Search results for: input constraints
2687 Optimized Scheduling of Domestic Load Based on User Defined Constraints in a Real-Time Tariff Scenario
Authors: Madia Safdar, G. Amjad Hussain, Mashhood Ahmad
Abstract:
One of the major challenges of today’s era is peak demand which causes stress on the transmission lines and also raises the cost of energy generation and ultimately higher electricity bills to the end users, and it was used to be managed by the supply side management. However, nowadays this has been withdrawn because of existence of potential in the demand side management (DSM) having its economic and- environmental advantages. DSM in domestic load can play a vital role in reducing the peak load demand on the network provides a significant cost saving. In this paper the potential of demand response (DR) in reducing the peak load demands and electricity bills to the electric users is elaborated. For this purpose the domestic appliances are modeled in MATLAB Simulink and controlled by a module called energy management controller. The devices are categorized into controllable and uncontrollable loads and are operated according to real-time tariff pricing pattern instead of fixed time pricing or variable pricing. Energy management controller decides the switching instants of the controllable appliances based on the results from optimization algorithms. In GAMS software, the MILP (mixed integer linear programming) algorithm is used for optimization. In different cases, different constraints are used for optimization, considering the comforts, needs and priorities of the end users. Results are compared and the savings in electricity bills are discussed in this paper considering real time pricing and fixed tariff pricing, which exhibits the existence of potential to reduce electricity bills and peak loads in demand side management. It is seen that using real time pricing tariff instead of fixed tariff pricing helps to save in the electricity bills. Moreover the simulation results of the proposed energy management system show that the gained power savings lie in high range. It is anticipated that the result of this research will prove to be highly effective to the utility companies as well as in the improvement of domestic DR.Keywords: controllable and uncontrollable domestic loads, demand response, demand side management, optimization, MILP (mixed integer linear programming)
Procedia PDF Downloads 3022686 Cognitive Relaying in Interference Limited Spectrum Sharing Environment: Outage Probability and Outage Capacity
Authors: Md Fazlul Kader, Soo Young Shin
Abstract:
In this paper, we consider a cognitive relay network (CRN) in which the primary receiver (PR) is protected by peak transmit power $\bar{P}_{ST}$ and/or peak interference power Q constraints. In addition, the interference effect from the primary transmitter (PT) is considered to show its impact on the performance of the CRN. We investigate the outage probability (OP) and outage capacity (OC) of the CRN by deriving closed-form expressions over Rayleigh fading channel. Results show that both the OP and OC improve by increasing the cooperative relay nodes as well as when the PT is far away from the SR.Keywords: cognitive relay, outage, interference limited, decode-and-forward (DF)
Procedia PDF Downloads 5122685 Comparative Analysis of Control Techniques Based Sliding Mode for Transient Stability Assessment for Synchronous Multicellular Converter
Authors: Rihab Hamdi, Amel Hadri Hamida, Fatiha Khelili, Sakina Zerouali, Ouafae Bennis
Abstract:
This paper features a comparative study performance of sliding mode controller (SMC) for closed-loop voltage control of direct current to direct current (DC-DC) three-cells buck converter connected in parallel, operating in continuous conduction mode (CCM), based on pulse-width modulation (PWM) with SMC based on hysteresis modulation (HM) where an adaptive feedforward technique is adopted. On one hand, for the PWM-based SM, the approach is to incorporate a fixed-frequency PWM scheme which is effectively a variant of SM control. On the other hand, for the HM-based SM, oncoming an adaptive feedforward control that makes the hysteresis band variable in the hysteresis modulator of the SM controller in the aim to restrict the switching frequency variation in the case of any change of the line input voltage or output load variation are introduced. The results obtained under load change, input change and reference change clearly demonstrates a similar dynamic response of both proposed techniques, their effectiveness is fast and smooth tracking of the desired output voltage. The PWM-based SM technique has greatly improved the dynamic behavior with a bit advantageous compared to the HM-based SM technique, as well as provide stability in any operating conditions. Simulation studies in MATLAB/Simulink environment have been performed to verify the concept.Keywords: DC-DC converter, hysteresis modulation, parallel multi-cells converter, pulse-width modulation, robustness, sliding mode control
Procedia PDF Downloads 1672684 Some Considerations on UML Class Diagram Formalisation Approaches
Authors: Abdullah A. H. Alzahrani, Majd Zohri Yafi, Fawaz K. Alarfaj
Abstract:
Unified Modelling Language (UML) is a software modelling language that is widely used and accepted. One significant drawback, of which, is that the language lacks formality. This makes carrying out any type of rigorous analysis difficult process. Many researchers attempt to introduce their approaches to formalize UML diagrams. However, it is always hard to decide what language and/or approach to use. Therefore, in this paper, we highlight some of the advantages and disadvantages of number of those approaches. We also try to compare different counterpart approaches. In addition, we draw some guidelines to help in choosing the suitable approach. Special concern is given to the formalization of the static aspects of UML shown is class diagrams.Keywords: UML formalization, object constraints language, description logic, z language
Procedia PDF Downloads 4342683 Fuzzy Logic for Control and Automatic Operation of Natural Ventilation in Buildings
Authors: Ekpeti Bukola Grace, Mahmoudi Sabar Esmail, Chaer Issa
Abstract:
Global energy consumption has been increasing steadily over the last half - century, and this trend is projected to continue. As energy demand rises in many countries throughout the world due to population growth, natural ventilation in buildings has been identified as a viable option for lowering these demands, saving costs, and also lowering CO2 emissions. However, natural ventilation is driven by forces that are generally unpredictable in nature thus, it is important to manage the resulting airflow in order to maintain pleasant indoor conditions, making it a complex system that necessitates specific control approaches. The effective application of fuzzy logic technique amidst other intelligent systems is one of the best ways to bridge this gap, as its control dynamics relates more to human reasoning and linguistic descriptions. This article reviewed existing literature and presented practical solutions by applying fuzzy logic control with optimized techniques, selected input parameters, and expert rules to design a more effective control system. The control monitors used indoor temperature, outdoor temperature, carbon-dioxide levels, wind velocity, and rain as input variables to the system, while the output variable remains the control of window opening. This is achieved through the use of fuzzy logic control tool box in MATLAB and running simulations on SIMULINK to validate the effectiveness of the proposed system. Comparison analysis model via simulation is carried out, and with the data obtained, an improvement in control actions and energy savings was recorded.Keywords: fuzzy logic, intelligent control systems, natural ventilation, optimization
