Search results for: rank ordered clustering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1262

Search results for: rank ordered clustering

602 Healthy, Breast Fed Bangladeshi Children Can Regulate Their Food Consumption in Each Meal and Feeding Duration When Offered with Varied Energy Density and Feeding Frequency of Complementary Foods

Authors: M. Munirul Islam, Makhduma Khatun M., Janet M. Peerson, Tahmeed Ahmed, M. Abid Hossain Mollah, Kathryn G. Dewey, Kenneth H. Brown

Abstract:

Information is required on the effects of dietary energy density (ED) and feeding frequency (FF) of complementary foods (CF) on food consumption during individual meals and time expended in child feeding. We evaluated the effects of varied ED and FF of CFs on food intake and time required for child feeding during individual meals. During 9 separate, randomly ordered dietary periods lasting 3-6 days each, we measured self-determined intakes of porridges by 18 healthy, breastfed children 8-11 mo old who were fed coded porridges with energy densities of 0.5, 1.0 or 1.5 kcal/g, during 3, 4, or 5 meals/d. CF intake was measured by weighing the feeding bowl before and after every meal. Children consumed greater amounts of CFs per meal when they received diets with lower ED (p = 0.044) and fewer meals per day (p < 0.001). Food intake was less during the first meal of the day than the other meals. Greater time was expended per meal when fewer meals were offered. Time expended per meal did not vary by ED, but the children ate the lower ED diets faster (p = 0.019). Food intake velocity was also greater when more meals were offered per day (p = 0.005). These results provide further evidence of young children’s ability to regulate their energy intakes, even during infancy; and they convey information on factors that affect the amount of time that caregivers must devote to child feeding.

Keywords: complementary foods, energy density, feeding frequency, young children

Procedia PDF Downloads 466
601 Evaluation of Robust Feature Descriptors for Texture Classification

Authors: Jia-Hong Lee, Mei-Yi Wu, Hsien-Tsung Kuo

Abstract:

Texture is an important characteristic in real and synthetic scenes. Texture analysis plays a critical role in inspecting surfaces and provides important techniques in a variety of applications. Although several descriptors have been presented to extract texture features, the development of object recognition is still a difficult task due to the complex aspects of texture. Recently, many robust and scaling-invariant image features such as SIFT, SURF and ORB have been successfully used in image retrieval and object recognition. In this paper, we have tried to compare the performance for texture classification using these feature descriptors with k-means clustering. Different classifiers including K-NN, Naive Bayes, Back Propagation Neural Network , Decision Tree and Kstar were applied in three texture image sets - UIUCTex, KTH-TIPS and Brodatz, respectively. Experimental results reveal SIFTS as the best average accuracy rate holder in UIUCTex, KTH-TIPS and SURF is advantaged in Brodatz texture set. BP neuro network works best in the test set classification among all used classifiers.

Keywords: texture classification, texture descriptor, SIFT, SURF, ORB

Procedia PDF Downloads 369
600 Assessment of the Level of Awareness and Adoption of International Public Sector Accounting Standards (IPSAS) in the Curriculum of Accounting Education in Selected Tertiary Institutions in Ondo and Ekiti States Nigeria

Authors: Olurankinse Felix, Fatukasi Bayo

Abstract:

Over the years, the medium through which government financial statements are prepared has been on cash basis of accounting. This basis was characterised with some shortcomings ranging from non- disclosure of quality and detail information relating to government financial transactions, ill informed assessment of government resource allocation, weak internal control system that inhibits accountability and transparency and non- standardisation of reporting ethics for the purpose of comparability. The emergence of international public sector accounting standards (IPSAS) is therefore seen as leverage as it aims at improving the quality of general purpose financial reporting by public sector entities thereby increasing transparency and accountability. IPSAS is a new concept that all institutions must fully adopts. The crux of this paper is to find out to what extent is the awareness and adoption of IPSAS to both students and lecturers interms of teaching, learning and inclusion in the curriculum of accounting education. The methodology involved the use of well designed questionnaires to obtain information from some selected institutions and the analysis was done with the use of maximum likelihood ordered probit regression. The result of the analysis shows that despite a high level of sensitisation/awareness of IPSAS, the degree of adoption is still low due to low level of desirability by students and lecturers. The paper recommend the need for the government to enact an enabling law to back up the adoption and more importantly to institute appropriate sanctions to ensure full compliance.

Keywords: assessment, awareness, adoption, IPSAS, cash basis

Procedia PDF Downloads 482
599 Performance Evaluation of Various Segmentation Techniques on MRI of Brain Tissue

Authors: U.V. Suryawanshi, S.S. Chowhan, U.V Kulkarni

Abstract:

Accuracy of segmentation methods is of great importance in brain image analysis. Tissue classification in Magnetic Resonance brain images (MRI) is an important issue in the analysis of several brain dementias. This paper portraits performance of segmentation techniques that are used on Brain MRI. A large variety of algorithms for segmentation of Brain MRI has been developed. The objective of this paper is to perform a segmentation process on MR images of the human brain, using Fuzzy c-means (FCM), Kernel based Fuzzy c-means clustering (KFCM), Spatial Fuzzy c-means (SFCM) and Improved Fuzzy c-means (IFCM). The review covers imaging modalities, MRI and methods for noise reduction and segmentation approaches. All methods are applied on MRI brain images which are degraded by salt-pepper noise demonstrate that the IFCM algorithm performs more robust to noise than the standard FCM algorithm. We conclude with a discussion on the trend of future research in brain segmentation and changing norms in IFCM for better results.

