Search results for: surface of a field
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13876

Search results for: surface of a field

13216 The Antibacterial Efficacy of Gold Nanoparticles Derived from Gomphrena celosioides and Prunus amygdalus (Almond) Leaves on Selected Bacterial Pathogens

Authors: M. E. Abalaka, S. Y. Daniyan, S. O. Adeyemo, D. Damisa

Abstract:

Gold nanoparticles (AuNPs) have gained increasing interest in recent times. This is greatly due to their special features, which include unusual optical and electronic properties, high stability and biological compatibility, controllable morphology and size dispersion, and easy surface functionalization. In typical synthesis, AuNPs were produced by reduction of gold salt AuCl4 in an appropriate solvent. A stabilizing agent was added to prevent the particles from aggregating. The antibacterial activity of different sizes of gold nanoparticles was investigated against Staphylococcus aureus, Salmonella typhi and Pseudomonas pneumonia using the disk diffusion method in a Müeller–Hinton Agar. The Au-NPs were effective against all bacteria tested. That the Au-NPs were successfully synthesized in suspension and were used to study the antibacterial activity of the two medicinal plants against some bacterial pathogens suggests that Au-NPs can be employed as an effective bacteria inhibitor and may be an effective tool in medical field. The study clearly showed that the Au-NPs exhibiting inhibition towards the tested pathogenic bacteria in vitro could have the same effects in vivo and thus may be useful in the medical field if well researched into.

Keywords: gold nanoparticles, Gomphrena celesioides, Prunus amygdalus, pathogens

Procedia PDF Downloads 301
13215 Bank Filtration System in Highly Mineralized Groundwater

Authors: Medalson Ronghang, Pranjal Barman, Heemantajeet Medhi

Abstract:

Bank filtration (BF) being a natural method of abstracting surface water from the river or lake via sub-surface. It can be intensively used and operated under various operating conditions for sustainability. Field investigations were carried out at various location of Kokrajhar (Assam) and Srinagar (Uttarakhand) to assess the ground water and their bank filtration wells to compare and characterized the quality. Results obtained from the analysis of the data suggest that major water quality parameter were much below the drinking water standard of BIS 10500 (2012). However, the iron concentration was found to be more than permissible limit in more than 50% of the sampled hand pump; the concentration ranged between 0.33-3.50 mg/L with acidic in nature (5.4 to 7.4) in Kokrajhar and high nitrate in Srinagar. But the abstracted water from the RBF wells has attenuated water quality with no iron concentration in Kokrajhar. The aquifers and riverbed material collected along the bank of Rivers Gaurang and Alaknanda were sieved and classified as coarse silt to medium gravel. The hydraulic conductivity was estimated in the range 5×10⁻³ to 1.4×10⁻²- 3.09×10⁻⁴-1.29 ×10⁻³ for Kokrajhar and Srinagar respectively suggesting a good permeability of the aquifer. The maximum safe yield of the well was estimated to be in the range of 4000 to 7500 L/min. This paper aims at demonstrating bank filtration method as an alternative to mineralized groundwater for drinking water.

Keywords: Riverbank filtration, mineralization, water quality, groundwater

Procedia PDF Downloads 215
13214 Numerical Study on Self-Confined Plasmoid Transport Phenomena in an Electrodeless Plasma Thruster for Space Propulsion

Authors: Xiaodong Wen, Lijuan Liu, Xinfeng Sun

Abstract:

A high power electrodeless plasma thruster is being developed at Lanzhou Institute of Physics. In this thruster, a rotating magnetic field (RMF) driven by two radio-frequency coils which dephased by 90 degrees are applied both for propellant ionization and plasma acceleration. In the ionization stage, a very high azimuthal current can be driven by RMF and then makes plasma forms a field reversed configuration, namely self-confined plasmoid. Profoundly understanding the transport characteristics of the plasmoid in the following acceleration stage is the key to improve the thruster performances. In this paper, a 3D MHD model is established and the influences of the RMF and an applied magnetic field on the self-confined plasmoid acceleration are investigated. The simulation results show that, by applying a RMF with strength and frequency of 250 G and 370 kHz, the plasmoid can be accelerated to an average velocity of 17 km/s at the exit of the thruster.

Keywords: electric space propulsion, field reversed configuration, rotating magnetic field, transport phenomena

Procedia PDF Downloads 126
13213 Supervisory Emotional Display Affects Employee’s Well-Being

Authors: Huan Zhang, Darius K. S Chan

Abstract:

Despite a large number of studies linking emotional labor and its detrimental impact for laborer, research on how emotional labor would influence the receiver is still in its infancy. Especially under the call for “people management”, supervisors inside the organization are more inclined to display happy mood to support their employees, thus endorsing emotional labor. The present study focuses on the employees in the service industry as emotional labor recipients and investigates how they respond to their supervisors’ emotional display, given their sensitivity to emotional cues. Targeted at a sample of 250 survey data from a wide range of customer service professions, this ongoing study examines how perceived supervisory emotional labor would moderate the relationship between employees surface acting and their well-being. Our major hypotheses are that employees’ surface acting predicts well-being level, and that perceived supervisory emotional labor to moderate the surface acting—outcome links. Preliminary findings have provided some support to the hypothesized model. Specifically, supervisors who are perceived to be high in surface acting are also regarded as fake and pseudo, hence the enhancing the detrimental effect of employees’ surface acting is attenuated, resulting in lower job satisfaction, higher physical stress and burnout; whereas perceived high supervisor’s deep acting, as associated with genuine and authenticity, buffers the negative impact and leads to higher job satisfaction, lower physical stress and burnout. This study first confirms the negative impacts of the surface acting on well-being for service industry employees as laborer and then extends the emotional labor studies by considering them as recipients of supervisory emotional labor. The findings provide insights for leaders by pointing out the importance of authentic emotional expression in workplace.

