Search results for: data estimation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26124

Search results for: data estimation

25494 The Current Situation and Perspectives of Electricity Demand and Estimation of Carbon Dioxide Emissions and Efficiency

Authors: F. Ahwide, Y. Aldali

Abstract:

This article presents a current and future energy situation in Libya. The electric power efficiency and operating hours in power plants are evaluated from 2005 to 2010. Carbon dioxide emissions in most of power plants are estimated. In 2005, the efficiency of steam power plants achieved a range of 20% to 28%. While, the gas turbine power plants efficiency ranged between 9% and 25%, this can be considered as low efficiency. However, the efficiency improvement has clearly observed in some power plants from 2008 to 2010, especially in the power plant of North Benghazi and west Tripoli. In fact, these power plants have modified to combine cycle. The efficiency of North Benghazi power plant has increased from 25% to 46.6%, while in Tripoli it is increased from 22% to 34%. On the other hand, the efficiency improvement is not observed in the gas turbine power plants. When compared to the quantity of fuel used, the carbon dioxide emissions resulting from electricity generation plants were very high. Finally, an estimation of the energy demand has been done to the maximum load and the annual load factor (i.e., the ratio between the output power and installed power).

Keywords: power plant, efficiency improvement, carbon dioxide emissions, energy situation in Libya

Procedia PDF Downloads 475
25493 Estimation of Aquifer Properties Using Pumping Tests: Case Study of Pydibhimavaram Industrial Area, Srikakulam, India

Authors: G. Venkata Rao, P. Kalpana, R. Srinivasa Rao

Abstract:

Adequate and reliable estimates of aquifer parameters are of utmost importance for proper management of vital groundwater resources. At present scenario the ground water is polluted because of industrial waste disposed over the land and the contaminants are transported in the aquifer from one area to another area which is depending on the characteristics of the aquifer and contaminants. To know the contaminant transport, the accurate estimation of aquifer properties is highly needed. Conventionally, these properties are estimated through pumping tests carried out on water wells. The occurrence and movement of ground water in the aquifer are characteristically defined by the aquifer parameters. The pumping (aquifer) test is the standard technique for estimating various hydraulic properties of aquifer systems, viz, transmissivity (T), hydraulic conductivity (K), storage coefficient (S) etc., for which the graphical method is widely used. The study area for conducting pumping test is Pydibheemavaram Industrial area near the coastal belt of Srikulam, AP, India. The main objective of the present work is to estimate the aquifer properties for developing contaminant transport model for the study area.

Keywords: aquifer, contaminant transport, hydraulic conductivity, industrial waste, pumping test

Procedia PDF Downloads 445
25492 Estimation of Emanation Properties of Kimberlites and Host Rocks of Lomonosov Diamond Deposit in Russia

Authors: E. Yu. Yakovlev, A. V. Puchkov

Abstract:

The study is devoted to experimental work on the assessment of emanation properties of kimberlites and host rocks of the Lomonosov diamond deposit of the Arkhangelsk diamondiferous province. The aim of the study is estimation the factors influencing on formation of the radon field over kimberlite pipes. For various types of rocks composing the kimberlite pipe and near-pipe space, the following parameters were measured: porosity, density, radium-226 activity, activity of free radon and emanation coefficient. The research results showed that the largest amount of free radon is produced by rocks of near-pipe space, which are the Vendian host deposits and are characterized by high values of the emanation coefficient, radium activity and porosity. The lowest values of these parameters are characteristic of vent-facies kimberlites, which limit the formation of activity of free radon in body of the pipe. The results of experimental work confirm the prospects of using emanation methods for prospecting of kimberlite pipes.

Keywords: emanation coefficient, kimberlites, porosity, radon volumetric activity

Procedia PDF Downloads 138
25491 Automatic Post Stroke Detection from Computed Tomography Images

Authors: C. Gopi Jinimole, A. Harsha

Abstract:

For detecting strokes, Computed Tomography (CT) scan is preferred for imaging the abnormalities or infarction in the brain. Because of the problems in the window settings used to evaluate brain CT images, they are very poor in the early stage infarction detection. This paper presents an automatic estimation method for the window settings of the CT images for proper contrast of the hyper infarction present in the brain. In the proposed work the window width is estimated automatically for each slice and the window centre is changed to a new value of 31HU, which is the average of the HU values of the grey matter and white matter in the brain. The automatic window width estimation is based on the average of median of statistical central moments. Thus with the new suggested window centre and estimated window width, the hyper infarction or post-stroke regions in CT brain images are properly detected. The proposed approach assists the radiologists in CT evaluation for early quantitative signs of delayed stroke, which leads to severe hemorrhage in the future can be prevented by providing timely medication to the patients.