Procedia PDF Downloads 1292682 Computational Homogenization of Thin Walled Structures: On the Influence of the Global vs Local Applied Plane Stress Condition
Authors: M. Beusink, E. W. C. Coenen
Abstract:
The increased application of novel structural materials, such as high grade asphalt, concrete and laminated composites, has sparked the need for a better understanding of the often complex, non-linear mechanical behavior of such materials. The effective macroscopic mechanical response is generally dependent on the applied load path. Moreover, it is also significantly influenced by the microstructure of the material, e.g. embedded fibers, voids and/or grain morphology. At present, multiscale techniques are widely adopted to assess micro-macro interactions in a numerically efficient way. Computational homogenization techniques have been successfully applied over a wide range of engineering cases, e.g. cases involving first order and second order continua, thin shells and cohesive zone models. Most of these homogenization methods rely on Representative Volume Elements (RVE), which model the relevant microstructural details in a confined volume. Imposed through kinematical constraints or boundary conditions, a RVE can be subjected to a microscopic load sequence. This provides the RVE's effective stress-strain response, which can serve as constitutive input for macroscale analyses. Simultaneously, such a study of a RVE gives insight into fine scale phenomena such as microstructural damage and its evolution. It has been reported by several authors that the type of boundary conditions applied to the RVE affect the resulting homogenized stress-strain response. As a consequence, dedicated boundary conditions have been proposed to appropriately deal with this concern. For the specific case of a planar assumption for the analyzed structure, e.g. plane strain, axisymmetric or plane stress, this assumption needs to be addressed consistently in all considered scales. Although in many multiscale studies a planar condition has been employed, the related impact on the multiscale solution has not been explicitly investigated. This work therefore focuses on the influence of the planar assumption for multiscale modeling. In particular the plane stress case is highlighted, by proposing three different implementation strategies which are compatible with a first-order computational homogenization framework. The first method consists of applying classical plane stress theory at the microscale, whereas with the second method a generalized plane stress condition is assumed at the RVE level. For the third method, the plane stress condition is applied at the macroscale by requiring that the resulting macroscopic out-of-plane forces are equal to zero. These strategies are assessed through a numerical study of a thin walled structure and the resulting effective macroscale stress-strain response is compared. It is shown that there is a clear influence of the length scale at which the planar condition is applied.Keywords: first-order computational homogenization, planar analysis, multiscale, microstrucutures
Procedia PDF Downloads 2332681 Towards Automatic Calibration of In-Line Machine Processes
Authors: David F. Nettleton, Elodie Bugnicourt, Christian Wasiak, Alejandro Rosales
Abstract:
In this presentation, preliminary results are given for the modeling and calibration of two different industrial winding MIMO (Multiple Input Multiple Output) processes using machine learning techniques. In contrast to previous approaches which have typically used ‘black-box’ linear statistical methods together with a definition of the mechanical behavior of the process, we use non-linear machine learning algorithms together with a ‘white-box’ rule induction technique to create a supervised model of the fitting error between the expected and real force measures. The final objective is to build a precise model of the winding process in order to control de-tension of the material being wound in the first case, and the friction of the material passing through the die, in the second case. Case 1, Tension Control of a Winding Process. A plastic web is unwound from a first reel, goes over a traction reel and is rewound on a third reel. The objectives are: (i) to train a model to predict the web tension and (ii) calibration to find the input values which result in a given tension. Case 2, Friction Force Control of a Micro-Pullwinding Process. A core+resin passes through a first die, then two winding units wind an outer layer around the core, and a final pass through a second die. The objectives are: (i) to train a model to predict the friction on die2; (ii) calibration to find the input values which result in a given friction on die2. Different machine learning approaches are tested to build models, Kernel Ridge Regression, Support Vector Regression (with a Radial Basis Function Kernel) and MPART (Rule Induction with continuous value as output). As a previous step, the MPART rule induction algorithm was used to build an explicative model of the error (the difference between expected and real friction on die2). The modeling of the error behavior using explicative rules is used to help improve the overall process model. Once the models are built, the inputs are calibrated by generating Gaussian random numbers for each input (taking into account its mean and standard deviation) and comparing the output to a target (desired) output until a closest fit is found. The results of empirical testing show that a high precision is obtained for the trained models and for the calibration process. The learning step is the slowest part of the process (max. 5 minutes for this data), but this can be done offline just once. The calibration step is much faster and in under one minute obtained a precision error of less than 1x10-3 for both outputs. To summarize, in the present work two processes have been modeled and calibrated. A fast processing time and high precision has been achieved, which can be further improved by using heuristics to guide the Gaussian calibration. Error behavior has been modeled to help improve the overall process understanding. This has relevance for the quick optimal set up of many different industrial processes which use a pull-winding type process to manufacture fibre reinforced plastic parts. Acknowledgements to the Openmind project which is funded by Horizon 2020 European Union funding for Research & Innovation, Grant Agreement number 680820Keywords: data model, machine learning, industrial winding, calibration
Procedia PDF Downloads 2412680 The Use of Bimodal Subtitles on Netflix English Movies in Enhancing Vocabulary
Authors: John Lloyd Angolluan, Jennile Caday, Crystal Mae Estrella, Reike Alliyah Taladua, Zion Michael Ysulat
Abstract:
One of the requirements of having the ability to communicate in English is by having adequate vocabulary. Nowadays, people are more engaged in watching movie streams on which they can watch movies in a very portable way, such as Netflix. Wherein Netflix became global demand for online media has taken off in recent years. This research aims to know whether the use of bimodal subtitles on Netflix English movies can enhance vocabulary. This study is quantitative and utilizes a descriptive method, and this study aims to explore the use of bimodal subtitles on Netflix English movies to enhance the vocabulary of students. The respondents of the study were the selected Second-year English majors of Rizal Technological University Pasig and Boni Campus using the purposive sampling technique. The researcher conducted a survey questionnaire through the use of Google Forms. In this study, the weighted mean was used to evaluate the student's responses to the statement of the problems of the study of the use of bimodal subtitles on Netflix English movies. The findings of this study revealed that the bimodal subtitle on Netflix English movies enhanced students’ vocabulary learning acquisition by providing learners with access to large amounts of real and comprehensible language input, whether accidentally or intentionally, and it turns out that bimodal subtitles on Netflix English movies help students recognize vocabulary, which has a positive impact on their vocabulary building. Therefore, the researchers advocate that watching English Netflix movies enhances students' vocabulary by using bimodal subtitled movie material during their language learning process, which may increase their motivation and the usage of bimodal subtitles in learning new vocabulary. Bimodal subtitles need to be incorporated into educational film activities to provide students with a vast amount of input to expand their vocabulary.Keywords: bimodal subtitles, Netflix, English movies, vocabulary, subtitle, language, media
Procedia PDF Downloads 852679 Tabu Search Algorithm for Ship Routing and Scheduling Problem with Time Window
Authors: Khaled Moh. Alhamad
Abstract:
This paper describes a tabu search heuristic for a ship routing and scheduling problem (SRSP). The method was developed to address the problem of loading cargos for many customers using heterogeneous vessels. Constraints relate to delivery time windows imposed by customers, the time horizon by which all deliveries must be made and vessel capacities. The results of a computational investigation are presented. Solution quality and execution time are explored with respect to problem size and parameters controlling the tabu search such as tenure and neighbourhood size.Keywords: heuristic, scheduling, tabu search, transportation
Procedia PDF Downloads 5062678 Ultra-Reliable Low Latency V2X Communication for Express Way Using Multiuser Scheduling Algorithm
Authors: Vaishali D. Khairnar
Abstract:
The main aim is to provide lower-latency and highly reliable communication facilities for vehicles in the automobile industry; vehicle-to-everything (V2X) communication basically intends to increase expressway road security and its effectiveness. The Ultra-Reliable Low-Latency Communications (URLLC) algorithm and cellular networks are applied in combination with Mobile Broadband (MBB). This is particularly used in express way safety-based driving applications. Expressway vehicle drivers (humans) will communicate in V2X systems using the sixth-generation (6G) communication systems which have very high-speed mobility features. As a result, we need to determine how to ensure reliable and consistent wireless communication links and improve the quality to increase channel gain, which is becoming a challenge that needs to be addressed. To overcome this challenge, we proposed a unique multi-user scheduling algorithm for ultra-massive multiple-input multiple-output (MIMO) systems using 6G. In wideband wireless network access in case of high traffic and also in medium traffic conditions, moreover offering quality-of-service (QoS) to distinct service groups with synchronized contemporaneous traffic on the highway like the Mumbai-Pune expressway becomes a critical problem. Opportunist MAC (OMAC) is a way of proposing communication across a wireless communication link that can change in space and time and might overcome the above-mentioned challenge. Therefore, a multi-user scheduling algorithm is proposed for MIMO systems using a cross-layered MAC protocol to achieve URLLC and high reliability in V2X communication.Keywords: ultra-reliable low latency communications, vehicle-to-everything communication, multiple-input multiple-output systems, multi-user scheduling algorithm
Procedia PDF Downloads 882677 The Application of a Neural Network in the Reworking of Accu-Chek to Wrist Bands to Monitor Blood Glucose in the Human Body
Authors: J. K Adedeji, O. H Olowomofe, C. O Alo, S.T Ijatuyi
Abstract:
The issue of high blood sugar level, the effects of which might end up as diabetes mellitus, is now becoming a rampant cardiovascular disorder in our community. In recent times, a lack of awareness among most people makes this disease a silent killer. The situation calls for urgency, hence the need to design a device that serves as a monitoring tool such as a wrist watch to give an alert of the danger a head of time to those living with high blood glucose, as well as to introduce a mechanism for checks and balances. The neural network architecture assumed 8-15-10 configuration with eight neurons at the input stage including a bias, 15 neurons at the hidden layer at the processing stage, and 10 neurons at the output stage indicating likely symptoms cases. The inputs are formed using the exclusive OR (XOR), with the expectation of getting an XOR output as the threshold value for diabetic symptom cases. The neural algorithm is coded in Java language with 1000 epoch runs to bring the errors into the barest minimum. The internal circuitry of the device comprises the compatible hardware requirement that matches the nature of each of the input neurons. The light emitting diodes (LED) of red, green, and yellow colors are used as the output for the neural network to show pattern recognition for severe cases, pre-hypertensive cases and normal without the traces of diabetes mellitus. The research concluded that neural network is an efficient Accu-Chek design tool for the proper monitoring of high glucose levels than the conventional methods of carrying out blood test.Keywords: Accu-Check, diabetes, neural network, pattern recognition
Procedia PDF Downloads 1462676 Innovative Predictive Modeling and Characterization of Composite Material Properties Using Machine Learning and Genetic Algorithms
Authors: Hamdi Beji, Toufik Kanit, Tanguy Messager
Abstract:
This study aims to construct a predictive model proficient in foreseeing the linear elastic and thermal characteristics of composite materials, drawing on a multitude of influencing parameters. These parameters encompass the shape of inclusions (circular, elliptical, square, triangle), their spatial coordinates within the matrix, orientation, volume fraction (ranging from 0.05 to 0.4), and variations in contrast (spanning from 10 to 200). A variety of machine learning techniques are deployed, including decision trees, random forests, support vector machines, k-nearest neighbors, and an artificial neural network (ANN), to facilitate this predictive model. Moreover, this research goes beyond the predictive aspect by delving into an inverse analysis using genetic algorithms. The intent is to unveil the intrinsic characteristics of composite materials by evaluating their thermomechanical responses. The foundation of this research lies in the establishment of a comprehensive database that accounts for the array of input parameters mentioned earlier. This database, enriched with this diversity of input variables, serves as a bedrock for the creation of machine learning and genetic algorithm-based models. These models are meticulously trained to not only predict but also elucidate the mechanical and thermal conduct of composite materials. Remarkably, the coupling of machine learning and genetic algorithms has proven highly effective, yielding predictions with remarkable accuracy, boasting scores ranging between 0.97 and 0.99. This achievement marks a significant breakthrough, demonstrating the potential of this innovative approach in the field of materials engineering.Keywords: machine learning, composite materials, genetic algorithms, mechanical and thermal proprieties