Keywords: perceived supervisory emotional labor, surface acting, well-being

Procedia PDF Downloads 393
13212 Study of Geological Structure for Potential Fresh-Groundwater Aquifer Determination around Cidaun Beach, Cianjur Regency, West Java Province, Indonesia

Authors: Ilham Aji Dermawan, M. Sapari Dwi Hadian, R. Irvan Sophian, Iyan Haryanto

Abstract:

The study of the geological structure in the surrounding area of Cidaun, Cianjur Regency, West Java Province, Indonesia was conducted around the southern coast of Java Island. This study aims to determine the potentially structural trap deposits of freshwater resources in the study area, according to that the study area is an area directly adjacent to the beach, where the water around it did not seem fresh and brackish due to the exposure of sea water intrusion. This study uses the method of geomorphological analysis and geological mapping by taking the data directly in the field within 10x10 km of the research area. Geomorphological analysis was done by calculating the watershed drainage density value and roundness of watershed value ratio. The goal is to determine the permeability of the sub-soil conditions, rock constituent, and the flow of surface water. While the field geological mapping aims to take the geological structure data and then will do the reconstruction to determine the geological conditions of research area. The result, from geomorphology aspects, that the considered area of potential groundwater consisted of permeable surface material, permeable sub-soil, and low of water run-off flow. It is very good for groundwater recharge area. While the results of geological reconstruction after conducted of geological mapping is joints that present were initiated for the Cipandak Fault that cuts Cipandak River. That fault across until the Cibako Syncline fold through the Cibako River. This syncline is expected to place of influent groundwater aquifer. The tip of Cibako River then united with Cipandak River, where the Cipandak River extends through Cipandak Syncline fold axis in the southern regions close to its estuary. This syncline is expected to place of influent groundwater aquifer too.

Keywords: geological structure, groundwater, hydrogeology, influent aquifer, structural trap

Procedia PDF Downloads 198
13211 Photocatalytic Self-Cleaning Concrete Production Using Nano-Size Titanium Dioxide

Authors: Amin Akhnoukh, Halla Elea, Lawrence Benzmiller

Abstract:

The objective of this research is to evaluate the possibility of using nano-sized materials, mainly titanium dioxide (TiO2), in producing economic self-cleaning concrete using photo-catalysis process. In photo-catalysis, the nano-particles react and dissolve smog, dust, and dirt particles in the presence of sunlight, resulting in a cleaned concrete surface. To-date, the Italian cement company (Italcementi) produces a proprietary self-cleaning cementitious material that is currently used in government buildings and major highways in Europe. The high initial cost of the proprietary product represents a major obstacle to the wide spread of the self-cleaning concrete in industrial and commercial projects. In this research project, titanium dioxide nano-sized particles are infused to the top layer of a concrete pour before the concrete surface is finished. Once hardened, a blue dye is applied to the concrete surface to simulate smog and dirt effect. The concrete surface is subjected to direct light to investigate the effectiveness of the nano-sized titanium dioxide in cleaning the concrete surface. The outcome of this research project proved that the titanium dioxide can be successfully used in reducing smog and dirt particles attached to the concrete when infused to the surface concrete layer. The majority of cleansing effect due to photocatalysis happens within 24 hours of photocatalysis process. The non-proprietary mix can be used in highway, industrial, and commercial projects due to its economy and ease of production.

Keywords: self-cleaning concrete, photocatalysis, Smog-eating concrete, titanium dioxide

Procedia PDF Downloads 348
13210 The Unsteady Non-Equilibrium Distribution Function and Exact Equilibrium Time for a Dilute Gas Affected by Thermal Radiation Field

Authors: Taha Zakaraia Abdel Wahid

Abstract:

The behavior of the unsteady non-equilibrium distribution function for a dilute gas under the effect of non-linear thermal radiation field is presented. For the best of our knowledge this is done for the first time at all. The distinction and comparisons between the unsteady perturbed and the unsteady equilibrium velocity distribution functions are illustrated. The equilibrium time for the dilute gas is determined for the first time. The non-equilibrium thermodynamic properties of the system (gas+the heated plate) are investigated. The results are applied to the Argon gas, for various values of radiation field intensity. 3D-Graphics illustrating the calculated variables are drawn to predict their behavior. The results are discussed.

