Search results for: learning vector quantization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8068

Search results for: learning vector quantization

7438 DNA Based Identification of Insect Vectors for Zoonotic Diseases From District Faisalabad, Pakistan

Authors: Zain Ul Abdin, Mirza Aizaz Asim, Rao Sohail Ahmad Khan, Luqman Amrao, Fiaz Hussain, Hasooba Hira, Saqi Kosar Abbas

Abstract:

The success of Integrated vector management programmes mainly depends on the correct identification of insect vector species involved in vector borne diseases. Based on molecular data the most important insect species involved as vectors for Zoonotic diseases in Pakistan were identified. The precise and accurate identification of such type of organism is only possible through molecular based techniques like “DNA barcoding”. Morphological species identification in insects at any life stage, is very challenging, therefore, DNA barcoding was used as a tool for rapid and accurate species identification in a wide variety of taxa across the globe and parallel studies revealed that DNA barcoding data can be effectively used in resolving taxonomic ambiguities, detection of cryptic diversity, invasion biology, description of new species etc. A comprehensive survey was carried out for the collection of insects (both adult and immature stages) in district Faisalabad, Pakistan and their DNA was extracted and mitochondrial cytochrome oxidase subunit I (COI-59) barcode sequences was used for molecular identification of immature and adult life stage.This preliminary research work opens new frontiers for developing sustainable insect vectors management programmes for saving lives of mankind from fatal diseases.

Keywords: zoonotic diseases, cytochrome oxidase, and insect vectors, CO1

Procedia PDF Downloads 169
7437 Deep Reinforcement Learning Model Using Parameterised Quantum Circuits

Authors: Lokes Parvatha Kumaran S., Sakthi Jay Mahenthar C., Sathyaprakash P., Jayakumar V., Shobanadevi A.

Abstract:

With the evolution of technology, the need to solve complex computational problems like machine learning and deep learning has shot up. But even the most powerful classical supercomputers find it difficult to execute these tasks. With the recent development of quantum computing, researchers and tech-giants strive for new quantum circuits for machine learning tasks, as present works on Quantum Machine Learning (QML) ensure less memory consumption and reduced model parameters. But it is strenuous to simulate classical deep learning models on existing quantum computing platforms due to the inflexibility of deep quantum circuits. As a consequence, it is essential to design viable quantum algorithms for QML for noisy intermediate-scale quantum (NISQ) devices. The proposed work aims to explore Variational Quantum Circuits (VQC) for Deep Reinforcement Learning by remodeling the experience replay and target network into a representation of VQC. In addition, to reduce the number of model parameters, quantum information encoding schemes are used to achieve better results than the classical neural networks. VQCs are employed to approximate the deep Q-value function for decision-making and policy-selection reinforcement learning with experience replay and the target network.

Keywords: quantum computing, quantum machine learning, variational quantum circuit, deep reinforcement learning, quantum information encoding scheme

Procedia PDF Downloads 134
7436 The Challenges of Hyper-Textual Learning Approach for Religious Education

Authors: Elham Shirvani–Ghadikolaei, Seyed Mahdi Sajjadi

Abstract:

State of the art technology has the tremendous impact on our life, in this situation education system have been influenced as well as. In this paper, tried to compare two space of learning text and hypertext with each other, and some challenges of using hypertext in religious education. Regarding the fact that, hypertext is an undeniable part of learning in this world and it has highly beneficial for the education process from class to office and home. In this paper tried to solve this question: the consequences and challenges of applying hypertext in religious education. Also, the consequences of this survey demonstrate the role of curriculum designer and planner of education to solve this problem.

Keywords: Hyper-textual, learning, religious education, learning text

Procedia PDF Downloads 312
7435 A Comparative Study of Approaches in User-Centred Health Information Retrieval

Authors: Harsh Thakkar, Ganesh Iyer

Abstract:

In this paper, we survey various user-centered or context-based biomedical health information retrieval systems. We present and discuss the performance of systems submitted in CLEF eHealth 2014 Task 3 for this purpose. We classify and focus on comparing the two most prevalent retrieval models in biomedical information retrieval namely: Language Model (LM) and Vector Space Model (VSM). We also report on the effectiveness of using external medical resources and ontologies like MeSH, Metamap, UMLS, etc. We observed that the LM based retrieval systems outperform VSM based systems on various fronts. From the results we conclude that the state-of-art system scores for MAP was 0.4146, P@10 was 0.7560 and NDCG@10 was 0.7445, respectively. All of these score were reported by systems built on language modeling approaches.