Procedia PDF Downloads 542675 Evaluation of Efficiency of Naturally Available Disinfectants and Filter Media in Conventional Gravity Filters
Authors: Abhinav Mane, Kedar Karvande, Shubham Patel, Abhayraj Lodha
Abstract:
Gravity filters are one of the most commonly used, economically viable and moderately efficient water purification systems. Their efficiency is mainly based on the type of filter media installed and its location within the filter mass. Several researchers provide valuable input in decision of the type of filter media. However, the choice is mainly restricted to the chemical combinations of different substances. This makes it very much dependent on the factory made filter media, and no cheap alternatives could be found and used. This paper presents the use of disinfectants and filter medias either available naturally or could be prepared using natural resources in conventional mechanism of gravity filter. A small scale laboratory investigation was made with variation in filter media thickness and its location from the top surface of the filter. A rigid steel frame based custom fabricated test setup was used to facilitate placement of filter media at different height within the filter mass. Finely grinded sun dried Neem (Azadirachta indica) extracts and porous burnt clay pads were used as two distinct filter media and placed in isolation as well as in combination with each other. Ground water available in Marathwada region of Maharashtra, India which mainly consists of harmful materials like Arsenic, Chlorides, Iron, Magnesium and Manganese, etc. was treated in the filters fabricated in the present study. The evaluation was made mainly in terms of the input/output water quality assessment through laboratory tests. The present paper should give a cheap and eco-friendly solution to prepare gravity filter at the merit of household skills and availability.Keywords: fliter media, gravity filters, natural disinfectants, porous clay pads
Procedia PDF Downloads 2582674 Modeling and Optimization of Micro-Grid Using Genetic Algorithm
Authors: Mehrdad Rezaei, Reza Haghmaram, Nima Amjadi
Abstract:
This paper proposes an operating and cost optimization model for micro-grid (MG). This model takes into account emission costs of NOx, SO2, and CO2, together with the operation and maintenance costs. Wind turbines (WT), photovoltaic (PV) arrays, micro turbines (MT), fuel cells (FC), diesel engine generators (DEG) with different capacities are considered in this model. The aim of the optimization is minimizing operation cost according to constraints, supply demand and safety of the system. The proposed genetic algorithm (GA), with the ability to fine-tune its own settings, is used to optimize the micro-grid operation.Keywords: micro-grid, optimization, genetic algorithm, MG
Procedia PDF Downloads 5112673 Management Effects on Different Sustainable Agricultural with Diverse Topography
Authors: Kusay Wheib, Alexandra Krvchenko
Abstract:
Crop yields are influenced by many factors, including natural ones, such as soil and environmental characteristics of the agricultural land, as well as manmade ones, such as management applications. One of the factors that frequently affect crop yields in undulating Midwest landscapes is topography, which controls the movement of water and nutrients necessary for plant life. The main objective of this study is to examine how field topography influences performance of different management practices in undulated terrain of southwest Michigan. A total of 26 agricultural fields, ranging in size from 1.1 to 7.4 ha, from the Scale-Up at Kellogg Biological Station were included in the study. The two studied factors were crop species with three levels, i.e., corn (Zea mays L.) soybean (Glycine max L.), and wheat (Triticum aestivum L.), and management practice with three levels, i.e., conventional, low input, and organic managements. They were compared under three contrasting topographical settings, namely, summit (includes summits and shoulders), slope (includes backslopes), and depression (includes footslope and toeslope). Yield data of years 2007 through 2012 was processed, cleaned, and filtered, average yield then was calculated for each field, topographic setting, and year. Topography parameters, including terrain, slope, curvature, flow direction and wetness index were computed under ArcGIS environment for each topographic class of each field to seek their effects on yield. Results showed that topographical depressions produced greatest yields in most studied fields, while managements with chemical inputs, both low input and conventional, resulted in higher yields than the organic management.Keywords: sustainable agriculture, precision agriculture, topography, yield
Procedia PDF Downloads 1122672 Enhancing Residential Architecture through Generative Design: Balancing Aesthetics, Legal Constraints, and Environmental Considerations
Authors: Milena Nanova, Radul Shishkov, Damyan Damov, Martin Georgiev
Abstract:
This research paper presents an in-depth exploration of the use of generative design in urban residential architecture, with a dual focus on aligning aesthetic values with legal and environmental constraints. The study aims to demonstrate how generative design methodologies can innovate residential building designs that are not only legally compliant and environmentally conscious but also aesthetically compelling. At the core of our research is a specially developed generative design framework tailored for urban residential settings. This framework employs computational algorithms to produce diverse design solutions, meticulously balancing aesthetic appeal with practical considerations. By integrating site-specific features, urban legal restrictions, and environmental factors, our approach generates designs that resonate with the unique character of urban landscapes while adhering to regulatory frameworks. The paper places emphasis on algorithmic implementation of the logical constraint and intricacies in residential architecture by exploring the potential of generative design to create visually engaging and contextually harmonious structures. This exploration also contains an analysis of how these designs align with legal building parameters, showcasing the potential for creative solutions within the confines of urban building regulations. Concurrently, our methodology integrates functional, economic, and environmental factors. We investigate how generative design can be utilized to optimize buildings' performance, considering them, aiming to achieve a symbiotic relationship between the built environment and its natural surroundings. Through a blend of theoretical research and practical case studies, this research highlights the multifaceted capabilities of generative design and demonstrates practical applications of our framework. Our findings illustrate the rich possibilities that arise from an algorithmic design approach in the context of a vibrant urban landscape. This study contributes an alternative perspective to residential architecture, suggesting that the future of urban development lies in embracing the complex interplay between computational design innovation, regulatory adherence, and environmental responsibility.Keywords: generative design, computational design, parametric design, algorithmic modeling
