Search results for: long memory
6309 The Invisible Labour of Informal Care: Parentified Caregiving in David Chariandy's Soucouyant
Authors: Walter Rafael Ramos Villanueva
Abstract:
The overwhelming majority of scholarship on David Chariandy’s novel Soucouyant focuses on how Adele’s dementia represents the preservation of “cultural memory” and the perniciousness of “historical trauma.” However, by metaphorizing Adele’s mental condition, these critics risk treating her dementia as mostly figurative, and they thus elide a more detailed discussion of the literal ramifications of her dementia diagnosis. To move beyond these readings, then, my paper will approach Adele’s disorder as a literal medical condition and explore how her caregiving needs affect not only her but also those around her. Soucouyant subverts traditional caregiving narratives by depicting the difficult and typically invisible labour of informal caregiving that is undertaken by the families and friends of those who are ill or otherwise disabled. Because Adele’s family is unable to access proper public healthcare resources within the community, the burden of care falls upon the protagonist and his brother, who become “parentified children.” Parentified children, according to Nancy D. Chase, are “parents to their parents, and fulfill this role at the expense of their own developmentally appropriate needs and pursuits.” The novel provides a depiction of informal caregiving that is multi-faceted and asks us to question why is it exactly that we place the burden of care on those who are not equipped to handle such pressures instead of putting the onus on the government and the public healthcare system to take care of its most vulnerable members. Ageing Studies scholar Larry Polvika notes that although policymakers often offer “pious expressions of appreciation” and acknowledge that informal caregiving is “the backbone of our long-term care system,” governmental support for these caregivers remains inadequate. It is my belief that, by showcasing the struggles of informal caregivers, Chariandy’s text combats this dangerous and empty political rhetoric.Keywords: caregiving, dementia, literature, parentified children
Procedia PDF Downloads 1716308 Use of External Sensory Stimuli in the Treatment of Parkinson Disease: Literature Review
Authors: Hadi O. Tohme
Abstract:
This study is a review on the effectiveness of new physiotherapy techniques with external sensory stimulus compared to standard physiotherapy in the daily activities of patients with Parkinson's disease. Twenty studies from 1996 to 2015 were analyzed and discussed in this review, using the rehabilitation strategy with external sensory stimulus evaluating walking, freezing episodes, balance, transfers, and daily activities of parkinsonian patients. The study highlights the effectiveness of the variety of rehabilitation with cueing strategy used in the treatment of Parkinson's disease. Based on the literature review completed, there is a need for more specific trials with better treatment strategies to support the most appropriate choice of physiotherapy intervention using external sensory stimulus to the type and frequency of this stimulus. In addition, no trials examined the long-term benefits of the physiotherapy intervention with the external sensory stimulus. In order to determine if, or how long the improvements due to the external sensory stimulus physiotherapy intervention can last, long-term follow-up should be performed.Keywords: cueing strategy, external sensory stimulus, parkinson disease, rehabilitation for parkinson, sensory attention focused exercises, sensory strategy reeducation
Procedia PDF Downloads 2506307 A Comparative Study of Cognitive Functions in Relapsing-Remitting Multiple Sclerosis Patients, Secondary-Progressive Multiple Sclerosis Patients and Normal People
Authors: Alireza Pirkhaefi
Abstract:
Background: Multiple sclerosis (MS) is one of the most common diseases of the central nervous system (brain and spinal cord). Given the importance of cognitive disorders in patients with multiple sclerosis, the present study was in order to compare cognitive functions (Working memory, Attention and Centralization, and Visual-spatial perception) in patients with relapsing- remitting multiple sclerosis (RRMS) and secondary progressive multiple sclerosis (SPMS). Method: Present study was performed as a retrospective study. This research was conducted with Ex-Post Facto method. The samples of research consisted of 60 patients with multiple sclerosis (30 patients relapsing-retrograde and 30 patients secondary progressive), who were selected from Tehran Community of MS Patients Supported as convenience sampling. 30 normal persons were also selected as a comparison group. Montreal Cognitive Assessment (MOCA) was used to assess cognitive functions. Data were analyzed using multivariate analysis of variance. Results: The results showed that there were significant differences among cognitive functioning in patients with RRMS, SPMS, and normal individuals. There were not significant differences in working memory between two groups of patients with RRMS and SPMS; while significant differences in these variables were seen between the two groups and normal individuals. Also, results showed significant differences in attention and centralization and visual-spatial perception among three groups. Conclusions: Results showed that there are differences between cognitive functions of RRMS and SPMS patients so that the functions of RRMS patients are better than SPMS patients. These results have a critical role in improvement of cognitive functions; reduce the factors causing disability due to cognitive impairment, and especially overall health of society.Keywords: multiple sclerosis, cognitive function, secondary-progressive, normal subjects
Procedia PDF Downloads 2376306 Dynamic-cognition of Strategic Mineral Commodities; An Empirical Assessment
Authors: Carlos Tapia Cortez, Serkan Saydam, Jeff Coulton, Claude Sammut
Abstract:
Strategic mineral commodities (SMC) both energetic and metals have long been fundamental for human beings. There is a strong and long-run relation between the mineral resources industry and society's evolution, with the provision of primary raw materials, becoming one of the most significant drivers of economic growth. Due to mineral resources’ relevance for the entire economy and society, an understanding of the SMC market behaviour to simulate price fluctuations has become crucial for governments and firms. For any human activity, SMC price fluctuations are affected by economic, geopolitical, environmental, technological and psychological issues, where cognition has a major role. Cognition is defined as the capacity to store information in memory, processing and decision making for problem-solving or human adaptation. Thus, it has a significant role in those systems that exhibit dynamic equilibrium through time, such as economic growth. Cognition allows not only understanding past behaviours and trends in SCM markets but also supports future expectations of demand/supply levels and prices, although speculations are unavoidable. Technological developments may also be defined as a cognitive system. Since the Industrial Revolution, technological developments have had a significant influence on SMC production costs and prices, likewise allowing co-integration between commodities and market locations. It suggests a close relation between structural breaks, technology and prices evolution. SCM prices forecasting have been commonly addressed by econometrics and Gaussian-probabilistic models. Econometrics models may incorporate the relationship between variables; however, they are statics that leads to an incomplete approach of prices evolution through time. Gaussian-probabilistic models may evolve through time; however, price fluctuations are addressed by the assumption of random behaviour and normal distribution which seems to be far from the real behaviour of both market and prices. Random fluctuation ignores the evolution of market events and the technical and temporal relation between variables, giving the illusion of controlled future events. Normal distribution underestimates price fluctuations by using restricted ranges, curtailing decisions making into a pre-established space. A proper understanding of SMC's price dynamics taking into account the historical-cognitive relation between economic, technological and psychological factors over time is fundamental in attempting to simulate prices. The aim of this paper is to discuss the SMC market cognition hypothesis and empirically demonstrate its dynamic-cognitive capacity. Three of the largest and traded SMC's: oil, copper and gold, will be assessed to examine the economic, technological and psychological cognition respectively.Keywords: commodity price simulation, commodity price uncertainties, dynamic-cognition, dynamic systems
Procedia PDF Downloads 4586305 Reinforced Concrete Box Girder Bridge Hinge Replacement and Horizontal and Vertical Earthquake Restrainers
Authors: Kumars ZandParsa, Quynh Nguyen, Hadi Moradi
Abstract:
There are old cast-in-place concrete box girder bridges in California with inter-span hinges that are designed based on old earthquake codes. Hinge removal is part of the bridges’ earthquake retrofitting project, and hinges were removed and replaced with modified hinges per new earthquake codes. The span that has a hinge is divided into short and long cantilevers in which the short cantilever supports the long cantilever. In the recent bridge hinge replacement, the length of the short and long cantilevers were 20ft and 80ft, respectively. The seat in the new design is wider than the old design, and the horizontal and vertical movements of the deck at the hinge location must be computed to check if restraints are needed. In this paper, besides considering the conventional reinforced concrete box girder bridges, the hinge removal operations, along with the response spectrum analysis based on the El Centro 1940 earthquake, will be presented to verify if vertical and horizontal restrainers are needed.Keywords: hinge replacement, restrainers, vertical earthquake, response spectrum analysis
Procedia PDF Downloads 5776304 The Executive Functioning Profile of Children and Adolescents with a Diagnosis of OCD: A Systematic Review and Meta-Analysis
Authors: Parker Townes, Aisouda Savadlou, Shoshana Weiss, Marina Jarenova, Suzzane Ferris, Dan Devoe, Russel Schachar, Scott Patten, Tomas Lange, Marlena Colasanto, Holly McGinn, Paul Arnold
Abstract:
Some research suggests obsessive-compulsive disorder (OCD) is associated with impaired executive functioning: higher-level mental processes involved in carrying out tasks and solving problems. Relevant literature was identified systematically through online databases. Meta-analyses were conducted for task performance metrics reported by at least two articles. Results were synthesized by the executive functioning domain measured through each performance metric. Heterogeneous literature was identified, typically involving few studies using consistent measures. From 29 included studies, analyses were conducted on 33 performance metrics from 12 tasks. Results suggest moderate associations of working memory (two out of five tasks presented significant findings), planning (one out of two tasks presented significant findings), and visuospatial abilities (one out of two tasks presented significant findings) with OCD in youth. There was inadequate literature or contradictory findings for other executive functioning domains. These findings suggest working memory, planning, and visuospatial abilities are impaired in pediatric OCD, with mixed results. More work is needed to identify the effect of age and sex on these results. Acknowledgment: This work was supported by the Alberta Innovates Translational Health Chair in Child and Youth Mental Health. The funders had no role in the design, conducting, writing, or decision to submit this article for publication.Keywords: obsessive-compulsive disorder, neurocognition, executive functioning, adolescents, children
Procedia PDF Downloads 996303 Social Crises and Its Impact on the Environment: Case Study of Jos, Plateau State
Authors: A. B. Benshak, M. G. Yilkangnha, V. Y. Nanle
Abstract:
Social crises and violent conflict can inflict direct (short-term) impact on the environment like poisoning water bodies, climate change, deforestation, destroying the chemical component of the soil due to the chemical and biological weapons used. It can also impact the environment indirectly (long-term), e.g., the destruction of political and economic infrastructure to manage the environmental resources and breaking down traditional conservation practices, population displacement and refugee flows which puts pressure on the already inadequate resources, infrastructure, facilities, amenities, services etc. This study therefore examines the impact of social crises on the environment in Jos Plateau State with emphasis on the long-term impact, analyze the relationship between crises and the environment and assess the perception of people on social crises because much work have concentrated on other repercussions such as the economy, health etc that are more politically expedient. The data for this research were collected mostly through interviews, questionnaire, dailies and reports on the subject matter. The data and findings were presented in tables and results showed that the environment is directly and indirectly impacted by crises and that these impacts can in turn result to a continuous cycle of violent activities if not addressed because of the inadequacies in the supply of infrastructural facilities, resources and so on caused by the inflow of displaced population. Recommendations were made on providing security to minimize conflict occurrences in Jos and its environs, minimizing the impact of social crises on the environment, provision of adequate infrastructural facilities to carter for population rise, renewal and regeneration schemes, etc. which will go a long way in mitigating the impact of crises on the environment.Keywords: environment, impact, long-term, social crises