Keywords: image segmentation, preprocessing, MRI, FCM, KFCM, SFCM, IFCM

Procedia PDF Downloads 331
598 Energy Transition and Investor-State Disputes: Scientific Knowledge as a Solution to the Burden for Climate Policy-Making

Authors: Marina E. Konstantinidi

Abstract:

It is now well-established that the fight against climate change and its consequences, which are a threat to mankind and to life on the planet Earth, requires that global temperature rise be kept under 1,5°C. It is also well-established that this requires humanity to put an end to the use of fossil fuels in the next decades, at the latest. However, investors in the fossil energy sector have brought or threatened to bring investment arbitration claims against States which put an end to their activity for the purpose of reaching their climate change policies’ objectives. Examples of such claims are provided by the cases of WMH v. Canada, Lone Pine v. Canada, Uniper v. Netherlands and RWE v. Netherlands. Irrespective of the outcome of the arbitration proceedings, the risk of being ordered to pay very substantial damages may have a ‘chilling effect’ on States, meaning that they may hesitate to implement the energy transition measures needed to fight climate change and its consequences. Although mitigation action is a relatively recent phenomenon, knowledge about the negative impact of fossil fuels has existed for a long time ago. In this paper, it is argued that structured documentation of evidence of knowledge about climate change may influence the adjudication of investment treaty claims and, consequently, affect the content of energy transition regulations that will be implemented. For example, as concerns investors, evidence that change in the regulatory framework towards environmental protection could have been predicted would refute the argument concerning legitimate expectations for legislative stability. By reference to relevant case law, it attempted to explore how pre-existing knowledge about climate change can be used in the adjudication of investor-State disputes and resulting from green energy transition policies.

Keywords: climate change, energy transition, international investment law, knowledge

Procedia PDF Downloads 99
597 A Memetic Algorithm Approach to Clustering in Mobile Wireless Sensor Networks

Authors: Masood Ahmad, Ataul Aziz Ikram, Ishtiaq Wahid

Abstract:

Wireless sensor network (WSN) is the interconnection of mobile wireless nodes with limited energy and memory. These networks can be deployed formany critical applications like military operations, rescue management, fire detection and so on. In flat routing structure, every node plays an equal role of sensor and router. The topology may change very frequently due to the mobile nature of nodes in WSNs. The topology maintenance may produce more overhead messages. To avoid topology maintenance overhead messages, an optimized cluster based mobile wireless sensor network using memetic algorithm is proposed in this paper. The nodes in this network are first divided into clusters. The cluster leaders then transmit data to that base station. The network is validated through extensive simulation study. The results show that the proposed technique has superior results compared to existing techniques.

Keywords: WSN, routing, cluster based, meme, memetic algorithm

Procedia PDF Downloads 481
596 Magnetic Cellulase/Halloysite Nanotubes as Biocatalytic System for Converting Agro-Waste into Value-Added Product

Authors: Devendra Sillu, Shekhar Agnihotri

Abstract:

The 'nano-biocatalyst' utilizes an ordered assembling of enzyme on to nanomaterial carriers to catalyze desirable biochemical kinetics and substrate selectivity. The current study describes an inter-disciplinary approach for converting agriculture waste, sugarcane bagasse into D-glucose exploiting halloysite nanotubes (HNTs) decorated cellulase enzyme as nano-biocatalytic system. Cellulase was successfully immobilized on HNTs employing polydopamine as an eco-friendly crosslinker while iron oxide nanoparticles were attached to facilitate magnetic recovery of material. The characterization studies (UV-Vis, TEM, SEM, and XRD) displayed the characteristic features of both cellulase and magnetic HNTs in the resulting nanocomposite. Various factors (i.e., working pH, temp., crosslinker conc., enzyme conc.) which may influence the activity of biocatalytic system were investigated. The experimental design was performed using Response Surface Methodology (RSM) for process optimization. Analyses data demonstrated that the nanobiocatalysts retained 80.30% activity even at elevated temperature (55°C) and excellent storage stabilities after 10 days. The repeated usage of system revealed a remarkable consistent relative activity over several cycles. The immobilized cellulase was employed to decompose agro-waste and the maximum decomposition rate of 67.2 % was achieved. Conclusively, magnetic HNTs can serve as a potential support for enzyme immobilization with long term usage, good efficacy, reusability and easy recovery from solution.

