Search results for: data mining applications and discovery
24394 A Building Structure Health Monitoring DeviceBased on Cost Effective 1-Axis Accelerometers
Authors: Chih Hsing Lin, Wen-Ching Chen, Ssu-Ying Chen, Chih-Chyau Yang, Chien-Ming Wu, Chun-Ming Huang
Abstract:
Critical structures such as buildings, bridges and dams require periodic inspections to ensure safe operation. The reliable inspection of structures can be achieved by combing temperature sensor and accelerometers. In this work, we propose a building structure health monitoring device (BSHMD) with using three 1-axis accelerometers, gateway, analog to digital converter (ADC), and data logger to monitoring the building structure. The proposed BSHMD achieves the features of low cost by using three 1-axis accelerometers with the data synchronization problem being solved, and easily installation and removal. Furthermore, we develop a packet acquisition program to receive the sensed data and then classify it based on time and date. Compared with 3-axis accelerometer, our proposed 1-axis accelerometers based device achieves 64.3% cost saving. Compared with previous structural monitoring device, the BSHMD achieves 89% area saving. Therefore, with using the proposed device, the realtime diagnosis system for building damage monitoring can be conducted effectively.Keywords: building structure health monitoring, cost effective, 1-axis accelerometers, real-time diagnosis
Procedia PDF Downloads 37624393 Performance Analysis of Double Gate FinFET at Sub-10NM Node
Authors: Suruchi Saini, Hitender Kumar Tyagi
Abstract:
With the rapid progress of the nanotechnology industry, it is becoming increasingly important to have compact semiconductor devices to function and offer the best results at various technology nodes. While performing the scaling of the device, several short-channel effects occur. To minimize these scaling limitations, some device architectures have been developed in the semiconductor industry. FinFET is one of the most promising structures. Also, the double-gate 2D Fin field effect transistor has the benefit of suppressing short channel effects (SCE) and functioning well for less than 14 nm technology nodes. In the present research, the MuGFET simulation tool is used to analyze and explain the electrical behaviour of a double-gate 2D Fin field effect transistor. The drift-diffusion and Poisson equations are solved self-consistently. Various models, such as Fermi-Dirac distribution, bandgap narrowing, carrier scattering, and concentration-dependent mobility models, are used for device simulation. The transfer and output characteristics of the double-gate 2D Fin field effect transistor are determined at 10 nm technology node. The performance parameters are extracted in terms of threshold voltage, trans-conductance, leakage current and current on-off ratio. In this paper, the device performance is analyzed at different structure parameters. The utilization of the Id-Vg curve is a robust technique that holds significant importance in the modeling of transistors, circuit design, optimization of performance, and quality control in electronic devices and integrated circuits for comprehending field-effect transistors. The FinFET structure is optimized to increase the current on-off ratio and transconductance. Through this analysis, the impact of different channel widths, source and drain lengths on the Id-Vg and transconductance is examined. Device performance was affected by the difficulty of maintaining effective gate control over the channel at decreasing feature sizes. For every set of simulations, the device's features are simulated at two different drain voltages, 50 mV and 0.7 V. In low-power and precision applications, the off-state current is a significant factor to consider. Therefore, it is crucial to minimize the off-state current to maximize circuit performance and efficiency. The findings demonstrate that the performance of the current on-off ratio is maximum with the channel width of 3 nm for a gate length of 10 nm, but there is no significant effect of source and drain length on the current on-off ratio. The transconductance value plays a pivotal role in various electronic applications and should be considered carefully. In this research, it is also concluded that the transconductance value of 340 S/m is achieved with the fin width of 3 nm at a gate length of 10 nm and 2380 S/m for the source and drain extension length of 5 nm, respectively.Keywords: current on-off ratio, FinFET, short-channel effects, transconductance
Procedia PDF Downloads 6624392 Effect of Treadmill Exercise on Fluid Intelligence in Early Adults: Electroencephalogram Study
Authors: Ladda Leungratanamart, Seree Chadcham
Abstract:
Fluid intelligence declines along with age, but it can be developed. For this reason, increasing fluid intelligence in young adults can be possible. This study examined the effects of a two-month treadmill exercise program on fluid intelligence. The researcher designed a treadmill exercise program to promote cardiorespiratory fitness. Thirty-eight healthy voluntary students from the Boromarajonani College of Nursing, Chon Buri were assigned randomly to an exercise group (n=18) and a control group (n=20). The experiment consisted of three sessions: The baseline session consisted of measuring the VO2max, electroencephalogram and behavioral response during performed the Raven Progressive Matrices (RPM) test, a measure of fluid intelligence. For the exercise session, an experimental group exercises using treadmill training at 60 % to 80 % maximum heart rate for 30 mins, three times per week, whereas the control group did not exercise. For the following two sessions, each participant was measured the same as baseline testing. The data were analyzed using the t-test to examine whether there is significant difference between the means of the two groups. The results showed that the mean VO2 max in the experimental group were significantly more than the control group (p<.05), suggesting a two-month treadmill exercise program can improve fluid intelligence. When comparing the behavioral data, it was found that experimental group performed RPM test more accurately and faster than the control group. Neuroelectric data indicated a significant increase in percentages of alpha band ERD (%ERD) at P3 and Pz compared to the pre-exercise condition and the control group. These data suggest that a two-month treadmill exercise program can contribute to the development of cardiorespiratory fitness which influences an increase fluid intelligence. Exercise involved in cortical activation in difference brain areas.Keywords: treadmill exercise, fluid intelligence, raven progressive matrices test, alpha band
Procedia PDF Downloads 35324391 Telomerase, a Biomarker in Oral Cancer Cell Proliferation and Tool for Its Prevention at Initial Stage
Authors: Shaista Suhail
Abstract:
As cancer populations is increasing sharply, the incidence of oral squamous cell carcinoma (OSCC) has also been expected to increase. Oral carcinogenesis is a highly complex, multistep process which involves accumulation of genetic alterations that lead to the induction of proteins promoting cell growth (encoded by oncogenes), increased enzymatic (telomerase) activity promoting cancer cell proliferation. The global increase in frequency and mortality, as well as the poor prognosis of oral squamous cell carcinoma, has intensified current research efforts in the field of prevention and early detection of this disease. The advances in the understanding of the molecular basis of oral cancer should help in the identification of new markers. The study of the carcinogenic process of the oral cancer, including continued analysis of new genetic alterations, along with their temporal sequencing during initiation, promotion and progression, will allow us to identify new diagnostic and prognostic factors, which will provide a promising basis for the application of more rational and efficient treatments. Telomerase activity has been readily found in most cancer biopsies, in premalignant lesions or germ cells. Activity of telomerase is generally absent in normal tissues. It is known to be induced upon immortalization or malignant transformation of human cells such as in oral cancer cells. Maintenance of telomeres plays an essential role during transformation of precancer to malignant stage. Mammalian telomeres, a specialized nucleoprotein structures are composed of large conctamers of the guanine-rich sequence 5_-TTAGGG-3_. The roles of telomeres in regulating both stability of genome and replicative immortality seem to contribute in essential ways in cancer initiation and progression. It is concluded that activity of telomerase can be used as a biomarker for diagnosis of malignant oral cancer and a target for inactivation in chemotherapy or gene therapy. Its expression will also prove to be an important diagnostic tool as well as a novel target for cancer therapy. The activation of telomerase may be an important step in tumorgenesis which can be controlled by inactivating its activity during chemotherapy. The expression and activity of telomerase are indispensable for cancer development. There are no drugs which can effect extremely to treat oral cancers. There is a general call for new emerging drugs or methods that are highly effective towards cancer treatment, possess low toxicity, and have a minor environment impact. Some novel natural products also offer opportunities for innovation in drug discovery. Natural compounds isolated from medicinal plants, as rich sources of novel anticancer drugs, have been of increasing interest with some enzyme (telomerase) blockage property. The alarming reports of cancer cases increase the awareness amongst the clinicians and researchers pertaining to investigate newer drug with low toxicity.Keywords: oral carcinoma, telomere, telomerase, blockage