Keywords: clinical document retrieval, concept-based information retrieval, query expansion, language models, vector space models

Procedia PDF Downloads 320
7434 Attention Multiple Instance Learning for Cancer Tissue Classification in Digital Histopathology Images

Authors: Afaf Alharbi, Qianni Zhang

Abstract:

The identification of malignant tissue in histopathological slides holds significant importance in both clinical settings and pathology research. This paper introduces a methodology aimed at automatically categorizing cancerous tissue through the utilization of a multiple-instance learning framework. This framework is specifically developed to acquire knowledge of the Bernoulli distribution of the bag label probability by employing neural networks. Furthermore, we put forward a neural network based permutation-invariant aggregation operator, equivalent to attention mechanisms, which is applied to the multi-instance learning network. Through empirical evaluation of an openly available colon cancer histopathology dataset, we provide evidence that our approach surpasses various conventional deep learning methods.

Keywords: attention multiple instance learning, MIL and transfer learning, histopathological slides, cancer tissue classification

Procedia PDF Downloads 110
7433 Program Level Learning Outcomes in Music and Technology: Toward Improved Assessment and Better Communication

Authors: Susan Lewis

Abstract:

The assessment of learning outcomes at the program level has attracted much international interest from the perspectives of quality assurance and ongoing curricular redesign and renewal. This paper examines program-level learning outcomes in the field of music and technology, an area of study that has seen an explosion in program development over the past fifteen years. The Audio Engineering Society (AES) maintains an online directory of educational institutions worldwide, yielding the most comprehensive inventory of programs and courses in music and technology. The inventory includes courses, programs, and degrees in music and technology, music and computer science, music production, and the music industry. This paper focuses on published student learning outcomes for undergraduate degrees in music and technology and analyses commonalities at institutions in North America, the United Kingdom, and Europe. The results of a survey of student learning outcomes at twenty institutions indicates a focus on three distinct student learning outcomes: (1) cross-disciplinary knowledge in the fields of music and technology; (2) the practical application of training through the professional industry; and (3) the acquisition of skills in communication and collaboration. The paper then analyses assessment mechanisms for tracking student learning and achievement of learning outcomes at these institutions. The results indicate highly variable assessment practices. Conclusions offer recommendations for enhancing assessment techniques and better communicating learning outcomes to students.

Keywords: quality assurance, student learning; learning outcomes, music and technology

Procedia PDF Downloads 185
7432 Students' Statistical Reasoning and Attitudes towards Statistics in Blended Learning, E-Learning and On-Campus Learning

Authors: Petros Roussos

Abstract:

The present study focused on students' statistical reasoning related to Null Hypothesis Statistical Testing and p-values. Its objective was to test the hypothesis that neither the place (classroom, at a distance, online) nor the medium that actually supports the learning (ICT, internet, books) has an effect on understanding of statistical concepts. In addition, it was expected that students' attitudes towards statistics would not predict understanding of statistical concepts. The sample consisted of 385 undergraduate and postgraduate students from six state and private universities (five in Greece and one in Cyprus). Students were administered two questionnaires: a) the Greek version of the Survey of Attitudes Toward Statistics, and b) a short instrument which measures students' understanding of statistical significance and p-values. Results suggest that attitudes towards statistics do not predict students' understanding of statistical concepts, whereas the medium did not have an effect.

Keywords: attitudes towards statistics, blended learning, e-learning, statistical reasoning

Procedia PDF Downloads 310
7431 Implementation of Computer-Based Technologies into Foreign Language Teaching Process

Authors: Golovchun Aleftina, Dabyltayeva Raikhan

Abstract:

Nowadays, in the world of widely developing cross-cultural interactions and rapidly changing demands of the global labor market, foreign language teaching and learning has taken a special role not only in school education but also in everyday life. Cognitive Lingua-Cultural Methodology of Foreign Language Teaching originated in Kazakhstan brings a communicative approach to the forefront in foreign language teaching that gives raise a variety of techniques to make the language learning a real communication. One of these techniques is Computer Assisted Language Learning. In our article, we aim to: demonstrate what learning benefits students are likely to get by teachers having implemented computer-based technologies into foreign language teaching process; prove that technology-based classroom serves as the best tool for interactive and efficient language learning; give examples of classroom sufficient organization with computer-based activities.

