Search results for: Network Time Protocol
21667 Fractal-Wavelet Based Techniques for Improving the Artificial Neural Network Models
Authors: Reza Bazargan lari, Mohammad H. Fattahi
Abstract:
Natural resources management including water resources requires reliable estimations of time variant environmental parameters. Small improvements in the estimation of environmental parameters would result in grate effects on managing decisions. Noise reduction using wavelet techniques is an effective approach for pre-processing of practical data sets. Predictability enhancement of the river flow time series are assessed using fractal approaches before and after applying wavelet based pre-processing. Time series correlation and persistency, the minimum sufficient length for training the predicting model and the maximum valid length of predictions were also investigated through a fractal assessment.Keywords: wavelet, de-noising, predictability, time series fractal analysis, valid length, ANN
Procedia PDF Downloads 37521666 An Enhanced Distributed Weighted Clustering Algorithm for Intra and Inter Cluster Routing in MANET
Authors: K. Gomathi
Abstract:
Mobile Ad hoc Networks (MANET) is defined as collection of routable wireless mobile nodes with no centralized administration and communicate each other using radio signals. Especially MANETs deployed in hostile environments where hackers will try to disturb the secure data transfer and drain the valuable network resources. Since MANET is battery operated network, preserving the network resource is essential one. For resource constrained computation, efficient routing and to increase the network stability, the network is divided into smaller groups called clusters. The clustering architecture consists of Cluster Head(CH), ordinary node and gateway. The CH is responsible for inter and intra cluster routing. CH election is a prominent research area and many more algorithms are developed using many different metrics. The CH with longer life sustains network lifetime, for this purpose Secondary Cluster Head(SCH) also elected and it is more economical. To nominate efficient CH, a Enhanced Distributed Weighted Clustering Algorithm (EDWCA) has been proposed. This approach considers metrics like battery power, degree difference and speed of the node for CH election. The proficiency of proposed one is evaluated and compared with existing algorithm using Network Simulator(NS-2).Keywords: MANET, EDWCA, clustering, cluster head
Procedia PDF Downloads 40121665 Deep Routing Strategy: Deep Learning based Intelligent Routing in Software Defined Internet of Things.
Authors: Zabeehullah, Fahim Arif, Yawar Abbas
Abstract:
Software Defined Network (SDN) is a next genera-tion networking model which simplifies the traditional network complexities and improve the utilization of constrained resources. Currently, most of the SDN based Internet of Things(IoT) environments use traditional network routing strategies which work on the basis of max or min metric value. However, IoT network heterogeneity, dynamic traffic flow and complexity demands intelligent and self-adaptive routing algorithms because traditional routing algorithms lack the self-adaptions, intelligence and efficient utilization of resources. To some extent, SDN, due its flexibility, and centralized control has managed the IoT complexity and heterogeneity but still Software Defined IoT (SDIoT) lacks intelligence. To address this challenge, we proposed a model called Deep Routing Strategy (DRS) which uses Deep Learning algorithm to perform routing in SDIoT intelligently and efficiently. Our model uses real-time traffic for training and learning. Results demonstrate that proposed model has achieved high accuracy and low packet loss rate during path selection. Proposed model has also outperformed benchmark routing algorithm (OSPF). Moreover, proposed model provided encouraging results during high dynamic traffic flow.Keywords: SDN, IoT, DL, ML, DRS
Procedia PDF Downloads 11521664 SOM Map vs Hopfield Neural Network: A Comparative Study in Microscopic Evacuation Application
Authors: Zouhour Neji Ben Salem
Abstract:
Microscopic evacuation focuses on the evacuee behavior and way of search of safety place in an egress situation. In recent years, several models handled microscopic evacuation problem. Among them, we have proposed Artificial Neural Network (ANN) as an alternative to mathematical models that can deal with such problem. In this paper, we present two ANN models: SOM map and Hopfield Network used to predict the evacuee behavior in a disaster situation. These models are tested in a real case, the second floor of Tunisian children hospital evacuation in case of fire. The two models are studied and compared in order to evaluate their performance.Keywords: artificial neural networks, self-organization map, hopfield network, microscopic evacuation, fire building evacuation
Procedia PDF Downloads 40721663 Impact of the Photovoltaic Integration in Power Distribution Network: Case Study in Badak Liquefied Natural Gas (LNG)
Authors: David Hasurungan
Abstract:
This paper objective is to analyze the impact from photovoltaic system integration to power distribution network. The case study in Badak Liquefied Natural Gas (LNG) plant is presented in this paper. Badak LNG electricity network is operated in islanded mode. The total power generation in Badak LNG plant is significantly affected to feed gas supply. Meanwhile, to support the Government regulation, Badak LNG continuously implemented the grid-connected photovoltaic system in existing power distribution network. The impact between train operational mode change in Badak LNG plant and the growth of photovoltaic system is also encompassed in analysis. The analysis and calculation are performed using software Power Factory 15.1.Keywords: power quality, distribution network, grid-connected photovoltaic system, power management system
