Search results for: cytokine gene
982 Genetic Analysis of CYP11A1 Gene with Polycystic Ovary Syndrome from North India
Authors: Ratneev Kaur, Tajinder Kaur, Anupam Kaur
Abstract:
Introduction: Polycystic Ovary Syndrome (PCOS) is a heterogenous disorder of endocrine system among women of reproductive age. PCOS is characterized by hyperandrogenism, anovulation, polycystic ovaries, hirsutism, obesity, and hyperinsulinemia. Several pathways are implicated in its etiology including the metabolic pathway of steroid hormone synthesis regulatory pathways. PCOS is an androgen excess disorder, genes operating in steroidogenesis may alter pathogenesis of PCOS. The cytochrome P450scc is a cholesterol side chain cleavage enzyme coded by CYP11A1 gene and catalyzes conversion of cholesterol to pregnenolone, the initial and rate-limiting step in steroid hormone synthesis. It is postulated that polymorphisms in this gene may play an important role in the regulation of CYP11A1 expression and leading to increased or decreased androgen production. The present study will be the first study from north India to best of our knowledge, to analyse the association of CYP11A1 (rs11632698) polymorphism in women suffering from PCOS. Methodology: The present study was approved by ethical committee of Guru Nanak Dev University in consistent with declaration of Helsinki. A total of 300 samples (150 PCOS cases and 150 controls) were recruited from Hartej hospital, for the present study. Venous blood sample (3ml) was withdrawn from women diagnosed with PCOS by doctor, according to Rotterdam 2003 criteria and from healthy age matched controls only after informed consent and detailed filled proforma. For molecular genetics analysis, blood was stored in EDTA vials. After DNA isolation by organic method, PCR-RFLP approach was used for genotyping and association analysis of rs11632698 polymorphism. Statistical analysis was done to check for significance of selected polymorphism with PCOS. Results: In 150 PCOS cases, the frequency of AA, AG and GG genotype was found to be 48%, 35%, and 13% compared to 62%, 27% and 8% in 150 controls. The major allele (A) and minor allele (G) frequency was 68% and 32% in cases and 78% and 22% in controls. Minor allele frequency was higher in cases as compared to controls, as well as the distribution of genotype was observed to be statistically significant (ᵡ²=6.525, p=0.038). Odds ratio in dominant, co-dominant and recessive models observed was 1.81 (p=0.013), 1.54 (p=0.012) and 1.77 (p=0.132) respectively. Conclusion: The present study showed statistically significant association of rs11632698 with PCOS (p=0.038) in North Indian women.Keywords: polycystic ovary syndrome, CYP11A1, rs11632698, hyperandrogenism
Procedia PDF Downloads 142981 Mechanical Properties of Young and Senescence Fibroblast Cells Using Passive Microrheology
Authors: Samira Khalaji, , Fenneke Klein Jan, Kay-E. Gottschalk, Eugenia Makrantonaki, Karin Scharffetter-Kochanek
Abstract:
Biological aging is a multi-dimensional process that takes place over a whole range of scales from the nanoscopic alterations within individual cells, over transformations in tissues and organs and to changes of the whole organism. On the single cell level, aging involves mutation of genes, differences in gene expression levels as well as altered posttranslational modifications of proteins. A variety of proteins is affected, including proteins of the cell cytoskeleton and migration machinery. Previous work quantified the expression of cytoskeleton proteins on the gene and protein levels in senescent and young fibroblasts. Their results show that senescent skin fibroblasts have an upregulated expression of the intermediate filament (IF) protein vimentin in contrast to actin and tubulin, which are downregulated. IFs play an important role in providing mechanical stability of cells. However, the mechanical properties of IFs depending on cellular senescence or age of the donor has not been studied so far. Hence, we employed passive microrheology on primary human dermal fibroblasts from female donors with age of 28 years (young) and 86 years (old) as model of in vivo aging and human normal dermal fibroblast from 11-year old male with CPD 17-35 (young) and CPD 58-59 (senescence) as a model of in vitro replicative senescence. In contrast to the expectations, our primary results show no significant differences in the viscoelastic properties of fibroblasts depending on age of the donor or cellular replicative senescence.Keywords: aging, cytoskeleton, fibroblast, mechanical properties
Procedia PDF Downloads 320980 MAGE-A3 and PRAME Gene Expression and EGFR Mutation Status in Non-Small-Cell Lung Cancer
Authors: Renata Checiches, Thierry Coche, Nicolas F. Delahaye, Albert Linder, Fernando Ulloa Montoya, Olivier Gruselle, Karen Langfeld, An de Creus, Bart Spiessens, Vincent G. Brichard, Jamila Louahed, Frédéric F. Lehmann
Abstract:
Background: The RNA-expression levels of cancer-testis antigens MAGE A3 and PRAME were determined in resected tissue from patients with primary non-small-cell lung cancer (NSCLC) and related to clinical outcome. EGFR, KRAS and BRAF mutation status was determined in a subset to investigate associations with MAGE A3 and PRAME expression. Methods: We conducted a single-centre, uncontrolled, retrospective study of 1260 tissue-bank samples from stage IA-III resected NSCLC. The prognostic value of antigen expression (qRT-PCR) was determined by hazard-ratio and Kaplan-Meier curves. Results: Thirty-seven percent (314/844) of tumours expressed MAGE-A3, 66% (723/1092) expressed PRAME and 31% (239/839) expressed both. Respective frequencies in squamous-cell tumours and adenocarcinomas were 43%/30% for MAGE A3 and 80%/44% for PRAME. No correlation with stage, tumour size or patient age was found. Overall, no prognostic value was identified for either antigen. A trend to poorer overall survival was associated with MAGE-A3 in stage IIIB and with PRAME in stage IB. EGFR and KRAS mutations were found in 10.1% (28/311) and 33.8% (97/311) of tumours, respectively. EGFR (but not KRAS) mutation status was negatively associated with PRAME expression. Conclusion: No clear prognostic value for either PRAME or MAGE A3 was observed in the overall population, although some observed trends may warrant further investigation.Keywords: MAGE A3, PRAME, cancer-testis gene, NSCLC, survival, EGFR
Procedia PDF Downloads 382979 MAFB Expression in LPS-Induced Exosomes: Revealing the Connection to sepsis-trigerred Hepatic Injury
Authors: Gizaw Mamo Gebeyehu, Marianna Pap, Geza Makkai, Tibor Z. Janosi, Shima Rashidian, Tibor A. Rauch
Abstract:
Sepsis poses a significant global health threat, necessitating extensive exploration of indicators tied to its pathological mechanisms and multi-organ dysfunction. While murine studies have shed light on sepsis, the intricate cellular and molecular landscape in human sepsis remains enigmatic. Exploring the influence of activated monocyte-derived exosomes in sepsis sheds light on a promising pathway for understanding the intricate cellular and molecular mechanisms involved in this condition in humans. In sepsis, exosome-borne mRNA and miRNA orchestrate immune response gene expression in recipient cells. Yet, the specifics of exosome-mediated cell-to-cell communication, especially how mRNA cargoes modulate gene expression in recipient cells, remain poorly understood. This study aims to elucidate the precise molecular pathways through which exosomal mRNA cargo, particularly MAFB, contributes to the developing sepsis-induced molecular aberrations in liver tissues, employing rigorously defined cell culture conditions. THP-1 cells were treated with LPS to induce changes in exosomal RNA profiles. Exosomes were isolated and characterized using microscopy and mass spectrometry. RNA was extracted from exosomes and sequenced. The most abundant exosomal mRNAs were subjected to GO analysis for functional annotation analysis and KEGG database analysis to identify the involved enriched pathways. PCR (Polymerase Chain Reaction), RNA sequencing, and Western blotting were involved to analyze changes in gene expression, protein levels, and signaling pathways within the liver cells( HepG2) after exposure to exosomal MAFB. This study pinpoints exosomal MAFB as a potential key regulator linked to liver cell damage during sepsis, along with associated genes (miR155HG, H3F3A, and possibly JARD2) forming a crucial molecular pathway contributing to liver cell injury, Together, these elements indicate a vital molecular pathway that plays a significant role in the emergence of liver cell injury during sepsis.. These findings suggest the importance of further research on these components for potential therapeutic interventions in managing acute liver damage in sepsis.Keywords: sepsis, exososome, exosomal MAFB, LPS-induced THP-1 cells, RNA profiles, sepsis-triggered liver injury
Procedia PDF Downloads 64978 Prenatal Use of Serotonin Reuptake Inhibitors (SRIs) and Congenital Heart Anomalies (CHA): An Exploratory Pharmacogenetics Study
Authors: Aizati N. A. Daud, Jorieke E. H. Bergman, Wilhelmina S. Kerstjens-Frederikse, Pieter Van Der Vlies, Eelko Hak, Rolf M. F. Berger, Henk Groen, Bob Wilffert
Abstract:
Prenatal use of SRIs was previously associated with Congenital Heart Anomalies (CHA). The aim of the study is to explore whether pharmacogenetics plays a role in this teratogenicity using a gene-environment interaction study. A total of 33 case-mother dyads and 2 mother-only (children deceased) registered in EUROCAT Northern Netherlands were included in a case-only study. Five case-mother dyads and two mothers-only were exposed to SRIs (paroxetine=3, fluoxetine=2, venlafaxine=1, paroxetine and venlafaxine=1) in the first trimester of pregnancy. The remaining 28 case-mother dyads were not exposed to SRIs. Ten genes that encode the enzymes or proteins important in determining fetal exposure to SRIs or its mechanism of action were selected: CYPs (CYP1A2, CYP2C9, CYP2C19, CYP2D6), ABCB1 (placental P-glycoprotein), SLC6A4 (serotonin transporter) and serotonin receptor genes (HTR1A, HTR1B, HTR2A, and HTR3B). All included subjects were genotyped for 58 genetic variations in these ten genes. Logistic regression analyses were performed to determine the interaction odds ratio (OR) between genetic variations and SRIs exposure on the risk of CHA. Due to low phenotype frequencies of CYP450 poor metabolizers among exposed cases, the OR cannot be calculated. For ABCB1, there was no indication of changes in the risk of CHA with any of the ABCB1 SNPs in the children and their mothers. Several genetic variations of the serotonin transporter and receptors (SLC6A4 5-HTTLPR and 5-HTTVNTR, HTR1A rs1364043, HTR1B rs6296 & rs6298, HTR3B rs1176744) were associated with an increased risk of CHA, but with too limited sample size to reach statistical significance. For SLC6A4 genetic variations, the mean genetic scores of the exposed case-mothers tended to be higher than the unexposed mothers (2.5 ± 0.8 and 1.88 ± 0.7, respectively; p=0.061). For SNPs of the serotonin receptors, the mean genetic score for exposed cases (children) tended to be higher than the unexposed cases (3.4 ± 2.2, and 1.9 ± 1.6, respectively; p=0.065). This study might be among the first to explore the potential gene-environment interaction between pharmacogenetic determinants and SRIs use on the risk of CHA. With small sample sizes, it was not possible to find a significant interaction. However, there were indications for a role of serotonin receptor polymorphisms in fetuses exposed to SRIs on fetal risk of CHA which warrants further investigation.Keywords: gene-environment interaction, heart defects, pharmacogenetics, serotonin reuptake inhibitors, teratogenicity
Procedia PDF Downloads 219977 Genome-Wide Analysis Identifies Locus Associated with Parathyroid Hormone Levels
Authors: Antonela Matana, Dubravka Brdar, Vesela Torlak, Marijana Popovic, Ivana Gunjaca, Ozren Polasek, Vesna Boraska Perica, Maja Barbalic, Ante Punda, Caroline Hayward, Tatijana Zemunik
Abstract:
Parathyroid hormone (PTH) plays a critical role in the regulation of bone mineral metabolism and calcium homeostasis. Higher PTH levels are associated with heart failure, hypertension, coronary artery disease, cardiovascular mortality and poorer bone health. A twin study estimated that 60% of the variation in PTH concentrations is genetically determined. Only one GWAS of PTH concentration has been reported to date. Identified loci explained 4.5% of the variance in circulating PTH, suggesting that additional genetic variants remain undiscovered. Therefore, the aim of this study was to identify novel genetic variants associated with PTH levels in a general population. We have performed a GWAS meta-analysis on 2596 individuals originating from three Croatian cohorts: City of Split and the Islands of Korčula and Vis, within a large-scale project of “10,001 Dalmatians”. A total of 7 411 206 variants, imputed using the 1000 Genomes reference panel, with minor allele frequency ≥ 1% and Rsq ≥ 0.5 were analyzed for the association. GWAS within each data set was performed under an additive model, controlling for age, gender and relatedness. Meta-analysis was conducted using the inverse-variance fixed-effects method. Furthermore, to identify sex-specific effects, we have conducted GWAS meta-analyses analyzing males and females separately. In addition, we have performed biological pathway analysis. Four SNPs, representing one locus, reached genome-wide significance. The most significant SNP was rs11099476 on chromosome 4 (P=1.15x10-8), which explained 1.14 % of the variance in PTH. The SNP is located near the protein-coding gene RASGEF1B. Additionally, we detected suggestive association with SNPs, rs77178854 located on chromosome 2 in the DPP10 gene (P=2.46x10-7) and rs481121 located on chromosome 1 (P=3.58x10-7) near the GRIK1 gene. One of the top hits detected in the main meta-analysis, intron variant rs77178854 located within DPP10 gene, reached genome-wide significance in females (P=2.21x10-9). No single locus was identified in the meta-analysis in males. Fifteen biological pathways were functionally enriched at a P<0.01, including muscle contraction, ion homeostasis and cardiac conduction as the most significant pathways. RASGEF1B is the guanine nucleotide exchange factor, known to be associated with height, bone density, and hip. DPP10 encodes a membrane protein that is a member of the serine proteases family, which binds specific voltage-gated potassium channels and alters their expression and biophysical properties. In conclusion, we identified 2 novel loci associated with PTH levels in a general population, providing us with further insights into the genetics of this complex trait.Keywords: general population, genome-wide association analysis, parathyroid hormone, single nucleotide polymorphisms.