Keywords: dilute gas, radiation field, exact solutions, travelling wave method, unsteady BGK model, irreversible thermodynamics, unsteady non-equilibrium distribution functions

Procedia PDF Downloads 491
13209 Novel Anticorrosion Epoxy Reinforced Graphitic Nanocomposite as a Durable Surface

Authors: Shimaa A. Higazy, Mohamed S. Selim, Olfat E. El-Azabawy, Abeer A. Hassan

Abstract:

We designed novel epoxy/graphitic carbon nitride (g-C₃N₄) nanocomposite materials as suitable surface coatings. g-C₃N₄ nanosheets were facilely prepared and dispersed in the epoxy resin via solution casting. This research focuses on the mechanical and anticorrosion properties of g-C₃N₄ nanofiller reinforced epoxy nanocomposites. The structures, sizes, and morphologies of designed polymeric nanocomposites and nanofillers were elucidated using various techniques such as FT-IR, NMR, FE-TEM, FE-SEM. The developed nanocomposite was applied as a surface coating by air-assisted spray method. The structure-property relationship was studied for different concentrations of nanofiller in the epoxy matrix. The anticorrosive properties were studied via electrochemical experiments, including potentiodynamic polarization, electrochemical impedance, and open-circuit potential analyses, as well as salt spray test. Mechanical durability was assessed by various methods, such as impact, T-bending, and crosscut tests. Surface heterogeneity, elasticity, and corrosion-resistance features are among the merits of developed composite. The highest improvement was achieved with well dispersion of g-C₃N₄ sheets fillers. This fascinating epoxy nanostructured coating provides a promising anticorrosive coatings for a sustainable future environment.

Keywords: epoxy, nanocomposite, surface coating, anticorrosive properties, mechanical durability

Procedia PDF Downloads 82
13208 Effects of the Social Work Field Practicum on the Wellbeing of Non-Traditional and Underserved Students: A Mixed-Methods Study

Authors: Dana S. Smith, Angela Goins, Shahnaz Savani

Abstract:

Using a mixed-methods approach, this study explored costs to student wellbeing generated by the social work field practicum requirement. The project was conducted by faculty at a medium-sized university in the United States. Social work educators and field practicum instructors participated in interviews. Students and former students completed surveys on the topic. The data analysis revealed emotional burdens as well as threats to student wellbeing in association with the fieldwork required for those in pursuit of a social work degree. The study includes recommendations for anti-oppressive approaches for academic programs and implications for further research.

Keywords: emotional wellbeing, field practicum, mixed-methods, social justice

Procedia PDF Downloads 93
13207 Effects of the Social Work Field Practicum on the Wellbeing of Non-traditional and Underserved Students: A Mixed-Methods Study

Authors: Dana S. Smith, Angela Goins, Shahnaz Savani

Abstract:

Using a mixed-methods approach, this study explored costs to student wellbeing generated by the social work field practicum requirement. The project was conducted by faculty at a medium sized university in the United States. Social work educators and field practicum instructors participated in interviews. Students and former students completed surveys on the topic. The data analysis revealed emotional burdens as well as threats to student wellbeing in association with the fieldwork required for those in pursuit of a social work degree. The study includes recommendations of anti-oppressive approaches for academic programs and implications for further research.

Keywords: emotional wellbeing, field practicum, mixed-methods, social justice

Procedia PDF Downloads 81
13206 The Use of the Flat Field Panel for the On-Ground Calibration of Metis Coronagraph on Board of Solar Orbiter

Authors: C. Casini, V. Da Deppo, P. Zuppella, P. Chioetto, A. Slemer, F. Frassetto, M. Romoli, F. Landini, M. Pancrazzi, V. Andretta, E. Antonucci, A. Bemporad, M. Casti, Y. De Leo, M. Fabi, S. Fineschi, F. Frassati, C. Grimani, G. Jerse, P. Heinzel, K. Heerlein, A. Liberatore, E. Magli, G. Naletto, G. Nicolini, M.G. Pelizzo, P. Romano, C. Sasso, D. Spadaro, M. Stangalini, T. Straus, R. Susino, L. Teriaca, M. Uslenghi, A. Volpicelli

Abstract:

Solar Orbiter, launched on February 9th 2020, is an ESA/NASA mission conceived to study the Sun. The payload is composed of 10 instruments, among which there is the Metis coronagraph. A coronagraph aims at taking images of the solar corona: the occulter element simulates a total solar eclipse. This work presents some of the results obtained in the visible light band (580-640 nm) using a flat field panel source. The flat field panel gives a uniform illumination; consequently, it has been used during the on-ground calibration for several purposes: evaluating the response of each pixel of the detector (linearity); and characterizing the Field of View of the coronagraph. As a conclusion, a major result is the verification that the requirement for the Field of View (FoV) of Metis is fulfilled. Some investigations are in progress in order to verify that the performance measured on-ground did not change after launch.

Keywords: solar orbiter, Metis, coronagraph, flat field panel, calibration, on-ground, performance

Procedia PDF Downloads 102
13205 The Customization of 3D Last Form Design Based on Weighted Blending

Authors: Shih-Wen Hsiao, Chu-Hsuan Lee, Rong-Qi Chen

Abstract:

When it comes to last, it is regarded as the critical foundation of shoe design and development. Not only the last relates to the comfort of shoes wearing but also it aids the production of shoe styling and manufacturing. In order to enhance the efficiency and application of last development, a computer aided methodology for customized last form designs is proposed in this study. The reverse engineering is mainly applied to the process of scanning for the last form. Then the minimum energy is used for the revision of surface continuity, the surface of the last is reconstructed with the feature curves of the scanned last. When the surface of a last is reconstructed, based on the foundation of the proposed last form reconstruction module, the weighted arithmetic mean method is applied to the calculation on the shape morphing which differs from the grading for the control mesh of last, and the algorithm of subdivision is used to create the surface of last mesh, thus the feet-fitting 3D last form of different sizes is generated from its original form feature with functions remained. Finally, the practicability of the proposed methodology is verified through later case studies.