Procedia PDF Downloads 652671 Credit Card Fraud Detection with Ensemble Model: A Meta-Heuristic Approach
Authors: Gong Zhilin, Jing Yang, Jian Yin
Abstract:
The purpose of this paper is to develop a novel system for credit card fraud detection based on sequential modeling of data using hybrid deep learning models. The projected model encapsulates five major phases are pre-processing, imbalance-data handling, feature extraction, optimal feature selection, and fraud detection with an ensemble classifier. The collected raw data (input) is pre-processed to enhance the quality of the data through alleviation of the missing data, noisy data as well as null values. The pre-processed data are class imbalanced in nature, and therefore they are handled effectively with the K-means clustering-based SMOTE model. From the balanced class data, the most relevant features like improved Principal Component Analysis (PCA), statistical features (mean, median, standard deviation) and higher-order statistical features (skewness and kurtosis). Among the extracted features, the most optimal features are selected with the Self-improved Arithmetic Optimization Algorithm (SI-AOA). This SI-AOA model is the conceptual improvement of the standard Arithmetic Optimization Algorithm. The deep learning models like Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), and optimized Quantum Deep Neural Network (QDNN). The LSTM and CNN are trained with the extracted optimal features. The outcomes from LSTM and CNN will enter as input to optimized QDNN that provides the final detection outcome. Since the QDNN is the ultimate detector, its weight function is fine-tuned with the Self-improved Arithmetic Optimization Algorithm (SI-AOA).Keywords: credit card, data mining, fraud detection, money transactions
Procedia PDF Downloads 1312670 Beyond Adoption: Econometric Analysis of Impacts of Farmer Innovation Systems and Improved Agricultural Technologies on Rice Yield in Ghana
Authors: Franklin N. Mabe, Samuel A. Donkoh, Seidu Al-Hassan
Abstract:
In order to increase and bridge the differences in rice yield, many farmers have resorted to adopting Farmer Innovation Systems (FISs) and Improved Agricultural Technologies (IATs). This study econometrically analysed the impacts of adoption of FISs and IATs on rice yield using multinomial endogenous switching regression (MESR). Nine-hundred and seven (907) rice farmers from Guinea Savannah Zone (GSZ), Forest Savannah Transition Zone (FSTZ) and Coastal Savannah Zone (CSZ) were used for the study. The study used both primary and secondary data. FBO advice, rice farming experience and distance from farming communities to input markets increase farmers’ adoption of only FISs. Factors that increase farmers’ probability of adopting only IATs are access to extension advice, credit, improved seeds and contract farming. Farmers located in CSZ have higher probability of adopting only IATs than their counterparts living in other agro-ecological zones. Age and access to input subsidy increase the probability of jointly adopting FISs and IATs. FISs and IATs have heterogeneous impact on rice yield with adoption of only IATs having the highest impact followed by joint adoption of FISs and IATs. It is important for stakeholders in rice subsector to champion the provision of improved rice seeds, the intensification of agricultural extension services and contract farming concept. Researchers should endeavour to researched into FISs.Keywords: farmer innovation systems, improved agricultural technologies, multinomial endogenous switching regression, treatment effect
Procedia PDF Downloads 4252669 Integrated Simulation and Optimization for Carbon Capture and Storage System
Authors: Taekyoon Park, Seokgoo Lee, Sungho Kim, Ung Lee, Jong Min Lee, Chonghun Han
Abstract:
CO2 capture and storage/sequestration (CCS) is a key technology for addressing the global warming issue. This paper proposes an integrated model for the whole chain of CCS, from a power plant to a reservoir. The integrated model is further utilized to determine optimal operating conditions and study responses to various changes in input variables.Keywords: CCS, caron dioxide, carbon capture and storage, simulation, optimization
Procedia PDF Downloads 3502668 Application of Response Surface Methodology to Assess the Impact of Aqueous and Particulate Phosphorous on Diazotrophic and Non-Diazotrophic Cyanobacteria Associated with Harmful Algal Blooms
Authors: Elizabeth Crafton, Donald Ott, Teresa Cutright
Abstract:
Harmful algal blooms (HABs), more notably cyanobacteria-dominated HABs, compromise water quality, jeopardize access to drinking water and are a risk to public health and safety. HABs are representative of ecosystem imbalance largely caused by environmental changes, such as eutrophication, that are associated with the globally expanding human population. Cyanobacteria-dominated HABs are anticipated to increase in frequency, magnitude, and are predicted to plague a larger geographical area as a result of climate change. The weather pattern is important as storm-driven, pulse-input of nutrients have been correlated to cyanobacteria-dominated HABs. The mobilization of aqueous and particulate nutrients and the response of the phytoplankton community is an important relationship in this complex phenomenon. This relationship is most apparent in high-impact areas of adequate sunlight, > 20ᵒC, excessive nutrients and quiescent water that corresponds to ideal growth of HABs. Typically the impact of particulate phosphorus is dismissed as an insignificant contribution; which is true for areas that are not considered high-impact. The objective of this study was to assess the impact of a simulated storm-driven, pulse-input of reactive phosphorus and the response of three different cyanobacteria assemblages (~5,000 cells/mL). The aqueous and particulate sources of phosphorus and changes in HAB were tracked weekly for 4 weeks. The first cyanobacteria composition consisted of Planktothrix sp., Microcystis sp., Aphanizomenon sp., and Anabaena sp., with 70% of the total population being non-diazotrophic and 30% being diazotrophic. The second was comprised of Anabaena sp., Planktothrix sp., and Microcystis sp., with 87% diazotrophic and 13% non-diazotrophic. The third composition has yet to be determined as these experiments are ongoing. Preliminary results suggest that both aqueous and particulate sources are contributors of total reactive phosphorus in high-impact areas. The results further highlight shifts in the cyanobacteria assemblage after the simulated pulse-input. In the controls, the reactors dosed with aqueous reactive phosphorus maintained a constant concentration for the duration of the experiment; whereas, the reactors that were dosed with aqueous reactive phosphorus and contained soil decreased from 1.73 mg/L to 0.25 mg/L of reactive phosphorus from time zero to 7 days; this was higher than the blank (0.11 mg/L). Suggesting a binding of aqueous reactive phosphorus to sediment, which is further supported by the positive correlation observed between total reactive phosphorus concentration and turbidity. The experiments are nearly completed and a full statistical analysis will be completed of the results prior to the conference.Keywords: Anabaena, cyanobacteria, harmful algal blooms, Microcystis, phosphorous, response surface methodology