Procedia PDF Downloads 36221662 Nest-Building Using Place Cells for Spatial Navigation in an Artificial Neural Network
Authors: Thomas E. Portegys
Abstract:
An animal behavior problem is presented in the form of a nest-building task that involves two cooperating virtual birds, a male and female. The female builds a nest into which she lays an egg. The male's job is to forage in a forest for food for both himself and the female. In addition, the male must fetch stones from a nearby desert for the female to use as nesting material. The task is completed when the nest is built, and an egg is laid in it. A goal-seeking neural network and a recurrent neural network were trained and tested with little success. The goal-seeking network was then enhanced with “place cells”, allowing the birds to spatially navigate the world, building the nest while keeping themselves fed. Place cells are neurons in the hippocampus that map space.Keywords: artificial animal intelligence, artificial life, goal-seeking neural network, nest-building, place cells, spatial navigation
Procedia PDF Downloads 6321661 Accounting for Downtime Effects in Resilience-Based Highway Network Restoration Scheduling
Authors: Zhenyu Zhang, Hsi-Hsien Wei
Abstract:
Highway networks play a vital role in post-disaster recovery for disaster-damaged areas. Damaged bridges in such networks can disrupt the recovery activities by impeding the transportation of people, cargo, and reconstruction resources. Therefore, rapid restoration of damaged bridges is of paramount importance to long-term disaster recovery. In the post-disaster recovery phase, the key to restoration scheduling for a highway network is prioritization of bridge-repair tasks. Resilience is widely used as a measure of the ability to recover with which a network can return to its pre-disaster level of functionality. In practice, highways will be temporarily blocked during the downtime of bridge restoration, leading to the decrease of highway-network functionality. The failure to take downtime effects into account can lead to overestimation of network resilience. Additionally, post-disaster recovery of highway networks is generally divided into emergency bridge repair (EBR) in the response phase and long-term bridge repair (LBR) in the recovery phase, and both of EBR and LBR are different in terms of restoration objectives, restoration duration, budget, etc. Distinguish these two phases are important to precisely quantify highway network resilience and generate suitable restoration schedules for highway networks in the recovery phase. To address the above issues, this study proposes a novel resilience quantification method for the optimization of long-term bridge repair schedules (LBRS) taking into account the impact of EBR activities and restoration downtime on a highway network’s functionality. A time-dependent integer program with recursive functions is formulated for optimally scheduling LBR activities. Moreover, since uncertainty always exists in the LBRS problem, this paper extends the optimization model from the deterministic case to the stochastic case. A hybrid genetic algorithm that integrates a heuristic approach into a traditional genetic algorithm to accelerate the evolution process is developed. The proposed methods are tested using data from the 2008 Wenchuan earthquake, based on a regional highway network in Sichuan, China, consisting of 168 highway bridges on 36 highways connecting 25 cities/towns. The results show that, in this case, neglecting the bridge restoration downtime can lead to approximately 15% overestimation of highway network resilience. Moreover, accounting for the impact of EBR on network functionality can help to generate a more specific and reasonable LBRS. The theoretical and practical values are as follows. First, the proposed network recovery curve contributes to comprehensive quantification of highway network resilience by accounting for the impact of both restoration downtime and EBR activities on the recovery curves. Moreover, this study can improve the highway network resilience from the organizational dimension by providing bridge managers with optimal LBR strategies.Keywords: disaster management, highway network, long-term bridge repair schedule, resilience, restoration downtime
Procedia PDF Downloads 15421660 A Model for Diagnosis and Prediction of Coronavirus Using Neural Network
Authors: Sajjad Baghernezhad
Abstract:
Meta-heuristic and hybrid algorithms have high adeer in modeling medical problems. In this study, a neural network was used to predict covid-19 among high-risk and low-risk patients. This study was conducted to collect the applied method and its target population consisting of 550 high-risk and low-risk patients from the Kerman University of medical sciences medical center to predict the coronavirus. In this study, the memetic algorithm, which is a combination of a genetic algorithm and a local search algorithm, has been used to update the weights of the neural network and develop the accuracy of the neural network. The initial study showed that the accuracy of the neural network was 88%. After updating the weights, the memetic algorithm increased by 93%. For the proposed model, sensitivity, specificity, positive predictivity value, value/accuracy to 97.4, 92.3, 95.8, 96.2, and 0.918, respectively; for the genetic algorithm model, 87.05, 9.20 7, 89.45, 97.30 and 0.967 and for logistic regression model were 87.40, 95.20, 93.79, 0.87 and 0.916. Based on the findings of this study, neural network models have a lower error rate in the diagnosis of patients based on individual variables and vital signs compared to the regression model. The findings of this study can help planners and health care providers in signing programs and early diagnosis of COVID-19 or Corona.Keywords: COVID-19, decision support technique, neural network, genetic algorithm, memetic algorithm