Keywords: 3D last design, customization, reverse engineering, weighted morphing, shape blending

Procedia PDF Downloads 335
13204 Raman Spectroscopy of Carbon Nanostructures in Strong Magnetic Field

Authors: M. Kalbac, T. Verhagen, K. Drogowska, J. Vejpravova

Abstract:

One- and two-dimensional carbon nano structures with sp2 hybridization of carbon atoms (single walled carbon nano tubes and graphene) are promising materials in future electronic and spintronics devices due to specific character of their electronic structure. In this paper, we present a comparative study of graphene and single-wall carbon nano tubes by Raman spectro-microscopy in strong magnetic field. This unique method allows to study changes in electronic band structure of the two types of carbon nano structures induced by a strong magnetic field.

Keywords: carbon nano structures, magnetic field, raman spectroscopy, spectro-microscopy

Procedia PDF Downloads 265
13203 Intensification of Heat Transfer in Magnetically Assisted Reactor

Authors: Dawid Sołoducha, Tomasz Borowski, Marian Kordas, Rafał Rakoczy

Abstract:

The magnetic field in the past few years became an important part of many studies. Magnetic field (MF) may be used to affect the process in many ways; for example, it can be used as a factor to stabilize the system. We can use MF to steer the operation, to activate or inhibit the process, or even to affect the vital activity of microorganisms. Using various types of magnetic field generators is always connected with the delivery of some heat to the system. Heat transfer is a very important phenomenon; it can influence the process positively and negatively, so it’s necessary to measure heat stream transferred from the place of generation and prevent negative influence on the operation. The aim of the presented work was to apply various types of magnetic fields and to measure heat transfer phenomena. The results were obtained by continuous measurement at several measuring points with temperature probes. Results were compilated in the form of temperature profiles. The study investigated the undetermined heat transfer in a custom system equipped with a magnetic field generator. Experimental investigations are provided for the explanation of the influence of the various type of magnetic fields on the heat transfer process. The tested processes are described by means of the criteria which defined heat transfer intensification under the action of magnetic field.

Keywords: heat transfer, magnetic field, undetermined heat transfer, temperature profile

Procedia PDF Downloads 192
13202 Magneto-Transport of Single Molecular Transistor Using Anderson-Holstein-Caldeira-Leggett Model

Authors: Manasa Kalla, Narasimha Raju Chebrolu, Ashok Chatterjee

Abstract:

We have studied the quantum transport properties of a single molecular transistor in the presence of an external magnetic field using the Keldysh Green function technique. We also used the Anderson-Holstein-Caldeira-Leggett Model to describe the single molecular transistor that consists of a molecular quantum dot (QD) coupled to two metallic leads and placed on a substrate that acts as a heat bath. The phonons are eliminated by the Lang-Firsov transformation and the effective Hamiltonian is used to study the effect of an external magnetic field on the spectral density function, Tunneling Current, Differential Conductance and Spin polarization. A peak in the spectral function corresponds to a possible excitation. In the presence of a magnetic field, the spin-up and spin-down states are degenerate and this degeneracy is lifted by the magnetic field leading to the splitting of the central peak of the spectral function. The tunneling current decreases with increasing magnetic field. We have observed that even the differential conductance peak in the zero magnetic field curve is split in the presence electron-phonon interaction. As the magnetic field is increased, each peak splits into two peaks. And each peak indicates the existence of an energy level. Thus the number of energy levels for transport in the bias window increases with the magnetic field. In the presence of the electron-phonon interaction, Differential Conductance in general gets reduced and decreases faster with the magnetic field. As magnetic field strength increases, the spin polarization of the current is increasing. Our results show that a strongly interacting QD coupled to metallic leads in the presence of external magnetic field parallel to the plane of QD acts as a spin filter at zero temperature.

Keywords: Anderson-Holstein model, Caldeira-Leggett model, spin-polarization, quantum dots

Procedia PDF Downloads 176
13201 Fabrication of High-Power AlGaN/GaN Schottky Barrier Diode with Field Plate Design

Authors: Chia-Jui Yu, Chien-Ju Chen, Jyun-Hao Liao, Chia-Ching Wu, Meng-Chyi Wu

Abstract:

In this letter, we demonstrate high-performance AlGaN/GaN planar Schottky barrier diodes (SBDs) on the silicon substrate with field plate structure for increasing breakdown voltage VB. A low turn-on resistance RON (3.55 mΩ-cm2), low reverse leakage current (< 0.1 µA) at -100 V, and high reverse breakdown voltage VB (> 1.1 kV) SBD has been fabricated. A virgin SBD exhibited a breakdown voltage (measured at 1 mA/mm) of 615 V, and with the field plate technology device exhibited a breakdown voltage (measured at 1 mA/mm) of 1525 V (the anode–cathode distance was LAC = 40 µm). Devices without the field plate design exhibit a Baliga’s figure of merit of VB2/ RON = 60.2 MW/cm2, whereas devices with the field plate design show a Baliga’s figure of merit of VB2/ RON = 340.9 MW/cm2 (the anode–cathode distance was LAC = 20 µm).