Keywords: computed tomography (CT), hyper infarction or post stroke region, Hounsefield Unit (HU), window centre (WC), window width (WW)

Procedia PDF Downloads 202
25490 JavaScript Object Notation Data against eXtensible Markup Language Data in Software Applications a Software Testing Approach

Authors: Theertha Chandroth

Abstract:

This paper presents a comparative study on how to check JSON (JavaScript Object Notation) data against XML (eXtensible Markup Language) data from a software testing point of view. JSON and XML are widely used data interchange formats, each with its unique syntax and structure. The objective is to explore various techniques and methodologies for validating comparison and integration between JSON data to XML and vice versa. By understanding the process of checking JSON data against XML data, testers, developers and data practitioners can ensure accurate data representation, seamless data interchange, and effective data validation.

Keywords: XML, JSON, data comparison, integration testing, Python, SQL

Procedia PDF Downloads 138
25489 Using Machine Learning Techniques to Extract Useful Information from Dark Data

Authors: Nigar Hussain

Abstract:

It is a subset of big data. Dark data means those data in which we fail to use for future decisions. There are many issues in existing work, but some need powerful tools for utilizing dark data. It needs sufficient techniques to deal with dark data. That enables users to exploit their excellence, adaptability, speed, less time utilization, execution, and accessibility. Another issue is the way to utilize dark data to extract helpful information to settle on better choices. In this paper, we proposed upgrade strategies to remove the dark side from dark data. Using a supervised model and machine learning techniques, we utilized dark data and achieved an F1 score of 89.48%.

Keywords: big data, dark data, machine learning, heatmap, random forest

Procedia PDF Downloads 27
25488 Nonparametric Path Analysis with Truncated Spline Approach in Modeling Rural Poverty in Indonesia

Authors: Usriatur Rohma, Adji Achmad Rinaldo Fernandes

Abstract:

Nonparametric path analysis is a statistical method that does not rely on the assumption that the curve is known. The purpose of this study is to determine the best nonparametric truncated spline path function between linear and quadratic polynomial degrees with 1, 2, and 3-knot points and to determine the significance of estimating the best nonparametric truncated spline path function in the model of the effect of population migration and agricultural economic growth on rural poverty through the variable unemployment rate using the t-test statistic at the jackknife resampling stage. The data used in this study are secondary data obtained from statistical publications. The results showed that the best model of nonparametric truncated spline path analysis is quadratic polynomial degree with 3-knot points. In addition, the significance of the best-truncated spline nonparametric path function estimation using jackknife resampling shows that all exogenous variables have a significant influence on the endogenous variables.

Keywords: nonparametric path analysis, truncated spline, linear, quadratic, rural poverty, jackknife resampling

Procedia PDF Downloads 46
25487 Use of Multistage Transition Regression Models for Credit Card Income Prediction

Authors: Denys Osipenko, Jonathan Crook

Abstract:

Because of the variety of the card holders’ behaviour types and income sources each consumer account can be transferred to a variety of states. Each consumer account can be inactive, transactor, revolver, delinquent, defaulted and requires an individual model for the income prediction. The estimation of transition probabilities between statuses at the account level helps to avoid the memorylessness of the Markov Chains approach. This paper investigates the transition probabilities estimation approaches to credit cards income prediction at the account level. The key question of empirical research is which approach gives more accurate results: multinomial logistic regression or multistage conditional logistic regression with binary target. Both models have shown moderate predictive power. Prediction accuracy for conditional logistic regression depends on the order of stages for the conditional binary logistic regression. On the other hand, multinomial logistic regression is easier for usage and gives integrate estimations for all states without priorities. Thus further investigations can be concentrated on alternative modeling approaches such as discrete choice models.

Keywords: multinomial regression, conditional logistic regression, credit account state, transition probability

Procedia PDF Downloads 483
25486 Assessing the Impact of Climate Change on Pulses Production in Khyber Pakhtunkhwa, Pakistan

Authors: Khuram Nawaz Sadozai, Rizwan Ahmad, Munawar Raza Kazmi, Awais Habib

Abstract:

Climate change and crop production are intrinsically associated with each other. Therefore, this research study is designed to assess the impact of climate change on pulses production in Southern districts of Khyber Pakhtunkhwa (KP) Province of Pakistan. Two pulses (i.e. chickpea and mung bean) were selected for this research study with respect to climate change. Climatic variables such as temperature, humidity and precipitation along with pulses production and area under cultivation of pulses were encompassed as the major variables of this study. Secondary data of climatic variables and crop variables for the period of thirty four years (1986-2020) were obtained from Pakistan Metrological Department and Agriculture Statistics of KP respectively. Panel data set of chickpea and mung bean crops was estimated separately. The analysis validate that both data sets were a balanced panel data. The Hausman specification test was run separately for both the panel data sets whose findings had suggested the fixed effect model can be deemed as an appropriate model for chickpea panel data, however random effect model was appropriate for estimation of the panel data of mung bean. Major findings confirm that maximum temperature is statistically significant for the chickpea yield. This implies if maximum temperature increases by 1 0C, it can enhance the chickpea yield by 0.0463 units. However, the impact of precipitation was reported insignificant. Furthermore, the humidity was statistically significant and has a positive association with chickpea yield. In case of mung bean the minimum temperature was significantly contributing in the yield of mung bean. This study concludes that temperature and humidity can significantly contribute to enhance the pulses yield. It is recommended that capacity building of pulses growers may be made to adapt the climate change strategies. Moreover, government may ensure the availability of climate change resistant varieties of pulses to encourage the pulses cultivation.