Keywords: computer assisted language learning, learning benefits, foreign language teaching process, implementation, communicative approach

Procedia PDF Downloads 473
7430 Measuring Banking Systemic Risk Conditional Value-At-Risk and Conditional Coherent Expected Shortfall in Taiwan Using Vector Quantile GARCH Model

Authors: Ender Su, Kai Wen Wong, I-Ling Ju, Ya-Ling Wang

Abstract:

In this study, the systemic risk change of Taiwan’s banking sector is analyzed during the financial crisis. The risk expose of each financial institutions to the whole Taiwan banking systemic risk or vice versa under financial distress are measured by conditional Value-at-Risk (CoVaR) and conditional coherent expected shortfall (CoES). The CoVaR and CoES are estimated by using vector quantile autoregression (MVMQ-CaViaR) with the daily stock returns of each banks included domestic and foreign banks in Taiwan. The daily in-sample data covered the period from 05/20/2002 to 07/31/2007 and the out-of-sample period until 12/31/2013 spanning the 2008 U.S. subprime crisis, 2010 Greek debt crisis, and post risk duration. All banks in Taiwan are categorised into several groups according to their size of market capital, leverage and domestic/foreign to find out what the extent of changes of the systemic risk as the risk changes between the individuals in the bank groups and vice versa. The final results can provide a guidance to financial supervisory commission of Taiwan to gauge the downside risk in the system of financial institutions and determine the minimum capital requirement hold by financial institutions due to the sensibility changes in CoVaR and CoES of each banks.

Keywords: bank financial distress, vector quantile autoregression, CoVaR, CoES

Procedia PDF Downloads 386
7429 Flipped Learning Application on the Development of Capabilities for Civil Engineering Education in Labs

Authors: Hector Barrios-Piña, Georgia García-Arellano, Salvador García-Rodríguez, Gerardo Bocanegra-García, Shashi Kant

Abstract:

This work shows the methodology of application and the effectiveness of the Flipped Learning technique for Civil Engineering laboratory classes. It was experimented by some of the professors of the Department of Civil Engineering at Tecnológico de Monterrey while teaching their laboratory classes. A total of 28 videos were created. The videos primarily demonstrate instructions of the experimental practices other than the usage of tools and materials. The technique allowed the students to prepare for their classes in advance. A survey was conducted on the participating professors and students (semester of August-December 2019) to quantify the effectiveness of the Flipped Learning technique. The students reported it as an excellent way of improving their learning aptitude, including self-learning whereas, the professors felt it as an efficient technique for optimizing their class session, which also provided an extra slot for class-interaction. A comparison of grades was analyzed between the students of the traditional classes and with Flipped Learning. It did not distinguish the benefits of Flipped Learning. However, the positive responses from the students and the professors provide an impetus for continuing and promoting the Flipped Learning technique in future classes.

Keywords: flipped learning, laboratory classes, civil engineering, competences development

Procedia PDF Downloads 161
7428 Automatic Lexicon Generation for Domain Specific Dataset for Mining Public Opinion on China Pakistan Economic Corridor

Authors: Tayyaba Azim, Bibi Amina

Abstract:

The increase in the popularity of opinion mining with the rapid growth in the availability of social networks has attracted a lot of opportunities for research in the various domains of Sentiment Analysis and Natural Language Processing (NLP) using Artificial Intelligence approaches. The latest trend allows the public to actively use the internet for analyzing an individual’s opinion and explore the effectiveness of published facts. The main theme of this research is to account the public opinion on the most crucial and extensively discussed development projects, China Pakistan Economic Corridor (CPEC), considered as a game changer due to its promise of bringing economic prosperity to the region. So far, to the best of our knowledge, the theme of CPEC has not been analyzed for sentiment determination through the ML approach. This research aims to demonstrate the use of ML approaches to spontaneously analyze the public sentiment on Twitter tweets particularly about CPEC. Support Vector Machine SVM is used for classification task classifying tweets into positive, negative and neutral classes. Word2vec and TF-IDF features are used with the SVM model, a comparison of the trained model on manually labelled tweets and automatically generated lexicon is performed. The contributions of this work are: Development of a sentiment analysis system for public tweets on CPEC subject, construction of an automatic generation of the lexicon of public tweets on CPEC, different themes are identified among tweets and sentiments are assigned to each theme. It is worth noting that the applications of web mining that empower e-democracy by improving political transparency and public participation in decision making via social media have not been explored and practised in Pakistan region on CPEC yet.