Procedia PDF Downloads 225976 Imaging Spectrum of Central Nervous System Tuberculosis on Magnetic Resonance Imaging: Correlation with Clinical and Microbiological Results
Authors: Vasundhara Arora, Anupam Jhobta, Suresh Thakur, Sanjiv Sharma
Abstract:
Aims and Objectives: Intracranial tuberculosis (TB) is one of the most devastating manifestations of TB and a challenging public health issue of considerable importance and magnitude world over. This study elaborates on the imaging spectrum of neurotuberculosis on magnetic resonance imaging (MRI) in 29 clinically suspected cases from a tertiary care hospital. Materials and Methods: The prospective hospital based evaluation of MR imaging features of neuro-tuberculosis in 29 clinically suspected cases was carried out in Department of Radio-diagnosis, Indira Gandhi Medical Hospital from July 2017 to August 2018. MR Images were obtained on a 1.5 T Magnetom Avanto machine and were analyzed to identify any abnormal meningeal enhancement or parenchymal lesions. Microbiological and Biochemical CSF analysis was performed in radio-logically suspected cases and the results were compared with the imaging data. Clinical follow up of the patients started on anti-tuberculous treatment was done to evaluate the response to treatment and clinical outcome. Results: Age range of patients in the study was between 1 year to 73 years. The mean age of presentation was 11.5 years. No significant difference in the distribution of cerebral tuberculosis was noted among the two genders. Imaging findings of neuro-tuberculosis obtained were varied and non specific ranging from lepto-meningeal enhancement, cerebritis to space occupying lesions such as tuberculomas and tubercular abscesses. Complications presenting as hydrocephalus (n= 7) and infarcts (n=9) was noted in few of these patients. 29 patients showed radiological suspicion of CNS tuberculosis with meningitis alone observed in 11 cases, tuberculomas alone were observed in 4 cases, meningitis with parenchymal tuberculomas in 11 cases. Tubercular abscess and cerebritis were observed in one case each. Tuberculous arachnoiditis was noted in one patient. Gene expert positivity was obtained in 11 out of 29 radiologically suspected patients; none of the patients showed culture positivity. Meningeal form of the disease alone showed higher positivity rate of gene Xpert (n=5) followed by combination of meningeal and parenchymal forms of disease (n=4). The parenchymal manifestation of disease alone showed least positivity rates (n= 3) with gene xpert testing. All 29 patients were started on anti tubercular treatment based on radiological suspicion of the disease with clinical improvement observed in 27 treated patients. Conclusions: In our study, higher incidence of neuro- tuberculosis was noted in paediatric population with predominance of the meningeal form of the disease. Gene Xpert positivity obtained was low due to paucibacillary nature of cerebrospinal fluid (CSF) with even lower positivity of CSF samples in parenchymal form of the manifestation. MRI showed high accuracy in detecting CNS lesions in neuro-tuberculosis. Hence, it can be concluded that MRI plays a crucial role in the diagnosis because of its inherent sensitivity and specificity and is an indispensible imaging modality. It caters to the need of early diagnosis owing to poor sensitivity of microbiological tests more so in the parenchymal manifestation of the disease.Keywords: neurotuberculosis, tubercular abscess, tuberculoma, tuberculous meningitis
Procedia PDF Downloads 169975 Network Pharmacological Evaluation of Holy Basil Bioactive Phytochemicals for Identifying Novel Potential Inhibitors Against Neurodegenerative Disorder
Authors: Bhuvanesh Baniya
Abstract:
Alzheimer disease is illnesses that are responsible for neuronal cell death and resulting in lifelong cognitive problems. Due to their unclear mechanism, there are no effective drugs available for the treatment. For a long time, herbal drugs have been used as a role model in the field of the drug discovery process. Holy basil in the Indian medicinal system (Ayurveda) is used for several neuronal disorders like insomnia and memory loss for decades. This study aims to identify active components of holy basil as potential inhibitors for the treatment of Alzheimer disease. To fulfill this objective, the Network pharmacology approach, gene ontology, pharmacokinetics analysis, molecular docking, and molecular dynamics simulation (MDS) studies were performed. A total of 7 active components in holy basil, 12 predicted neurodegenerative targets of holy basil, and 8063 Alzheimer-related targets were identified from different databases. The network analysis showed that the top ten targets APP, EGFR, MAPK1, ESR1, HSPA4, PRKCD, MAPK3, ABL1, JUN, and GSK3B were found as significant target related to Alzheimer disease. On the basis of gene ontology and topology analysis results, APP was found as a significant target related to Alzheimer’s disease pathways. Further, the molecular docking results to found that various compounds showed the best binding affinities. Further, MDS top results suggested could be used as potential inhibitors against APP protein and could be useful for the treatment of Alzheimer’s disease.Keywords: holy basil, network pharmacology, neurodegeneration, active phytochemicals, molecular docking and simulation
Procedia PDF Downloads 101974 Modulation of Alternative Respiration Pathyway under Salt Stress in Exogenous Estrogen-Treated Maize Seedlings
Authors: Farideh K. Khosroushahi, Serkan Erdal, Mucip Geni̇şel
Abstract:
Soil salinity is one of the major abiotic stress factors that restricts arable land and reduces crop productivity worldwide. High salt concentration adversely affects plant growth and development inducing water deficit, ionic toxicity, nutrient imbalance, and lead to oxidative stress. Although the stimulating role of mammalian sex hormones on various biological and biochemical processes under normal and stress condition have been proven, there is no study regarding with these hormone's effect on modulation of the alternative respiration pathway and AOX gene expression. In this study, changes in alternative respiration pathway in leaves of maize seedlings under salinity and the possible modulating effect of estrogen on these changes were investigated. Maize seedlings were grown in a hydroponic media for 11 days and then were exposed to salt stress for 3 days after being sprayed estrogen. The data obtained from oxygen consumption revealed that salt stress elevated cellular respiration value in the leaves. In addition, a marked increase was observed at alternative respiration level in salt-stressed seedlings. Compared to salt application alone, supplementation with estrogen resulted in a significant rise in alternative oxidase (AOX) activities. Similarly, while salt stress caused to rise in expressions of AOX gene compared to control seedlings, estrogen application resulted in further activation of these genes’ expression compared to stressed-seedlings alone. These data revealed that mitigating role of estrogen against the detrimental effects of salt stress is linked to modulation of alternative respiration pathway.Keywords: alternative oxidase, estrogen, Ssalt stress, AOX, maize
Procedia PDF Downloads 215973 The Role of Cholesterol Oxidase of Mycobacterium tuberculosis in the Down-Regulation of TLR2-Signaling Pathway in Human Macrophages during Infection Process
Authors: Michal Kielbik, Izabela Szulc-Kielbik, Anna Brzostek, Jaroslaw Dziadek, Magdalena Klink
Abstract:
The goal of many research groups in the world is to find new components that are important for survival of mycobacteria in the host cells. Mycobacterium tuberculosis (Mtb) possesses a number of enzymes degrading cholesterol that are considered to be an important factor for its survival and persistence in host macrophages. One of them - cholesterol oxidase (ChoD), although not being essential for cholesterol degradation, is discussed as a virulence compound, however its involvement in macrophages’ response to Mtb is still not sufficiently determined. The recognition of tubercle bacilli antigens by pathogen recognition receptors is crucial for the initiation of the host innate immune response. An important receptor that has been implicated in the recognition and/or uptake of Mtb is Toll-like receptor type 2 (TLR2). Engagement of TLR2 results in the activation and phosphorylation of intracellular signaling proteins including IRAK-1 and -4, TRAF-6, which in turn leads to the activation of target kinases and transcription factors responsible for bactericidal and pro-inflammatory response of macrophages. The aim of these studies was a detailed clarification of the role of Mtb cholesterol oxidase as a virulence factor affecting the TLR2 signaling pathway in human macrophages. As human macrophages the THP-1 differentiated cells were applied. The virulent wild-type Mtb strain (H37Rv), its mutant lacking a functional copy of gene encoding cholesterol oxidase (∆choD), as well as complimented strain (∆choD–choD) were used. We tested the impact of Mtb strains on the expression of TLR2-depended signaling proteins (mRNA level, cytosolic level and phosphorylation status). The cytokine and bactericidal response of THP-1 derived