Keywords: climate change, pulses productivity, agriculture, Pakistan

Procedia PDF Downloads 42
25485 A Stochastic Diffusion Process Based on the Two-Parameters Weibull Density Function

Authors: Meriem Bahij, Ahmed Nafidi, Boujemâa Achchab, Sílvio M. A. Gama, José A. O. Matos

Abstract:

Stochastic modeling concerns the use of probability to model real-world situations in which uncertainty is present. Therefore, the purpose of stochastic modeling is to estimate the probability of outcomes within a forecast, i.e. to be able to predict what conditions or decisions might happen under different situations. In the present study, we present a model of a stochastic diffusion process based on the bi-Weibull distribution function (its trend is proportional to the bi-Weibull probability density function). In general, the Weibull distribution has the ability to assume the characteristics of many different types of distributions. This has made it very popular among engineers and quality practitioners, who have considered it the most commonly used distribution for studying problems such as modeling reliability data, accelerated life testing, and maintainability modeling and analysis. In this work, we start by obtaining the probabilistic characteristics of this model, as the explicit expression of the process, its trends, and its distribution by transforming the diffusion process in a Wiener process as shown in the Ricciaardi theorem. Then, we develop the statistical inference of this model using the maximum likelihood methodology. Finally, we analyse with simulated data the computational problems associated with the parameters, an issue of great importance in its application to real data with the use of the convergence analysis methods. Overall, the use of a stochastic model reflects only a pragmatic decision on the part of the modeler. According to the data that is available and the universe of models known to the modeler, this model represents the best currently available description of the phenomenon under consideration.

Keywords: diffusion process, discrete sampling, likelihood estimation method, simulation, stochastic diffusion process, trends functions, bi-parameters weibull density function

Procedia PDF Downloads 306
25484 Determining the Width and Depths of Cut in Milling on the Basis of a Multi-Dexel Model

Authors: Jens Friedrich, Matthias A. Gebele, Armin Lechler, Alexander Verl

Abstract:

Chatter vibrations and process instabilities are the most important factors limiting the productivity of the milling process. Chatter can leads to damage of the tool, the part or the machine tool. Therefore, the estimation and prediction of the process stability is very important. The process stability depends on the spindle speed, the depth of cut and the width of cut. In milling, the process conditions are defined in the NC-program. While the spindle speed is directly coded in the NC-program, the depth and width of cut are unknown. This paper presents a new simulation based approach for the prediction of the depth and width of cut of a milling process. The prediction is based on a material removal simulation with an analytically represented tool shape and a multi-dexel approach for the work piece. The new calculation method allows the direct estimation of the depth and width of cut, which are the influencing parameters of the process stability, instead of the removed volume as existing approaches do. The knowledge can be used to predict the stability of new, unknown parts. Moreover with an additional vibration sensor, the stability lobe diagram of a milling process can be estimated and improved based on the estimated depth and width of cut.

Keywords: dexel, process stability, material removal, milling

Procedia PDF Downloads 524
25483 Multi-Source Data Fusion for Urban Comprehensive Management

Authors: Bolin Hua

Abstract:

In city governance, various data are involved, including city component data, demographic data, housing data and all kinds of business data. These data reflects different aspects of people, events and activities. Data generated from various systems are different in form and data source are different because they may come from different sectors. In order to reflect one or several facets of an event or rule, data from multiple sources need fusion together. Data from different sources using different ways of collection raised several issues which need to be resolved. Problem of data fusion include data update and synchronization, data exchange and sharing, file parsing and entry, duplicate data and its comparison, resource catalogue construction. Governments adopt statistical analysis, time series analysis, extrapolation, monitoring analysis, value mining, scenario prediction in order to achieve pattern discovery, law verification, root cause analysis and public opinion monitoring. The result of Multi-source data fusion is to form a uniform central database, which includes people data, location data, object data, and institution data, business data and space data. We need to use meta data to be referred to and read when application needs to access, manipulate and display the data. A uniform meta data management ensures effectiveness and consistency of data in the process of data exchange, data modeling, data cleansing, data loading, data storing, data analysis, data search and data delivery.