Keywords: machine learning, natural language processing, sentiment analysis, support vector machine, Word2vec

Procedia PDF Downloads 148
7427 Quantum Algebra from Generalized Q-Algebra

Authors: Muna Tabuni

Abstract:

The paper contains an investigation of the notion of Q algebras. A brief introduction to quantum mechanics is given, in that systems the state defined by a vector in a complex vector space H which have Hermitian inner product property. H may be finite or infinite-dimensional. In quantum mechanics, operators must be hermitian. These facts are saved by Lie algebra operators but not by those of quantum algebras. A Hilbert space H consists of a set of vectors and a set of scalars. Lie group is a differentiable topological space with group laws given by differentiable maps. A Lie algebra has been introduced. Q-algebra has been defined. A brief introduction to BCI-algebra is given. A BCI sub algebra is introduced. A brief introduction to BCK=BCH-algebra is given. Every BCI-algebra is a BCH-algebra. Homomorphism maps meanings are introduced. Homomorphism maps between two BCK algebras are defined. The mathematical formulations of quantum mechanics can be expressed using the theory of unitary group representations. A generalization of Q algebras has been introduced, and their properties have been considered. The Q- quantum algebra has been studied, and various examples have been given.

Keywords: Q-algebras, BCI, BCK, BCH-algebra, quantum mechanics

Procedia PDF Downloads 199
7426 The Development Learning Module Physics based on Guided Inquiry Approach on Model Cooperative Learning Type STAD (Student Team Achievement Division) in the Main Subject of Temperature and Heat

Authors: Fani Firmahandari

Abstract:

The development learning module physics based on guided inquiry approach on model cooperative learning type STAD (Student Team Achievement Division) in the main subject of temperature and heat. The research development aimed to produce physics learning module based on guided cooperative learning type STAD (Student Team Achievement Division) in the main subject of temperature and heat to the student in X class. The research method used Research and Development approach. The development procedure of this module includes potential problems, data collection to meet the need, product design, and feasibility of this module. The impact of learning can be seen or observed clearly when the learning process takes place, the teachers or the students already implemented measures cooperative learning model type STAD, so that the learning process goes well, the interaction of teachers and students, students with student looks good, besides that students can interact and work together in group.

Keywords: cooperative learning type STAD (student team achievement division), development, inquiry, interaction students

Procedia PDF Downloads 360
7425 Learning Styles Difference in Difficulties of Generating Idea

Authors: M. H. Yee, J. Md Yunos, W. Othman, R. Hassan, T. K. Tee, M. M. Mohamad

Abstract:

The generation of an idea that goes through several phases is affected by individual factors, interests, preferences and motivation. The purpose of this research was to analyze the difference in difficulties of generating ideas according to individual learning styles. A total of 375 technical students from four technical universities in Malaysia were randomly selected as samples. The Kolb Learning Styles Inventory and a set of developed questionnaires were used in this research. The results showed that the most dominant learning style is among technical students is Doer. A total of 319 (85.1%) technical students faced difficulties in solving individual assignments. Most of the problem faced by technical students is the difficulty of generating ideas for solving individual assignments. There was no significant difference in difficulties of generating ideas according to students’ learning styles. Therefore, students need to learn higher order thinking skills enabling students to generate ideas and consequently complete assignments.

Keywords: difference, difficulties, generating idea, learning styles, Kolb Learning Styles Inventory

Procedia PDF Downloads 448
7424 Language Learning Strategies to Improve English Speaking Skills among High School Students: A Case Study at Vo Minh Duc High School in Binh Duong Province, Viet Nam

Authors: Du T. Tran, Quyen T. L. Hoang

Abstract:

The role of language learning strategies in second language acquisition has received increased attention across several disciplines in recent years. Language learning strategies have been shown to occur in many studies over the passing years with the aim of improving the efficiency of language learning. Following previous studies, this study endeavors to scrutinize language learning strategies employed by the students at Vo Minh Duc high school and the effect of motivation on students’ learning strategy choices. The responses are examined quantitatively and qualitatively to enhance their validity and reliability. Data are collected from 342 students’ responses to the questionnaire, interviews with ten teachers and fifteen students, and classroom observations. The findings reveal that students’ motivation has an enormous impact on the choice of language learning strategies. The results simultaneously show that students use many language learning strategies to enhance their communicative competence, but the most frequently used ones are cognitive and affective ones. Significant correlations among types of learning strategies and the influence of motivation on the choices of language learning strategies were consistent with previous studies. The study’s results are expected to be beneficial to teachers of English and students in terms of narrowing the gap between the students' language learning strategies and their teaching methodologies preferences and sketching out the best strategies to enhance students’ speaking skills. The implications of these findings and the importance of viewing learners holistically are discussed, and recommendations are made for ongoing research.