Procedia PDF Downloads 7121659 Copula Autoregressive Methodology for Simulation of Solar Irradiance and Air Temperature Time Series for Solar Energy Forecasting
Authors: Andres F. Ramirez, Carlos F. Valencia
Abstract:
The increasing interest in renewable energies strategies application and the path for diminishing the use of carbon related energy sources have encouraged the development of novel strategies for integration of solar energy into the electricity network. A correct inclusion of the fluctuating energy output of a photovoltaic (PV) energy system into an electric grid requires improvements in the forecasting and simulation methodologies for solar energy potential, and the understanding not only of the mean value of the series but the associated underlying stochastic process. We present a methodology for synthetic generation of solar irradiance (shortwave flux) and air temperature bivariate time series based on copula functions to represent the cross-dependence and temporal structure of the data. We explore the advantages of using this nonlinear time series method over traditional approaches that use a transformation of the data to normal distributions as an intermediate step. The use of copulas gives flexibility to represent the serial variability of the real data on the simulation and allows having more control on the desired properties of the data. We use discrete zero mass density distributions to assess the nature of solar irradiance, alongside vector generalized linear models for the bivariate time series time dependent distributions. We found that the copula autoregressive methodology used, including the zero mass characteristics of the solar irradiance time series, generates a significant improvement over state of the art strategies. These results will help to better understand the fluctuating nature of solar energy forecasting, the underlying stochastic process, and quantify the potential of a photovoltaic (PV) energy generating system integration into a country electricity network. Experimental analysis and real data application substantiate the usage and convenience of the proposed methodology to forecast solar irradiance time series and solar energy across northern hemisphere, southern hemisphere, and equatorial zones.Keywords: copula autoregressive, solar irradiance forecasting, solar energy forecasting, time series generation
Procedia PDF Downloads 32721658 Gingival Tissue Appearance Changes According Hormonal Oscillations at Female Patients
Authors: Ilma Robo, Saimir Heta, Vera Ostreni, Elsaida Agrushi, Eduart Kapaj
Abstract:
Introduction: Cyclic hormonal fluctuations are known from literature to have a clinically visible effects on gingival tissue reactions, to the diagnosed processes of gingival inflammation. Materials and methods: At a total of 47 female patients, ad-hock presented at the University Clinic, were recorded data on effect of hormonal oscillations at periodontal treatment protocol. Oral examination was performed on soft tissue of gingiva and the oral mucous membrane, always respecting the air-drying procedure and then checking with free eye differences in oral mucosal relief. After the patients were informed about the study protocol, the purpose of the study and the ongoing procedure, verbal consensus was required. Results: The study was conducted in a total of 47 patients, out of which 13 patients were under the gingivitis classification, and 24 patients under the periodontal classification. Patients included in the study are divided by age, cycle week respectively 1,2,3 and 4.The younger age of female patients is more prone to the appearance of gingivitis, which is further aggravated by the effects of sexual hormones and the effect of the controlled or non-regulated fluctuations of the latter. Conclusions: The healing process is more fuel-intensive in the absence of high hormone levels, as they are these pro-inflammatory hormones, both in or near the ho Younger women are more open to volunteering in studies that record individual and study data that may last in time.Keywords: gingiva, hormonal oscillations, female patients, mucosa, periodontal non-surgical treatment
Procedia PDF Downloads 8421657 Moving Target Defense against Various Attack Models in Time Sensitive Networks
Authors: Johannes Günther
Abstract:
Time Sensitive Networking (TSN), standardized in the IEEE 802.1 standard, has been lent increasing attention in the context of mission critical systems. Such mission critical systems, e.g., in the automotive domain, aviation, industrial, and smart factory domain, are responsible for coordinating complex functionalities in real time. In many of these contexts, a reliable data exchange fulfilling hard time constraints and quality of service (QoS) conditions is of critical importance. TSN standards are able to provide guarantees for deterministic communication behaviour, which is in contrast to common best-effort approaches. Therefore, the superior QoS guarantees of TSN may aid in the development of new technologies, which rely on low latencies and specific bandwidth demands being fulfilled. TSN extends existing Ethernet protocols with numerous standards, providing means for synchronization, management, and overall real-time focussed capabilities. These additional QoS guarantees, as well as management mechanisms, lead to an increased attack surface for potential malicious attackers. As TSN guarantees certain deadlines for priority traffic, an attacker may degrade the QoS by delaying a packet beyond its deadline or even execute a denial of service (DoS) attack if the delays lead to packets being dropped. However, thus far, security concerns have not played a major role in the design of such standards. Thus, while TSN does provide valuable additional characteristics to existing common Ethernet protocols, it leads to new attack vectors on networks and allows for a range of potential attacks. One answer to these security risks is to deploy defense mechanisms