722883 Intelligent Parking Systems for Quasi-Close Communities
Authors: Ayodele Adekunle Faiyetole, Olumide Olawale Jegede
Abstract:
This paper presents the experimental design and needs justifications for a localized intelligent parking system (L-IPS), ideal for quasi-close communities with increasing vehicular volume that depends on limited or constant parking facilities. For a constant supply in parking facilities, the demand for an increasing vehicular volume could lead to poor time conservation or extended travel time, traffic congestion or impeded mobility, and safety issues. Increased negative environmental and economic externalities are other associated and consequent downsides of disparities in demand and supply. This L-IPS is designed using a microcontroller, ultrasonic sensors, LED indicators, such that the current status, in terms of parking spots availability, can be known from the main entrance to the community or a parking zone on a LCD screen. As an advanced traffic management system (ATMS), the L-IPS is designed to resolve aspects of infrastructure-to-driver (I2D) communication and parking detection issues. Thus, this L-IPS can act as a timesaver for users by helping them know the availability of parking spots. Providing on-time, informed routing, to a next preference or seamless moving to berth on the available spot on a proximate facility as the case may be. Its use could also increase safety and increase mobility, and fuel savings and costs, therefore, reducing negative environmental and economic externalities due to transportation systems.Keywords: intelligent parking systems, localized intelligent parking system, intelligent transport systems, advanced traffic management systems, infrastructure-to-drivers communication
Procedia PDF Downloads 1712882 Design of Ka-Band Satellite Links in Indonesia
Authors: Zulfajri Basri Hasanuddin
Abstract:
There is an increasing demand for broadband services in Indonesia. Therefore, the answer is the use of Ka-Band which has some advantages such as wider bandwidth, the higher transmission speeds, and smaller size of antenna in the ground. However, rain attenuation is the primary factor in the degradation of signal at the Kaband. In this paper, the author will determine whether the Ka-band frequency can be implemented in Indonesia which has high intensity of rainfall.Keywords: Ka-band, link budget, link availability, BER, Eb/No, C/N
Procedia PDF Downloads 4222881 Airline Choice Model for Domestic Flights: The Role of Airline Flexibility
Authors: Camila Amin-Puello, Lina Vasco-Diaz, Juan Ramirez-Arias, Claudia Munoz, Carlos Gonzalez-Calderon
Abstract:
Operational flexibility is a fundamental aspect in the field of airlines because although demand is constantly changing, it is the duty of companies to provide a service to users that satisfies their needs in an efficient manner without sacrificing factors such as comfort, safety and other perception variables. The objective of this research is to understand the factors that describe and explain operational flexibility by implementing advanced analytical methods such as exploratory factor analysis and structural equation modeling, examining multiple levels of operational flexibility and understanding how these variable influences users' decision-making when choosing an airline and in turn how it affects the airlines themselves. The use of a hybrid model and latent variables improves the efficiency and accuracy of airline performance prediction in the unpredictable Colombian market. This pioneering study delves into traveler motivations and their impact on domestic flight demand, offering valuable insights to optimize resources and improve the overall traveler experience. Applying the methods, it was identified that low-cost airlines are not useful for flexibility, while users, especially women, found airlines with greater flexibility in terms of ticket costs and flight schedules to be more useful. All of this allows airlines to anticipate and adapt to their customers' needs efficiently: to plan flight capacity appropriately, adjust pricing strategies and improve the overall passenger experience.Keywords: hybrid choice model, airline, business travelers, domestic flights
Procedia PDF Downloads 132880 Deployment of Beyond 4G Wireless Communication Networks with Carrier Aggregation
Authors: Bahram Khan, Anderson Rocha Ramos, Rui R. Paulo, Fernando J. Velez
Abstract:
With the growing demand for a new blend of applications, the users dependency on the internet is increasing day by day. Mobile internet users are giving more attention to their own experiences, especially in terms of communication reliability, high data rates and service stability on move. This increase in the demand is causing saturation of existing radio frequency bands. To address these challenges, researchers are investigating the best approaches, Carrier Aggregation (CA) is one of the newest innovations, which seems to fulfill the demands of the future spectrum, also CA is one the most important feature for Long Term Evolution - Advanced (LTE-Advanced). For this purpose to get the upcoming International Mobile Telecommunication Advanced (IMT-Advanced) mobile requirements (1 Gb/s peak data rate), the CA scheme is presented by 3GPP, which would sustain a high data rate using widespread frequency bandwidth up to 100 MHz. Technical issues such as aggregation structure, its implementations, deployment scenarios, control signal techniques, and challenges for CA technique in LTE-Advanced, with consideration of backward compatibility, are highlighted in this paper. Also, performance evaluation in macro-cellular scenarios through a simulation approach is presented, which shows the benefits of applying CA, low-complexity multi-band schedulers in service quality, system capacity enhancement and concluded that enhanced multi-band scheduler is less complex than the general multi-band scheduler, which performs better for a cell radius longer than 1800 m (and a PLR threshold of 2%).Keywords: component carrier, carrier aggregation, LTE-advanced, scheduling
Procedia PDF Downloads 1992879 Removal of Lead (Pb) by the Microorganism Isolated from the Effluent of Lead Acid Battery Scrap
Authors: Harikrishna Yadav Nanganuru, Narasimhulu Korrapati
Abstract:
The demand for the lead (Pb) in the battery industry has been growing for last twenty years. On an average about 2.35 million tons of lead is used in the battery industry. According to the survey of supply and demand battery industry is using 75% of lead produced every year. Due to the increase in battery scrap, secondary lead production has been increasing in this decade. Europe and USA together account for 75% of the world’s secondary lead production. The effluent from used battery scrap consists of high concentrations of lead. Unauthorized disposal of spent batteries, which contain intolerable concentration of lead, into landfills or municipal water canals causes release of Pb into the environment. Lead is one of the toxic heavy metals that have large damaging effects on the human health. Due to its persistence and toxicity, the presence of Pb in drinking water is considered as a special concern. Accumulation of Pb in the human body for long period of time can result in the malfunctioning of some organs. Many technologies have been developed for the removal of lead using microorganisms. In this paper, effluent was taken from the spent battery scrap and was characterized by inductively coupled plasma atomic emission spectrometer. Microorganisms play an important role in removal of lead from the contaminated sites. So, the bacteria were isolated from the effluent. Optimum conditions for the microbial growth and applied for the lead removal. These bacterial cells were immobilized and used for the removal of Pb from the known concentration of metal solution. Scanning electron microscopic (SEM) studies were shown that the Pb was efficiently adsorbed by the immobilized bacteria. From the results of Atomic Absorption Spectroscopy (AAS), 83.40 percentage of Pb was removed in a batch culture.Keywords: adsorption, effluent, immobilization, lead (Pb)
Procedia PDF Downloads 4572878 Nuclear Terrorism Decision Making: A Comparative Study of South Asian Nuclear Weapons States
Authors: Muhammad Jawad Hashmi
Abstract:
The idea of nuclear terrorism is as old as nuclear weapons but the global concerns of likelihood of nuclear terrorism are uncertain. Post 9/11 trends manifest that terrorists are believers of massive causalities. Innovation in terrorist’s tactics, sophisticated weaponry, vulnerability, theft and smuggling of nuclear/radiological material, connections between terrorists, black market and rough regimes are signaling seriousness of upcoming challenges as well as global trends of “terror-transnationalism.” Furthermore, the International-Atomic-Energy-Agency’s database recorded 2734 incidents regarding misuse, unauthorized possession, trafficking of nuclear material etc. Since, this data also includes incidents from south Asia, so, there is every possibility to claim that such illicit activities may increase in future, mainly due to expansion of nuclear industry in South Asia. Moreover, due to such mishaps the region is vulnerable to threats of nuclear terrorism. This is also a reason that the region is in limelight along with issues such as rapidly growing nuclear arsenals, nuclear safety and security, terrorism and political instability. With this backdrop, this study is aimed to investigate the prevailing threats and challenges in South Asia vis a vis nuclear safety and security. A comparative analysis of the overall capabilities would be done to identify the areas of cooperation to eliminate the probability of nuclear/radiological terrorism in the region.Keywords: nuclear terrorism, safety, security, South Asia, india, Pakistan
Procedia PDF Downloads 356