Keywords: learning strategies, speaking skills, memorization strategies, cognitive strategies, affective strategies

Procedia PDF Downloads 104
7423 Examining the Significance of Service Learning in Driving the Purpose of a Rural-Based University in South Africa

Authors: C. Maphosa, Ndileleni Mudzielwana, Lufuno Phillip Netshifhefhe

Abstract:

In line with established mission and vision, a university articulates its focus and purpose of existence. The conduct of business in a university should be for the furtherance of the mission and vision. Teaching and learning should play a pivotal role in driving the purpose of a university. In this paper, the researchers examine how service learning could be significant in driving the purpose of a rural-based university whose focus is to promote rural development. The importance of institutions’ vision and mission statement is explored and the vision and mission of the said university examined closely. The concept rural development and the contribution of a university in its promotion is discussed. Service learning as a teaching and learning approach is examined and its significance in driving the purpose of a rural-based university explained.

Keywords: relevance, differentiation, purpose, teaching, learning

Procedia PDF Downloads 318
7422 A Combination of Independent Component Analysis, Relative Wavelet Energy and Support Vector Machine for Mental State Classification

Authors: Nguyen The Hoang Anh, Tran Huy Hoang, Vu Tat Thang, T. T. Quyen Bui

Abstract:

Mental state classification is an important step for realizing a control system based on electroencephalography (EEG) signals which could benefit a lot of paralyzed people including the locked-in or Amyotrophic Lateral Sclerosis. Considering that EEG signals are nonstationary and often contaminated by various types of artifacts, classifying thoughts into correct mental states is not a trivial problem. In this work, our contribution is that we present and realize a novel model which integrates different techniques: Independent component analysis (ICA), relative wavelet energy, and support vector machine (SVM) for the same task. We applied our model to classify thoughts in two types of experiment whether with two or three mental states. The experimental results show that the presented model outperforms other models using Artificial Neural Network, K-Nearest Neighbors, etc.

Keywords: EEG, ICA, SVM, wavelet

Procedia PDF Downloads 384
7421 Stock Movement Prediction Using Price Factor and Deep Learning

Authors: Hy Dang, Bo Mei

Abstract:

The development of machine learning methods and techniques has opened doors for investigation in many areas such as medicines, economics, finance, etc. One active research area involving machine learning is stock market prediction. This research paper tries to consider multiple techniques and methods for stock movement prediction using historical price or price factors. The paper explores the effectiveness of some deep learning frameworks for forecasting stock. Moreover, an architecture (TimeStock) is proposed which takes the representation of time into account apart from the price information itself. Our model achieves a promising result that shows a potential approach for the stock movement prediction problem.

Keywords: classification, machine learning, time representation, stock prediction

Procedia PDF Downloads 147
7420 Definition of Service Angle of Android’S Robot Hand by Method of Small Movements of Gripper’S Axis Synthesis by Speed Vector

Authors: Valeriy Nebritov

Abstract:

The paper presents a generalized method for determining the service solid angle based on the assigned gripper axis orientation with a stationary grip center. Motion synthesis in this work is carried out in the vector of velocities. As an example, a solid angle of the android robot arm is determined, this angle being formed by the longitudinal axis of a gripper. The nature of the method is based on the study of sets of configuration positions, defining the end point positions of the unit radius sphere sweep, which specifies the service solid angle. From this the spherical curve specifying the shape of the desired solid angle was determined. The results of the research can be used in the development of control systems of autonomous android robots.