Keywords: halloysite nanotubes, enzyme immobilization, cellulase, response surface methodology, magnetic recovery

Procedia PDF Downloads 133
595 Intrusion Detection Using Dual Artificial Techniques

Authors: Rana I. Abdulghani, Amera I. Melhum

Abstract:

With the abnormal growth of the usage of computers over networks and under the consideration or agreement of most of the computer security experts who said that the goal of building a secure system is never achieved effectively, all these points led to the design of the intrusion detection systems(IDS). This research adopts a comparison between two techniques for network intrusion detection, The first one used the (Particles Swarm Optimization) that fall within the field (Swarm Intelligence). In this Act, the algorithm Enhanced for the purpose of obtaining the minimum error rate by amending the cluster centers when better fitness function is found through the training stages. Results show that this modification gives more efficient exploration of the original algorithm. The second algorithm used a (Back propagation NN) algorithm. Finally a comparison between the results of two methods used were based on (NSL_KDD) data sets for the construction and evaluation of intrusion detection systems. This research is only interested in clustering the two categories (Normal and Abnormal) for the given connection records. Practices experiments result in intrude detection rate (99.183818%) for EPSO and intrude detection rate (69.446416%) for BP neural network.

Keywords: IDS, SI, BP, NSL_KDD, PSO

Procedia PDF Downloads 382
594 Ranking Effective Factors on Strategic Planning to Achieve Organization Objectives in Fuzzy Multivariate Decision-Making Technique

Authors: Elahe Memari, Ahmad Aslizadeh, Ahmad Memari

Abstract:

Today strategic planning is counted as the most important duties of senior directors in each organization. Strategic planning allows the organizations to implement compiled strategies and reach higher competitive benefits than their competitors. The present research work tries to prepare and rank the strategies form effective factors on strategic planning in fulfillment of the State Road Management and Transportation Organization in order to indicate the role of organizational factors in efficiency of the process to organization managers. Connection between six main factors in fulfillment of State Road Management and Transportation Organization were studied here, including Improvement of Strategic Thinking in senior managers, improvement of the organization business process, rationalization of resources allocation in different parts of the organization, coordination and conformity of strategic plan with organization needs, adjustment of organization activities with environmental changes, reinforcement of organizational culture. All said factors approved by implemented tests and then ranked using fuzzy multivariate decision-making technique.

Keywords: Fuzzy TOPSIS, improvement of organization business process, multivariate decision-making, strategic planning

Procedia PDF Downloads 423
593 Sustainable Maintenance Model for Infrastructure in Egypt

Authors: S. Hasan, I. Beshara

Abstract:

Infrastructure maintenance is a great challenge facing sustainable development of infrastructure assets due to the high cost of passive implementation of a sustainable maintenance plan. An assessment model of sustainable maintenance for highway infrastructure projects in Egypt is developed in this paper. It helps in improving the implementation of sustainable maintenance criteria. Thus, this paper has applied the analytical hierarchy processes (AHP) to rank and explore the weight of 26 assessment indicators using three hierarchy levels containing the main sustainable categories and subcategories with related indicators. Overall combined weight of each indicator for sustainable maintenance evaluation has been calculated to sum up to a sustainable maintenance performance index (SMI). The results show that the factor "Preventive maintenance cost" has the highest relative contribution factor among others (13.5%), while two factors of environmental performance have the least weights (0.7%). The developed model aims to provide decision makers with information about current maintenance performance and support them in the decision-making process regarding future directions of maintenance activities. It can be used as an assessment performance tool during the operation and maintenance stage. The developed indicators can be considered during designing the maintenance plan. Practices for successful implementation of the model are also presented.

Keywords: analytical hierarchy process, assessment performance Model, KPIs for sustainable maintenance, sustainable maintenance index

Procedia PDF Downloads 138
592 An Exploratory Study of Reliability of Ranking vs. Rating in Peer Assessment

Authors: Yang Song, Yifan Guo, Edward F. Gehringer

Abstract:

Fifty years of research has found great potential for peer assessment as a pedagogical approach. With peer assessment, not only do students receive more copious assessments; they also learn to become assessors. In recent decades, more educational peer assessments have been facilitated by online systems. Those online systems are designed differently to suit different class settings and student groups, but they basically fall into two categories: rating-based and ranking-based. The rating-based systems ask assessors to rate the artifacts one by one following some review rubrics. The ranking-based systems allow assessors to review a set of artifacts and give a rank for each of them. Though there are different systems and a large number of users of each category, there is no comprehensive comparison on which design leads to higher reliability. In this paper, we designed algorithms to evaluate assessors' reliabilities based on their rating/ranking against the global ranks of the artifacts they have reviewed. These algorithms are suitable for data from both rating-based and ranking-based peer assessment systems. The experiments were done based on more than 15,000 peer assessments from multiple peer assessment systems. We found that the assessors in ranking-based peer assessments are at least 10% more reliable than the assessors in rating-based peer assessments. Further analysis also demonstrated that the assessors in ranking-based assessments tend to assess the more differentiable artifacts correctly, but there is no such pattern for rating-based assessors.