Procedia PDF Downloads 17824390 Optimizing Nitrogen Fertilizer Application in Rice Cultivation: A Decision Model for Top and Ear Dressing Dosages
Authors: Ya-Li Tsai
Abstract:
Nitrogen is a vital element crucial for crop growth, significantly influencing crop yield. In rice cultivation, farmers often apply substantial nitrogen fertilizer to maximize yields. However, excessive nitrogen application increases the risk of lodging and pest infestation, leading to yield losses. Additionally, conventional flooded irrigation methods consume significant water resources, necessitating precise agricultural and intelligent water management systems. In this study, it leveraged physiological data and field images captured by unmanned aerial vehicles, considering fertilizer treatment and irrigation as key factors. Statistical models incorporating rice physiological data, yield, and vegetation indices from image data were developed. Missing physiological data were addressed using multiple imputation and regression methods, and regression models were established using principal component analysis and stepwise regression. Target nitrogen accumulation at key growth stages was identified to optimize fertilizer application, with the difference between actual and target nitrogen accumulation guiding recommendations for ear dressing dosage. Field experiments conducted in 2022 validated the recommended ear dressing dosage, demonstrating no significant difference in final yield compared to traditional fertilizer levels under alternate wetting and drying irrigation. These findings highlight the efficacy of applying recommended dosages based on fertilizer decision models, offering the potential for reduced fertilizer use while maintaining yield in rice cultivation.Keywords: intelligent fertilizer management, nitrogen top and ear dressing fertilizer, rice, yield optimization
Procedia PDF Downloads 9424389 Basin Professor, Petroleum Geology Assessor in Indonesia Basin
Authors: Arditya Nugraha, Herry Gunawan, Agung P. Widodo
Abstract:
The various possible strategies to find hydrocarbon are explored within a wide ranging of efforts. It started to identify petroleum concept in the basin. The main objectives of this paper are to integrate and develop information, knowledge, and evaluation from Indonesia’s sedimentary basins system in terms of their suitability for exploration activity and estimate the hydrocarbon potential available. The system which compiled data information and knowledge and comprised exploration and production data of all basins in Indonesia called as Basin Professor which stands for Basin Professional and Processor. Basin Professor is a website application using Geography Information System which consists of all information about basin montage, basin summary, petroleum system, stratigraphy, development play, risk factor, exploration history, working area, regional cross section, well correlation, prospect & lead inventory and infrastructure spatial. From 82 identified sedimentary basins, North Sumatra, Central Sumatra, South Sumatera, East Java, Kutai, and Tarakan basins are respectively positioned of the Indonesia’ s mature basin and the most productive basin. The Eastern of Indonesia also have many hydrocarbon potential and discovered several fields in Papua and East Abadi. Basin Professor compiled the well data in all of the basin in Indonesia from mature basin to frontier basin. Well known geological data, subsurface mapping, prospect and lead, resources and established infrastructures are the main factors make these basins have higher suitability beside another potential basin. The hydrocarbon potential resulted from this paper based on the degree of geological data, petroleum, and economic evaluation. Basin Professor has provided by a calculator tool in lead and prospect for estimate the hydrocarbon reserves, recoverable in place and geological risk. Furthermore, the calculator also defines the preliminary economic evaluation such as investment, POT IRR and infrastructures in each basin. From this Basin Professor, petroleum companies are able to estimate that Indonesia has a huge potential of hydrocarbon oil and gas reservoirs and still interesting for hydrocarbon exploration and production activity.Keywords: basin summary, petroleum system, resources, economic evaluation
Procedia PDF Downloads 29224388 ESG and Corporate Financial Performance: Empirical Evidence from Vietnam’s Listed Construction Companies