Keywords: android robot, control systems, motion synthesis, service angle

Procedia PDF Downloads 196
7419 A Family of Distributions on Learnable Problems without Uniform Convergence

Authors: César Garza

Abstract:

In supervised binary classification and regression problems, it is well-known that learnability is equivalent to a uniform convergence of the hypothesis class, and if a problem is learnable, it is learnable by empirical risk minimization. For the general learning setting of unsupervised learning tasks, there are non-trivial learning problems where uniform convergence does not hold. We present here the task of learning centers of mass with an extra feature that “activates” some of the coordinates over the unit ball in a Hilbert space. We show that the learning problem is learnable under a stable RLM rule. We introduce a family of distributions over the domain space with some mild restrictions for which the sample complexity of uniform convergence for these problems must grow logarithmically with the dimension of the Hilbert space. If we take this dimension to infinity, we obtain a learnable problem for which the uniform convergence property fails for a vast family of distributions.

Keywords: statistical learning theory, learnability, uniform convergence, stability, regularized loss minimization

Procedia PDF Downloads 129
7418 Flipped Classroom in Bioethics Education: A Blended and Interactive Online Learning Courseware That Enhances Active Learning and Student Engagement

Authors: Molly Pui Man Wong

Abstract:

In this study, a blended and interactive e-learning Courseware that our team developed will be introduced, and our team’s experiences on how the e-learning Courseware and the flipped classroom benefit student learning in bioethics in the medical program will be shared. This study is a continuation of the previously established study, which provides a summary of the well-developed e-learning Courseware in a blended learning approach and an update on its efficiency and efficacy. First, a collection of animated videos capturing selected topics of bioethics and related ethical issues and dilemma will be introduced. Next, a selection of problem-based learning videos (“simulated doctor-patient role play”) with pop-up questions and discussions will be further discussed. Our recent findings demonstrated that these activities launched by the Courseware strongly engaged students in bioethics education and enhanced students’ critical thinking and creativity, which were consistent with the previous data in the preliminary studies. Moreover, the educational benefits of the online art exhibition, art jamming, and competition will be discussed, through which students could express bioethics through arts and enrich their learning in medical research in an interactive, fun, and entertaining way, strengthening their interests in bioethics. Furthermore, online survey questionnaires and focus group interviews were conducted. Consistent with the preliminary studies, our results indicated that implementing the e-learning Courseware with a flipped classroom in bioethics education enhanced both active learning and student engagement. In conclusion, our Courseware not only reinforces education in art, bioethics, and medicine but also benefits students in understanding and critical thinking in socio-ethical issues and serves as a valuable learning tool in bioethics teaching and learning.

Keywords: bioethics, courseware, e-learning, flipped classroom

Procedia PDF Downloads 127
7417 Modeling Engagement with Multimodal Multisensor Data: The Continuous Performance Test as an Objective Tool to Track Flow

Authors: Mohammad H. Taheri, David J. Brown, Nasser Sherkat

Abstract:

Engagement is one of the most important factors in determining successful outcomes and deep learning in students. Existing approaches to detect student engagement involve periodic human observations that are subject to inter-rater reliability. Our solution uses real-time multimodal multisensor data labeled by objective performance outcomes to infer the engagement of students. The study involves four students with a combined diagnosis of cerebral palsy and a learning disability who took part in a 3-month trial over 59 sessions. Multimodal multisensor data were collected while they participated in a continuous performance test. Eye gaze, electroencephalogram, body pose, and interaction data were used to create a model of student engagement through objective labeling from the continuous performance test outcomes. In order to achieve this, a type of continuous performance test is introduced, the Seek-X type. Nine features were extracted including high-level handpicked compound features. Using leave-one-out cross-validation, a series of different machine learning approaches were evaluated. Overall, the random forest classification approach achieved the best classification results. Using random forest, 93.3% classification for engagement and 42.9% accuracy for disengagement were achieved. We compared these results to outcomes from different models: AdaBoost, decision tree, k-Nearest Neighbor, naïve Bayes, neural network, and support vector machine. We showed that using a multisensor approach achieved higher accuracy than using features from any reduced set of sensors. We found that using high-level handpicked features can improve the classification accuracy in every sensor mode. Our approach is robust to both sensor fallout and occlusions. The single most important sensor feature to the classification of engagement and distraction was shown to be eye gaze. It has been shown that we can accurately predict the level of engagement of students with learning disabilities in a real-time approach that is not subject to inter-rater reliability, human observation or reliant on a single mode of sensor input. This will help teachers design interventions for a heterogeneous group of students, where teachers cannot possibly attend to each of their individual needs. Our approach can be used to identify those with the greatest learning challenges so that all students are supported to reach their full potential.