Procedia PDF Downloads 3406302 A Sentence-to-Sentence Relation Network for Recognizing Textual Entailment
Authors: Isaac K. E. Ampomah, Seong-Bae Park, Sang-Jo Lee
Abstract:
Over the past decade, there have been promising developments in Natural Language Processing (NLP) with several investigations of approaches focusing on Recognizing Textual Entailment (RTE). These models include models based on lexical similarities, models based on formal reasoning, and most recently deep neural models. In this paper, we present a sentence encoding model that exploits the sentence-to-sentence relation information for RTE. In terms of sentence modeling, Convolutional neural network (CNN) and recurrent neural networks (RNNs) adopt different approaches. RNNs are known to be well suited for sequence modeling, whilst CNN is suited for the extraction of n-gram features through the filters and can learn ranges of relations via the pooling mechanism. We combine the strength of RNN and CNN as stated above to present a unified model for the RTE task. Our model basically combines relation vectors computed from the phrasal representation of each sentence and final encoded sentence representations. Firstly, we pass each sentence through a convolutional layer to extract a sequence of higher-level phrase representation for each sentence from which the first relation vector is computed. Secondly, the phrasal representation of each sentence from the convolutional layer is fed into a Bidirectional Long Short Term Memory (Bi-LSTM) to obtain the final sentence representations from which a second relation vector is computed. The relations vectors are combined and then used in then used in the same fashion as attention mechanism over the Bi-LSTM outputs to yield the final sentence representations for the classification. Experiment on the Stanford Natural Language Inference (SNLI) corpus suggests that this is a promising technique for RTE.Keywords: deep neural models, natural language inference, recognizing textual entailment (RTE), sentence-to-sentence relation
Procedia PDF Downloads 3486301 Buckling Performance of Irregular Section Cold-Formed Steel Columns under Axially Concentric Loading
Authors: Chayanon Hansapinyo
Abstract:
This paper presents experimental investigation and finite element analysis on buckling behavior of irregular section cold-formed steel columns under axially concentric loading. For the experimental study, four different sections of columns were tested to investigate effect of stiffening and width-to-thickness ratio on buckling behavior. For each of the section, three lengths of 230, 950 and 1900 mm. were studied representing short, intermediate long and long columns, respectively. Then, nonlinear finite element analyses of the tested columns were performed. The comparisons in terms of load-deformation response and buckling mode show good agreement and hence the FEM models were validated. Parametric study of stiffening element and thickness of 1.0, 1.15, 1.2, 1.5, 1.6 and 2.0 mm. were analyzed. The test results showed that stiffening effect pays a large contribution to prevent distortional mode. The increase in wall thickness enhanced buckling stress beyond the yielding strength in short and intermediate columns, but not for the long columns.Keywords: buckling behavior, irregular section, cold-formed steel, concentric loading
Procedia PDF Downloads 2736300 Recurrent Neural Networks for Complex Survival Models
Authors: Pius Marthin, Nihal Ata Tutkun
Abstract:
Survival analysis has become one of the paramount procedures in the modeling of time-to-event data. When we encounter complex survival problems, the traditional approach remains limited in accounting for the complex correlational structure between the covariates and the outcome due to the strong assumptions that limit the inference and prediction ability of the resulting models. Several studies exist on the deep learning approach to survival modeling; moreover, the application for the case of complex survival problems still needs to be improved. In addition, the existing models need to address the data structure's complexity fully and are subject to noise and redundant information. In this study, we design a deep learning technique (CmpXRnnSurv_AE) that obliterates the limitations imposed by traditional approaches and addresses the above issues to jointly predict the risk-specific probabilities and survival function for recurrent events with competing risks. We introduce the component termed Risks Information Weights (RIW) as an attention mechanism to compute the weighted cumulative incidence function (WCIF) and an external auto-encoder (ExternalAE) as a feature selector to extract complex characteristics among the set of covariates responsible for the cause-specific events. We train our model using synthetic and real data sets and employ the appropriate metrics for complex survival models for evaluation. As benchmarks, we selected both traditional and machine learning models and our model demonstrates better performance across all datasets.Keywords: cumulative incidence function (CIF), risk information weight (RIW), autoencoders (AE), survival analysis, recurrent events with competing risks, recurrent neural networks (RNN), long short-term memory (LSTM), self-attention, multilayers perceptrons (MLPs)
Procedia PDF Downloads 886299 Long- and Short-Term Impacts of COVID-19 and Gold Price on Price Volatility: A Comparative Study of MIDAS and GARCH-MIDAS Models for USA Crude Oil
Authors: Samir K. Safi
Abstract:
The purpose of this study was to compare the performance of two types of models, namely MIDAS and MIDAS-GARCH, in predicting the volatility of crude oil returns based on gold price returns and the COVID-19 pandemic. The study aimed to identify which model would provide more accurate short-term and long-term predictions and which model would perform better in handling the increased volatility caused by the pandemic. The findings of the study revealed that the MIDAS model performed better in predicting short-term and long-term volatility before the pandemic, while the MIDAS-GARCH model performed significantly better in handling the increased volatility caused by the pandemic. The study highlights the importance of selecting appropriate models to handle the complexities of real-world data and shows that the choice of model can significantly impact the accuracy of predictions. The practical implications of model selection and exploring potential methodological adjustments for future research will be highlighted and discussed.Keywords: GARCH-MIDAS, MIDAS, crude oil, gold, COVID-19, volatility
Procedia PDF Downloads 646298 The Impact of Cognitive Load on Deceit Detection and Memory Recall in Children’s Interviews: A Meta-Analysis
Authors: Sevilay Çankaya
Abstract:
The detection of deception in children’s interviews is essential for statement veracity. The widely used method for deception detection is building cognitive load, which is the logic of the cognitive interview (CI), and its effectiveness for adults is approved. This meta-analysis delves into the effectiveness of inducing cognitive load as a means of enhancing veracity detection during interviews with children. Additionally, the effectiveness of cognitive load on children's total number of events recalled is assessed as a second part of the analysis. The current meta-analysis includes ten effect sizes from search using databases. For the effect size calculation, Hedge’s g was used with a random effect model by using CMA version 2. Heterogeneity analysis was conducted to detect potential moderators. The overall result indicated that cognitive load had no significant effect on veracity outcomes (g =0.052, 95% CI [-.006,1.25]). However, a high level of heterogeneity was found (I² = 92%). Age, participants’ characteristics, interview setting, and characteristics of the interviewer were coded as possible moderators to explain variance. Age was significant moderator (β = .021; p = .03, R2 = 75%) but the analysis did not reveal statistically significant effects for other potential moderators: participants’ characteristics (Q = 0.106, df = 1, p = .744), interview setting (Q = 2.04, df = 1, p = .154), and characteristics of interviewer (Q = 2.96, df = 1, p = .086). For the second outcome, the total number of events recalled, the overall effect was significant (g =4.121, 95% CI [2.256,5.985]). The cognitive load was effective in total recalled events when interviewing with children. All in all, while age plays a crucial role in determining the impact of cognitive load on veracity, the surrounding context, interviewer attributes, and inherent participant traits may not significantly alter the relationship. These findings throw light on the need for more focused, age-specific methods when using cognitive load measures. It may be possible to improve the precision and dependability of deceit detection in children's interviews with the help of more studies in this field.Keywords: deceit detection, cognitive load, memory recall, children interviews, meta-analysis
Procedia PDF Downloads 546297 Long Term Follow-Up, Clinical Outcomes and Quality of Life after Total Arterial Revascularisation versus Conventional Coronary Surgery: A Retrospective Study
Authors: Jitendra Jain, Cassandra Hidajat, Hansraj Riteesh Bookun
Abstract:
Graft patency underpins long-term prognosis after coronary artery bypass grafting surgery (CABG). The benefits of the combined use of only the left internal mammary artery and radial artery, referred to as total arterial revascularisation (TAR), on long-term clinical outcomes and quality of life are relatively unknown. The aim of this study was to identify whether there were differences in long term clinical outcomes between recipients of TAR compared to a cohort of mostly arterial revascularization involving the left internal mammary, at least one radial artery and at least one saphenous vein graft. A retrospective analysis was performed on all patients who underwent TAR or were re-vascularized with supplementary saphenous vein graft from February 1996 to December 2004. Telephone surveys were conducted to obtain clinical outcome parameters including major adverse cardiac and cerebrovascular events (MACCE) and Short Form (SF-36v2) Health Survey responses. A total of 176 patients were successfully contacted to obtain postop follow up results. The mean follow-up length from time of surgery in our study was TAR 12.4±1.8 years and conventional 12.6±2.1. PCS score was TAR 45.9±8.8 vs LIMA/Rad/ SVG 44.9±9.2 (p=0.468) and MCS score was TAR 52.0±8.9 vs LIMA/Rad/SVG 52.5±9.3 (p=0.723). There were no significant differences between groups for NYHA class 3+ TAR 9.4% vs. LIMA/Rad/SVG 6.6%; or CCS 3+ TAR 2.35% vs. LIMA/Rad/SVG 0%.Keywords: CABG; MACCEs; quality of life; total arterial revascularisation
Procedia PDF Downloads 2146296 The Effect of Environmental Enrichment on Anxiety and Stress Hormone in Maternally Separated Male Rats
Authors: Özge Selin Çevik, Leyla Şahin, Gülhan Örekeci Temel
Abstract:
The early postnatal period is critical for the development of cognitive and emotional functions. Maternal separation is a detrimental postnatal influence, whereas environmental enrichment is a therapeutic and protective agent. It is unclear if long-term environmental enrichment can compensate for the effects of maternal separation stress on anxiety behavior. This study was designed to examine how environmental enrichment affects anxiety levels and corticosterone levels in maternally separated rats. There are six main groups in this study: control (C), maternal separation+standard cage (MS), maternal separation+enriched environment (MSE), enriched environment (E), the maternal separation that decapitated at postnatal (PN) 21 (MS21), and standard cage that decapitated at PN21 (STD21). The maternal separation procedure consisted of PN for 21 days (between 09:00 a.m and 12:00 a.m). Enriched (E, MSE) or standard cage environment rats (MS, C) spent PN (22-55) days in either enriched cages or standard cages. Anxiety and locomotor activity were examined with the open field and elevated plus-maze test. Blood corticosterone level was evaluated by the enzyme-linked immunosorbent assay (ELISA) method. Results showed that maternal separation (MS) increased locomotor activity and anxiety. An enriched environment (E) did not change the locomotor activity. MSE group’s anxiety and locomotor activity did not change. Corticosterone levels increased in the maternal separation group that decapitated at the PN 21 days. Maternal separation increases anxiety. Environmental enrichment alone was insufficient to cause alterations in the anxiety level. In addition, environmental enrichment did not ameliorate the anxiety level in maternally separated rats. However, environmental enrichment decreased the locomotor activity in the maternally separated rats.Keywords: maternal separation, environment enrichment, stress, hippocampus, anxiety, memory, rat