Authors: My Linh Hoang, Van Dung Hoang
Abstract:
Environmental, Social, and Governance (ESG) factors have become a focus for companies globally, as businesses are now focusing on long-term sustainable goals rather than only operating for the goals of profit maximization. According to recent research, in several countries, companies have shown positive results in their financial performance by improving their ESG performance. The construction industry is one of the most crucial components of social and economic development; as a result, considerations for ESG factors are becoming more and more essential for companies in this sector. In Vietnam, the construction industry has been growing rapidly in recent years; however, it has yet to be discussed and studied extensively in Vietnam how ESG factors create impacts on corporate financial performance in general and construction corporations’ financial performance in particular. This research aims to examine the relationship between ESG factors and financial indicators in construction companies from 2011 to 2021 through panel data analysis of 75 listed construction companies in Vietnam and to provide insights into how these companies can better integrate ESG considerations into their operations to enhance their financial performance. The data was analyzed through 3 main methods: descriptive statistics, correlation coefficient analysis applied to all dependent, explanatory and control variables, and panel data analysis method. In panel data analysis, the study uses the fixed effects model (FEM) and random effects model (REM). The Hausman test will be used to select which model is suitable to be used. The findings indicate that maintaining a strong commitment to ESG principles can have a positive impact on financial performance. Finally, FGLS estimation will be performed when the problem of autocorrelation and variable variance appears in the model. This is significant for all parties involved, including investors, company managers, decision-makers, and industry regulators.Keywords: ESG, financial performance, construction company, Vietnam
Procedia PDF Downloads 9724387 A Novel Spectral Index for Automatic Shadow Detection in Urban Mapping Based on WorldView-2 Satellite Imagery
Authors: Kaveh Shahi, Helmi Z. M. Shafri, Ebrahim Taherzadeh
Abstract:
In remote sensing, shadow causes problems in many applications such as change detection and classification. It is caused by objects which are elevated, thus can directly affect the accuracy of information. For these reasons, it is very important to detect shadows particularly in urban high spatial resolution imagery which created a significant problem. This paper focuses on automatic shadow detection based on a new spectral index for multispectral imagery known as Shadow Detection Index (SDI). The new spectral index was tested on different areas of World-View 2 images and the results demonstrated that the new spectral index has a massive potential to extract shadows effectively and automatically.Keywords: spectral index, shadow detection, remote sensing images, World-View 2
Procedia PDF Downloads 54124386 Development of a 3D Model of Real Estate Properties in Fort Bonifacio, Taguig City, Philippines Using Geographic Information Systems
Authors: Lyka Selene Magnayi, Marcos Vinas, Roseanne Ramos
Abstract:
As the real estate industry continually grows in the Philippines, Geographic Information Systems (GIS) provide advantages in generating spatial databases for efficient delivery of information and services. The real estate sector is not only providing qualitative data about real estate properties but also utilizes various spatial aspects of these properties for different applications such as hazard mapping and assessment. In this study, a three-dimensional (3D) model and a spatial database of real estate properties in Fort Bonifacio, Taguig City are developed using GIS and SketchUp. Spatial datasets include political boundaries, buildings, road network, digital terrain model (DTM) derived from Interferometric Synthetic Aperture Radar (IFSAR) image, Google Earth satellite imageries, and hazard maps. Multiple model layers were created based on property listings by a partner real estate company, including existing and future property buildings. Actual building dimensions, building facade, and building floorplans are incorporated in these 3D models for geovisualization. Hazard model layers are determined through spatial overlays, and different scenarios of hazards are also presented in the models. Animated maps and walkthrough videos were created for company presentation and evaluation. Model evaluation is conducted through client surveys requiring scores in terms of the appropriateness, information content, and design of the 3D models. Survey results show very satisfactory ratings, with the highest average evaluation score equivalent to 9.21 out of 10. The output maps and videos obtained passing rates based on the criteria and standards set by the intended users of the partner real estate company. The methodologies presented in this study were found useful and have remarkable advantages in the real estate industry. This work may be extended to automated mapping and creation of online spatial databases for better storage, access of real property listings and interactive platform using web-based GIS.Keywords: geovisualization, geographic information systems, GIS, real estate, spatial database, three-dimensional model