Procedia PDF Downloads 1672667 Application of Industrial Ecology to the INSPIRA Zone: Territory Planification and New Activities
Authors: Mary Hanhoun, Jilla Bamarni, Anne-Sophie Bougard
Abstract:
INSPIR’ECO is a 18-month research and innovation project that aims to specify and develop a tool to offer new services for industrials and territorial planners/managers based on Industrial Ecology Principles. This project is carried out on the territory of Salaise Sablons and the services are designed to be deployed on other territories. Salaise-Sablons area is located in the limit of 5 departments on a major European economic axis multimodal traffic (river, rail and road). The perimeter of 330 ha includes 90 hectares occupied by 20 companies, with a total of 900 jobs, and represents a significant potential basin of development. The project involves five multi-disciplinary partners (Syndicat Mixte INSPIRA, ENGIE, IDEEL, IDEAs Laboratory and TREDI). INSPIR’ECO project is based on the principles that local stakeholders need services to pool, share their activities/equipment/purchases/materials. These services aims to : 1. initiate and promote exchanges between existing companies and 2. identify synergies between pre-existing industries and future companies that could be implemented in INSPIRA. These eco-industrial synergies can be related to: the recovery / exchange of industrial flows (industrial wastewater, waste, by-products, etc.); the pooling of business services (collective waste management, stormwater collection and reuse, transport, etc.); the sharing of equipments (boiler, steam production, wastewater treatment unit, etc.) or resources (splitting jobs cost, etc.); and the creation of new activities (interface activities necessary for by-product recovery, development of products or services from a newly identified resource, etc.). These services are based on IT tool used by the interested local stakeholders that intends to allow local stakeholders to take decisions. Thus, this IT tool: - include an economic and environmental assessment of each implantation or pooling/sharing scenarios for existing or further industries; - is meant for industrial and territorial manager/planners - is designed to be used for each new industrial project. - The specification of the IT tool is made through an agile process all along INSPIR’ECO project fed with: - Users expectations thanks to workshop sessions where mock-up interfaces are displayed; - Data availability based on local and industrial data inventory. These input allow to specify the tool not only with technical and methodological constraints (notably the ones from economic and environmental assessments) but also with data availability and users expectations. A feedback on innovative resource management initiatives in port areas has been realized in the beginning of the project to feed the designing services step.Keywords: development opportunities, INSPIR’ECO, INSPIRA, industrial ecology, planification, synergy identification
Procedia PDF Downloads 1632666 An Extended Domain-Specific Modeling Language for Marine Observatory Relying on Enterprise Architecture
Authors: Charbel Aoun, Loic Lagadec
Abstract:
A Sensor Network (SN) is considered as an operation of two phases: (1) the observation/measuring, which means the accumulation of the gathered data at each sensor node; (2) transferring the collected data to some processing center (e.g., Fusion Servers) within the SN. Therefore, an underwater sensor network can be defined as a sensor network deployed underwater that monitors underwater activity. The deployed sensors, such as Hydrophones, are responsible for registering underwater activity and transferring it to more advanced components. The process of data exchange between the aforementioned components perfectly defines the Marine Observatory (MO) concept which provides information on ocean state, phenomena and processes. The first step towards the implementation of this concept is defining the environmental constraints and the required tools and components (Marine Cables, Smart Sensors, Data Fusion Server, etc). The logical and physical components that are used in these observatories perform some critical functions such as the localization of underwater moving objects. These functions can be orchestrated with other services (e.g. military or civilian reaction). In this paper, we present an extension to our MO meta-model that is used to generate a design tool (ArchiMO). We propose new constraints to be taken into consideration at design time. We illustrate our proposal with an example from the MO domain. Additionally, we generate the corresponding simulation code using our self-developed domain-specific model compiler. On the one hand, this illustrates our approach in relying on Enterprise Architecture (EA) framework that respects: multiple views, perspectives of stakeholders, and domain specificity. On the other hand, it helps reducing both complexity and time spent in design activity, while preventing from design modeling errors during porting this activity in the MO domain. As conclusion, this work aims to demonstrate that we can improve the design activity of complex system based on the use of MDE technologies and a domain-specific modeling language with the associated tooling. The major improvement is to provide an early validation step via models and simulation approach to consolidate the system design.Keywords: smart sensors, data fusion, distributed fusion architecture, sensor networks, domain specific modeling language, enterprise architecture, underwater moving object, localization, marine observatory, NS-3, IMS
Procedia PDF Downloads 1772665 Analyzing the Influence of Hydrometeorlogical Extremes, Geological Setting, and Social Demographic on Public Health
Authors: Irfan Ahmad Afip
Abstract:
This main research objective is to accurately identify the possibility for a Leptospirosis outbreak severity of a certain area based on its input features into a multivariate regression model. The research question is the possibility of an outbreak in a specific area being influenced by this feature, such as social demographics and hydrometeorological extremes. If the occurrence of an outbreak is being subjected to these features, then the epidemic severity for an area will be different depending on its environmental setting because the features will influence the possibility and severity of an outbreak. Specifically, this research objective was three-fold, namely: (a) to identify the relevant multivariate features and visualize the patterns data, (b) to develop a multivariate regression model based from the selected features and determine the possibility for Leptospirosis outbreak in an area, and (c) to compare the predictive ability of multivariate regression model and machine learning algorithms. Several secondary data features were collected locations in the state of Negeri Sembilan, Malaysia, based on the possibility it would be relevant to determine the outbreak severity in the area. The relevant features then will become an input in a multivariate regression model; a linear regression model is a simple and quick solution for creating prognostic capabilities. A multivariate regression model has proven more precise prognostic capabilities than univariate models. The expected outcome from this research is to establish a correlation between the features of social demographic and hydrometeorological with Leptospirosis bacteria; it will also become a contributor for understanding the underlying relationship between the pathogen and the ecosystem. The relationship established can be beneficial for the health department or urban planner to inspect and prepare for future outcomes in event detection and system health monitoring.Keywords: geographical information system, hydrometeorological, leptospirosis, multivariate regression