according to a moving target defense (MTD) strategy. The core idea relies on the reduction of the attackers' knowledge about the network. Typically, mission-critical systems suffer from an asymmetric disadvantage. DoS or QoS-degradation attacks may be preceded by long periods of reconnaissance, during which the attacker may learn about the network topology, its characteristics, traffic patterns, priorities, bandwidth demands, periodic characteristics on links and switches, and so on. Here, we implemented and tested several MTD-like defense strategies against different attacker models of varying capabilities and budgets, as well as collaborative attacks of multiple attackers within a network, all within the context of TSN networks. We modelled the networks and tested our defense strategies on an OMNET++ testbench, with networks of different sizes and topologies, ranging from a couple dozen hosts and switches to significantly larger set-ups.Keywords: network security, time sensitive networking, moving target defense, cyber security
Procedia PDF Downloads 7621656 Would Intra-Individual Variability in Attention to Be the Indicator of Impending the Senior Adults at Risk of Cognitive Decline: Evidence from Attention Network Test(ANT)
Authors: Hanna Lu, Sandra S. M. Chan, Linda C. W. Lam
Abstract:
Objectives: Intra-individual variability (IIV) has been considered as a biomarker of healthy ageing. However, the composite role of IIV in attention, as an impending indicator for neurocognitive disorders warrants further exploration. This study aims to investigate the IIV, as well as their relationships with attention network functions in adults with neurocognitive disorders (NCD). Methods: 36adults with NCD due to Alzheimer’s disease(NCD-AD), 31adults with NCD due to vascular disease (NCD-vascular), and 137 healthy controls were recruited. Intraindividual standard deviations (iSD) and intraindividual coefficient of variation of reaction time (ICV-RT) were used to evaluate the IIV. Results: NCD groups showed greater IIV (iSD: F= 11.803, p < 0.001; ICV-RT:F= 9.07, p < 0.001). In ROC analyses, the indices of IIV could differentiateNCD-AD (iSD: AUC value = 0.687, p= 0.001; ICV-RT: AUC value = 0.677, p= 0.001) and NCD-vascular (iSD: AUC value = 0.631, p= 0.023;ICV-RT: AUC value = 0.615, p= 0.045) from healthy controls. Moreover, the processing speed could distinguish NCD-AD from NCD-vascular (AUC value = 0.647, p= 0.040). Discussion: Intra-individual variability in attention provides a stable measure of cognitive performance, and seems to help distinguish the senior adults with different cognitive status.Keywords: intra-individual variability, attention network, neurocognitive disorders, ageing
Procedia PDF Downloads 48121655 Process Modeling of Electric Discharge Machining of Inconel 825 Using Artificial Neural Network
Authors: Himanshu Payal, Sachin Maheshwari, Pushpendra S. Bharti
Abstract:
Electrical discharge machining (EDM), a non-conventional machining process, finds wide applications for shaping difficult-to-cut alloys. Process modeling of EDM is required to exploit the process to the fullest. Process modeling of EDM is a challenging task owing to involvement of so many electrical and non-electrical parameters. This work is an attempt to model the EDM process using artificial neural network (ANN). Experiments were carried out on die-sinking EDM taking Inconel 825 as work material. ANN modeling has been performed using experimental data. The prediction ability of trained network has been verified experimentally. Results indicate that ANN can predict the values of performance measures of EDM satisfactorily.Keywords: artificial neural network, EDM, metal removal rate, modeling, surface roughness
Procedia PDF Downloads 41721654 Comparing Community Detection Algorithms in Bipartite Networks
Authors: Ehsan Khademi, Mahdi Jalili
Abstract:
Despite the special features of bipartite networks, they are common in many systems. Real-world bipartite networks may show community structure, similar to what one can find in one-mode networks. However, the interpretation of the community structure in bipartite networks is different as compared to one-mode networks. In this manuscript, we compare a number of available methods that are frequently used to discover community structure of bipartite networks. These networks are categorized into two broad classes. One class is the methods that, first, transfer the network into a one-mode network, and then apply community detection algorithms. The other class is the algorithms that have been developed specifically for bipartite networks. These algorithms are applied on a model network with prescribed community structure.Keywords: community detection, bipartite networks, co-clustering, modularity, network projection, complex networks
Procedia PDF Downloads 63021653 A Blockchain-Based Protection Strategy against Social Network Phishing
Authors: Francesco Buccafurri, Celeste Romolo
Abstract:
Nowadays phishing is the most frequent starting point of cyber-attack vectors. Phishing is implemented both via email and social network messages. While a wide scientific literature exists which addresses the problem of contrasting email spam-phishing, no specific countermeasure has been so far proposed for phishing included into private messages of social network platforms. Unfortunately, the problem is severe. This paper proposes an approach against social network phishing, based on a non invasive collaborative information-sharing approach which leverages blockchain. The detection method works by filtering candidate messages, by distilling them by means of a distance-preserving hash function, and by publishing hashes over a public blockchain through a trusted smart contract (thus avoiding denial of service attacks). Phishing detection exploits social information embedded into social network profiles to identify similar messages belonging to disjoint contexts. The main contribution of the paper is to introduce a new approach to contrasting the problem of social network phishing, which, despite its severity, received little attention by both research and industry.Keywords: phishing, social networks, information sharing, blockchain