Procedia PDF Downloads 16124385 Reverse Impact of Temperature as Climate Factor on Milk Production in ChaharMahal and Bakhtiari
Abstract:
When long-term changes in normal weather patterns happen in a certain area, it generally could be identified as climate change. Concentration of principal's greenhouse gases such as carbon dioxide, nitrous oxide, methane, ozone, and water vapor will cause climate change and perhaps climate variability. Main climate factors are temperature, precipitation, air pressure, and humidity. Extreme events may be the result of the changing of carbon dioxide concentration levels in the atmosphere which cause a change in temperature. Extreme events in some ways will affect the productivity of crop and dairy livestock. In this research, the correlation of milk production and temperature as the main climate factor in ChaharMahal and Bakhtiari province in Iran has been considered. The methodology employed for this study consists, collect reports and published national and provincial data, available recorded data on climate factors and analyzing collected data using statistical software. Milk production in ChaharMahal and Bakhtiari province is in the same pattern as national milk production in Iran. According to the current study results, there is a significant negative correlation between milk production in ChaharMahal and Bakhtiari provinces and temperature as the main climate change factor.Keywords: Chaharmahal and Bakhtiari, climate change, impacts, Iran, milk production
Procedia PDF Downloads 17124384 Optimum Design of Photovoltaic Water Pumping System Application
Authors: Sarah Abdourraziq, Rachid El Bachtiri
Abstract:
The solar power source for pumping water is one of the most promising areas in photovoltaic applications. The implementation of these systems allows to protect the environment and reduce the CO2 gas emission compared to systems trained by diesel generators. This paper presents a comparative study between the photovoltaic pumping system driven by DC motor, and AC motor to define the optimum design of this application. The studied system consists of PV array, DC-DC Boost Converter, inverter, motor-pump set and storage tank. The comparison was carried out to define the characteristics and the performance of each system. Each subsystem is modeled in order to simulate the whole system in MATLAB/ Simulink. The results show the efficiency of the proposed technique.Keywords: photovoltaic water pumping system, DC motor-pump, AC motor-pump, DC-DC boost converter
Procedia PDF Downloads 33224383 Performance Analysis of Transformerless DC-DC Boost Converter
Authors: Nidhi Vijay, A. K. Sharma
Abstract:
Many industrial applications require power from dc source. DC-DC boost converters are now being used all over the world for rapid transit system. Although these provide high efficiency, smooth control, fast response and regeneration, conventional DC-DC boost converters are unable to provide high step up voltage gain due to effect of power switches, rectifier diodes and equivalent series resistance of inductor and capacitor. This paper proposes new transformerless dc-dc converters to achieve high step up voltage gain as compared to the conventional converter without an extremely high duty ratio. Only one power stage is used in this converter. Steady-state analysis of voltage gain is discussed in brief. Finally, a comparative analysis is given in order to verify the results.Keywords: MATLAB, DC-DC boost converter, voltage gain, voltage stress
Procedia PDF Downloads 43324382 Patient Tracking Challenges During Disasters and Emergencies
Authors: Mohammad H. Yarmohammadian, Reza Safdari, Mahmoud Keyvanara, Nahid Tavakoli
Abstract:
One of the greatest challenges in disaster and emergencies is patient tracking. The concept of tracking has different denotations. One of the meanings refers to tracking patients’ physical locations and the other meaning refers to tracking patients ‘medical needs during emergency services. The main goal of patient tracking is to provide patient safety during disaster and emergencies and manage the flow of patient and information in different locations. In most of cases, there are not sufficient and accurate data regarding the number of injuries, medical conditions and their accommodation and transference. The objective of the present study is to survey on patient tracking issue in natural disaster and emergencies. Methods: This was a narrative study in which the population was E-Journals and the electronic database such as PubMed, Proquest, Science direct, Elsevier, etc. Data was gathered by Extraction Form. All data were analyzed via content analysis. Results: In many countries there is no appropriate and rapid method for tracking patients and transferring victims after the occurrence of incidents. The absence of reliable data of patients’ transference and accommodation, even in the initial hours and days after the occurrence of disasters, and coordination for appropriate resource allocation, have faced challenges for evaluating needs and services challenges. Currently, most of emergency services are based on paper systems, while these systems do not act appropriately in great disasters and incidents and this issue causes information loss. Conclusion: Patient tracking system should update the location of patients or evacuees and information related to their states. Patients’ information should be accessible for authorized users to continue their treatment, accommodation and transference. Also it should include timely information of patients’ location as soon as they arrive somewhere and leave therein such a way that health care professionals can be able to provide patients’ proper medical treatment.Keywords: patient tracking, challenges, disaster, emergency
Procedia PDF Downloads 31024381 Detection of the Effectiveness of Training Courses and Their Limitations Using CIPP Model (Case Study: Isfahan Oil Refinery)
Authors: Neda Zamani
Abstract:
The present study aimed to investigate the effectiveness of training courses and their limitations using the CIPP model. The investigations were done on Isfahan Refinery as a case study. From a purpose point of view, the present paper is included among applied research and from a data gathering point of view, it is included among descriptive research of the field type survey. The population of the study included participants in training courses, their supervisors and experts of the training department. Probability-proportional-to-size (PPS) was used as the sampling method. The sample size for participants in training courses included 195 individuals, 30 supervisors and 11 individuals from the training experts’ group. To collect data, a questionnaire designed by the researcher and a semi-structured interview was used. The content validity of the data was confirmed by training management experts and the reliability was calculated through 0.92 Cronbach’s alpha. To analyze the data in descriptive statistics aspect (tables, frequency, frequency percentage and mean) were applied, and inferential statistics (Mann Whitney and Wilcoxon tests, Kruskal-Wallis test to determine the significance of the opinion of the groups) have been applied. Results of the study indicated that all groups, i.e., participants, supervisors and training experts, absolutely believe in the importance of training courses; however, participants in training courses regard content, teacher, atmosphere and facilities, training process, managing process and product as to be in a relatively appropriate level. The supervisors also regard output to be at a relatively appropriate level, but training experts regard content, teacher and managing processes as to be in an appropriate and higher than average level.Keywords: training courses, limitations of training effectiveness, CIPP model, Isfahan oil refinery company
Procedia PDF Downloads 8424380 Performance Comparison of Reactive, Proactive and Hybrid Routing Protocols in Wireless Ad Hoc Networks
Authors: Kumar Manoj, Ramesh Kumar, Kumari Arti, Kumar Prashant
Abstract:
Routing protocols have a central role in any mobile ad hoc network (MANET). There are many routing protocols that exhibit different performance levels in different scenarios. In this paper we compare AODV, DSDV, DSR and ZRP routing protocol in mobile ad hoc networks to determine the best operational conditions for each protocol. We analyses these routing protocols by extensive simulations in OPNET simulator and show that how pause time and the number of nodes affect their performance. In this study, performance is measured in terms of control traffic received, control traffic sent, data traffic received, data traffic sent, throughput, retransmission attempts.Keywords: MANET, AODV, DSDV, DSR, ZRP
Procedia PDF Downloads 68424379 Stress Field Induced By an Interfacial Edge Dislocation in a Multi-Layered Medium