Keywords: peer assessment, peer rating, peer ranking, reliability

Procedia PDF Downloads 436
591 Leverage Effect for Volatility with Generalized Laplace Error

Authors: Farrukh Javed, Krzysztof Podgórski

Abstract:

We propose a new model that accounts for the asymmetric response of volatility to positive ('good news') and negative ('bad news') shocks in economic time series the so-called leverage effect. In the past, asymmetric powers of errors in the conditionally heteroskedastic models have been used to capture this effect. Our model is using the gamma difference representation of the generalized Laplace distributions that efficiently models the asymmetry. It has one additional natural parameter, the shape, that is used instead of power in the asymmetric power models to capture the strength of a long-lasting effect of shocks. Some fundamental properties of the model are provided including the formula for covariances and an explicit form for the conditional distribution of 'bad' and 'good' news processes given the past the property that is important for the statistical fitting of the model. Relevant features of volatility models are illustrated using S&P 500 historical data.

Keywords: heavy tails, volatility clustering, generalized asymmetric laplace distribution, leverage effect, conditional heteroskedasticity, asymmetric power volatility, GARCH models

Procedia PDF Downloads 385
590 Using Emerging Hot Spot Analysis to Analyze Overall Effectiveness of Policing Policy and Strategy in Chicago

Authors: Tyler Gill, Sophia Daniels

Abstract:

The paper examines how accessing the spatial-temporal constrains of data will help inform policymakers and law enforcement officials. The authors utilize Chicago crime data from 2006-2016 to demonstrate how the Emerging Hot Spot Tool is an ideal hot spot clustering approach to analyze crime data. Traditional approaches include density maps or creating a spatial weights matrix to include the spatial-temporal constrains. This new approach utilizes a space-time implementation of the Getis-Ord Gi* statistic to visualize the data more quickly to make better decisions. The research will help complement socio-cultural research to find key patterns to help frame future policies and evaluate the implementation of prior strategies. Through this analysis, homicide trends and patterns are found more effectively and recommendations for use by non-traditional users of GIS are offered for real life implementation.

Keywords: crime mapping, emerging hot spot analysis, Getis-Ord Gi*, spatial-temporal analysis

Procedia PDF Downloads 244
589 Intelligent Software Architecture and Automatic Re-Architecting Based on Machine Learning

Authors: Gebremeskel Hagos Gebremedhin, Feng Chong, Heyan Huang

Abstract:

Software system is the combination of architecture and organized components to accomplish a specific function or set of functions. A good software architecture facilitates application system development, promotes achievement of functional requirements, and supports system reconfiguration. We describe three studies demonstrating the utility of our architecture in the subdomain of mobile office robots and identify software engineering principles embodied in the architecture. The main aim of this paper is to analyze prove architecture design and automatic re-architecting using machine learning. Intelligence software architecture and automatic re-architecting process is reorganizing in to more suitable one of the software organizational structure system using the user access dataset for creating relationship among the components of the system. The 3-step approach of data mining was used to analyze effective recovery, transformation and implantation with the use of clustering algorithm. Therefore, automatic re-architecting without changing the source code is possible to solve the software complexity problem and system software reuse.

Keywords: intelligence, software architecture, re-architecting, software reuse, High level design

Procedia PDF Downloads 119
588 One-Shot Text Classification with Multilingual-BERT

Authors: Hsin-Yang Wang, K. M. A. Salam, Ying-Jia Lin, Daniel Tan, Tzu-Hsuan Chou, Hung-Yu Kao

Abstract:

Detecting user intent from natural language expression has a wide variety of use cases in different natural language processing applications. Recently few-shot training has a spike of usage on commercial domains. Due to the lack of significant sample features, the downstream task performance has been limited or leads to an unstable result across different domains. As a state-of-the-art method, the pre-trained BERT model gathering the sentence-level information from a large text corpus shows improvement on several NLP benchmarks. In this research, we are proposing a method to change multi-class classification tasks into binary classification tasks, then use the confidence score to rank the results. As a language model, BERT performs well on sequence data. In our experiment, we change the objective from predicting labels into finding the relations between words in sequence data. Our proposed method achieved 71.0% accuracy in the internal intent detection dataset and 63.9% accuracy in the HuffPost dataset. Acknowledgment: This work was supported by NCKU-B109-K003, which is the collaboration between National Cheng Kung University, Taiwan, and SoftBank Corp., Tokyo.