Procedia PDF Downloads 896295 Loss Function Optimization for CNN-Based Fingerprint Anti-Spoofing
Authors: Yehjune Heo
Abstract:
As biometric systems become widely deployed, the security of identification systems can be easily attacked by various spoof materials. This paper contributes to finding a reliable and practical anti-spoofing method using Convolutional Neural Networks (CNNs) based on the types of loss functions and optimizers. The types of CNNs used in this paper include AlexNet, VGGNet, and ResNet. By using various loss functions including Cross-Entropy, Center Loss, Cosine Proximity, and Hinge Loss, and various loss optimizers which include Adam, SGD, RMSProp, Adadelta, Adagrad, and Nadam, we obtained significant performance changes. We realize that choosing the correct loss function for each model is crucial since different loss functions lead to different errors on the same evaluation. By using a subset of the Livdet 2017 database, we validate our approach to compare the generalization power. It is important to note that we use a subset of LiveDet and the database is the same across all training and testing for each model. This way, we can compare the performance, in terms of generalization, for the unseen data across all different models. The best CNN (AlexNet) with the appropriate loss function and optimizers result in more than 3% of performance gain over the other CNN models with the default loss function and optimizer. In addition to the highest generalization performance, this paper also contains the models with high accuracy associated with parameters and mean average error rates to find the model that consumes the least memory and computation time for training and testing. Although AlexNet has less complexity over other CNN models, it is proven to be very efficient. For practical anti-spoofing systems, the deployed version should use a small amount of memory and should run very fast with high anti-spoofing performance. For our deployed version on smartphones, additional processing steps, such as quantization and pruning algorithms, have been applied in our final model.Keywords: anti-spoofing, CNN, fingerprint recognition, loss function, optimizer
Procedia PDF Downloads 1366294 Time Temperature Dependence of Long Fiber Reinforced Polypropylene Manufactured by Direct Long Fiber Thermoplastic Process
Authors: K. A. Weidenmann, M. Grigo, B. Brylka, P. Elsner, T. Böhlke
Abstract:
In order to reduce fuel consumption, the weight of automobiles has to be reduced. Fiber reinforced polymers offer the potential to reach this aim because of their high stiffness to weight ratio. Additionally, the use of fiber reinforced polymers in automotive applications has to allow for an economic large-scale production. In this regard, long fiber reinforced thermoplastics made by direct processing offer both mechanical performance and processability in injection moulding and compression moulding. The work presented in this contribution deals with long glass fiber reinforced polypropylene directly processed in compression moulding (D-LFT). For the use in automotive applications both the temperature and the time dependency of the materials properties have to be investigated to fulfill performance requirements during crash or the demands of service temperatures ranging from -40 °C to 80 °C. To consider both the influence of temperature and time, quasistatic tensile tests have been carried out at different temperatures. These tests have been complemented by high speed tensile tests at different strain rates. As expected, the increase in strain rate results in an increase of the elastic modulus which correlates to an increase of the stiffness with decreasing service temperature. The results are in good accordance with results determined by dynamic mechanical analysis within the range of 0.1 to 100 Hz. The experimental results from different testing methods were grouped and interpreted by using different time temperature shift approaches. In this regard, Williams-Landel-Ferry and Arrhenius approach based on kinetics have been used. As the theoretical shift factor follows an arctan function, an empirical approach was also taken into consideration. It could be shown that this approach describes best the time and temperature superposition for glass fiber reinforced polypropylene manufactured by D-LFT processing.Keywords: composite, dynamic mechanical analysis, long fibre reinforced thermoplastics, mechanical properties, time temperature superposition
Procedia PDF Downloads 1976293 Ancient Cities of Deltaic Bengal: Origin and Nature on the Riverine Bed of Ganges Valley
Authors: Sajid Bin Doza
Abstract:
A town or a city contributes a lot to human mankind. City evolves memory, ambition, frustration and achievement. The city is something that offers life, as the character of the city is. A city is having confined image to the human being. Time place and matter generate this vive, city celebrates with its inhabitant, belongs and to care for each other. Apart from all these; although city and settlements are the contentious and changing phenomenon; the origin of the city in the very delta land started with unique and strategic sequences. Religious belief, topography, availability of resource and connection with commercial hub make the potential of the settlement. Ancient cities of Bengal are not the exception from these phenomenologies. From time immemorial; Bengal is enriched with numerous cities and notorious settlements. These cities and settlements were connected with other inland ports and Bengal became an important trade route, trailed by the Riverine connections. The delta land formation is valued for its geographic situation, consequences of this position; a new story or a new conception could be found in origin of an ancient city. However, the objective of this research is to understand the origin and spirit of the ancient city of Bengal, the research would also try to unfold the authentic and rational meaning of soul of the city, this research addresses the interest to elaborate the soul of the ancient sites of Riverine Delta. As rivers used to have the common character in this very landform; river supported community generated as well. River gives people wealth, sometimes fall us in sorrow. The river provides us commerce and trading. River gives us faith and religion. All these potentials have evolved from the Riverine excel. So the research would approach thoroughly to justify the riverine value as the soul for the ancient cities of Bengal. Cartographic information and illustration would be the preferred language for this research. Preferably, the historic mapping would be the unique folio of this study.Keywords: memory of the city, riverine network, ancient cities, cartographic mapping, settlement pattern