Keywords: affective computing in education, affect detection, continuous performance test, engagement, flow, HCI, interaction, learning disabilities, machine learning, multimodal, multisensor, physiological sensors, student engagement

Procedia PDF Downloads 94
7416 Two Wheels Differential Type Odometry for Robot

Authors: Abhishek Jha, Manoj Kumar

Abstract:

This paper proposes a new type of two wheels differential type odometry to estimate the next position and orientation of mobile robots. The proposed odometry is composed for two independent wheels with respective encoders. The two wheels rotate independently, and the change is determined by the difference in the velocity of the two wheels. Angular velocities of the two wheels are measured by rotary encoders. A mathematical model is proposed for the mobile robots to precisely move towards the goal. Using measured values of the two encoders, the current displacement vector of a mobile robot is calculated by kinematics of the mathematical model. Using the displacement vector, the next position and orientation of the mobile robot are estimated by proposed odometry. Result of simulator experiment by the developed odometry is shown.

Keywords: mobile robot, odometry, unicycle, differential type, encoders, infrared range sensors, kinematic model

Procedia PDF Downloads 451
7415 Students and Teachers Perceptions about Interactive Learning in Teaching Health Promotion Course: Implication for Nursing Education and Practice

Authors: Ahlam Alnatour

Abstract:

Background: To our knowledge, there is lack of studies that describe the experience of studying health promotion courses using an interactive approach, and compare students’ and teachers perceptions about this method of teaching. The purpose of this study is to provide a comparison between student and teacher experiences and perspectives in learning health promotion course using interactive learning. Design: A descriptive qualitative design was used to provide an in-depth description and understanding of students’ and teachers experiences and perceptions of learning health promotion courses using an interactive learning. Study Participants: About 14 fourteen students (seven male, seven female) and eight teachers at governmental university in northern Jordan participated in this study. Data Analysis: Conventional content analysis approach was used for participants’ scripts to gain an in-depth description for both students' and teacher’s experiences. Results: The main themes emerged from the data analysis describing the students’ and teachers perceptions of the interactive health promotion class: teachers’ and students positive experience in adopting interactive learning, advantages and benefits of interactive teaching, barriers to interactive teaching, and suggestions for improvement. Conclusion: Both teachers and students reflected positive attitudes toward interactive learning. Interactive learning helped to engage in learning process physically and cognitively. Interactive learning enhanced learning process, promote student attention, enhanced final performance, and satisfied teachers and students accordingly. Interactive learning approach should be adopted in teaching graduate and undergraduate courses using updated and contemporary strategies. Nursing scholars and educators should be motivated to integrate interactive learning in teaching different nursing courses.

Keywords: interactive learning, nursing, health promotion, qualitative study

Procedia PDF Downloads 250
7414 Parallel Random Number Generation for the Modern Supercomputer Architectures

Authors: Roman Snytsar

Abstract:

Pseudo-random numbers are often used in scientific computing such as the Monte Carlo Simulations or the Quantum Inspired Optimization. Requirements for a parallel random number generator running in the modern multi-core vector environment are more stringent than those for sequential random number generators. As well as passing the usual quality tests, the output of the parallel random number generator must be verifiable and reproducible throughout the concurrent execution. We propose a family of vectorized Permuted Congruential Generators. Implementations are available for multiple modern vector modern computer architectures. Besides demonstrating good single core performance, the generators scale easily across many processor cores and multiple distributed nodes. We provide performance and parallel speedup analysis and comparisons between the implementations.

Keywords: pseudo-random numbers, quantum optimization, SIMD, parallel computing

Procedia PDF Downloads 120
7413 Physical Physics: Enhancing the Learning Experience for Undergraduate Game Development Students

Authors: Y. Kavanagh, N. O'Hara, R. Palmer, P. Lowe, D. Rafferty

Abstract:

Physical Physics is a physics education methodology for games programfmes that integrates physical activity with movement tracking and modelling. It significantly enhances the learning experience and it is effective in illustrating how physics is core in games design and programming, while allowing students to be active participants and take ownership of the learning process. It has been successfully piloted with undergraduate students studying Games Development.