Keywords: OSML, BERT, text classification, one shot

Procedia PDF Downloads 101
587 Formation of Nanochannels by Heavy Ions in Graphene Oxide Reinforced Carboxymethylcellulose Membranes for Proton Exchange Membrane Fuel Cells Applications

Authors: B. Kurbanova, M. Karibayev, N. Almas, K. Ospanov, K. Aimaganbetov, T. Kuanyshbekov, K. Akatan, S. Kabdrakhmanova

Abstract:

Proton exchange membranes (PEMs) operating at high temperatures above 100 °C with the excellent mechanical, chemical and thermochemical stability have been received much attention, because of their practical application of proton exchange membrane fuel cells (PEMFCs). Nowadays, a huge number of polymers and polymer-mixed various membranes have been investigated for this application, all of which offer both pros and cons. However, PEMFCs are still lack of ideal membranes with unique properties. In this work, carboxymethylcellulose (CMC) based membranes with dispersive graphene oxide (GO) sheets were fabricated and investigated for PEMFCs application. These membranes and pristine GO were studied by a combination of XRD, XPS, Raman, Brillouin, FTIR, thermo-mechanical analysis (TGA and Dynamic Mechanical Analysis) and SEM microscopy, while substantial studies on the proton transport properties were provided by Electrochemical Impedance Spectroscopy (EIS) measurements. It was revealed that the addition of CMC to the GO boosts proton conductivity of the whole membrane, while GO provides good mechanical and thermomechanical stability to the membrane. Further, the continuous and ordered nanochannels with well-tailored chemical structures were obtained by irradiation of heavy ions Kr⁺¹⁷ with an energy of 1.75 MeV/nucleon on the heavy ion accelerator. The formation of these nanochannels led to the significant increase of proton conductivity at 50% Relative Humidity. Also, FTIR and XPS measurement results show that ion irradiation eliminated the GO’s surface oxygen chemical bonds (C=O, C-O), and led to the formation of C = C, C – C bonds, whereas these changes connected with an increase in conductivity.

Keywords: proton exchange membranes, graphene oxide, fuel cells, carboxymethylcellulose, ion irradiation

Procedia PDF Downloads 91
586 Analytical Description of Disordered Structures in Continuum Models of Pattern Formation

Authors: Gyula I. Tóth, Shaho Abdalla

Abstract:

Even though numerical simulations indeed have a significant precursory/supportive role in exploring the disordered phase displaying no long-range order in pattern formation models, studying the stability properties of this phase and determining the order of the ordered-disordered phase transition in these models necessitate an analytical description of the disordered phase. First, we will present the results of a comprehensive statistical analysis of a large number (1,000-10,000) of numerical simulations in the Swift-Hohenberg model, where the bulk disordered (or amorphous) phase is stable. We will show that the average free energy density (over configurations) converges, while the variance of the energy density vanishes with increasing system size in numerical simulations, which suggest that the disordered phase is a thermodynamic phase (i.e., its properties are independent of the configuration in the macroscopic limit). Furthermore, the structural analysis of this phase in the Fourier space suggests that the phase can be modeled by a colored isotropic Gaussian noise, where any instant of the noise describes a possible configuration. Based on these results, we developed the general mathematical framework of finding a pool of solutions to partial differential equations in the sense of continuous probability measure, which we will present briefly. Applying the general idea to the Swift-Hohenberg model we show, that the amorphous phase can be found, and its properties can be determined analytically. As the general mathematical framework is not restricted to continuum theories, we hope that the proposed methodology will open a new chapter in studying disordered phases.

Keywords: fundamental theory, mathematical physics, continuum models, analytical description

Procedia PDF Downloads 134
585 Minimum Vertices Dominating Set Algorithm for Secret Sharing Scheme

Authors: N. M. G. Al-Saidi, K. A. Kadhim, N. A. Rajab

Abstract:

Over the past decades, computer networks and data communication system has been developing fast, so, the necessity to protect a transmitted data is a challenging issue, and data security becomes a serious problem nowadays. A secret sharing scheme is a method which allows a master key to be distributed among a finite set of participants, in such a way that only certain authorized subsets of participants to reconstruct the original master key. To create a secret sharing scheme, many mathematical structures have been used; the most widely used structure is the one that is based on graph theory (graph access structure). Subsequently, many researchers tried to find efficient schemes based on graph access structures. In this paper, we propose a novel efficient construction of a perfect secret sharing scheme for uniform access structure. The dominating set of vertices in a regular graph is used for this construction in the following way; each vertex represents a participant and each minimum independent dominating subset represents a minimal qualified subset. Some relations between dominating set, graph order and regularity are achieved, and can be used to demonstrate the possibility of using dominating set to construct a secret sharing scheme. The information rate that is used as a measure for the efficiency of such systems is calculated to show that the proposed method has some improved values.

Keywords: secret sharing scheme, dominating set, information rate, access structure, rank

Procedia PDF Downloads 393
584 A Machine Learning-Based Analysis of Autism Prevalence Rates across US States against Multiple Potential Explanatory Variables

Authors: Ronit Chakraborty, Sugata Banerji

Abstract:

There has been a marked increase in the reported prevalence of Autism Spectrum Disorder (ASD) among children in the US over the past two decades. This research has analyzed the growth in state-level ASD prevalence against 45 different potentially explanatory factors, including socio-economic, demographic, healthcare, public policy, and political factors. The goal was to understand if these factors have adequate predictive power in modeling the differential growth in ASD prevalence across various states and if they do, which factors are the most influential. The key findings of this study include (1) the confirmation that the chosen feature set has considerable power in predicting the growth in ASD prevalence, (2) the identification of the most influential predictive factors, (3) given the nature of the most influential predictive variables, an indication that a considerable portion of the reported ASD prevalence differentials across states could be attributable to over and under diagnosis, and (4) identification of Florida as a key outlier state pointing to a potential under-diagnosis of ASD there.