Procedia PDF Downloads 1152664 Process Modeling in an Aeronautics Context
Authors: Sophie Lemoussu, Jean-Charles Chaudemar, Robertus A. Vingerhoeds
Abstract:
Many innovative projects exist in the field of aeronautics, each addressing specific areas so to reduce weight, increase autonomy, reduction of CO2, etc. In many cases, such innovative developments are being carried out by very small enterprises (VSE’s) or small and medium sized-enterprises (SME’s). A good example concerns airships that are being studied as a real alternative to passenger and cargo transportation. Today, no international regulations propose a precise and sufficiently detailed framework for the development and certification of airships. The absence of such a regulatory framework requires a very close contact with regulatory instances. However, VSE’s/SME’s do not always have sufficient resources and internal knowledge to handle this complexity and to discuss these issues. This poses an additional challenge for those VSE’s/SME’s, in particular those that have system integration responsibilities and that must provide all the necessary evidence to demonstrate their ability to design, produce, and operate airships with the expected level of safety and reliability. The main objective of this research is to provide a methodological framework enabling VSE’s/SME’s with limited resources to organize the development of airships while taking into account the constraints of safety, cost, time and performance. This paper proposes to provide a contribution to this problematic by proposing a Model-Based Systems Engineering approach. Through a comprehensive process modeling approach applied to the development processes, the regulatory constraints, existing best practices, etc., a good image can be obtained as to the process landscape that may influence the development of airships. To this effect, not only the necessary regulatory information is taken on board, also other international standards and norms on systems engineering and project management are being modeled and taken into account. In a next step, the model can be used for analysis of the specific situation for given developments, derive critical paths for the development, identify eventual conflicting aspects between the norms, standards, and regulatory expectations, or also identify those areas where not enough information is available. Once critical paths are known, optimization approaches can be used and decision support techniques can be applied so to better support VSE’s/SME’s in their innovative developments. This paper reports on the adopted modeling approach, the retained modeling languages, and how they all fit together.Keywords: aeronautics, certification, process modeling, project management, regulation, SME, systems engineering, VSE
Procedia PDF Downloads 1612663 Cluster-Based Multi-Path Routing Algorithm in Wireless Sensor Networks
Authors: Si-Gwan Kim
Abstract:
Small-size and low-power sensors with sensing, signal processing and wireless communication capabilities is suitable for the wireless sensor networks. Due to the limited resources and battery constraints, complex routing algorithms used for the ad-hoc networks cannot be employed in sensor networks. In this paper, we propose node-disjoint multi-path hexagon-based routing algorithms in wireless sensor networks. We suggest the details of the algorithm and compare it with other works. Simulation results show that the proposed scheme achieves better performance in terms of efficiency and message delivery ratio.Keywords: clustering, multi-path, routing protocol, sensor network
Procedia PDF Downloads 4032662 A Methodology of Using Fuzzy Logics and Data Analytics to Estimate the Life Cycle Indicators of Solar Photovoltaics
Authors: Thor Alexis Sazon, Alexander Guzman-Urbina, Yasuhiro Fukushima
Abstract:
This study outlines the method of how to develop a surrogate life cycle model based on fuzzy logic using three fuzzy inference methods: (1) the conventional Fuzzy Inference System (FIS), (2) the hybrid system of Data Analytics and Fuzzy Inference (DAFIS), which uses data clustering for defining the membership functions, and (3) the Adaptive-Neuro Fuzzy Inference System (ANFIS), a combination of fuzzy inference and artificial neural network. These methods were demonstrated with a case study where the Global Warming Potential (GWP) and the Levelized Cost of Energy (LCOE) of solar photovoltaic (PV) were estimated using Solar Irradiation, Module Efficiency, and Performance Ratio as inputs. The effects of using different fuzzy inference types, either Sugeno- or Mamdani-type, and of changing the number of input membership functions to the error between the calibration data and the model-generated outputs were also illustrated. The solution spaces of the three methods were consequently examined with a sensitivity analysis. ANFIS exhibited the lowest error while DAFIS gave slightly lower errors compared to FIS. Increasing the number of input membership functions helped with error reduction in some cases but, at times, resulted in the opposite. Sugeno-type models gave errors that are slightly lower than those of the Mamdani-type. While ANFIS is superior in terms of error minimization, it could generate solutions that are questionable, i.e. the negative GWP values of the Solar PV system when the inputs were all at the upper end of their range. This shows that the applicability of the ANFIS models highly depends on the range of cases at which it was calibrated. FIS and DAFIS generated more intuitive trends in the sensitivity runs. DAFIS demonstrated an optimal design point wherein increasing the input values does not improve the GWP and LCOE anymore. In the absence of data that could be used for calibration, conventional FIS presents a knowledge-based model that could be used for prediction. In the PV case study, conventional FIS generated errors that are just slightly higher than those of DAFIS. The inherent complexity of a Life Cycle study often hinders its widespread use in the industry and policy-making sectors. While the methodology does not guarantee a more accurate result compared to those generated by the Life Cycle Methodology, it does provide a relatively simpler way of generating knowledge- and data-based estimates that could be used during the initial design of a system.Keywords: solar photovoltaic, fuzzy logic, inference system, artificial neural networks
Procedia PDF Downloads 1642661 Multi-Objective Optimization of Combined System Reliability and Redundancy Allocation Problem
Authors: Vijaya K. Srivastava, Davide Spinello
Abstract:
This paper presents established 3n enumeration procedure for mixed integer optimization problems for solving multi-objective reliability and redundancy allocation problem subject to design constraints. The formulated problem is to find the optimum level of unit reliability and the number of units for each subsystem. A number of illustrative examples are provided and compared to indicate the application of the superiority of the proposed method.Keywords: integer programming, mixed integer programming, multi-objective optimization, Reliability Redundancy Allocation