Procedia PDF Downloads 33521652 A Topological Study of an Urban Street Network and Its Use in Heritage Areas
Authors: Jose L. Oliver, Taras Agryzkov, Leandro Tortosa, Jose F. Vicent, Javier Santacruz
Abstract:
This paper aims to demonstrate how a topological study of an urban street network can be used as a tool to be applied to some heritage conservation areas in a city. In the last decades, we find different kinds of approaches in the discipline of Architecture and Urbanism based in the so-called Sciences of Complexity. In this context, this paper uses mathematics from the Network Theory. Hence, it proposes a methodology based in obtaining information from a graph, which is created from a network of urban streets. Then, it is used an algorithm that establishes a ranking of importance of the nodes of that network, from its topological point of view. The results are applied to a heritage area in a particular city, confronting the data obtained from the mathematical model, with the ones from the field work in the case study. As a result of this process, we may conclude the necessity of implementing some actions in the area, and where those actions would be more effective for the whole heritage site.Keywords: graphs, heritage cities, spatial analysis, urban networks
Procedia PDF Downloads 40121651 Three-Stage Least Squared Models of a Station-Level Subway Ridership: Incorporating an Analysis on Integrated Transit Network Topology Measures
Authors: Jungyeol Hong, Dongjoo Park
Abstract:
The urban transit system is a critical part of a solution to the economic, energy, and environmental challenges. Furthermore, it ultimately contributes the improvement of people’s quality of lives. For taking these kinds of advantages, the city of Seoul has tried to construct an integrated transit system including both subway and buses. The effort led to the fact that approximately 6.9 million citizens use the integrated transit system every day for their trips. Diagnosing the current transit network is a significant task to provide more convenient and pleasant transit environment. Therefore, the critical objective of this study is to establish a methodological framework for the analysis of an integrated bus-subway network and to examine the relationship between subway ridership and parameters such as network topology measures, bus demand, and a variety of commercial business facilities. Regarding a statistical approach to estimate subway ridership at a station level, many previous studies relied on Ordinary Least Square regression, but there was lack of studies considering the endogeneity issues which might show in the subway ridership prediction model. This study focused on both discovering the impacts of integrated transit network topology measures and endogenous effect of bus demand on subway ridership. It could ultimately contribute to developing more accurate subway ridership estimation accounting for its statistical bias. The spatial scope of the study covers Seoul city in South Korea, and it includes 243 subway stations and 10,120 bus stops with the temporal scope set during twenty-four hours with one-hour interval time panels each. The subway and bus ridership information in detail was collected from the Seoul Smart Card data in 2015 and 2016. First, integrated subway-bus network topology measures which have characteristics regarding connectivity, centrality, transitivity, and reciprocity were estimated based on the complex network theory. The results of integrated transit network topology analysis were compared to subway-only network topology. Also, the non-recursive approach which is Three-Stage Least Square was applied to develop the daily subway ridership model as capturing the endogeneity between bus and subway demands. Independent variables included roadway geometry, commercial business characteristics, social-economic characteristics, safety index, transit facility attributes, and dummies for seasons and time zone. Consequently, it was found that network topology measures were significant size effect. Especially, centrality measures showed that the elasticity was a change of 4.88% for closeness centrality, 24.48% for betweenness centrality while the elasticity of bus ridership was 8.85%. Moreover, it was proved that bus demand and subway ridership were endogenous in a non-recursive manner as showing that predicted bus ridership and predicted subway ridership is statistically significant in OLS regression models. Therefore, it shows that three-stage least square model appears to be a plausible model for efficient subway ridership estimation. It is expected that the proposed approach provides a reliable guideline that can be used as part of the spectrum of tools for evaluating a city-wide integrated transit network.Keywords: integrated transit system, network topology measures, three-stage least squared, endogeneity, subway ridership
Procedia PDF Downloads 18221650 Sexual Cognitive Behavioral Therapy: Psychological Performance and Openness to Experience
Authors: Alireza Monzavi Chaleshtari, Mahnaz Aliakbari Dehkordi, Amin Asadi Hieh, Majid Kazemnezhad
Abstract:
This research was conducted with the aim of determining the effectiveness of sexual cognitive behavioral therapy on psychological performance and openness to experience in women. The type of research was experimental in the form of pre-test-post-test. The statistical population of this research was made up of all working and married women with membership in the researcher's Instagram social network who had problems in marital-sexual relationships (N=900). From the statistical community, which includes working and married women who are members of the researcher's Instagram social network who have problems in marital-sexual relationships, there are 30 people including two groups (15 people in the experimental group and 15 people in the control group) as available sampling and selected randomly. They were placed in two experimental and control groups. The anxiety, stress, and depression scale (DASS) and the Costa and McCree personality questionnaire were used to collect data, and the cognitive behavioral therapy protocol of Dr. Mehrnaz Ali Akbari was used for the treatment sessions. To analyze the data, the covariance test was used in the SPSS22 software environment. The results showed that sexual cognitive behavioral therapy has a positive and significant effect on psychological performance and openness to experience in women. Conclusion: It can be concluded that interventions such as cognitive-behavioral sex can be used to treat marital problems.Keywords: sexual cognitive behavioral therapy, psychological function, openness to experience, women
Procedia PDF Downloads 8121649 Building a Dynamic News Category Network for News Sources Recommendations
Authors: Swati Gupta, Shagun Sodhani, Dhaval Patel, Biplab Banerjee
Abstract:
It is generic that news sources publish news in different broad categories. These categories can either be generic such as Business, Sports, etc. or time-specific such as World Cup 2015 and Nepal Earthquake or both. It is up to the news agencies to build the categories. Extracting news categories automatically from numerous online news sources is expected to be helpful in many applications including news source recommendations and time specific news category extraction. To address this issue, existing systems like DMOZ directory and Yahoo directory are mostly considered though they are mostly human annotated and do not consider the time dynamism of categories of news websites. As a remedy, we propose an approach to automatically extract news category URLs from news websites in this paper. News category URL is a link which points to a category in news websites. We use the news category URL as a prior knowledge to develop a news source recommendation system which contains news sources listed in various categories in order of ranking. In addition, we also propose an approach to rank numerous news sources in different categories using various parameters like Traffic Based Website Importance, Social media Analysis and Category Wise Article Freshness. Experimental results on category URLs captured from GDELT project during April 2016 to December 2016 show the adequacy of the proposed method.Keywords: news category, category network, news sources, ranking
Procedia PDF Downloads 38921648 Combined Effect of Gender Differences and Fatiguing Task on Unipedal Postural Balance and Functional Mobility in Adults with Multiple Sclerosis
Authors: Sonda Jallouli, Omar Hammouda, Imen Ben Dhia, Salma Sakka, Chokri Mhiri, Mohamed Habib Elleuch, Abedlmoneem Yahia, Sameh Ghroubi
Abstract:
Multiple sclerosis (MS) is characterized by gender differences with affecting women two to four times more than men, but the disease progression is faster and more severe in men. Fatigue represents one of the most frequent and disabling symptoms related to MS. Results of previous studies regarding gender differences in fatigue perception in MS persons are contradictory. Besides, fatigue has been shown to affect negatively postural balance and functional mobility in MS persons. However, no study has taken into account gender differences in the response of these physical parameters to a fatiguing protocol in MS persons. Given the reduction of autonomy due to the alteration of these parameters induced by fatigue and the importance of gender differences in postural balance training programs in fatigued men and women with MS, the aim of this study was to investigate the effect of gender difference on unipedal postural balance and functional mobility after performing a fatiguing task in MS adults. Methods: Eleven women (30.29 ± 7.99 years) and seven men (30.91 ± 8.19 years) with relapsing-remitting MS performed a fatiguing protocol: three sets of the 5×sit to stand test (5-STST), six-minute walk test (6MWT) followed by three sets of the 5-STST. Unipedal balance, functional mobility, and fatigue perception were measured prefatigue (T0) and post fatigue (T3) using a clinical unipedal balance test, timed up and go test (TUGT), and analogic visual scale of fatigue (VASF), respectively. Heart rate (HR) and rate of perceived exertion (RPE) were recorded before, during and after the fatiguing task. Results: Compared to women, men showed an impairment of unipedal balance on the dominant leg (p<0.001, d=0.52) and mobility (p<0.001, d=3) via reducing unipedal stance time and increasing duration of TUGT execution, respectively. No gender differences were observed in 6MWT, 5-STST, HR, RPE and VASF scores. Conclusion: Fatiguing protocol negatively affected unipedal postural balance and mobility only in men. These gender differences were inconclusive but can be taken into account in postural balance rehabilitation programs for persons with MS.Keywords: functional mobility, fatiguing exercises, multiple sclerosis, sex differences, unipedal balance
Procedia PDF Downloads 14221647 Integrating Artificial Neural Network and Taguchi Method on Constructing the Real Estate Appraisal Model
Authors: Mu-Yen Chen, Min-Hsuan Fan, Chia-Chen Chen, Siang-Yu Jhong
Abstract:
In recent years, real estate prediction or valuation has been a topic of discussion in many developed countries. Improper hype created by investors leads to fluctuating prices of real estate, affecting many consumers to purchase their own homes. Therefore, scholars from various countries have conducted research in real estate valuation and prediction. With the back-propagation neural network that has been popular in recent years and the orthogonal array in the Taguchi method, this study aimed to find the optimal parameter combination at different levels of orthogonal array after the system presented different parameter combinations, so that the artificial neural network obtained the most accurate results. The experimental results also demonstrated that the method presented in the study had a better result than traditional machine learning. Finally, it also showed that the model proposed in this study had the optimal predictive effect, and could significantly reduce the cost of time in simulation operation. The best predictive results could be found with a fewer number of experiments more efficiently. Thus users could predict a real estate transaction price that is not far from the current actual prices.Keywords: artificial neural network, Taguchi method, real estate valuation model, investors
Procedia PDF Downloads 49221646 Artificial Neural Network in Predicting the Soil Response in the Discrete Element Method Simulation
Authors: Zhaofeng Li, Jun Kang Chow, Yu-Hsing Wang
Abstract:
This paper attempts to bridge the soil properties and the mechanical response of soil in the discrete element method (DEM) simulation. The artificial neural network (ANN) was therefore adopted, aiming to reproduce the stress-strain-volumetric response when soil properties are given. 31 biaxial shearing tests with varying soil parameters (e.g., initial void ratio and interparticle friction coefficient) were generated using the DEM simulations. Based on these 45 sets of training data, a three-layer neural network was established which can output the entire stress-strain-volumetric curve during the shearing process from the input soil parameters. Beyond the training data, 2 additional sets of data were generated to examine the validity of the network, and the stress-strain-volumetric curves for both cases were well reproduced using this network. Overall, the ANN was found promising in predicting the soil behavior and reducing repetitive simulation work.Keywords: artificial neural network, discrete element method, soil properties, stress-strain-volumetric response
Procedia PDF Downloads 40021645 Stock Price Prediction Using Time Series Algorithms
Authors: Sumit Sen, Sohan Khedekar, Umang Shinde, Shivam Bhargava
Abstract:
This study has been undertaken to investigate whether the deep learning models are able to predict the future stock prices by training the model with the historical stock price data. Since this work required time series analysis, various models are present today to perform time series analysis such as Recurrent Neural Network LSTM, ARIMA and Facebook Prophet. Applying these models the movement of stock price of stocks are predicted and also tried to provide the future prediction of the stock price of a stock. Final product will be a stock price prediction web application that is developed for providing the user the ease of analysis of the stocks and will also provide the predicted stock price for the next seven days.Keywords: Autoregressive Integrated Moving Average, Deep Learning, Long Short Term Memory, Time-series
Procedia PDF Downloads 14721644 Ensuring Uniform Energy Consumption in Non-Deterministic Wireless Sensor Network to Protract Networks Lifetime
Authors: Vrince Vimal, Madhav J. Nigam
Abstract:
Wireless sensor networks have enticed much of the spotlight from researchers all around the world, owing to its extensive applicability in agricultural, industrial and military fields. Energy conservation node deployment stratagems play a notable role for active implementation of Wireless Sensor Networks. Clustering is the approach in wireless sensor networks which improves energy efficiency in the network. The clustering algorithm needs to have an optimum size and number of clusters, as clustering, if not implemented properly, cannot effectively increase the life of the network. In this paper, an algorithm has been proposed to address connectivity issues with the aim of ensuring the uniform energy consumption of nodes in every part of the network. The results obtained after simulation showed that the proposed algorithm has an edge over existing algorithms in terms of throughput and networks lifetime.Keywords: Wireless Sensor network (WSN), Random Deployment, Clustering, Isolated Nodes, Networks Lifetime
Procedia PDF Downloads 34021643 Offset Dependent Uniform Delay Mathematical Optimization Model for Signalized Traffic Network Using Differential Evolution Algorithm
Authors: Tahseen Saad, Halim Ceylan, Jonathan Weaver, Osman Nuri Çelik, Onur Gungor Sahin
Abstract:
A new concept of uniform delay offset dependent mathematical optimization problem is derived as the main objective for this study using a differential evolution algorithm. To control the coordination problem, which depends on offset selection and to estimate uniform delay based on the offset choice in a traffic signal network. The assumption is the periodic sinusoidal function for arrival and departure patterns. The cycle time is optimized at the entry links and the optimized value is used in the non-entry links as a common cycle time. The offset optimization algorithm is used to calculate the uniform delay at each link. The results are illustrated by using a case study and are compared with the canonical uniform delay model derived by Webster and the highway capacity manual’s model. The findings show new model minimizes the total uniform delay to almost half compared to conventional models. The mathematical objective function is robust. The algorithm convergence time is fast.Keywords: area traffic control, traffic flow, differential evolution, sinusoidal periodic function, uniform delay, offset variable
Procedia PDF Downloads 28321642 Classification of Myoelectric Signals Using Multilayer Perceptron Neural Network with Back-Propagation Algorithm in a Wireless Surface Myoelectric Prosthesis of the Upper-Limb
Authors: Kevin D. Manalo, Jumelyn L. Torres, Noel B. Linsangan