Keywords: autism spectrum disorder, clustering, machine learning, predictive modeling

Procedia PDF Downloads 102
583 Spectral Anomaly Detection and Clustering in Radiological Search

Authors: Thomas L. McCullough, John D. Hague, Marylesa M. Howard, Matthew K. Kiser, Michael A. Mazur, Lance K. McLean, Johanna L. Turk

Abstract:

Radiological search and mapping depends on the successful recognition of anomalies in large data sets which contain varied and dynamic backgrounds. We present a new algorithmic approach for real-time anomaly detection which is resistant to common detector imperfections, avoids the limitations of a source template library and provides immediate, and easily interpretable, user feedback. This algorithm is based on a continuous wavelet transform for variance reduction and evaluates the deviation between a foreground measurement and a local background expectation using methods from linear algebra. We also present a technique for recognizing and visualizing spectrally similar clusters of data. This technique uses Laplacian Eigenmap Manifold Learning to perform dimensional reduction which preserves the geometric "closeness" of the data while maintaining sensitivity to outlying data. We illustrate the utility of both techniques on real-world data sets.

Keywords: radiological search, radiological mapping, radioactivity, radiation protection

Procedia PDF Downloads 692
582 Exploring the Challenges to Usage of Building Construction Cost Indices in Ghana

Authors: Jerry Gyimah, Ernest Kissi, Safowaa Osei-Tutu, Charles Dela Adobor, Theophilus Adjei-Kumi, Ernest Osei-Tutu

Abstract:

Price fluctuation contract is imperative and of paramount essence, in the construction industry as it provides adequate relief and cushioning for changes in the prices of input resources during construction. As a result, several methods have been devised to better help in arriving at fair recompense in the event of price changes. However, stakeholders often appear not to be satisfied with the existing methods of fluctuation evaluation, ostensibly because of the challenges associated with them. The aim of this study was to identify the challenges to the usage of building construction cost indices in Ghana. Data was gathered from contractors and quantity surveying firms. The study utilized a survey questionnaire approach to elicit responses from the contractors and the consultants. Data gathered was analyzed scientifically, using the relative importance index (RII) to rank the problems associated with the existing methods. The findings revealed the following, among others, late release of data, inadequate recovery of costs, and work items of interest not included in the published indices as the main challenges of the existing methods. Findings provide useful lessons for policymakers and practitioners in decision making towards the usage and improvement of available indices.

Keywords: building construction cost indices, challenges, usage, Ghana

Procedia PDF Downloads 152
581 Polarisation in Latin America: Examining the Role of Social Media in Ideological Positioning Based on 2018 Census Data

Authors: Sarah Ledoux

Abstract:

This paper analyses the quantitative effects of political content consumption in social media platforms on self-reported ideological preference across the Latin American region. Initially praising the democratic potential of the internet and its social networking websites, digital politics scholars have transitioned their discourse to warning against the undemocratic side-effects it cultivates, such as hate speech, filter bubbles, and ideological polarisation. Holding technology solely responsible for political trends worldwide is an oversimplification of the factors influencing social change. Nonetheless, widespread use of social media in new democracies raises questions on the reproduction of recent trends that have been observed in the US and Western Europe. Through the analysis of ordered logistic regressions on data from the 2018 AmericasBarometer survey, this study examines the extent to which the relationship between the consumption of political content on social media is related to ideological polarisation in Latin America. The findings indicate that there is a close link between consumption of political information on social media, specifically on Facebook and WhatsApp, and ideological positioning on the extremes of the political left- and right-wings. This relation holds when controlling for individual-level demographic and attitudinal factors, as well as country-level effects. These results demonstrate with empirical evidence that viewing political content on social media has a significant positive effect on the likelihood that citizens position themselves on the extreme ends of the left-right ideological spectrum and implies that political polarisation is a phenomenon that accompanies politically driven social media use.

Keywords: Latin America, polarisation, political consumption, political ideology, social media, survey

Procedia PDF Downloads 146
580 An Image Processing Based Approach for Assessing Wheelchair Cushions

Authors: B. Farahani, R. Fadil, A. Aboonabi, B. Hoffmann, J. Loscheider, K. Tavakolian, S. Arzanpour

Abstract:

Wheelchair users spend long hours in a sitting position, and selecting the right cushion is highly critical in preventing pressure ulcers in that demographic. Pressure mapping systems (PMS) are typically used in clinical settings by therapists to identify the sitting profile and pressure points in the sitting area to select the cushion that fits the best for the users. A PMS is a flexible mat composed of arrays of distributed networks of flexible sensors. The output of the PMS systems is a color-coded image that shows the intensity of the pressure concentration. Therapists use the PMS images to compare different cushions fit for each user. This process is highly subjective and requires good visual memory for the best outcome. This paper aims to develop an image processing technique to analyze the images of PMS and provide an objective measure to assess the cushions based on their pressure distribution mappings. In this paper, we first reviewed the skeletal anatomy of the human sitting area and its relation to the PMS image. This knowledge is then used to identify the important features that must be considered in image processing. We then developed an algorithm based on those features to analyze the images and rank them according to their fit to the users' needs.