Keywords: multi-source data fusion, urban comprehensive management, information fusion, government data

Procedia PDF Downloads 392
25482 Advantages of Neural Network Based Air Data Estimation for Unmanned Aerial Vehicles

Authors: Angelo Lerro, Manuela Battipede, Piero Gili, Alberto Brandl

Abstract:

Redundancy requirements for UAV (Unmanned Aerial Vehicle) are hardly faced due to the generally restricted amount of available space and allowable weight for the aircraft systems, limiting their exploitation. Essential equipment as the Air Data, Attitude and Heading Reference Systems (ADAHRS) require several external probes to measure significant data as the Angle of Attack or the Sideslip Angle. Previous research focused on the analysis of a patented technology named Smart-ADAHRS (Smart Air Data, Attitude and Heading Reference System) as an alternative method to obtain reliable and accurate estimates of the aerodynamic angles. This solution is based on an innovative sensor fusion algorithm implementing soft computing techniques and it allows to obtain a simplified inertial and air data system reducing external devices. In fact, only one external source of dynamic and static pressures is needed. This paper focuses on the benefits which would be gained by the implementation of this system in UAV applications. A simplification of the entire ADAHRS architecture will bring to reduce the overall cost together with improved safety performance. Smart-ADAHRS has currently reached Technology Readiness Level (TRL) 6. Real flight tests took place on ultralight aircraft equipped with a suitable Flight Test Instrumentation (FTI). The output of the algorithm using the flight test measurements demonstrates the capability for this fusion algorithm to embed in a single device multiple physical and virtual sensors. Any source of dynamic and static pressure can be integrated with this system gaining a significant improvement in terms of versatility.

Keywords: aerodynamic angles, air data system, flight test, neural network, unmanned aerial vehicle, virtual sensor

Procedia PDF Downloads 219
25481 Maximum Deformation Estimation for Reinforced Concrete Buildings Using Equivalent Linearization Method

Authors: Chien-Kuo Chiu

Abstract:

In the displacement-based seismic design and evaluation, equivalent linearization method is one of the approximation methods to estimate the maximum inelastic displacement response of a system. In this study, the accuracy of two equivalent linearization methods are investigated. The investigation consists of three soil condition in Taiwan (Taipei Basin 1, 2, and 3) and five different heights of building (H_r= 10, 20, 30, 40, and 50 m). The first method is the Taiwan equivalent linearization method (TELM) which was proposed based on Japanese equivalent linear method considering the modification factor, α_T= 0.85. On the basis of Lin and Miranda study, the second method is proposed with some modification considering Taiwan soil conditions. From this study, it is shown that Taiwanese equivalent linearization method gives better estimation compared to the modified Lin and Miranda method (MLM). The error index for the Taiwanese equivalent linearization method are 16%, 13%, and 12% for Taipei Basin 1, 2, and 3, respectively. Furthermore, a ductility demand spectrum of single-degree-of-freedom (SDOF) system is presented in this study as a guide for engineers to estimate the ductility demand of a structure.

Keywords: displacement-based design, ductility demand spectrum, equivalent linearization method, RC buildings, single-degree-of-freedom

Procedia PDF Downloads 161
25480 Towards End-To-End Disease Prediction from Raw Metagenomic Data

Authors: Maxence Queyrel, Edi Prifti, Alexandre Templier, Jean-Daniel Zucker

Abstract:

Analysis of the human microbiome using metagenomic sequencing data has demonstrated high ability in discriminating various human diseases. Raw metagenomic sequencing data require multiple complex and computationally heavy bioinformatics steps prior to data analysis. Such data contain millions of short sequences read from the fragmented DNA sequences and stored as fastq files. Conventional processing pipelines consist in multiple steps including quality control, filtering, alignment of sequences against genomic catalogs (genes, species, taxonomic levels, functional pathways, etc.). These pipelines are complex to use, time consuming and rely on a large number of parameters that often provide variability and impact the estimation of the microbiome elements. Training Deep Neural Networks directly from raw sequencing data is a promising approach to bypass some of the challenges associated with mainstream bioinformatics pipelines. Most of these methods use the concept of word and sentence embeddings that create a meaningful and numerical representation of DNA sequences, while extracting features and reducing the dimensionality of the data. In this paper we present an end-to-end approach that classifies patients into disease groups directly from raw metagenomic reads: metagenome2vec. This approach is composed of four steps (i) generating a vocabulary of k-mers and learning their numerical embeddings; (ii) learning DNA sequence (read) embeddings; (iii) identifying the genome from which the sequence is most likely to come and (iv) training a multiple instance learning classifier which predicts the phenotype based on the vector representation of the raw data. An attention mechanism is applied in the network so that the model can be interpreted, assigning a weight to the influence of the prediction for each genome. Using two public real-life data-sets as well a simulated one, we demonstrated that this original approach reaches high performance, comparable with the state-of-the-art methods applied directly on processed data though mainstream bioinformatics workflows. These results are encouraging for this proof of concept work. We believe that with further dedication, the DNN models have the potential to surpass mainstream bioinformatics workflows in disease classification tasks.