Procedia PDF Downloads 2926292 A Case Study on Machine Learning-Based Project Performance Forecasting for an Urban Road Reconstruction Project
Authors: Soheila Sadeghi
Abstract:
In construction projects, predicting project performance metrics accurately is essential for effective management and successful delivery. However, conventional methods often depend on fixed baseline plans, disregarding the evolving nature of project progress and external influences. To address this issue, we introduce a distinct approach based on machine learning to forecast key performance indicators, such as cost variance and earned value, for each Work Breakdown Structure (WBS) category within an urban road reconstruction project. Our proposed model leverages time series forecasting techniques, namely Autoregressive Integrated Moving Average (ARIMA) and Long Short-Term Memory (LSTM) networks, to predict future performance by analyzing historical data and project progress. Additionally, the model incorporates external factors, including weather patterns and resource availability, as features to improve forecast accuracy. By harnessing the predictive capabilities of machine learning, our performance forecasting model enables project managers to proactively identify potential deviations from the baseline plan and take timely corrective measures. To validate the effectiveness of the proposed approach, we conduct a case study on an urban road reconstruction project, comparing the model's predictions with actual project performance data. The outcomes of this research contribute to the advancement of project management practices in the construction industry by providing a data-driven solution for enhancing project performance monitoring and control.Keywords: project performance forecasting, machine learning, time series forecasting, cost variance, schedule variance, earned value management
Procedia PDF Downloads 376291 Comparative Analysis of the Third Generation of Research Data for Evaluation of Solar Energy Potential
Authors: Claudineia Brazil, Elison Eduardo Jardim Bierhals, Luciane Teresa Salvi, Rafael Haag
Abstract:
Renewable energy sources are dependent on climatic variability, so for adequate energy planning, observations of the meteorological variables are required, preferably representing long-period series. Despite the scientific and technological advances that meteorological measurement systems have undergone in the last decades, there is still a considerable lack of meteorological observations that form series of long periods. The reanalysis is a system of assimilation of data prepared using general atmospheric circulation models, based on the combination of data collected at surface stations, ocean buoys, satellites and radiosondes, allowing the production of long period data, for a wide gamma. The third generation of reanalysis data emerged in 2010, among them is the Climate Forecast System Reanalysis (CFSR) developed by the National Centers for Environmental Prediction (NCEP), these data have a spatial resolution of 0.50 x 0.50. In order to overcome these difficulties, it aims to evaluate the performance of solar radiation estimation through alternative data bases, such as data from Reanalysis and from meteorological satellites that satisfactorily meet the absence of observations of solar radiation at global and/or regional level. The results of the analysis of the solar radiation data indicated that the reanalysis data of the CFSR model presented a good performance in relation to the observed data, with determination coefficient around 0.90. Therefore, it is concluded that these data have the potential to be used as an alternative source in locations with no seasons or long series of solar radiation, important for the evaluation of solar energy potential.Keywords: climate, reanalysis, renewable energy, solar radiation
Procedia PDF Downloads 2086290 Evaluating Performance of Value at Risk Models for the MENA Islamic Stock Market Portfolios
Authors: Abderrazek Ben Maatoug, Ibrahim Fatnassi, Wassim Ben Ayed
Abstract:
In this paper we investigate the issue of market risk quantification for Middle East and North Africa (MENA) Islamic market equity. We use Value-at-Risk (VaR) as a measure of potential risk in Islamic stock market, for long and short position, based on Riskmetrics model and the conditional parametric ARCH class model volatility with normal, student and skewed student distribution. The sample consist of daily data for the 2006-2014 of 11 Islamic stock markets indices. We conduct Kupiec and Engle and Manganelli tests to evaluate the performance for each model. The main finding of our empirical results show that (i) the superior performance of VaR models based on the Student and skewed Student distribution, for the significance level of α=1% , for all Islamic stock market indices, and for both long and short trading positions (ii) Risk Metrics model, and VaR model based on conditional volatility with normal distribution provides the best accurate VaR estimations for both long and short trading positions for a significance level of α=5%.Keywords: value-at-risk, risk management, islamic finance, GARCH models
Procedia PDF Downloads 5916289 Grand Paris Residential Real Estate as an Effective Hedge against Inflation
Authors: Yasmine Essafi Zouari, Aya Nasreddine
Abstract:
Following a long inflationary period from the post-war era to the mid-1980s (+10.1% annually), France went through a moderate inflation period between 1986 and 2001 (+2.1% annually) and even lower inflation between 2002 and 2016 (+1.4% annually). In 2022, inflation in France increased rapidly and reached 4.5% over one year in March, according to INSEE estimates. Over a long period, even low inflation has an impact on portfolio value and households’ purchasing power. In such a context, inflation hedging should remain an important issue for investors. In particular, long-term investors, who are concerned with the protection of their wealth, seek to hold effective hedging assets. Considering a mixed-asset portfolio composed of housing assets (residential real estate in 150 Grand Paris communes) as well as financial assets, and using both correlation and regression analysis, results confirm the attribute of the direct housing investment as an inflation hedge especially particularly against its unexpected component. Further, cash and bonds were found to provide respectively a partial and an over hedge against unexpected inflation. Stocks act as a perverse hedge against unexpected inflation and provide no significant positive hedge against expected inflation.Keywords: direct housing, inflation, hedging ability, optimal portfolio, Grand Paris metropolis