Keywords: dynamic cushion, image processing, pressure mapping system, wheelchair

Procedia PDF Downloads 170
579 Apricot Insurance Portfolio Risk

Authors: Kasirga Yildirak, Ismail Gur

Abstract:

We propose a model to measure hail risk of an Agricultural Insurance portfolio. Hail is one of the major catastrophic event that causes big amount of loss to an insurer. Moreover, it is very hard to predict due to its strange atmospheric characteristics. We make use of parcel based claims data on apricot damage collected by the Turkish Agricultural Insurance Pool (TARSIM). As our ultimate aim is to compute the loadings assigned to specific parcels, we build a portfolio risk model that makes use of PD and the severity of the exposures. PD is computed by Spherical-Linear and Circular –Linear regression models as the data carries coordinate information and seasonality. Severity is mapped into integer brackets so that Probability Generation Function could be employed. Individual regressions are run on each clusters estimated on different criteria. Loss distribution is constructed by Panjer Recursion technique. We also show that one risk-one crop model can easily be extended to the multi risk–multi crop model by assuming conditional independency.

Keywords: hail insurance, spherical regression, circular regression, spherical clustering

Procedia PDF Downloads 251
578 Computed Tomography Differential Diagnose of Intraventicular Masses in the Emergency Departemen

Authors: Angelis P. Barlampas

Abstract:

Purpose: A 29 years old woman presented in the emergency department with psychiatric symptoms. The psychiatrist ordered a computed tomography scan as part of a general examination. Material and methods: The CT showed bilateral enlarged choroid plexus structures mimicking papillomata and situated in the trigones of the lateral ventricles. The left choroid plexus was heavily calcified, but the right one has no any obvious calcifications. Results: It is well kown that any brain mass can present with behavioral changes and even psychiatric symptomatology. Papillomata of the ventricular system have been described to cause psychotic episodes. According to literature, choroid plexus papillomas are seldom neuroepithelial intraventricular tumors, which are benign and categorized as WHO grade 1 tumors. They are more common in the pediatric population, but they can occur in the adults, too1. In addition, the distinction between choroid plexus papilloma and carcinoma is very difficult and impossible by imagine alone. It can only be implied with more advanced imaging, such as arterial spin labeling and MRI. The final diagnosis is, of course, after surgical excision. The usual location in adults is the fourth ventricle, but in children, it is the lateral ventricles. Their imaging appearance is that of a solid vascular tumor, which enhances intensely after the intravenous administration of contrast material. One out of fourth tumors presents speckled calcifications1. In our case, there are symmetrically sized masses at the trigones, and there are no calcifications in one of them, whereas the other one is grossly calcified. Also, there is no obvious hydrocephalus or any other evidence of increased intracranial pressure. General conclusions: When there is a new psychiatric patient, someone must undergo any possible examination, and of course, a brain CT study should be done to exclude any rare organic causes that may be responsible for the disease.

Keywords: phycosis, intraventricular masses, CT, brain calcifications

Procedia PDF Downloads 57
577 Real-Time Fitness Monitoring with MediaPipe

Authors: Chandra Prayaga, Lakshmi Prayaga, Aaron Wade, Kyle Rank, Gopi Shankar Mallu, Sri Satya, Harsha Pola

Abstract:

In today's tech-driven world, where connectivity shapes our daily lives, maintaining physical and emotional health is crucial. Athletic trainers play a vital role in optimizing athletes' performance and preventing injuries. However, a shortage of trainers impacts the quality of care. This study introduces a vision-based exercise monitoring system leveraging Google's MediaPipe library for precise tracking of bicep curl exercises and simultaneous posture monitoring. We propose a three-stage methodology: landmark detection, side detection, and angle computation. Our system calculates angles at the elbow, wrist, neck, and torso to assess exercise form. Experimental results demonstrate the system's effectiveness in distinguishing between good and partial repetitions and evaluating body posture during exercises, providing real-time feedback for precise fitness monitoring.

Keywords: physical health, athletic trainers, fitness monitoring, technology driven solutions, Google’s MediaPipe, landmark detection, angle computation, real-time feedback

Procedia PDF Downloads 66
576 A Graph-Based Retrieval Model for Passage Search

Authors: Junjie Zhong, Kai Hong, Lei Wang

Abstract:

Passage Retrieval (PR) plays an important role in many Natural Language Processing (NLP) tasks. Traditional efficient retrieval models relying on exact term-matching, such as TF-IDF or BM25, have nowadays been exceeded by pre-trained language models which match by semantics. Though they gain effectiveness, deep language models often require large memory as well as time cost. To tackle the trade-off between efficiency and effectiveness in PR, this paper proposes Graph Passage Retriever (GraphPR), a graph-based model inspired by the development of graph learning techniques. Different from existing works, GraphPR is end-to-end and integrates both term-matching information and semantics. GraphPR constructs a passage-level graph from BM25 retrieval results and trains a GCN-like model on the graph with graph-based objectives. Passages were regarded as nodes in the constructed graph and were embedded in dense vectors. PR can then be implemented using embeddings and a fast vector-similarity search. Experiments on a variety of real-world retrieval datasets show that the proposed model outperforms related models in several evaluation metrics (e.g., mean reciprocal rank, accuracy, F1-scores) while maintaining a relatively low query latency and memory usage.