Keywords: deep learning, disease prediction, end-to-end machine learning, metagenomics, multiple instance learning, precision medicine

Procedia PDF Downloads 124
25479 Reviewing Privacy Preserving Distributed Data Mining

Authors: Sajjad Baghernezhad, Saeideh Baghernezhad

Abstract:

Nowadays considering human involved in increasing data development some methods such as data mining to extract science are unavoidable. One of the discussions of data mining is inherent distribution of the data usually the bases creating or receiving such data belong to corporate or non-corporate persons and do not give their information freely to others. Yet there is no guarantee to enable someone to mine special data without entering in the owner’s privacy. Sending data and then gathering them by each vertical or horizontal software depends on the type of their preserving type and also executed to improve data privacy. In this study it was attempted to compare comprehensively preserving data methods; also general methods such as random data, coding and strong and weak points of each one are examined.

Keywords: data mining, distributed data mining, privacy protection, privacy preserving

Procedia PDF Downloads 523
25478 Estimating the Impact of Appliance Energy Efficiency Improvement on Residential Energy Demand in Tema City, Ghana

Authors: Marriette Sakah, Samuel Gyamfi, Morkporkpor Delight Sedzro, Christoph Kuhn

Abstract:

Ghana is experiencing rapid economic development and its cities command an increasingly dominant role as centers of both production and consumption. Cities run on energy and are extremely vulnerable to energy scarcity, energy price escalations and health impacts of very poor air quality. The overriding concern in Ghana and other West African states is bridging the gap between energy demand and supply. Energy efficiency presents a cost-effective solution for supply challenges by enabling more coverage with current power supply levels and reducing the need for investment in additional generation capacity and grid infrastructure. In Ghana, major issues for energy policy formulation in residential applications include lack of disaggregated electrical energy consumption data and lack of thorough understanding with regards to socio-economic influences on energy efficiency investment. This study uses a bottom up approach to estimate baseline electricity end-use as well as the energy consumption of best available technologies to enable estimation of energy-efficiency resource in terms of relative reduction in total energy use for Tema city, Ghana. A ground survey was conducted to assess the probable consumer behavior in response to energy efficiency initiatives to enable estimation of the amount of savings that would occur in response to specific policy interventions with regards to funding and incentives provision targeted at households. Results show that 16% - 54% reduction in annual electricity consumption is reasonably achievable depending on the level of incentives provision. The saved energy could supply 10000 - 34000 additional households if the added households use only best available technology. Political support and consumer awareness are necessary to translate energy efficiency resources into real energy savings.

Keywords: achievable energy savings, energy efficiency, Ghana, household appliances

Procedia PDF Downloads 212
25477 Least Squares Solution for Linear Quadratic Gaussian Problem with Stochastic Approximation Approach

Authors: Sie Long Kek, Wah June Leong, Kok Lay Teo

Abstract:

Linear quadratic Gaussian model is a standard mathematical model for the stochastic optimal control problem. The combination of the linear quadratic estimation and the linear quadratic regulator allows the state estimation and the optimal control policy to be designed separately. This is known as the separation principle. In this paper, an efficient computational method is proposed to solve the linear quadratic Gaussian problem. In our approach, the Hamiltonian function is defined, and the necessary conditions are derived. In addition to this, the output error is defined and the least-square optimization problem is introduced. By determining the first-order necessary condition, the gradient of the sum squares of output error is established. On this point of view, the stochastic approximation approach is employed such that the optimal control policy is updated. Within a given tolerance, the iteration procedure would be stopped and the optimal solution of the linear-quadratic Gaussian problem is obtained. For illustration, an example of the linear-quadratic Gaussian problem is studied. The result shows the efficiency of the approach proposed. In conclusion, the applicability of the approach proposed for solving the linear quadratic Gaussian problem is highly demonstrated.

Keywords: iteration procedure, least squares solution, linear quadratic Gaussian, output error, stochastic approximation

Procedia PDF Downloads 183
25476 The Right to Data Portability and Its Influence on the Development of Digital Services

Authors: Roman Bieda

Abstract:

The General Data Protection Regulation (GDPR) will come into force on 25 May 2018 which will create a new legal framework for the protection of personal data in the European Union. Article 20 of GDPR introduces a right to data portability. This right allows for data subjects to receive the personal data which they have provided to a data controller, in a structured, commonly used and machine-readable format, and to transmit this data to another data controller. The right to data portability, by facilitating transferring personal data between IT environments (e.g.: applications), will also facilitate changing the provider of services (e.g. changing a bank or a cloud computing service provider). Therefore, it will contribute to the development of competition and the digital market. The aim of this paper is to discuss the right to data portability and its influence on the development of new digital services.