macrophages infected with Mtb strains in relation to TLR2 signaling pathway dependence was also determined. We found that during the 24-hours of infection process the wild-type and complemented Mtb significantly reduced the cytosolic level and phosphorylation status of IRAK-4 and TRAF-6 proteins in macrophages, that was not observed in the case of ΔchoD mutant. Decreasement of TLR2-dependent signaling proteins, induced by wild-type Mtb, was not dependent on the activity of proteasome. Blocking of TLR2 expression, before infection, effectively prevented the induced by wild-type strain reduction of cytosolic level and phosphorylation of IRAK-4. None of the strains affected the surface expression of TLR2. The mRNA level of IRAK-4 and TRAF-6 genes were significantly increased in macrophages 24 hours post-infection with either of tested strains. However, the impact of wild-type Mtb strain on both examined genes was significantly stronger than its ΔchoD mutant. We also found that wild-type strain stimulated macrophages to release high amount of immunosuppressive IL-10, accompanied by low amount of pro-inflammatory IL-8 and bactericidal nitric oxide in comparison to mutant lacking cholesterol oxidase. The influence of wild-type Mtb on this type of macrophages' response strongly dependent on fully active IRAK-1 and IRAK-4 signaling proteins. In conclusion, Mtb using cholesterol oxidase causes the over-activation of TLR2 signaling proteins leading to the reduction of their cytosolic level and activity resulting in the modulation of macrophages response to allow its intracellular survival. Supported by grant: 2014/15/B/NZ6/01565, National Science Center, PolandKeywords: Mycobacterium tuberculosis, cholesterol oxidase, macrophages, TLR2-dependent signaling pathway
Procedia PDF Downloads 419972 Angiotensin Converting Enzyme (ACE) and Angiotensinogen (AGT) Gene Variants in Pakistani Patients of Diabetes Mellitus and Diabetic Nephropathy
Authors: Rozeena Shaikh, Syed M Shahid, Jamil Ahmad, Qaisar Mansoor, Muhammad Ismail, Abid Azhar
Abstract:
Introduction: Diabetes mellitus (DM) is a prevalent non-communicable disease worldwide. In most high-income countries as well as middle-income and low- income countries. DM is among the top causes of deaths. DM may lead to many vascular complications like hypertension, nephropathy, retinopathy, neuropathy, and foot. Diabetic nephropathy (DN) characterized by persistent albuminuria is a leading cause of end stage renal failure (ESRF). Pathogenesis of diabetic nephropathy is implicated by the polymorphisms in genes encoding the components of reninangiotensin- aldosteron system (RAAS) which include angiotensinogen (AGT), angiotensin-II receptor and particularly angiotensin converting enzyme (ACE) gene. Method: Study subjects include 110 control, 110 patients with DM without hypertension, 110 patients with DM with hypertension and 110 patients with DN. Blood samples were collected for Biochemical analysis and PCR and sequencing for the specific region of both genes. Results: The frequency of DD genotype and D allele of ACE (I/D) was significantly (p<0.05) high in DM normotensive, DM hypertensive and DN patients when compared to control. The ACE G2350A genotypes and allele frequencies were significantly different (p<0.05) in DM hypertensive patients as compared to control and DN, while no difference was observed between DM normotensive and DN when compared to control. The genotypes and alleles of AGT (M268T) polymorphism were significantly different (p<0.05) in DM normotensive, DM hypertensive and DN when compared to control. Conclusion: The DD genotype and D allele of ACE (I/D), GG genotype and G allele of ACE (G2350A) and the TT genotype and T allele of AGT (M268T) polymorphism have shown a significant difference in genotype and allele frequencies between controls and patients.Keywords: genetic variations, ACE, AGT, diabetes mellitus, diabetic nephropathy, Pakistan
Procedia PDF Downloads 392971 Mutation Profiling of Paediatric Solid Tumours in a Cohort of South African Patients
Authors: L. Lamola, E. Manolas, A. Krause
Abstract:
Background: The incidence of childhood cancer incidence is increasing gradually in low-middle income countries, such as South Africa. Globally, there is an extensive range of familial- and hereditary-cancer syndromes, where underlying germline variants increase the likelihood of developing cancer in childhood. Next-Generation Sequencing (NGS) technologies have been key in determining the occurrence and genetic contribution of germline variants to paediatric cancer development. We aimed to design and evaluate a candidate gene panel specific to inherited cancer-predisposing genes to provide a comprehensive insight into the contribution of germline variants to childhood cancer. Methods: 32 paediatric patients (aged 0-18 years) diagnosed with a malignant tumour were recruited, and biological samples were obtained. After quality control, DNA was sequenced using an ion Ampliseq 50 candidate gene panel design and Ion Torrent S5 technologies. Sequencing variants were called using Ion Torrent Suite software and were subsequently annotated using Ion Reporter and Ensembl's VEP. High priority variants were manually analysed using tools such as MutationTaster, SIFT-INDEL and VarSome. Putative identified candidates were validated via Sanger Sequencing. Results: The patients studied had a variety of cancers, the most common being nephroblastoma (13), followed by osteosarcoma (4) and astrocytoma (3). We identified 10 pathogenic / likely pathogenic variants in 10 patients, most of which were novel. Conclusions: According to the literature, we expected ~10% of our patient population to harbour pathogenic or likely pathogenic germline variants, however, we reported about 3 times (~30%) more than we expected. Majority of the identified variants are novel; this may be because this is the first study of its kind in an understudied South African population.Keywords: Africa, genetics, germline-variants, paediatric-cancer
Procedia PDF Downloads 139970 Cassava Plant Architecture: Insights from Genome-Wide Association Studies
Authors: Abiodun Olayinka, Daniel Dzidzienyo, Pangirayi Tongoona, Samuel Offei, Edwige Gaby Nkouaya Mbanjo, Chiedozie Egesi, Ismail Yusuf Rabbi
Abstract:
Cassava (Manihot esculenta Crantz) is a major source of starch for various industrial applications. However, the traditional cultivation and harvesting methods of cassava are labour-intensive and inefficient, limiting the supply of fresh cassava roots for industrial starch production. To achieve improved productivity and quality of fresh cassava roots through mechanized cultivation, cassava cultivars with compact plant architecture and moderate plant height are needed. Plant architecture-related traits, such as plant height, harvest index, stem diameter, branching angle, and lodging tolerance, are critical for crop productivity and suitability for mechanized cultivation. However, the genetics of cassava plant architecture remain poorly understood. This study aimed to identify the genetic bases of the relationships between plant architecture traits and productivity-related traits, particularly starch content. A panel of 453 clones developed at the International Institute of Tropical Agriculture, Nigeria, was genotyped and phenotyped for 18 plant architecture and productivity-related traits at four locations in Nigeria. A genome-wide association study (GWAS) was conducted using the phenotypic data from a panel of 453 clones and 61,238 high-quality Diversity Arrays Technology sequencing (DArTseq) derived Single Nucleotide Polymorphism (SNP) markers that are evenly distributed across the cassava genome. Five significant associations between ten SNPs and three plant architecture component traits were identified through GWAS. We found five SNPs on chromosomes 6 and 16 that were significantly associated with shoot weight, harvest index, and total yield through genome-wide association mapping. We also discovered an essential candidate gene that is co-located with peak SNPs linked to these traits in M. esculenta. A review of the cassava reference genome v7.1 revealed that the SNP on chromosome 6 is in proximity to Manes.06G101600.1, a gene that regulates endodermal differentiation and root development in plants. The findings of this study provide insights into the genetic basis of plant architecture and yield in cassava. Cassava breeders could leverage this knowledge to optimize plant architecture and yield in cassava through marker-assisted selection and targeted manipulation of the candidate gene.Keywords: Manihot esculenta Crantz, plant architecture, DArtseq, SNP markers, genome-wide association study
Procedia PDF Downloads 70969 The Role of Leukocyte-Derived IL-10 on Postoperative ileus and Intestinal Macrophage Differentiation in Mice
Authors: Kathy Stein, Mariola Lysson, Anja Schmidt, Beatrix Schumak, Sabine Specht, Hicham Bouabe, Jürgen Heesemann, Axel Roers, Joerg C. Kalff, Sven Wehner
Abstract:
Objective: Postoperative ileus (POI) is a common complication of abdominal surgery. Monocyte infiltration is a hallmark of POI. The polarization of macrophages/monocytes in this process is not well understood. We aimed to investigate if and how M2 macrophage/monocyte differentiation is involved in POI pathogenesis. Design: POI was induced by intestinal manipulation (IM). C57Bl/6, CCR2-/-, IL-10 reporter (ITIB), IL-10-/- and LysMcre/IL-10fl/fl mice underwent IM. At various points in time leukocyte influx, gene and protein expression of cytokines, chemokines and M2 differentiation markers and intestinal motility were analyzed. Results: IM induced the postoperative expression of the M2 markers Arginase-1 and YM-1, predominantly in F4/80+Ly6C+ monocytes. Gene expression analyses indicated an IL-10-dependent, IL-4-independent M2 polarization of these monocytes. IL-10 dependency of M2 differentiation was confirmed in IL-10 deficient mice. Leukocytes, in the order of infiltrating monocytes, neutrophils, and resident macrophages were the main IL-10 producers during POI. IL-10 producing monocytes as well as M2 marker expression were almost absent in CCR2-deficient mice. However, postoperative IL-10 expression was not altered in CCR2-/- mice. The loss of M2 polarized monocytes neither protected CCR2-/- mice from nor affected resolution of POI. In contrast, IL-10 deficiency reduced postoperative neutrophil numbers and ameliorated POI. IL-10Ra expression was strongly induced in neutrophils but not in monocytes. Conclusion: We conclude that IL-10 counteracts POI resolution by activating IL-10Ra-expressing neutrophils in the late phase of disease while IL-10-dependent M2 differentiation is not pivotal to POI manifestation and resolution.Keywords: interleukin-10, macrophages, neutrophils, postoperative ileus
Procedia PDF Downloads 356968 Vitamin D Deficiency is Associated with Increases IgE Receptors in Children with Asthma
Authors: A. Vijayendra Chary, R. Hemalatha
Abstract:
Background: Vitamin D is a potent modulator of the immune system and is involved in regulating cell proliferation and differentiation. Vitamin D deficiency has been linked to increased severity of asthma in children. Asthma has dramatically increased in past decades, particular in developing countries and affects up to 20% of the population. IgE and its receptors, CD23 (FcεRII) and CD 21, play an essential role in all allergic conditions. Methods: A case control study was conducted on asthma and age and sex matched control children. 25 hydroxyvitamin D3 was quantified by HPLC; CD23; and CD21 expression on B cells were performed by flow cytometry. Total Histamine, total IGE and IL-5 and IFN-γ cytokines were determined by ELISA in blood samples of bronchial asthma (n=45) and control children (n=45). Results: The mean ± SE of vitamin D was significantly (p<0.05) low in asthma children (13.6±0.54 ng/mL) than in controls (17.4 ± 0.37 ng/mL). The mean (%) ± SE of CD23 and CD21 expression on B cells were significantly (p<0.01) high in asthma (1.02±0.09; 1.67± 0.13), when compared to controls (0.24±0.01; 0.94±0.03) respectively. The mean± SE of Serum IgE and blood histamine levels in asthma children (354.52 ± 17.33 IU/mL; 53.27 ± 2.54 nM/mL) were increased (P<0.05) when compared to controls (183.12±17.62 IU/mL 39.34±4.16 nM/mL) respectively and IFN-γ (Th1 cytokine) was lower (P<0.01) (16.37±1.27 pg/mL) than in controls (43.34±6.21 pg/mL). Conclusion: Our study provides evidence that low vitamin D levels are associated with increased IgE receptors CD23 and CD21 on B cells. In addition, there was preferential activation of Th2 (IL-5) and suppression of Th1 (IFN-γ) cytokines in children with asthma.Keywords: bronchial asthma, CD23, IgE, vitamin D
Procedia PDF Downloads 474967 Function Study of IrMYB55 in Regulating Synthesis of Terpenoids in Isodon Rubescens
Authors: Qingfang Guo
Abstract:
Isodon rubescens is rich in a variety of terpenes such as oridonin. It has important medicinal value. MYB transcription factors are involved in the regulation of plant secondary metabolic pathways. The combined transcriptomics and metabolomics analysis revealed that IrMYB55 might be involved in the regulation of the synthesis of terpenes. The function of IrMYB55 was further verified by establishing of a genetic transformation system by CRISPR/Cas9. Obtaining a virus-mediated Isodon rubescens gene silencing material. The main research results are as follows: (1) Screening IrMYB which can regulate the synthesis of terpenes. Metabolomics and transcriptomics analyses of materials with high (TJ)-and low (FL)-content populations which revealed significant differences in terpene content and IrMYB55 expression. Correlation analysis showed that the expression level of IrMYB55 had a significant correlation with the content of terpenes. (2) Establishment of a genetic transformation system of Isodon rubescens. The IrPDS gene could be knocked out by injection of Isodon rubescens cotyledon, and the transformed material showed obvious albino phenotype. Subsequently, IrMYB55 conversion material was obtained by this method. (3) The IrMYB55 silencing material was obtained. Subcellular localization indicated that IrMYB55 was located in the nucleus, indicating that it might regulate the synthesis of terpenoids through transcription. In summary, IrMYB55 that may regulate the synthesis of oridonin was dug out from the transcriptome and metabolome data. In this study, a genetic transformation system of Isodon rubescens was successfully established. Further studies showed that IrMYB55 regulated the transcription level of genes related to the synthesis of terpenoids, thereby promoting the accumulation of oridonin.Keywords: isodon rubescens, MYB, oridonin, CRISPR/Cas9
Procedia PDF Downloads 29966 Sulfur-Containing Diet Shift Hydrogen Metabolism and Reduce Methane Emission and Modulated Gut Microbiome in Goats
Authors: Tsegay Teklebrhan Gebremariam, Zhiliang, Arjan Jonker
Abstract:
The study investigated that using corn gluten (CG) instead of cornmeal (CM) increased dietary sulfur shifted H₂ metabolism from methanogenesis to alternative sink and modulated microbiome in the rumen as well as hindgut segments of goats. Ruminal fermentation, CH₄ emissions and microbial abundance in goats (n = 24). The experiment was performed using a randomized block design with two dietary treatments (CM and CG with 400 g/kg DM each). Goats in CG increased sulfur, NDF and CP intake and decreased starch intake as compared with those in CM. Goats that received CG diet had decreased dissolved hydrogen (dH₂) (P = 0.01) and dissolved methane yield and emission (dCH₄) (P = 0.001), while increased dH₂S both in the rumen and hindgut segments than those fed CM. Goats fed CG had higher (p < 0.01) gene copies of microbiota and cellulolytic bacteria, whereas starch utilizing bacterial species were less in the rumen and hindgut than those fed CM. Higher (P < 0.05) methanogenic diversity and abundances of Methanimicrococcus and Methanomicrobium were observed in goats that consumed CG, whilst containing lower Methanobrevibacter populations than those receiving CM. The study suggested that goats fed corn gluten improved the gene copies of microbiota and fibrolytic bacterial species while reducing starch utilizing species in the rumen and hindgut segments as compared with that fed cornmeal. Goats consuming corn gluten had a more enriched methanogenic diversity and reduced Methanobrevibacter, a contributor to CH₄ emissions, as compared with goats fed CM. Corn gluten could be used as an alternative feed to decrease the enteric CH₄ emission in ruminant production.Keywords: dissolved gasses, methanogenesis, microbial community, metagenomics
Procedia PDF Downloads 158965 Investigation of FOXM1 Gene Expression in Breast Cancer and Its Relationship with Mir-216B-5P Expression Level
Authors: Ramin Mehdiabadi, Neda Menbari, Mohammad Nazir Menbari
Abstract:
As a pressing public health concern, breast cancer stands as the predominant oncological diagnosis and principal cause of cancer-related mortality among women globally, accounting for 11.7% of new cancer incidences and 6.9% of cancer-related deaths. The annual figures indicate that approximately 230,480 women are diagnosed with breast cancer in the United States alone, with 39,520 succumbing to the disease. While developed economies have reported a deceleration in both incidence and mortality rates across various forms of cancer, including breast cancer, emerging and low-income economies manifest a contrary escalation, largely attributable to lifestyle-mediated risk factors such as tobacco usage, physical inactivity, and high caloric intake. Breast cancer is distinctly characterized by molecular heterogeneity, manifesting in specific subtypes delineated by biomarkers—Estrogen Receptors (ER), Progesterone Receptors (PR), and Human Epidermal Growth Factor Receptor 2 (HER2). These subtypes, comprising Luminal A, Luminal B, HER2-enriched, triple-negative/basal-like, and normal-like, necessitate nuanced, subtype-specific therapeutic regimens, thereby challenging the applicability of generalized treatment protocols. Within this molecular complexity, the transcription factor Forkhead Box M1 (FoxM1) has garnered attention as a significant driver of cellular proliferation, tumorigenesis, metastatic progression, and treatment resistance in a spectrum of human malignancies, including breast cancer. Concurrently, microRNAs (miRs), specifically miR-216b-5p, have been identified as post-transcriptional gene expression regulators and potential tumor suppressors. The overarching objective of this academic investigation is to explicate the multifaceted interrelationship between FoxM1 and miR-216b-5p across the disparate molecular subtypes of breast cancer. Employing a methodologically rigorous, interdisciplinary research design that incorporates cutting-edge molecular biology techniques, sophisticated bioinformatics analytics, and exhaustive meta-analyses of extant clinical data, this scholarly endeavor aims to unveil novel biomarker-specific therapeutic pathways. By doing so, this research is positioned to make a seminal contribution to the advancement of personalized, efficacious, and minimally toxic treatment paradigms, thus profoundly impacting the global efforts to ameliorate the burden of breast cancer.Keywords: breast cancer, fox m1, microRNAs, mir-216b-5p, gene expression