Keywords: efficiency, effectiveness, graph learning, language model, passage retrieval, term-matching model

Procedia PDF Downloads 148
575 Chitosan Stabilized Oil-in-Water Pickering Emulsion Optimized for Food-Grade Application

Authors: Ankit Patil, Tushar D. Deshpande, Yogesh M. Nimdeo

Abstract:

Pickering emulsions (PE) were developed in response to increased demand for organic, eco-friendly, and biocompatible products. These emulsions are usually stabilized by solid particles. In this research, we created chitosan-based sunflower oil-in-water (O/W) PE without the need for a surfactant. In our work, we employed chitosan, a biopolymer derived from chitin, as a stabilizer. This decision was influenced by chitosan's biocompatibility and biodegradability, as well as its anti-inflammatory and antibacterial capabilities. It also has other functional properties, such as antioxidant activity, a probiotic delivery mechanism, and the ability to encapsulate bioactive compounds. The purpose of this study was to govern key parameters that can be changed to obtain stable PE, such as the concentration of chitosan (0.3-0.5 wt.%), the concentration of oil (0.8-1 vol%), the pH of the emulsion (3-7) manipulated by the addition of 1M HCl/ 4M NaOH, and the amount of electrolyte (NaCl-0-300mM) added to increase or decrease ionic strength. A careful combination of these properties resulted in the production of the most stable and optimal PE. Particle size study found that emulsions with pH 6, 0.4% chitosan, and 300 mM salts were exceptionally stable, with droplet size 886 nm, PI of 0.1702, and zeta potential of 32.753.83 mV. It is fair to infer that when ionic strength rises, particle size, zeta potential, and PI value decrease. A lower PI value suggests that emulsion nanoparticles are more homogeneous. The addition of sodium chloride increases the ionic strength of the emulsion, facilitating the formation of more compact and ordered particle layers. These findings provide light on the creation of stimulus-responsive chitosan-based PE capable of encapsulating bioactive materials, functioning as antioxidants, and serving as food-grade emulsifiers.

Keywords: pickering emulsion, biocompatibility, eco-friendly, chitosan

Procedia PDF Downloads 238
574 Spatial Temporal Rainfall Trends in Australia

Authors: Bright E. Owusu, Nittaya McNeil

Abstract:

Rainfall is one of the most essential quantities in meteorology and hydrology. It has important impacts on people’s daily life and excess or inadequate of it could bring tremendous losses in economy and cause fatalities. Population increase around the globe tends to have a corresponding increase in settlement and industrialization. Some countries are affected by flood and drought occasionally due to climate change, which disrupt most of the daily activities. Knowledge of trends in spatial and temporal rainfall variability and their physical explanations would be beneficial in climate change assessment and to determine erosivity. This study describes the spatial-temporal variability of daily rainfall in Australia and their corresponding long-term trend during 1950-2013. The spatial patterns were investigated by using exploratory factor analysis and the long term trend in rainfall time series were determined by linear regression, Mann-Kendall rank statistics and the Sen’s slope test. The exploratory factor analysis explained most of the variations in the data and grouped Australia into eight distinct rainfall regions with different rainfall patterns. Significant increasing trends in annual rainfall were observed in the northern regions of Australia. However, the northeastern part was the wettest of all the eight rainfall regions.

Keywords: climate change, explanatory factor analysis, Mann-Kendall and Sen’s slope test, rainfall.

Procedia PDF Downloads 352
573 Hierarchical Piecewise Linear Representation of Time Series Data

Authors: Vineetha Bettaiah, Heggere S. Ranganath

Abstract:

This paper presents a Hierarchical Piecewise Linear Approximation (HPLA) for the representation of time series data in which the time series is treated as a curve in the time-amplitude image space. The curve is partitioned into segments by choosing perceptually important points as break points. Each segment between adjacent break points is recursively partitioned into two segments at the best point or midpoint until the error between the approximating line and the original curve becomes less than a pre-specified threshold. The HPLA representation achieves dimensionality reduction while preserving prominent local features and general shape of time series. The representation permits course-fine processing at different levels of details, allows flexible definition of similarity based on mathematical measures or general time series shape, and supports time series data mining operations including query by content, clustering and classification based on whole or subsequence similarity.

Keywords: data mining, dimensionality reduction, piecewise linear representation, time series representation

Procedia PDF Downloads 275