Keywords: data portability, digital market, GDPR, personal data

Procedia PDF Downloads 471
25475 Continuous Catalytic Hydrogenation and Purification for Synthesis Non-Phthalate

Authors: Chia-Ling Li

Abstract:

The scope of this article includes the production of 10,000 metric tons of non-phthalate per annum. The production process will include hydrogenation, separation, purification, and recycling of unprocessed feedstock. Based on experimental data, conversion and selectivity were chosen as reaction model parameters. The synthesis and separation processes of non-phthalate and phthalate were established by using Aspen Plus software. The article will be divided into six parts: estimation of physical properties, integration of production processes, purification case study, utility consumption, economic feasibility study and identification of bottlenecks. The purities of products was higher than 99.9 wt. %. Process parameters have important guiding significance to the commercialization of hydrogenation of phthalate.

Keywords: economic analysis, hydrogenation, non-phthalate, process simulation

Procedia PDF Downloads 276
25474 Roles of Aquatic Plants on Erosion Relief of Stream Bed

Authors: Jin-Hong Kim

Abstract:

Roles of the vegetation to mitigate the erosion of the stream bed or to facilitate the deposition of the fine sediments by the species of the aquatic plants were presented. Field investigation on the estimation of the change of the bed level and the estimation of the flow characteristics were performed. The results showed that Phragmites japonica has the mitigation function of 0.3m-0.4m of the erosion in the range of higher than 1.0m/s of flow velocity at the vegetated region. Phragmites communis has the mitigation function of 0.2m-0.3m of the erosion in the range of higher than 0.7m/s of flow velocity at the vegetated region. Salix gracilistyla has greater role than Phragmites japonica and Phragmites communis to sustain the stable channel. It has the mitigation function of 0.4m-0.5m of the erosion in the range of higher than 1.4m/s of flow velocity. Miscanthus sacchariflorus has a weak role compared with that of Phragmites japonica and Salix gracilistyla, but it has still function for sustaining the stable bed. From these results, the vegetation has effective roles to mitigate the erosion or to facilitate the deposition of the stream bed.

Keywords: aquatic plants, Phragmites japonica, Phragmites communis, Salix gracilistyla

Procedia PDF Downloads 384
25473 Home Range and Spatial Interaction Modelling of Black Bears

Authors: Fekadu L. Bayisa, Elvan Ceyhan, Todd D. Steury

Abstract:

Interaction between individuals within the same species is an important component of population dynamics. An interaction can be either static (based on spatial overlap) or dynamic (based on movement interactions). Using GPS collar data, we can quantify both static and dynamic interactions between black bears. The goal of this work is to determine the level of black bear interactions using the 95% and 50% home ranges, as well as to model black bear spatial interactions, which could be attraction, avoidance/repulsion, or a lack of interaction at all, to gain new insights and improve our understanding of ecological processes. Recent methodological developments in home range estimation, inhomogeneous multitype/cross-type summary statistics, and envelope testing methods are explored to study the nature of black bear interactions. Our findings, in general, indicate that the black bears of one type in our data set tend to cluster around another type.

Keywords: autocorrelated kernel density estimator, cross-type summary function, inhomogeneous multitype Poisson process, kernel density estimator, minimum convex polygon, pointwise and global envelope tests

Procedia PDF Downloads 80
25472 Nature of Body Image Distortion in Eating Disorders

Authors: Katri K. Cornelissen, Lise Gulli Brokjob, Kristofor McCarty, Jiri Gumancik, Martin J. Tovee, Piers L. Cornelissen

Abstract:

Recent research has shown that body size estimation of healthy women is driven by independent attitudinal and perceptual components. The attitudinal component represents psychological concerns about body, coupled to low self-esteem and a tendency towards depressive symptomatology, leading to over-estimation of body size, independent of the Body Mass Index (BMI) someone actually has. The perceptual component is a normal bias known as contraction bias, which, for bodies is dependent on actual BMI. Women with a BMI less than the population norm tend to overestimate their size, while women with a BMI greater than the population norm tend to underestimate their size. Women whose BMI is close to the population mean are most accurate. This is indexed by a regression of estimated BMI on actual BMI with a slope less than one. It is well established that body dissatisfaction, i.e. an attitudinal distortion, leads to body size overestimation in eating disordered individuals. However, debate persists as to whether women with eating disorders may also suffer a perceptual body distortion. Therefore, the current study was set to ask whether women with eating disorders exhibit the normal contraction bias when they estimate their own body size. If they do not, this would suggest differences in the way that women with eating disorders process the perceptual aspects of body shape and size in comparison to healthy controls. 100 healthy controls and 33 women with a history of eating disorders were recruited. Critically, it was ensured that both groups of participants represented comparable and adequate ranges of actual BMI (e.g. ~18 to ~40). Of those with eating disorders, 19 had a history of anorexia nervosa, 6 bulimia nervosa, and 8 OSFED. 87.5% of the women with a history of eating disorders self-reported that they were either recovered or recovering, and 89.7% of them self-reported that they had had one or more instances of relapse. The mean time lapsed since first diagnosis was 5 years and on average participants had experienced two relapses. Participants were asked to fill number of psychometric measures (EDE-Q, BSQ, RSE, BDI) to establish the attitudinal component of their body image as well as their tendency to internalize socio-cultural body ideals. Additionally, participants completed a method of adjustment psychophysical task, using photorealistic avatars calibrated for BMI, in order to provide an estimate of their own body size and shape. The data from the healthy controls replicate previous findings, revealing independent contributions to body size estimation from both attitudinal and perceptual (i.e. contraction bias) body image components, as described above. For the eating disorder group, once the adequacy of their actual BMI ranges was established, a regression of estimated BMI on actual BMI had a slope greater than 1, significantly different to that from controls. This suggests that (some) eating disordered individuals process the perceptual aspects of body image differently from healthy controls. It therefore is necessary to develop interventions which are specific to the perceptual processing of body shape and size for the management of (some) individuals with eating disorders.