Procedia PDF Downloads 1126288 Simulation of Hamming Coding and Decoding for Microcontroller Radiation Hardening
Authors: Rehab I. Abdul Rahman, Mazhar B. Tayel
Abstract:
This paper presents a method of hardening the 8051 microcontroller, that able to assure reliable operation in the presence of bit flips caused by radiation. Aiming at avoiding such faults in the 8051 microcontroller, Hamming code protection was used in its SRAM memory and registers. A VHDL code and its simulation have been used for this hamming code protection.Keywords: radiation, hardening, bitflip, hamming
Procedia PDF Downloads 4976287 Stationary Methanol Steam Reforming to Hydrogen Fuel for Fuel-Cell Filling Stations
Authors: Athanasios A. Tountas, Geoffrey A. Ozin, Mohini M. Sain
Abstract:
Renewable hydrogen (H₂) carriers such as methanol (MeOH), dimethyl ether (DME), oxymethylene dimethyl ethers (OMEs), and conceivably ammonia (NH₃) can be reformed back into H₂ and are fundamental chemical conversions for the long-term viability of the H₂ economy due to their higher densities and ease of transportability compared to H₂. MeOH is an especially important carrier as it is a simple C1 chemical that can be produced from green solar-PV-generated H₂ and direct-air-captured CO₂ with a current commercially practical solar-to-fuel efficiency of 10% from renewable solar energy. MeOH steam reforming (MSR) in stationary systems next to H₂ fuel-cell filling stations can eliminate the need for onboard mobile reformers, and the former systems can be more robust in terms of attaining strict H₂ product specifications, and MeOH is a safe, lossless, and compact medium for long-term H₂ storage. Both thermal- and photo-catalysts are viable options for achieving the stable, long-term performance of stationary MSR systems.Keywords: fuel-cell vehicle filling stations, methanol steam reforming, hydrogen transport and storage, stationary reformer, liquid hydrogen carriers
Procedia PDF Downloads 1006286 The Relationships between Energy Consumption, Carbon Dioxide (CO2) Emissions, and GDP for Turkey: Time Series Analysis, 1980-2010
Authors: Jinhoa Lee
Abstract:
The relationships between environmental quality, energy use and economic output have created growing attention over the past decades among researchers and policy makers. Focusing on the empirical aspects of the role of carbon dioxide (CO2) emissions and energy use in affecting the economic output, this paper is an effort to fulfill the gap in a comprehensive case study at a country level using modern econometric techniques. To achieve the goal, this country-specific study examines the short-run and long-run relationships among energy consumption (using disaggregated energy sources: crude oil, coal, natural gas, and electricity), CO2 emissions and gross domestic product (GDP) for Turkey using time series analysis from the year 1980-2010. To investigate the relationships between the variables, this paper employs the Augmented Dickey-Fuller (ADF) test for stationarity, Johansen’s maximum likelihood method for cointegration and a Vector Error Correction Model (VECM) for both short- and long-run causality among the research variables for the sample. The long-run equilibrium in the VECM suggests no effects of the CO2 emissions and energy use on the GDP in Turkey. There exists a short-run bidirectional relationship between the electricity and natural gas consumption, and also there is a negative unidirectional causality running from the GDP to electricity use. Overall, the results partly support arguments that there are relationships between energy use and economic output; however, the effects may differ due to the source of energy such as in the case of Turkey for the period of 1980-2010. However, there is no significant relationship between the CO2 emissions and the GDP and between the CO2 emissions and the energy use both in the short term and long term.Keywords: CO2 emissions, energy consumption, GDP, Turkey, time series analysis
Procedia PDF Downloads 5036285 Coffee Consumption and Glucose Metabolism: a Systematic Review of Clinical Trials
Authors: Caio E. G. Reis, Jose G. Dórea, Teresa H. M. da Costa
Abstract:
Objective: Epidemiological data shows an inverse association of coffee consumption with risk of type 2 diabetes mellitus. However, the clinical effects of coffee consumption on the glucose metabolism biomarkers remain controversial. Thus, this paper reviews clinical trials that evaluated the effects of coffee consumption on glucose metabolism. Research Design and Methods: We identified studies published until December 2014 by searching electronic databases and reference lists. We included randomized clinical trials which the intervention group received caffeinated and/or decaffeinated coffee and the control group received water or placebo treatments and measured biomarkers of glucose metabolism. The Jadad Score was applied to evaluate the quality of the studies whereas studies that scored ≥ 3 points were considered for the analyses. Results: Seven clinical trials (total of 237 subjects) were analyzed involving adult healthy, overweight and diabetic subjects. The studies were divided in short-term (1 to 3h) and long-term (2 to 16 weeks) duration. The results for short-term studies showed that caffeinated coffee consumption may increase the area under the curve for glucose response, while for long-term studies caffeinated coffee may improve the glycemic metabolism by reducing the glucose curve and increasing insulin response. These results seem to show that the benefits of coffee consumption occur in the long-term as has been shown in the reduction of type 2 diabetes mellitus risk in epidemiological studies. Nevertheless, until the relationship between long-term coffee consumption and type 2 diabetes mellitus is better understood and any mechanism involved identified, it is premature to make claims about coffee preventing type 2 diabetes mellitus. Conclusion: The findings suggest that caffeinated coffee may impairs glucose metabolism in short-term but in the long-term the studies indicate reduction of type 2 diabetes mellitus risk. More clinical trials with comparable methodology are needed to unravel this paradox.Keywords: coffee, diabetes mellitus type 2, glucose, insulin