Keywords: AlGaN/GaN heterostructure, silicon substrate, Schottky barrier diode (SBD), high breakdown voltage, Baliga’s figure-of-merit, field plate

Procedia PDF Downloads 299
13200 Effect of Built in Polarization on Thermal Properties of InGaN/GaN Heterostructures

Authors: Bijay Kumar Sahoo

Abstract:

An important feature of InₓGa₁-ₓN/GaN heterostructures is strong built-in polarization (BIP) electric field at the hetero-interface due to spontaneous (sp) and piezoelectric (pz) polarizations. The intensity of this electric field reaches several MV/cm. This field has profound impact on optical, electrical and thermal properties. In this work, the effect of BIP field on thermal conductivity of InₓGa₁-ₓN/GaN heterostructure has been investigated theoretically. The interaction between the elastic strain and built in electric field induces additional electric polarization. This additional polarization contributes to the elastic constant of InₓGa₁-ₓN alloy. This in turn modifies material parameters of InₓGa₁-ₓN. The BIP mechanism enhances elastic constant, phonon velocity and Debye temperature and their bowing constants in InₓGa₁-ₓN alloy. These enhanced thermal parameters increase phonon mean free path which boost thermal conduction process. The thermal conductivity (k) of InxGa1-xN alloy has been estimated for x=0, 0.1, 0.3 and 0.9. Computation finds that irrespective of In content, the room temperature k of InₓGa₁-ₓN/GaN heterostructure is enhanced by BIP mechanism. Our analysis shows that at a certain temperature both k with and without BIP show crossover. Below this temperature k with BIP field is lower than k without BIP; however, above this temperature k with BIP field is significantly contributed by BIP mechanism leading to k with BIP field become higher than k without BIP field. The crossover temperature is primary pyroelectric transition temperature. The pyroelectric transition temperature of InₓGa₁-ₓN alloy has been predicted for different x. This signature of pyroelectric nature suggests that thermal conductivity can reveal pyroelectricity in InₓGa₁-ₓN alloy. The composition dependent room temperature k for x=0.1 and 0.3 are in line with prior experimental studies. The result can be used to minimize the self-heating effect in InₓGa₁-ₓN/GaN heterostructures.

Keywords: built-in polarization, phonon relaxation time, thermal properties of InₓGa₁-ₓN /GaN heterostructure, self-heating

Procedia PDF Downloads 403
13199 Magnetic Field Effects on Seed Germination of Phaseolus Vulgaris, Early Seedling Growth, and Chemical Composition

Authors: Farzad Tofigh, Saeideh Najafi, Reza Heidari, Rashid Jamei

Abstract:

In order to study the effects of magnetic field on the root system and growth of Phaseolus vulgaris, an experiment was conducted in 2012. The possible involvement of magnetic field (MF) pretreatment in physiological factors of Phaseolus vulgaris was investigated. Seeds were subjected to 10 days with 1.8 mT of magnetic field for 1h per day. MF pretreatment decreased the plant height, fresh and dry weight, length of root and length of shoot, Chlorophyll a, Chlorophyll b and carotenoid in 10 days old seedling. In addition, activity of enzymes such as Catalase and Guaiacol peroxidase was decreased due to MF exposure. Also, the total Protein and DPPH content of the treated by magnetic field was not significantly changed in compare to control groups, while the flavonoid, Phenol and prolin content of the treated of the treated by magnetic field was significantly changed in compare to control groups. Lateral branches of roots and secondary roots increased with MF. The results suggest that pretreatment of this MF plays important roles in changes in crop productivity. In all cases there was observed a slight stimulating effect of the factors examined. The growth dynamics were weakened. The plants were shorter. Moreover, the effect of a magnetic field on the crop of Phaseolus vulgaris and its structure was small.

Keywords: carotenoid, chlorophyll a, chlorophyll b, DPPH, enzymes, flavonoid, germination, growth, phenol, proline, protein, magnetic field

Procedia PDF Downloads 498
13198 Determining Design Parameters for Sizing of Hydronic Heating Systems in Concrete Thermally Activated Building Systems

Authors: Rahmat Ali, Inamullah Khan, Amjad Naseer, Abid A. Shah

Abstract:

Hydronic Heating and Cooling systems in concrete slab based buildings are increasingly becoming a popular substitute to conventional heating and cooling systems. In exploring the materials, techniques employed, and their relative performance measures, a fair bit of uncertainty exists. This research has identified the simplest method of determining the thermal field of a single hydronic pipe when acting as a part of a concrete slab, based on which the spacing and positioning of pipes for a best thermal performance and surface temperature control are determined. The pipe material chosen is the commonly used PEX pipe, which has an all-around performance and thermal characteristics with a thermal conductivity of 0.5W/mK. Concrete Test samples were constructed and their thermal fields tested under varying input conditions. Temperature sensing devices were embedded into the wet concrete at fixed distances from the pipe and other touch sensing temperature devices were employed for determining the extent of the thermal field and validation studies. In the first stage, it was found that the temperature along a specific distance was the same and that heat dissipation occurred in well-defined layers. The temperature obtained in concrete was then related to the different control parameters including water supply temperature. From the results, the temperature of water required for a specific temperature rise in concrete is determined. The thermally effective area is also determined which is then used to calculate the pipe spacing and positioning for the desired level of thermal comfort.

Keywords: thermally activated building systems, concrete slab temperature, thermal field, energy efficiency, thermal comfort, pipe spacing

Procedia PDF Downloads 329
13197 Facts of Near Field Communication

Authors: Amin Hamrahi

Abstract:

Near Field Communication (NFC) is one of the latest wireless communication technologies. NFC enables electronic devices to communicate in short range using the radio waves. NFC offers safe yet simple communication between electronic devices. This technology provides the fastest way to communicate two device with in a fraction of second. With NFC technology, communication occurs when an NFC-compatible device is brought within a few centimeters of another NFC device. NFC is an open-platform technology that is being standardized in the NFC Forum. NFC is based on and extends on RFID. It operates on 13.56 MHz frequency.