Authors: Aditya Khanna, Andrei Kotousov
Abstract:
A novel method is presented for obtaining the stress field induced by an edge dislocation in a multilayered composite. To demonstrate the applications of the obtained solution, we consider the problem of an interfacial crack in a periodically layered bimaterial medium. The crack is modeled as a continuous distribution of edge dislocations and the Distributed Dislocation Technique (DDT) is utilized to obtain numerical results for the energy release rate (ERR). The numerical results correspond well with previously published results and the comparison serves as a validation of the obtained dislocation solution.Keywords: distributed dislocation technique, edge dislocation, elastic field, interfacial crack, multi-layered composite
Procedia PDF Downloads 44924378 Multi-Objective Optimal Threshold Selection for Similarity Functions in Siamese Networks for Semantic Textual Similarity Tasks
Authors: Kriuk Boris, Kriuk Fedor
Abstract:
This paper presents a comparative study of fundamental similarity functions for Siamese networks in semantic textual similarity (STS) tasks. We evaluate various similarity functions using the STS Benchmark dataset, analyzing their performance and stability. Additionally, we introduce a multi-objective approach for optimal threshold selection. Our findings provide insights into the effectiveness of different similarity functions and offer a straightforward method for threshold selection optimization, contributing to the advancement of Siamese network architectures in STS applications.Keywords: siamese networks, semantic textual similarity, similarity functions, STS benchmark dataset, threshold selection
Procedia PDF Downloads 4424377 Preliminary Results on a Maximum Mean Discrepancy Approach for Seizure Detection
Authors: Boumediene Hamzi, Turky N. AlOtaiby, Saleh AlShebeili, Arwa AlAnqary
Abstract:
We introduce a data-driven method for seizure detection drawing on recent progress in Machine Learning. The method is based on embedding probability measures in a high (or infinite) dimensional reproducing kernel Hilbert space (RKHS) where the Maximum Mean Discrepancy (MMD) is computed. The MMD is metric between probability measures that are computed as the difference between the means of probability measures after being embedded in an RKHS. Working in RKHS provides a convenient, general functional-analytical framework for theoretical understanding of data. We apply this approach to the problem of seizure detection.Keywords: kernel methods, maximum mean discrepancy, seizure detection, machine learning
Procedia PDF Downloads 24324376 Geotechnical Engineering Solutions for Adaptation
Authors: Johnstone Walubengo Wangusi
Abstract:
Geotechnical engineering is a multidisciplinary field that encompasses the study of soil, rock, and groundwater properties and their interactions with civil engineering structures. This research paper provides an in-depth overview of geotechnical engineering, covering its fundamental principles, applications in civil infrastructure projects, and the challenges faced by practitioners in the field. Through a comprehensive examination of soil mechanics, foundation design, slope stability analysis, and geotechnical site investigation techniques, this paper aims to highlight the importance of geotechnical engineering in ensuring the safety, stability, and sustainability of infrastructure development. Additionally, it discusses emerging trends, innovative technologies, and future directions in geotechnical engineering research and practice.Keywords: sustainable geotechnical engineering solutions, education and training for future generations geotechnical engineers, integration of geotechnical engineering and structural engineering, use of AI in geotechnical engineering modelling
Procedia PDF Downloads 6524375 3D Human Reconstruction over Cloud Based Image Data via AI and Machine Learning
Authors: Kaushik Sathupadi, Sandesh Achar
Abstract:
Human action recognition modeling is a critical task in machine learning. These systems require better techniques for recognizing body parts and selecting optimal features based on vision sensors to identify complex action patterns efficiently. Still, there is a considerable gap and challenges between images and videos, such as brightness, motion variation, and random clutters. This paper proposes a robust approach for classifying human actions over cloud-based image data. First, we apply pre-processing and detection, human and outer shape detection techniques. Next, we extract valuable information in terms of cues. We extract two distinct features: fuzzy local binary patterns and sequence representation. Then, we applied a greedy, randomized adaptive search procedure for data optimization and dimension reduction, and for classification, we used a random forest. We tested our model on two benchmark datasets, AAMAZ and the KTH Multi-view football datasets. Our HMR framework significantly outperforms the other state-of-the-art approaches and achieves a better recognition rate of 91% and 89.6% over the AAMAZ and KTH multi-view football datasets, respectively.Keywords: computer vision, human motion analysis, random forest, machine learning