Abstract:
This paper focuses on a wireless myoelectric prosthesis of the upper-limb that uses a Multilayer Perceptron Neural network with back propagation. The algorithm is widely used in pattern recognition. The network can be used to train signals and be able to use it in performing a function on their own based on sample inputs. The paper makes use of the Neural Network in classifying the electromyography signal that is produced by the muscle in the amputee’s skin surface. The gathered data will be passed on through the Classification Stage wirelessly through Zigbee Technology. The signal will be classified and trained to be used in performing the arm positions in the prosthesis. Through programming using Verilog and using a Field Programmable Gate Array (FPGA) with Zigbee, the EMG signals will be acquired and will be used for classification. The classified signal is used to produce the corresponding Hand Movements (Open, Pick, Hold, and Grip) through the Zigbee controller. The data will then be processed through the MLP Neural Network using MATLAB which then be used for the surface myoelectric prosthesis. Z-test will be used to display the output acquired from using the neural network.Keywords: field programmable gate array, multilayer perceptron neural network, verilog, zigbee
Procedia PDF Downloads 39521641 Weed Classification Using a Two-Dimensional Deep Convolutional Neural Network
Authors: Muhammad Ali Sarwar, Muhammad Farooq, Nayab Hassan, Hammad Hassan
Abstract:
Pakistan is highly recognized for its agriculture and is well known for producing substantial amounts of wheat, cotton, and sugarcane. However, some factors contribute to a decline in crop quality and a reduction in overall output. One of the main factors contributing to this decline is the presence of weed and its late detection. This process of detection is manual and demands a detailed inspection to be done by the farmer itself. But by the time detection of weed, the farmer will be able to save its cost and can increase the overall production. The focus of this research is to identify and classify the four main types of weeds (Small-Flowered Cranesbill, Chick Weed, Prickly Acacia, and Black-Grass) that are prevalent in our region’s major crops. In this work, we implemented three different deep learning techniques: YOLO-v5, Inception-v3, and Deep CNN on the same Dataset, and have concluded that deep convolutions neural network performed better with an accuracy of 97.45% for such classification. In relative to the state of the art, our proposed approach yields 2% better results. We devised the architecture in an efficient way such that it can be used in real-time.Keywords: deep convolution networks, Yolo, machine learning, agriculture
Procedia PDF Downloads 12321640 Misleading Node Detection and Response Mechanism in Mobile Ad-Hoc Network
Authors: Earleen Jane Fuentes, Regeene Melarese Lim, Franklin Benjamin Tapia, Alexis Pantola
Abstract:
Mobile Ad-hoc Network (MANET) is an infrastructure-less network of mobile devices, also known as nodes. These nodes heavily rely on each other’s resources such as memory, computing power, and energy. Thus, some nodes may become selective in forwarding packets so as to conserve their resources. These nodes are called misleading nodes. Several reputation-based techniques (e.g. CORE, CONFIDANT, LARS, SORI, OCEAN) and acknowledgment-based techniques (e.g. TWOACK, S-TWOACK, EAACK) have been proposed to detect such nodes. These techniques do not appropriately punish misleading nodes. Hence, this paper addresses the limitations of these techniques using a system called MINDRA.Keywords: acknowledgment-based techniques, mobile ad-hoc network, selfish nodes, reputation-based techniques
Procedia PDF Downloads 39121639 A New Realization of Multidimensional System for Grid Sensor Network
Authors: Yang Xiong, Hua Cheng
Abstract:
In this paper, for the basic problem of wireless sensor network topology control and deployment, the Roesser model in rectangular grid sensor networks is presented. In addition, a general constructive realization procedure will be proposed. The procedure enables a distributed implementation of linear systems on a sensor network. A non-trivial example is illustrated.Keywords: grid sensor networks, Roesser model, state-space realization, multidimensional systems
Procedia PDF Downloads 65921638 Multilabel Classification with Neural Network Ensemble Method
Authors: Sezin Ekşioğlu
Abstract:
Multilabel classification has a huge importance for several applications, it is also a challenging research topic. It is a kind of supervised learning that contains binary targets. The distance between multilabel and binary classification is having more than one class in multilabel classification problems. Features can belong to one class or many classes. There exists a wide range of applications for multi label prediction such as image labeling, text categorization, gene functionality. Even though features are classified in many classes, they may not always be properly classified. There are many ensemble methods for the classification. However, most of the researchers have been concerned about better multilabel methods. Especially little ones focus on both efficiency of classifiers and pairwise relationships at the same time in order to implement better multilabel classification. In this paper, we worked on modified ensemble methods by getting benefit from k-Nearest Neighbors and neural network structure to address issues within a beneficial way and to get better impacts from the multilabel classification. Publicly available datasets (yeast, emotion, scene and birds) are performed to demonstrate the developed algorithm efficiency and the technique is measured by accuracy, F1 score and hamming loss metrics. Our algorithm boosts benchmarks for each datasets with different metrics.Keywords: multilabel, classification, neural network, KNN
Procedia PDF Downloads 160