Procedia PDF Downloads 1712660 Enhancement of Cross-Linguistic Effect with the Increase in the Multilingual Proficiency during Early Childhood: A Case Study of English Language Acquisition by a Pre-School Child
Authors: Anupama Purohit
Abstract:
The paper is a study on the inevitable cross-linguistic effect found in the early multilingual learners. The cross-linguistic behaviour like code-mixing, code-switching, foreign accent, literal translation, redundancy and syntactic manipulation effected due to other languages on the English language output of a non-native pre-school child are discussed here. A case study method is adopted in this paper to support the claim of the title. A simultaneously tetra lingual pre-school child’s (within 1;3 to 4;0) language behaviour is analysed here. The sample output data of the child is gathered from the diary entries maintained by her family, regular observations and video recordings done since her birth. She is getting the input of her mother tongue, Sambalpuri, from her grandparents only; Hindi, the local language from her play-school and the neighbourhood; English only from her mother and occasional visit of other family friends; Odia only during the reading of the Odia story book. The child is exposed to code-mixing of all the languages throughout her childhood. But code-mixing, literal translation, redundancy and duplication were absent in her initial stage of multilingual acquisition. As the child was more proficient in English in comparison to her other first languages and had never heard code-mixing in English language; it was expected from her input pattern of English (one parent, English language) that she would maintain purity in her use of English while talking to the English language interlocutor. But with gradual increase in the language proficiency in each of the languages of the child, her handling of the multiple codes becomes deft cross-linguistically. It can be deduced from the case study that after attaining certain milestone proficiency in each language, the child’s linguistic faculty can operate at a metalinguistic level. The functional use of each morpheme, their arrangement in words and in the sentences, the supra segmental features, lexical-semantic mapping, culture specific use of a language and the pragmatic skills converge to give a typical childlike multilingual output in an intelligible manner to the multilingual people (with the same set of languages in combination). The result is appealing because for expressing the same ideas which the child used to speak (may be with grammatically wrong expressions) in one language, gradually, she starts showing cross-linguistic effect in her expressions. So the paper pleads for the separatist view from the very beginning of the holophrastic phase (as the child expresses in addressee-specific language); but development of a metalinguistic ability that helps the child in communicating in a sophisticated way according to the linguistic status of the addressee is unique to the multilingual child. This metalinguistic ability is independent of the mode if input of a multilingual child.Keywords: code-mixing, cross-linguistic effect, early multilingualism, literal translation
Procedia PDF Downloads 2992659 Geographic Information System Based Multi-Criteria Subsea Pipeline Route Optimisation
Authors: James Brown, Stella Kortekaas, Ian Finnie, George Zhang, Christine Devine, Neil Healy
Abstract:
The use of GIS as an analysis tool for engineering decision making is now best practice in the offshore industry. GIS enables multidisciplinary data integration, analysis and visualisation which allows the presentation of large and intricate datasets in a simple map-interface accessible to all project stakeholders. Presenting integrated geoscience and geotechnical data in GIS enables decision makers to be well-informed. This paper is a successful case study of how GIS spatial analysis techniques were applied to help select the most favourable pipeline route. Routing a pipeline through any natural environment has numerous obstacles, whether they be topographical, geological, engineering or financial. Where the pipeline is subjected to external hydrostatic water pressure and is carrying pressurised hydrocarbons, the requirement to safely route the pipeline through hazardous terrain becomes absolutely paramount. This study illustrates how the application of modern, GIS-based pipeline routing techniques enabled the identification of a single most-favourable pipeline route crossing of a challenging seabed terrain. Conventional approaches to pipeline route determination focus on manual avoidance of primary constraints whilst endeavouring to minimise route length. Such an approach is qualitative, subjective and is liable to bias towards the discipline and expertise that is involved in the routing process. For very short routes traversing benign seabed topography in shallow water this approach may be sufficient, but for deepwater geohazardous sites, the need for an automated, multi-criteria, and quantitative approach is essential. This study combined multiple routing constraints using modern least-cost-routing algorithms deployed in GIS, hitherto unachievable with conventional approaches. The least-cost-routing procedure begins with the assignment of geocost across the study area. Geocost is defined as a numerical penalty score representing hazard posed by each routing constraint (e.g. slope angle, rugosity, vulnerability to debris flows) to the pipeline. All geocosted routing constraints are combined to generate a composite geocost map that is used to compute the least geocost route between two defined terminals. The analyses were applied to select the most favourable pipeline route for a potential gas development in deep water. The study area is geologically complex with a series of incised, potentially active, canyons carved into a steep escarpment, with evidence of extensive debris flows. A similar debris flow in the future could cause significant damage to a poorly-placed pipeline. Protruding inter-canyon spurs offer lower-gradient options for ascending an escarpment but the vulnerability of periodic failure of these spurs is not well understood. Close collaboration between geoscientists, pipeline engineers, geotechnical engineers and of course the gas export pipeline operator guided the analyses and assignment of geocosts. Shorter route length, less severe slope angles, and geohazard avoidance were the primary drivers in identifying the most favourable route.Keywords: geocost, geohazard, pipeline route determination, pipeline route optimisation, spatial analysis
Procedia PDF Downloads 4062658 Analysis of a Generalized Sharma-Tasso-Olver Equation with Variable Coefficients
Authors: Fadi Awawdeh, O. Alsayyed, S. Al-Shará
Abstract:
Considering the inhomogeneities of media, the variable-coefficient Sharma-Tasso-Olver (STO) equation is hereby investigated with the aid of symbolic computation. A newly developed simplified bilinear method is described for the solution of considered equation. Without any constraints on the coefficient functions, multiple kink solutions are obtained. Parametric analysis is carried out in order to analyze the effects of the coefficient functions on the stabilities and propagation characteristics of the solitonic waves.Keywords: Hirota bilinear method, multiple kink solution, Sharma-Tasso-Olver equation, inhomogeneity of media
Procedia PDF Downloads 517