Procedia PDF Downloads 4646284 Modelling the Long Rune of Aggregate Import Demand in Libya
Authors: Said Yousif Khairi
Abstract:
Being a developing economy, imports of capital, raw materials and manufactories goods are vital for sustainable economic growth. In 2006, Libya imported LD 8 billion (US$ 6.25 billion) which composed of mainly machinery and transport equipment (49.3%), raw material (18%), and food products and live animals (13%). This represented about 10% of GDP. Thus, it is pertinent to investigate factors affecting the amount of Libyan imports. An econometric model representing the aggregate import demand for Libya was developed and estimated using the bounds test procedure, which based on an unrestricted error correction model (UECM). The data employed for the estimation was from 1970–2010. The results of the bounds test revealed that the volume of imports and its determinants namely real income, consumer price index and exchange rate are co-integrated. The findings indicate that the demand for imports is inelastic with respect to income, index price level and The exchange rate variable in the short run is statistically significant. In the long run, the income elasticity is elastic while the price elasticity and the exchange rate remains inelastic. This indicates that imports are important elements for Libyan economic growth in the long run.Keywords: import demand, UECM, bounds test, Libya
Procedia PDF Downloads 3576283 The Effect of Second Language Listening Proficiency on Cognitive Control among Young Adult Bilinguals
Authors: Zhilong Xie, Jinwen Huang, Guofang Zeng
Abstract:
The existing body of research on bilingualism has consistently linked the use of multiple languages to enhanced cognitive control. Numerous studies have demonstrated that bilingual individuals exhibit advantages in non-linguistic tasks demanding cognitive control. However, recent investigations have challenged these findings, leading to a debate regarding the extent and nature of bilingual advantages. The adaptive control hypothesis posits that variations in bilingual experiences hold the key to resolving these controversies. This study aims to contribute to this discussion by exploring the impact of second language (L2) listening experience on cognitive control among young Chinese-English bilinguals. By examining this specific aspect of bilingualism, the study offers a perspective on the origins of bilingual advantages. This study employed a range of cognitive tasks, including the Flanker task, Wisconsin Card Sorting Test (WCST), Operation Span Task (OSPAN), and a second language listening comprehension test. After controlling for potential confounding variables such as intelligence, socioeconomic status, and overall language proficiency, independent sample t-test analysis revealed significant differences in performance between groups with high and low L2 listening proficiency in the Flanker task and OSPAN. However, no significant differences emerged between the two groups in the WCST. These findings suggest that L2 listening proficiency has a significant impact on inhibitory control and working memory but not on conflict monitoring or mental set shifting. These specific findings provide a more nuanced understanding of the origins of bilingual advantages within a specific bilingual context, highlighting the importance of considering the nature of bilingual experience when exploring cognitive benefits.Keywords: bilingual advantage, inhibitory control, L2 listening, working memory
Procedia PDF Downloads 96282 Effects of Long Term Whole Body Vibration Training on Lipid Profile of Young Men
Authors: Farshad Ghazalian, Laleh Hakemi, Lotfali Pourkazemi, Maryam Ameri, Seyed Hossein Alavi
Abstract:
Background: The use of whole body vibration (WBV) as an exercise method has rapidly increased over the last decade. The aim of this study was to evaluate long term effects of different amplitudes of whole body vibration training with progressive frequencies on lipid profile of young healthy men. Materials and methods: Thirty three healthy male students were divided randomly in three groups: high amplitude vibration group (n=11), low amplitude vibration group (n=11), and control group (n=11). The vibration training consisted of 5 week whole-body vibration 3 times a week with amplitudes 4 and 2 mm and progressive frequencies from 25 Hz with increments of 5 Hz weekly. Concentrations TG, HDL, LDL, cholesterol, and VLDL before and after 5 weeks of training were measured in plasma samples. Statistical analysis was done using one way analysis of variance. P<0.05 was considered statistically significant. Results: The most important result of the present study is finding no favorable changes of 5-week vibration training with different amplitudes on blood lipid profiles. Discussion and conclusions: It was emphasized that in vibration training there should be a relationship between intensity and volume of exercise and lipid responses in order to improve blood lipoprotein profiles.Keywords: long term, body, vibration training, lipid
Procedia PDF Downloads 4176281 Methodological Analysis and Exploration of Feminist Planning Research in the Field of Urban and Rural Planning
Authors: Xi Zuo
Abstract:
As a part of the urban population that cannot be ignored, women have long been less involved in urban planning due to socio-economic constraints. Urban planning and development have long been influenced by the mainstream "male standard," paying less attention to women's needs for space in the city. However, with the development of the economy and society and the improvement of women's social status, their participation in urban life is gradually increasing, and their needs for the city are diversifying. Therefore, different scholars, planning designers and governmental departments have explored this field in different degrees and directions. This paper summarizes the research on urban planning from women's perspectives and, discusses its strengths, weaknesses, and methodology with specific case studies, and then further discusses the direction of further research on this topic.Keywords: urban planning, feminism, methodology, gender
Procedia PDF Downloads 786280 Improving Fingerprinting-Based Localization System Using Generative AI
Authors: Getaneh Berie Tarekegn, Li-Chia Tai
Abstract:
With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarms, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 41