Keywords: near field communication, NFC technology, wireless communication technologies, NFC-compatible device, NFC, communication

Procedia PDF Downloads 458
13196 Application of Response Surface Methodology to Optimize the Thermal Conductivity Enhancement of a Hybrid Nanofluid

Authors: Aminreza Noghrehabadi, Mohammad Behbahani, Ali Pourabbasi

Abstract:

In this experimental work, unlike conventional methods that mix two nanoparticles together, silver nanoparticles have been synthesized on the surface of graphene. In this research, the effect of adding modified graphene nanocomposite-silver nanoparticles to the base fluid (distilled water) was studied. Different transmission electron microscopy (TEM) and field emission scanning electron microscope (FESEM) techniques have been used to examine the surfaces and atomic structure of nanoparticles. An ultrasonic device has been used to disperse the nanocomposite in distilled water. Also, the thermal conductivity coefficient was measured by the transient hot wire method using the KD2-pro device. In addition, the thermal conductivity coefficient was measured in the temperature range of 30°C to 50°C, concentration of 10 ppm to 1000 ppm, and ultrasonic time of 2 minutes to 15 minutes. The results showed that with the increase of all three parameters of temperature, concentration and ultrasonic time, the percentage of increase in thermal conductivity will go up until reaching the optimal point, and after passing the optimal point, the percentage of increase in thermal conductivity will have a downward trend. To calculate the thermal conductivity of this nanofluid, a very accurate experimental equation has been obtained using Design Expert software.

Keywords: thermal conductivity, nanofluids, enhancement, silver nano particle, optimal point

Procedia PDF Downloads 79
13195 Numerical Solution of Steady Magnetohydrodynamic Boundary Layer Flow Due to Gyrotactic Microorganism for Williamson Nanofluid over Stretched Surface in the Presence of Exponential Internal Heat Generation

Authors: M. A. Talha, M. Osman Gani, M. Ferdows

Abstract:

This paper focuses on the study of two dimensional magnetohydrodynamic (MHD) steady incompressible viscous Williamson nanofluid with exponential internal heat generation containing gyrotactic microorganism over a stretching sheet. The governing equations and auxiliary conditions are reduced to a set of non-linear coupled differential equations with the appropriate boundary conditions using similarity transformation. The transformed equations are solved numerically through spectral relaxation method. The influences of various parameters such as Williamson parameter γ, power constant λ, Prandtl number Pr, magnetic field parameter M, Peclet number Pe, Lewis number Le, Bioconvection Lewis number Lb, Brownian motion parameter Nb, thermophoresis parameter Nt, and bioconvection constant σ are studied to obtain the momentum, heat, mass and microorganism distributions. Moment, heat, mass and gyrotactic microorganism profiles are explored through graphs and tables. We computed the heat transfer rate, mass flux rate and the density number of the motile microorganism near the surface. Our numerical results are in better agreement in comparison with existing calculations. The Residual error of our obtained solutions is determined in order to see the convergence rate against iteration. Faster convergence is achieved when internal heat generation is absent. The effect of magnetic parameter M decreases the momentum boundary layer thickness but increases the thermal boundary layer thickness. It is apparent that bioconvection Lewis number and bioconvection parameter has a pronounced effect on microorganism boundary. Increasing brownian motion parameter and Lewis number decreases the thermal boundary layer. Furthermore, magnetic field parameter and thermophoresis parameter has an induced effect on concentration profiles.

Keywords: convection flow, similarity, numerical analysis, spectral method, Williamson nanofluid, internal heat generation

Procedia PDF Downloads 174
13194 Aerodynamic Prediction and Performance Analysis for Mars Science Laboratory Entry Vehicle

Authors: Tang Wei, Yang Xiaofeng, Gui Yewei, Du Yanxia

Abstract:

Complex lifting entry was selected for precise landing performance during the Mars Science Laboratory entry. This study aims to develop the three-dimensional numerical method for precise computation and the surface panel method for rapid engineering prediction. Detailed flow field analysis for Mars exploration mission was performed by carrying on a series of fully three-dimensional Navier-Stokes computations. The static aerodynamic performance was then discussed, including the surface pressure, lift and drag coefficient, lift-to-drag ratio with the numerical and engineering method. Computation results shown that the shock layer is thin because of lower effective specific heat ratio, and that calculated results from both methods agree well with each other, and is consistent with the reference data. Aerodynamic performance analysis shows that CG location determines trim characteristics and pitch stability, and certain radially and axially shift of the CG location can alter the capsule lifting entry performance, which is of vital significance for the aerodynamic configuration des0ign and inner instrument layout of the Mars entry capsule.