Keywords: body image distortion, perception, recovery, relapse, BMI, eating disorders

Procedia PDF Downloads 65
25471 A Study of Adaptive Fault Detection Method for GNSS Applications

Authors: Je Young Lee, Hee Sung Kim, Kwang Ho Choi, Joonhoo Lim, Sebum Chun, Hyung Keun Lee

Abstract:

A purpose of this study is to develop efficient detection method for Global Navigation Satellite Systems (GNSS) applications based on adaptive estimation. Due to dependence of radio frequency signals, GNSS measurements are dominated by systematic errors in receiver’s operating environment. Thus, to utilize GNSS for aerospace or ground vehicles requiring high level of safety, unhealthy measurements should be considered seriously. For the reason, this paper proposes adaptive fault detection method to deal with unhealthy measurements in various harsh environments. By the proposed method, the test statistics for fault detection is generated by estimated measurement noise. Pseudorange and carrier-phase measurement noise are obtained at time propagations and measurement updates in process of Carrier-Smoothed Code (CSC) filtering, respectively. Performance of the proposed method was evaluated by field-collected GNSS measurements. To evaluate the fault detection capability, intentional faults were added to measurements. The experimental result shows that the proposed detection method is efficient in detecting unhealthy measurements and improves the accuracy of GNSS positioning under fault occurrence.

Keywords: adaptive estimation, fault detection, GNSS, residual

Procedia PDF Downloads 571
25470 Determination and Distribution of Formation Thickness Using Seismic and Well Data in Baga/Lake Sub-basin, Chad Basin Nigeria

Authors: Gabriel Efomeh Omolaiye, Olatunji Seminu, Jimoh Ajadi, Yusuf Ayoola Jimoh

Abstract:

The Nigerian part of the Chad Basin till date has been one of the few critically studied basins, with few published scholarly works, compared to other basins such as Niger Delta, Dahomey, etc. This work was undertaken by the integration of 3D seismic interpretations and the well data analysis of eight wells fairly distributed in block A, Baga/Lake sub-basin in Borno basin with the aim of determining the thickness of Chad, Kerri-Kerri, Fika, and Gongila Formations in the sub-basin. Da-1 well (type-well) used in this study was subdivided into stratigraphic units based on the regional stratigraphic subdivision of the Chad basin and was later correlated with other wells using similarity of observed log responses. The combined density and sonic logs were used to generate synthetic seismograms for seismic to well ties. Five horizons were mapped, representing the tops of the formations on the 3D seismic data covering the block; average velocity function with maximum error/residual of 0.48% was adopted in the time to depth conversion of all the generated maps. There is a general thickening of sediments from the west to the east, and the estimated thicknesses of the various formations in the Baga/Lake sub-basin are Chad Formation (400-750 m), Kerri-Kerri Formation (300-1200 m), Fika Formation (300-2200 m) and Gongila Formation (100-1300 m). The thickness of the Bima Formation could not be established because the deepest well (Da-1) terminates within the formation. This is a modification to the previous and widely referenced studies of over forty decades that based the estimation of formation thickness within the study area on the observed outcrops at different locations and the use of few well data.

Keywords: Baga/Lake sub-basin, Chad basin, formation thickness, seismic, velocity

Procedia PDF Downloads 181
25469 Joint Simulation and Estimation for Geometallurgical Modeling of Crushing Consumption Energy in the Mineral Processing Plants

Authors: Farzaneh Khorram, Xavier Emery

Abstract:

In this paper, it is aimed to create a crushing consumption energy (CCE) block model and determine the blocks with the potential to have the maximum grinding process energy consumption for the study area. For this purpose, a joint estimate (co-kriging) and joint simulation (turning band method and plurigaussian methods) to predict the CCE based on its correlation with SAG power index (SPI), A×B, and ball mill bond work Index (BWI). The analysis shows that TBCOSIM and plurigaussian have the more realistic results compared to cokriging. It seems logical due to the nature of the data geometallurgical and the linearity of the kriging method and the smoothing effect of kriging.