Procedia PDF Downloads 74964 Possible Involvement of DNA-methyltransferase and Histone Deacetylase in the Regulation of Virulence Potential of Acanthamoeba castellanii
Authors: Yi H. Wong, Li L. Chan, Chee O. Leong, Stephen Ambu, Joon W. Mak, Priyadashi S. Sahu
Abstract:
Background: Acanthamoeba is a free-living opportunistic protist which is ubiquitously distributed in the environment. Virulent Acanthamoeba can cause fatal encephalitis in immunocompromised patients and potential blinding keratitis in immunocompetent contact lens wearers. Approximately 24 species have been identified but only the A. castellanii, A. polyphaga and A. culbertsoni are commonly associated with human infections. Until to date, the precise molecular basis for Acanthamoeba pathogenesis remains unclear. Previous studies reported that Acanthamoeba virulence can be diminished through prolonged axenic culture but revived through serial mouse passages. As no clear explanation on this reversible pathogenesis is established, hereby, we postulate that the epigenetic regulators, DNA-methyltransferases (DNMT) and histone-deacetylases (HDAC), could possibly be involved in granting the virulence plasticity of Acanthamoeba spp. Methods: Four rounds of mouse passages were conducted to revive the virulence potential of the virulence-attenuated Acanthamoeba castellanii strain (ATCC 50492). Briefly, each mouse (n=6/group) was inoculated intraperitoneally with Acanthamoebae cells (2x 105 trophozoites/mouse) and incubated for 2 months. Acanthamoebae cells were isolated from infected mouse organs by culture method and subjected to subsequent mouse passage. In vitro cytopathic, encystment and gelatinolytic assays were conducted to evaluate the virulence characteristics of Acanthamoebae isolates for each passage. PCR primers which targeted on the 2 members (DNMT1 and DNMT2) and 5 members (HDAC1 to 5) of the DNMT and HDAC gene families respectively were custom designed. Quantitative real-time PCR (qPCR) was performed to detect and quantify the relative expression of the two gene families in each Acanthamoeba isolates. Beta-tubulin of A. castellanii (Genbank accession no: XP_004353728) was included as housekeeping gene for data normalisation. PCR mixtures were also analyzed by electrophoresis for amplicons detection. All statistical analyses were performed using the paired one-tailed Student’s t test. Results: Our pathogenicity tests showed that the virulence-reactivated Acanthamoeba had a higher degree of cytopathic effect on vero cells, a better resistance to encystment challenge and a higher gelatinolytic activity which was catalysed by serine protease. qPCR assay showed that DNMT1 expression was significantly higher in the virulence-reactivated compared to the virulence-attenuated Acanthamoeba strain (p ≤ 0.01). The specificity of primers which targeted on DNMT1 was confirmed by sequence analysis of PCR amplicons, which showed a 97% similarity to the published DNA-methyltransferase gene of A. castellanii (GenBank accession no: XM_004332804.1). Out of the five primer pairs which targeted on the HDAC family genes, only HDAC4 expression was significantly difference between the two variant strains. In contrast to DNMT1, HDAC4 expression was much higher in the virulence-attenuated Acanthamoeba strain. Conclusion: Our mouse passages had successfully restored the virulence of the attenuated strain. Our findings suggested that DNA-methyltransferase (DNMT1) and histone deacetylase (HDAC4) expressions are associated with virulence potential of Acanthamoeba spp.Keywords: acanthamoeba, DNA-methyltransferase, histone deacetylase, virulence-associated proteins
Procedia PDF Downloads 289963 Characteristics of Tremella fuciformis and Annulohypoxylon stygium for Optimal Cultivation Conditions
Authors: Eun-Ji Lee, Hye-Sung Park, Chan-Jung Lee, Won-Sik Kong
Abstract:
We analyzed the DNA sequence of the ITS (Internal Transcribed Spacer) region of the 18S ribosomal gene and compared it with the gene sequence of T. fuciformis and Hypoxylon sp. in the BLAST database. The sequences of collected T. fuciformis and Hypoxylon sp. have over 99% homology in the T. fuciformis and Hypoxylon sp. sequence BLAST database. In order to select the optimal medium for T. fuciformis, five kinds of a medium such as Potato Dextrose Agar (PDA), Mushroom Complete Medium (MCM), Malt Extract Agar (MEA), Yeast extract (YM), and Compost Extract Dextrose Agar (CDA) were used. T. fuciformis showed the best growth on PDA medium, and Hypoxylon sp. showed the best growth on MCM. So as to investigate the optimum pH and temperature, the pH range was set to pH4 to pH8 and the temperature range was set to 15℃ to 35℃ (5℃ degree intervals). Optimum culture conditions for the T. fuciformis growth were pH5 at 25℃. Hypoxylon sp. were pH6 at 25°C. In order to confirm the most suitable carbon source, we used fructose, galactose, saccharose, soluble starch, inositol, glycerol, xylose, dextrose, lactose, dextrin, Na-CMC, adonitol. Mannitol, mannose, maltose, raffinose, cellobiose, ethanol, salicine, glucose, arabinose. In the optimum carbon source, T. fuciformis is xylose and Hypoxylon sp. is arabinose. Using the column test, we confirmed sawdust a suitable for T. fuciformis, since the composition of sawdust affects the growth of fruiting bodies of T. fuciformis. The sawdust we used is oak tree, pine tree, poplar, birch, cottonseed meal, cottonseed hull. In artificial cultivation of T. fuciformis with sawdust medium, T. fuciformis and Hypoxylon sp. showed fast mycelial growth on mixture of oak tree sawdust, cottonseed hull, and wheat bran.Keywords: cultivation, optimal condition, tremella fuciformis, nutritional source
Procedia PDF Downloads 210962 Selection of Potential Starter Using Their Transcription Level
Authors: Elif Coskun Daggecen, Seyma Dokucu, Yekta Gezginc, Ismail Akyol
Abstract:
Fermented dairy food quality is mainly determined by the sensory perception and influenced by many factors. Today, starter cultures for fermented foods are being developed to have a constant quality in these foods. Streptococcus thermophilus is one of the main species of most a starter cultures of yogurt fermentation. This species produces lactate by lactose fermentation from pyruvate. On the other hand, a small amount of pyruvate can alternatively be converted to various typical yoghurt flavor compounds such as diacetyl, acetoin, acetaldehyde, or acetic acid, for which the activity of three genes are shown to be especially important; ldh, nox and als. Up to date, commercially produced yoghurts have not yet met the desired aromatic properties that Turkish consumers find in traditional homemade yoghurts. Therefore, it is important to select starters carrying favorable metabolic characteristics from natural isolates. In this study, 30 strains of Str. Thermophilus were isolated from traditional Turkish yoghurts obtained from different regions of the country. In these strains, transcriptional levels of ldh, nox and als genes were determined via a newly developed qPCR protocol, which is a more reliable and precision method for analyzing the quantitative and qualitative expression of specific genes in different experimental conditions or in different organisms compared to conventional analytical methods. Additionally, the metabolite production potentials of the isolates were measured. Of all the strains examined, 60% were found to carry the metabolite production potential and the gene activity which appeared to be suitable to be used as a starter culture. Probable starter cultures were determined according to real-time PCR results.Keywords: gene expression, RT-PCR, starter culture, Streptococcus thermophilus
Procedia PDF Downloads 189961 A Recombinant Group a Streptococcus (GAS-2W) Strain Elicits Protective Immunity in Mice through Induction of an IFN-γ Dependent Humoral Response
Authors: Shiva Emami, Jenny Persson, Bengt Johansson Lindbom
Abstract:
Group A streptococcus (GAS) is a prevalent human pathogen, causing a wide range of infections and diseases. One of the most well-known virulence factors in GAS is M protein, a surface protein that facilitates bacterial invasion. In this study, we used a recombinant GAS strain (GAS-2W) expressing M protein containing a hyper immunogenic peptide (2W). Mice were immunized three times with heat-killed-GAS subcutaneously at three weeks intervals. Three weeks post last immunization, mice were challenged intraperitoneally with a lethal dose of live GAS. In order to investigate the impact of IFN-ƴ and antibodies in protection against GAS infection, we used a mouse model knock-out for IFN-ƴ (IFN-ƴ KO). We observed immunization with GAS-2W strain can increase protection against GAS infection in mice compared with the original GAS strain. Higher levels of antibodies against M1 protein were measured in GAS-2W-immunized mice. There was also a significant increase in IgG2c response in mice immunized with GAS2W. By using IFN-ƴ KO mice, we showed that not a high level of total IgG, but IgG2c was correlated with protection through the i.p challenge. It also emphasizes the importance of IFN-ƴ cytokine to combat GAS by isotype switching to IgG2c (which is opsonic for phagocytosis). Our data indicate the crucial role of IFN-ƴ in the protective immune response that, together with IgG2c, can induce protection against GAS.Keywords: Group A streptococcus, IgG2c, IFN-γ, protection
Procedia PDF Downloads 90960 Supplementation of Annatto (Bixa orellana)-Derived δ-Tocotrienol Produced High Number of Morula through Increased Expression of 3-Phosphoinositide-Dependent Protein Kinase-1 (PDK1) in Mice
Authors: S. M. M. Syairah, M. H. Rajikin, A. R. Sharaniza
Abstract:
Several embryonic cellular mechanism including cell cycle, growth and apoptosis are regulated by phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathway. The goal of present study is to determine the effects of annatto (Bixa orellana)-derived δ-tocotrienol (δ-TCT) on the regulations of PI3K/Akt genes in murine morula. Twenty four 6-8 week old (23-25g) female balb/c mice were randomly divided into four groups (G1-G4; n=6). Those groups were subjected to the following treatments for 7 consecutive days: G1 (control) received tocopherol stripped corn oil, G2 was given 60 mg/kg/day of δ-TCT mixture (contains 90% delta & 10% gamma isomers), G3 was given 60 mg/kg/day of pure δ-TCT (>98% purity) and G4 received 60 mg/kg/day α-TOC. On Day 8, females were superovulated with 5 IU Pregnant Mare’s Serum Gonadotropin (PMSG) for 48 hours followed with 5 IU human Chorionic Gonadotropin (hCG) before mated with males at the ratio of 1:1. Females were sacrificed by cervical dislocation for embryo collection 48 hours post-coitum. About fifty morula from each group were used in the gene expression analyses using Affymetrix QuantiGene Plex 2.0 Assay. Present data showed a significant increase (p<0.05) in the average number (mean + SEM) of morula produced in G2 (26.0 + 0.45), G3 (23.0 + 0.63) and G4 (25.0 + 0.73) compared to control group (G1 – 16.0 + 0.63). This is parallel with the high expression of PDK1 gene with increase of 2.75-fold (G2), 3.07-fold (G3) and 3.59-fold (G4) compared to G1 (1.78-fold). From the present data, it can be concluded that supplementation with δ-TCT(s) and α-TOC induced high expression of PDK1 in G2-G4 which enhanced the PI3K/Akt signaling activity, resulting in the increased number of morula.Keywords: delta-tocotrienol, embryonic development, nicotine, vitamin E
Procedia PDF Downloads 427959 Allele Mining for Rice Sheath Blight Resistance by Whole-Genome Association Mapping in a Tail-End Population
Authors: Naoki Yamamoto, Hidenobu Ozaki, Taiichiro Ookawa, Youming Liu, Kazunori Okada, Aiping Zheng
Abstract:
Rice sheath blight is one of the destructive fungal diseases in rice. We have thought that rice sheath blight resistance is a polygenic trait. Host-pathogen interactions and secondary metabolites such as lignin and phytoalexins are likely to be involved in defense against R. solani. However, to our knowledge, it is still unknown how sheath blight resistance can be enhanced in rice breeding. To seek for an alternative genetic factor that contribute to sheath blight resistance, we mined relevant allelic variations from rice core collections created in Japan. Based on disease lesion length on detached leaf sheath, we selected 30 varieties of the top tail-end and the bottom tail-end, respectively, from the core collections to perform genome-wide association mapping. Re-sequencing reads for these varieties were used for calling single nucleotide polymorphisms among the 60 varieties to create a SNP panel, which contained 1,137,131 homozygous variant sites after filitering. Association mapping highlighted a locus on the long arm of chromosome 11, which is co-localized with three sheath blight QTLs, qShB11-2-TX, qShB11, and qSBR-11-2. Based on the localization of the trait-associated alleles, we identified an ankyryn repeat-containing protein gene (ANK-M) as an uncharacterized candidate factor for rice sheath blight resistance. Allelic distributions for ANK-M in the whole rice population supported the reliability of trait-allele associations. Gene expression characteristics were checked to evaluiate the functionality of ANK-M. Since an ANK-M homolog (OsPIANK1) in rice seems a basal defense regulator against rice blast and bacterial leaf blight, ANK-M may also play a role in the rice immune system.Keywords: allele mining, GWAS, QTL, rice sheath blight
Procedia PDF Downloads 79958 Exploring Antimicrobial Resistance in the Lung Microbial Community Using Unsupervised Machine Learning
Authors: Camilo Cerda Sarabia, Fernanda Bravo Cornejo, Diego Santibanez Oyarce, Hugo Osses Prado, Esteban Gómez Terán, Belén Diaz Diaz, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán
Abstract:
Antimicrobial resistance (AMR) represents a significant and rapidly escalating global health threat. Projections estimate that by 2050, AMR infections could claim up to 10 million lives annually. Respiratory infections, in particular, pose a severe risk not only to individual patients but also to the broader public health system. Despite the alarming rise in resistant respiratory infections, AMR within the lung microbiome (microbial community) remains underexplored and poorly characterized. The lungs, as a complex and dynamic microbial environment, host diverse communities of microorganisms whose interactions and resistance mechanisms are not fully understood. Unlike studies that focus on individual genomes, analyzing the entire microbiome provides a comprehensive perspective on microbial interactions, resistance gene transfer, and community dynamics, which are crucial for understanding AMR. However, this holistic approach introduces significant computational challenges and exposes the limitations of traditional analytical methods such as the difficulty of identifying the AMR. Machine learning has emerged as a powerful tool to overcome these challenges, offering the ability to analyze complex genomic data and uncover novel insights into AMR that might be overlooked by conventional approaches. This study investigates microbial resistance within the lung microbiome using unsupervised machine learning approaches to uncover resistance patterns and potential clinical associations. it downloaded and selected lung microbiome data from HumanMetagenomeDB based on metadata characteristics such as relevant clinical information, patient demographics, environmental factors, and sample collection methods. The metadata was further complemented by details on antibiotic usage, disease status, and other relevant descriptions. The sequencing data underwent stringent quality control, followed by a functional profiling focus on identifying resistance genes through specialized databases like Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. Subsequent analyses employed unsupervised machine learning techniques to unravel the structure and diversity of resistomes in the microbial community. Some of the methods employed were clustering methods such as K-Means and Hierarchical Clustering enabled the identification of sample groups based on their resistance gene profiles. The work was implemented in python, leveraging a range of libraries such as biopython for biological sequence manipulation, NumPy for numerical operations, Scikit-learn for machine learning, Matplotlib for data visualization and Pandas for data manipulation. The findings from this study provide insights into the distribution and dynamics of antimicrobial resistance within the lung microbiome. By leveraging unsupervised machine learning, we identified novel resistance patterns and potential drivers within the microbial community.Keywords: antibiotic resistance, microbial community, unsupervised machine learning., sequences of AMR gene
Procedia PDF Downloads 23957 Assessment of Genetic Diversity and Population Structure of Goldstripe Sardinella, Sardinella gibbosa in the Transboundary Area of Kenya and Tanzania Using mtDNA and msDNA Markers
Authors: Sammy Kibor, Filip Huyghe, Marc Kochzius, James Kairo
Abstract:
Goldstripe Sardinella, Sardinella gibbosa, (Bleeker, 1849) is a commercially and ecologically important small pelagic fish common in the Western Indian Ocean region. The present study aimed to assess genetic diversity and population structure of the species in the Kenya-Tanzania transboundary area using mtDNA and msDNA markers. Some 630 bp sequence in the mitochondrial DNA (mtDNA) Cytochrome C Oxidase I (COI) and five polymorphic microsatellite DNA loci were analyzed. Fin clips of 309 individuals from eight locations within the transboundary area were collected between July and December 2018. The S. gibbosa individuals from the different locations were distinguishable from one another based on the mtDNA variation, as demonstrated with a neighbor-joining tree and minimum spanning network analysis. None of the identified 22 haplotypes were shared between Kenya and Tanzania. Gene diversity per locus was relatively high (0.271-0.751), highest Fis was 0.391. The structure analysis, discriminant analysis of Principal component (DAPC) and the pair-wise (FST = 0.136 P < 0.001) values after Bonferroni correction using five microsatellite loci provided clear inference on genetic differentiation and thus evidence of population structure of S. gibbosa along the Kenya-Tanzania coast. This study shows a high level of genetic diversity and the presence of population structure (Φst =0.078 P < 0.001) resulting to the existence of four populations giving a clear indication of minimum gene flow among the population. This information has application in the designing of marine protected areas, an important tool for marine conservation.Keywords: marine connectivity, microsatellites, population genetics, transboundary
Procedia PDF Downloads 124956 Study of Microbial Diversity Associated with Tarballs and Their Exploitation in Crude Oil Degradation
Authors: Varsha Shinde, Belle Damodara Shenoy
Abstract:
Tarballs are crude oil remnants found in oceans after long term weathering process and are a global concern since several decades as potential marine pollutant. Being complicated in structure microbial remediation of tarballs in natural environment is a slow process. They are rich in high molecular weight alkanes and poly aromatic hydrocarbons which are resistant to microbial attack and other environmental factors, therefore remain in environment for long time. However, it has been found that many bacteria and fungi inhabit on tarballs for nutrients and shelter. Many of them are supposed to be oil degraders, while others are supposed to be getting benefited by byproducts formed during hydrocarbon metabolism. Thus tarballs are forming special interesting ecological niche of microbes. This work aimed to study diversity of bacteria and fungi from tarballs and to see their potential application in crude oil degradation. The samples of tarballs were collected from Betul beach of south Goa (India). Different methods were used to isolate culturable fraction of bacteria and fungi from it. Those were sequenced for 16S rRNA gene and ITS for molecular level identification. The 16S rRNA gene sequence analysis revealed the presence of 13 bacterial genera/clades (Alcanivorax, Brevibacterium, Bacillus, Cellulomonas, Enterobacter, Klebsiella, Marinobacter, Nitratireductor, Pantoea, Pseudomonas, Pseudoxanthomonas, Tistrella and Vibrio), while the ITS sequence analysis placed the fungi in 8 diverse genera/ clades (Aspergillus, Byssochlamys, Monascus, Paecilomyces, Penicillium, Scytalidium/ Xylogone, Talaromyces and Trichoderma). All bacterial isolates were screened for oil degradation capacity. Potential strains were subjected to crude oil degradation experiment for quantification. Results were analyzed by GC-MS-MS.Keywords: bacteria, biodegradation, crude oil, diversity, fungi, tarballs
Procedia PDF Downloads 222955 Lucilia Sericata Netrin-A: Secreted by Salivary Gland Larvae as a Potential to Neuroregeneration
Authors: Hamzeh Alipour, Masoumeh Bagheri, Tahereh Karamzadeh, Abbasali Raz, Kourosh Azizi
Abstract:
Netrin-A, a protein identified for conducting commissural axons, has a similar role in angiogenesis. In addition, studies have shown that one of the netrin-A receptors is expressed in the growing cells of small capillaries. It will be interesting to study this new group of molecules because their role in wound healing will become clearer in the future due to angiogenesis. The greenbottle blowfly Luciliasericata (L. sericata) larvae are increasingly used in maggot therapy of chronic wounds. This aim of this was the identification of moleculareatures of Netrin-A in L. sericata larvae. Larvae were reared under standard maggotarium conditions. The nucleic acid sequence of L. sericataNetrin-A (LSN-A) was then identified using Rapid Amplification of cDNA Ends (RACE) and Rapid Amplification of Genomic Ends (RAGE). Parts of the Netrin-A gene, including the middle, 3′-, and 5′-ends were identified, TA cloned in pTG19 plasmid, and transferred into DH5ɑ Escherichia coli. Each part was sequenced and assembled using SeqMan software. This gene structure was further subjected to in silico analysis. The DNA of LSN-A was identified to be 2407 bp, while its mRNA sequence was recognized as 2115 bp by Oligo0.7 software. It translated the Netrin-A protein with 704 amino acid residues. Its molecular weight is estimated to be 78.6 kDa. The 3-D structure ofNetrin-A drawn by SWISS-MODEL revealed its similarity to the Netrin-1 of humans with 66.8% identity. The LSN-A protein conduces to repair the myelin membrane in neuronal cells. Ultimately, it can be an effective candidate in neural regeneration and wound healing. Furthermore, our next attempt is to deplore recombinant proteins for use in medical sciences.Keywords: maggot therapy, netrin-A, RACE, RAGE, lucilia sericata
Procedia PDF Downloads 109954 Electrochemical APEX for Genotyping MYH7 Gene: A Low Cost Strategy for Minisequencing of Disease Causing Mutations
Authors: Ahmed M. Debela, Mayreli Ortiz , Ciara K. O´Sullivan
Abstract:
The completion of the human genome Project (HGP) has paved the way for mapping the diversity in the overall genome sequence which helps to understand the genetic causes of inherited diseases and susceptibility to drugs or environmental toxins. Arrayed primer extension (APEX) is a microarray based minisequencing strategy for screening disease causing mutations. It is derived from Sanger DNA sequencing and uses fluorescently dideoxynucleotides (ddNTPs) for termination of a growing DNA strand from a primer with its 3´- end designed immediately upstream of a site where single nucleotide polymorphism (SNP) occurs. The use of DNA polymerase offers a very high accuracy and specificity to APEX which in turn happens to be a method of choice for multiplex SNP detection. Coupling the high specificity of this method with the high sensitivity, low cost and compatibility for miniaturization of electrochemical techniques would offer an excellent platform for detection of mutation as well as sequencing of DNA templates. We are developing an electrochemical APEX for the analysis of SNPs found in the MYH7 gene for group of cardiomyopathy patients. ddNTPs were labeled with four different redox active compounds with four distinct potentials. Thiolated oligonucleotide probes were immobilised on gold and glassy carbon substrates which are followed by hybridisation with complementary target DNA just adjacent to the base to be extended by polymerase. Electrochemical interrogation was performed after the incorporation of the redox labelled dedioxynucleotide. The work involved the synthesis and characterisation of the redox labelled ddNTPs, optimisation and characterisation of surface functionalisation strategies and the nucleotide incorporation assays.Keywords: array based primer extension, labelled ddNTPs, electrochemical, mutations
Procedia PDF Downloads 246953 Molecular Characterization of Cysticercus tenuicolis of Slaughtered Livestock in Upper-Egypt Governorates
Authors: Mosaab A. Omara, Layla O. Elmajdoubb, Mohammad Saleh Al-Aboodyc, Ahmed ElSifyd, Ahmed O. Elkhtamd
Abstract:
The aim of this study is to present the molecular characterization of cysticercus tenuicolis of Taenia hydatigena from livestock isolates in Egypt, using the amplification of sequencing of the mt-CO1 gene. We introduce a detailed image of the Cysticercus tenuicolis infection in ruminant animals in Upper Egypt. Cysticercus tenuicolis inhabits such organs in ruminants as the omentum, viscera, and liver. In the present study, the infection rate of Cysticercus tenuicolis was found to be 16% and 19% in sheep and goat sample respectively. Firstly we report one larval stage of Taenia hydatigena detected in the camel liver in Egypt. Cysticercus tenuicolis infection manifested a higher prevalence in females than in males. Those above 2 years of age manifested a higher infection rate than younger animals. The preferred site for the infection was the omentum: a 70% preference in sheep and a 68% preference in goat samples. The molecular characterization using the mitochondrial cytochrome c oxidase subunit 1 (CO1) gene of isolates from sheep, goats and camels corresponded to T. hydatigena. For this study, molecular characterizations of T. hydatigena were done for the first time in Egypt. Molecular tools are of great assistance in characterizing the Cysticercus tenuicolis parasite especially when the morphological character cannot be detected because the metacestodes are frequently confused with infection by the Hydatid cyst, especially when these occur in the visceral organs. In the present study, Cysticercus tenuicolis manifested high identity in the goat and sheep samples, while differences were found more frequently in the camel samples (10 pairbase). Clearly molecular diagnosis for Cysticercus tenuicolis infection significantly helps to differentiate it from such other metacestodes.Keywords: cysticercus tenuicolis, its2, genetic, qena, molecular and taenia hydatigena
Procedia PDF Downloads 523