Keywords: Mars entry capsule, static aerodynamics, computational fluid dynamics, hypersonic

Procedia PDF Downloads 295
13193 Effect of Hydrogen Peroxide Concentration Produced by Cold Atmospheric Plasma on Inactivation of Escherichia Coli in Water

Authors: Zohreh Rashmei

Abstract:

Introduction: Plasma inactivation is one of the emerging technologies in biomedical field and has been applied to the inactivation of microorganisms in water. The inactivation effect has been attributed to the presence of active plasma species, i.e. OH, O, O3, H2O2, UV and electric fields, generated by the discharge of plasma. Material and Method: To evaluate germicidal effects of plasma, the electric spark discharge device was used. After the effect of the plasma samples were collected for culture medium agar plate count. In addition to biological experiments, the concentration of hydrogen peroxide was also measured. Results: The results showed that Plasma is able to inactivate a high concentration of E. coli. After a short period of plasma radiation on the surface of water, the amount log8 reduced the microbial load. Starting plasma radiation on the surface of the water, the measurements show of production and increasing the amount of hydrogen peroxide in water. So that at the end of the experiment, the concentration of hydrogen peroxide to about 100 mg / l increased. Conclusion: Increasing the concentration of hydrogen peroxide is directly related to the reduction of microbial load. The results of E. coli culture in media containing certain concentrations of H2O2 showed that E. coli can not to grow in a medium containing more than 2/5 mg/l of H2O2. Surely we can say that the main cause of killing bacteria is a molecule of H2O2.

Keywords: plasma, hydrogen peroxide, disinfection, E. coli

Procedia PDF Downloads 134
13192 Spectral Domain Fast Multipole Method for Solving Integral Equations of One and Two Dimensional Wave Scattering

Authors: Mohammad Ahmad, Dayalan Kasilingam

Abstract:

In this paper, a spectral domain implementation of the fast multipole method is presented. It is shown that the aggregation, translation, and disaggregation stages of the fast multipole method (FMM) can be performed using the spectral domain (SD) analysis. The spectral domain fast multipole method (SD-FMM) has the advantage of eliminating the near field/far field classification used in conventional FMM formulation. The study focuses on the application of SD-FMM to one-dimensional (1D) and two-dimensional (2D) electric field integral equation (EFIE). The case of perfectly conducting strip, circular and square cylinders are numerically analyzed and compared with the results from the standard method of moments (MoM).

Keywords: electric field integral equation, fast multipole method, method of moments, wave scattering, spectral domain

Procedia PDF Downloads 402
13191 Experimental Characterization of Composite Material with Non Contacting Methods

Authors: Nikolaos Papadakis, Constantinos Condaxakis, Konstantinos Savvakis

Abstract:

The aim of this paper is to determine the elastic properties (elastic modulus and Poisson ratio) of a composite material based on noncontacting imaging methods. More specifically, the significantly reduced cost of digital cameras has given the opportunity of the high reliability of low-cost strain measurement. The open source platform Ncorr is used in this paper which utilizes the method of digital image correlation (DIC). The use of digital image correlation in measuring strain uses random speckle preparation on the surface of the gauge area, image acquisition, and postprocessing the image correlation to obtain displacement and strain field on surface under study. This study discusses technical issues relating to the quality of results to be obtained are discussed. [0]8 fabric glass/epoxy composites specimens were prepared and tested at different orientations 0[o], 30[o], 45[o], 60[o], 90[o]. Each test was recorded with the camera at a constant frame rate and constant lighting conditions. The recorded images were processed through the use of the image processing software. The parameters of the test are reported. The strain map output which is obtained through strain measurement using Ncorr is validated by a) comparing the elastic properties with expected values from Classical laminate theory, b) through finite element analysis.

Keywords: composites, Ncorr, strain map, videoextensometry

Procedia PDF Downloads 139
13190 In-situ and Laboratory Characterization of Fiji Lateritic Soils

Authors: Faijal Ali, Darga Kumar N., Ravikant Singh, Rajnil Lal

Abstract:

Fiji has three major landforms such as plains, low mountains, and hills. The low land soils are formed on beach sand. Fiji soils contain high concentration of iron (III), aluminum oxides and hydroxides. The soil possesses reddish or yellowish colour. The characterization of lateritic soils collected from different locations along the national highway in Viti Levu, Fiji Islands. The research has been carried out mainly to understand the physical and strength properties to assess their suitability for the highway and building construction. In this paper, the field tests such as dynamic cone penetrometer test, field vane shear, field density and laboratory tests such as unconfined compression stress, compaction, grain size analysis and Atterberg limits are conducted. The test results are analyzed and presented. From the results, it is revealed that the soils are having more percentage of silt and clay which is more than 80% and 5 to 15% of fine to medium sand is noticed. The dynamic cone penetrometer results up to 3m depth had similar penetration resistance. For the first 1m depth, the rate of penetration is found 300mm per 3 to 4 blows. In all the sites it is further noticed that the rate of penetration at depths beyond 1.5 m is decreasing for the same number of blows as compared to the top soil. From the penetration resistance measured through dynamic cone penetrometer test, the California bearing ratio and allowable bearing capacities are 4 to 5% and 50 to 100 kPa for the top 1m layer and below 1m these values are increasing. The California bearing ratio of these soils for below 1m depth is in the order of 10% to 20%. The safe bearing capacity of these soils below 1m and up to 3m depth is varying from 150 kPa to 250 kPa. The field vane shear was measured within a depth of 1m from the surface and the values were almost similar varying from 60 kPa to 120 kPa. The liquid limit and plastic limits of these soils are in the range of 40 to 60% and 20 to 25%. Overall it is found that the top 1m soil along the national highway in majority places possess a soft to medium stiff behavior with low to medium bearing capacity as well low California bearing ratio values. It is recommended to ascertain these soils behavior in terms of geotechnical parameters before taking up any construction activity.

Keywords: California bearing ratio, dynamic cone penetrometer test, field vane shear, unconfined compression stress.