Keywords: activity, enhanced learning, game development, physics

Procedia PDF Downloads 289
7412 Singular Perturbed Vector Field Method Applied to the Problem of Thermal Explosion of Polydisperse Fuel Spray

Authors: Ophir Nave

Abstract:

In our research, we present the concept of singularly perturbed vector field (SPVF) method, and its application to thermal explosion of diesel spray combustion. Given a system of governing equations, which consist of hidden Multi-scale variables, the SPVF method transfer and decompose such system to fast and slow singularly perturbed subsystems (SPS). The SPVF method enables us to understand the complex system, and simplify the calculations. Later powerful analytical, numerical and asymptotic methods (e.g method of integral (invariant) manifold (MIM), the homotopy analysis method (HAM) etc.) can be applied to each subsystem. We compare the results obtained by the methods of integral invariant manifold and SPVF apply to spray droplets combustion model. The research deals with the development of an innovative method for extracting fast and slow variables in physical mathematical models. The method that we developed called singular perturbed vector field. This method based on a numerical algorithm applied to global quasi linearization applied to given physical model. The SPVF method applied successfully to combustion processes. Our results were compared to experimentally results. The SPVF is a general numerical and asymptotical method that reveals the hierarchy (multi-scale system) of a given system.

Keywords: polydisperse spray, model reduction, asymptotic analysis, multi-scale systems

Procedia PDF Downloads 219
7411 An Augmented-Reality Interactive Card Game for Teaching Elementary School Students

Authors: YuLung Wu, YuTien Wu, ShuMey Yu

Abstract:

Game-based learning can enhance the learning motivation of students and provide a means for them to learn through playing games. This study used augmented reality technology to develop an interactive card game as a game-based teaching aid for delivering elementary school science course content with the aim of enhancing student learning processes and outcomes. Through playing the proposed card game, students can familiarize themselves with appearance, features, and foraging behaviors of insects. The system records the actions of students, enabling teachers to determine their students’ learning progress. In this study, 37 students participated in an assessment experiment and provided feedback through questionnaires. Their responses indicated that they were significantly more motivated to learn after playing the game, and their feedback was mostly positive.

Keywords: game-based learning, learning motivation, teaching aid, augmented reality

Procedia PDF Downloads 375
7410 A Study of Achievement and Attitude on Learning Science in English by Using Co – Teaching Method

Authors: Sakchai Rachniyom

Abstract:

Owing to the ASEAN community will formally take place in the few months; therefore, Thais should realize about the importance of English language. Since, it is regarded as a working language in the community. To promote Science students’ English proficiency, teacher should be able to teach in English language appropriately and effectively. The purposes of the quasi – experimental research are (1) to measure the learning achievement, (2) to evaluate students’ satisfaction on the teaching and learning and (3) to study the consequences of co – teaching method in order comprehend the learning achievement and improvement. The participants were 40 general science students teacher. Two types of research instruments were included; (1) an achievement test, and (2) a questionnaire. This research was conducted for 1 semester. The statistics used in this research were arithmetic mean and standard deviation. The findings of the study revealed that students’ achievement score was significantly increased at statistical level .05 and the students satisfied the teaching and learning at the highest level . The students’ involvement and teachers’ support were promoted. It was also reported students’ learning was improved by co – teaching method.

Keywords: co – teaching method, learning science in english, teacher, education

Procedia PDF Downloads 479
7409 Investigating Teachers’ Perceptions about the Use of Technology in Second Language Learning at Universities in Pakistan

Authors: Nadir Ali Mugheri

Abstract:

This study has explored the perceptions of English language teachers (ELT) regarding use of technology in learning English as a second language (L2) at Universities in Pakistan. In this regard, 200 ELT teachers from 80 leading universities were selected through a judgmental sampling method. Results established that most of the teachers supported integration and incorporation of technology in the language classroom so as to teach L2 in an effective and efficient way. This study unearthed that the teachers termed the use of technology in learning English as a second language (ESL) as a positive step towards enhancing the learning capabilities and improving the personal traits of the students or learners. Findings suggest that the integration of technology in the language learning makes the learners within the classroom active and enthusiastic, and the teachers need to be equipped with the latest knowledge of mobile assisted language learning (MALL) and computer assisted language learning (CALL) so that they may ensure use of this innovative technology in their teaching practices. Results also indicated that the technology has proved itself a stimulus for improving language in the ELT milieu. The use of technology helps teachers develop themselves professionally. This study discovered that there are many determinants that make teaching and learning within the classroom efficacious, while the use of technology is one of them. Data was collected through qualitative design in order to get a complete depiction. Semi-structured interviews were conducted and analyzed through thematic analysis.

Keywords: english language teaching, computer assisted language learning, use of technology, thematic analysis

Procedia PDF Downloads 69