Keywords: plurigaussian, turning band, cokriging, geometallurgy

Procedia PDF Downloads 67
25468 Is Privatization Related with Macroeconomic Management? Evidence from Some Selected African Countries

Authors: E. O. George, P. Ojeaga, D. Odejimi, O. Mattehws

Abstract:

Has macroeconomic management succeeded in making privatization promote growth in Africa? What are the probable strategies that should accompany the privatization reform process to promote growth in Africa? To what extent has the privatization process succeeded in attracting foreign direct investment to Africa? The study investigates the relationship between macroeconomic management and privatization. Many African countries have embarked on one form of privatization reform or the other since 1980 as one of the stringent conditions for accessing capital from the IMF and the World Bank. Secondly globalization and the gradually integration of the African economy into the global economy also means that Africa has to strategically develop its domestic market to cushion itself from fluctuations and probable contagion associated with global economic crisis that are always inevitable Stiglitz. The methods of estimation used are the OLS, linear mixed effects (LME), 2SLS and the GMM method of estimation. It was found that macroeconomic management has the capacity to affect the success of the privatization reform process. It was also found that privatization was not promoting growth in Africa; privatization could promote growth if long run growth strategies are implemented together with the privatization reform process. Privatization was also found not to have the capacity to attract foreign investment to many African countries.

Keywords: Africa, political economy, game theory, macroeconomic management and privatization

Procedia PDF Downloads 328
25467 The Relationship between Human Pose and Intention to Fire a Handgun

Authors: Joshua van Staden, Dane Brown, Karen Bradshaw

Abstract:

Gun violence is a significant problem in modern-day society. Early detection of carried handguns through closed-circuit television (CCTV) can aid in preventing potential gun violence. However, CCTV operators have a limited attention span. Machine learning approaches to automating the detection of dangerous gun carriers provide a way to aid CCTV operators in identifying these individuals. This study provides insight into the relationship between human key points extracted using human pose estimation (HPE) and their intention to fire a weapon. We examine the feature importance of each keypoint and their correlations. We use principal component analysis (PCA) to reduce the feature space and optimize detection. Finally, we run a set of classifiers to determine what form of classifier performs well on this data. We find that hips, shoulders, and knees tend to be crucial aspects of the human pose when making these predictions. Furthermore, the horizontal position plays a larger role than the vertical position. Of the 66 key points, nine principal components could be used to make nonlinear classifications with 86% accuracy. Furthermore, linear classifications could be done with 85% accuracy, showing that there is a degree of linearity in the data.

Keywords: feature engineering, human pose, machine learning, security

Procedia PDF Downloads 91
25466 Combining the Deep Neural Network with the K-Means for Traffic Accident Prediction

Authors: Celso L. Fernando, Toshio Yoshii, Takahiro Tsubota

Abstract:

Understanding the causes of a road accident and predicting their occurrence is key to preventing deaths and serious injuries from road accident events. Traditional statistical methods such as the Poisson and the Logistics regressions have been used to find the association of the traffic environmental factors with the accident occurred; recently, an artificial neural network, ANN, a computational technique that learns from historical data to make a more accurate prediction, has emerged. Although the ability to make accurate predictions, the ANN has difficulty dealing with highly unbalanced attribute patterns distribution in the training dataset; in such circumstances, the ANN treats the minority group as noise. However, in the real world data, the minority group is often the group of interest; e.g., in the road traffic accident data, the events of the accident are the group of interest. This study proposes a combination of the k-means with the ANN to improve the predictive ability of the neural network model by alleviating the effect of the unbalanced distribution of the attribute patterns in the training dataset. The results show that the proposed method improves the ability of the neural network to make a prediction on a highly unbalanced distributed attribute patterns dataset; however, on an even distributed attribute patterns dataset, the proposed method performs almost like a standard neural network.

Keywords: accident risks estimation, artificial neural network, deep learning, k-mean, road safety

Procedia PDF Downloads 162
25465 Bayesian Using Markov Chain Monte Carlo and Lindley's Approximation Based on Type-I Censored Data

Authors: Al Omari Moahmmed Ahmed

Abstract:

These papers describe the Bayesian Estimator using Markov Chain Monte Carlo and Lindley’s approximation and the maximum likelihood estimation of the Weibull distribution with Type-I censored data. The maximum likelihood method can’t estimate the shape parameter in closed forms, although it can be solved by numerical methods. Moreover, the Bayesian estimates of the parameters, the survival and hazard functions cannot be solved analytically. Hence Markov Chain Monte Carlo method and Lindley’s approximation are used, where the full conditional distribution for the parameters of Weibull distribution are obtained via Gibbs sampling and Metropolis-Hastings algorithm (HM) followed by estimate the survival and hazard functions. The methods are compared to Maximum Likelihood counterparts and the comparisons are made with respect to the Mean Square Error (MSE) and absolute bias to determine the better method in scale and shape parameters, the survival and hazard functions.

Keywords: weibull distribution, bayesian method, markov chain mote carlo, survival and hazard functions

Procedia PDF Downloads 475