Procedia PDF Downloads 182
13189 Numerical Modeling of Film Cooling of the Surface at Non-Uniform Heat Flux Distributions on the Wall

Authors: M. V. Bartashevich

Abstract:

The problem of heat transfer at thin laminar liquid film is solved numerically. A thin film of liquid flows down an inclined surface under conditions of variable heat flux on the wall. The use of thin films of liquid allows to create the effective technologies for cooling surfaces. However, it is important to investigate the most suitable cooling regimes from a safety point of view, in order, for example, to avoid overheating caused by the ruptures of the liquid film, and also to study the most effective cooling regimes depending on the character of the distribution of the heat flux on the wall, as well as the character of the blowing of the film surface, i.e., the external shear stress on its surface. In the statement of the problem on the film surface, the heat transfer coefficient between the liquid and gas is set, as well as a variable external shear stress - the intensity of blowing. It is shown that the combination of these factors - the degree of uniformity of the distribution of heat flux on the wall and the intensity of blowing, affects the efficiency of heat transfer. In this case, with an increase in the intensity of blowing, the cooling efficiency increases, reaching a maximum, and then decreases. It is also shown that the more uniform the heating of the wall, the more efficient the heat sink. A separate study was made for the flow regime along the horizontal surface when the liquid film moves solely due to external stress influence. For this mode, the analytical solution is used for the temperature at the entrance region for further numerical calculations downstream. Also the influence of the degree of uniformity of the heat flux distribution on the wall and the intensity of blowing of the film surface on the heat transfer efficiency was also studied. This work was carried out at the Kutateladze Institute of Thermophysics SB RAS (Russia) and supported by FASO Russia.

Keywords: Heat Flux, Heat Transfer Enhancement, External Blowing, Thin Liquid Film

Procedia PDF Downloads 142
13188 Marine Environmental Monitoring Using an Open Source Autonomous Marine Surface Vehicle

Authors: U. Pruthviraj, Praveen Kumar R. A. K. Athul, K. V. Gangadharan, S. Rao Shrikantha

Abstract:

An open source based autonomous unmanned marine surface vehicle (UMSV) is developed for some of the marine applications such as pollution control, environmental monitoring and thermal imaging. A double rotomoulded hull boat is deployed which is rugged, tough, quick to deploy and moves faster. It is suitable for environmental monitoring, and it is designed for easy maintenance. A 2HP electric outboard marine motor is used which is powered by a lithium-ion battery and can also be charged from a solar charger. All connections are completely waterproof to IP67 ratings. In full throttle speed, the marine motor is capable of up to 7 kmph. The motor is integrated with an open source based controller using cortex M4F for adjusting the direction of the motor. This UMSV can be operated by three modes: semi-autonomous, manual and fully automated. One of the channels of a 2.4GHz radio link 8 channel transmitter is used for toggling between different modes of the USMV. In this electric outboard marine motor an on board GPS system has been fitted to find the range and GPS positioning. The entire system can be assembled in the field in less than 10 minutes. A Flir Lepton thermal camera core, is integrated with a 64-bit quad-core Linux based open source processor, facilitating real-time capturing of thermal images and the results are stored in a micro SD card which is a data storage device for the system. The thermal camera is interfaced to an open source processor through SPI protocol. These thermal images are used for finding oil spills and to look for people who are drowning at low visibility during the night time. A Real Time clock (RTC) module is attached with the battery to provide the date and time of thermal images captured. For the live video feed, a 900MHz long range video transmitter and receiver is setup by which from a higher power output a longer range of 40miles has been achieved. A Multi-parameter probe is used to measure the following parameters: conductivity, salinity, resistivity, density, dissolved oxygen content, ORP (Oxidation-Reduction Potential), pH level, temperature, water level and pressure (absolute).The maximum pressure it can withstand 160 psi, up to 100m. This work represents a field demonstration of an open source based autonomous navigation system for a marine surface vehicle.

Keywords: open source, autonomous navigation, environmental monitoring, UMSV, outboard motor, multi-parameter probe

Procedia PDF Downloads 232
13187 Optimization of Machining Parameters of Wire Electric Discharge Machining (WEDM) of Inconel 625 Super Alloy

Authors: Amitesh Goswami, Vishal Gulati, Annu Yadav

Abstract:

In this paper, WEDM has been used to investigate the machining characteristics of Inconel-625 alloy. The machining characteristics namely material removal rate (MRR) and surface roughness (SR) have been investigated along with surface microstructure analysis using SEM and EDS of the machined surface. Taguchi’s L27 Orthogonal array design has been used by considering six varying input parameters viz. Pulse-on time (Ton), Pulse-off time (Toff), Spark Gap Set Voltage (SV), Peak Current (IP), Wire Feed (WF) and Wire Tension (WT) for the responses of interest. It has been found out that Pulse-on time (Ton) and Spark Gap Set Voltage (SV) are the most significant parameters affecting material removal rate (MRR) and surface roughness (SR) are. Microstructure analysis of workpiece was also done using Scanning Electron Microscope (SEM). It was observed that, variations in pulse-on time and pulse-off time causes varying discharge energy and as a result of which deep craters / micro cracks and large/ small number of debris were formed. These results were helpful in studying the effects of pulse-on time and pulse-off time on MRR and SR. Energy Dispersive Spectrometry (EDS) was also done to check the compositional analysis of the material and it was observed that Copper and Zinc which were initially not present in the Inconel 625, later migrated on the material surface from the brass wire electrode during machining

Keywords: MRR, SEM, SR, taguchi, Wire Electric Discharge Machining

Procedia PDF Downloads 348