Procedia PDF Downloads 4924374 Isothermal Vapour-Liquid Equilibria of Binary Mixtures of 1, 2-Dichloroethane with Some Cyclic Ethers: Experimental Results and Modelling
Authors: Fouzia Amireche-Ziar, Ilham Mokbel, Jacques Jose
Abstract:
The vapour pressures of the three binary mixtures: 1, 2- dichloroethane + 1,3-dioxolane, + 1,4-dioxane or + tetrahydropyrane, are carried out at ten temperatures ranging from 273 to 353.15 K. An accurate static device was employed for these measurements. The VLE data were reduced using the Redlich-Kister equation by taking into consideration the vapour pressure non-ideality in terms of the second molar virial coefficient. The experimental data were compared to the results predicted with the DISQUAC and Dortmund UNIFAC group contribution models for the total pressures P and the excess molar Gibbs energies GE.Keywords: disquac model, dortmund UNIFAC model, excess molar Gibbs energies GE, VLE
Procedia PDF Downloads 23224373 Calibration of Residential Buildings Energy Simulations Using Real Data from an Extensive in situ Sensor Network – A Study of Energy Performance Gap
Authors: Mathieu Bourdeau, Philippe Basset, Julien Waeytens, Elyes Nefzaoui
Abstract:
As residential buildings account for a third of the overall energy consumption and greenhouse gas emissions in Europe, building energy modeling is an essential tool to reach energy efficiency goals. In the energy modeling process, calibration is a mandatory step to obtain accurate and reliable energy simulations. Nevertheless, the comparison between simulation results and the actual building energy behavior often highlights a significant performance gap. The literature discusses different origins of energy performance gaps, from building design to building operation. Then, building operation description in energy models, especially energy usages and users’ behavior, plays an important role in the reliability of simulations but is also the most accessible target for post-occupancy energy management and optimization. Therefore, the present study aims to discuss results on the calibration ofresidential building energy models using real operation data. Data are collected through a sensor network of more than 180 sensors and advanced energy meters deployed in three collective residential buildings undergoing major retrofit actions. The sensor network is implemented at building scale and in an eight-apartment sample. Data are collected for over one year and half and coverbuilding energy behavior – thermal and electricity, indoor environment, inhabitants’ comfort, occupancy, occupants behavior and energy uses, and local weather. Building energy simulations are performed using a physics-based building energy modeling software (Pleaides software), where the buildings’features are implemented according to the buildingsthermal regulation code compliance study and the retrofit project technical files. Sensitivity analyses are performed to highlight the most energy-driving building features regarding each end-use. These features are then compared with the collected post-occupancy data. Energy-driving features are progressively replaced with field data for a step-by-step calibration of the energy model. Results of this study provide an analysis of energy performance gap on an existing residential case study under deep retrofit actions. It highlights the impact of the different building features on the energy behavior and the performance gap in this context, such as temperature setpoints, indoor occupancy, the building envelopeproperties but also domestic hot water usage or heat gains from electric appliances. The benefits of inputting field data from an extensive instrumentation campaign instead of standardized scenarios are also described. Finally, the exhaustive instrumentation solution provides useful insights on the needs, advantages, and shortcomings of the implemented sensor network for its replicability on a larger scale and for different use cases.Keywords: calibration, building energy modeling, performance gap, sensor network
Procedia PDF Downloads 16624372 An Exploratory Sequential Design: A Mixed Methods Model for the Statistics Learning Assessment with a Bayesian Network Representation
Authors: Zhidong Zhang
Abstract:
This study established a mixed method model in assessing statistics learning with Bayesian network models. There are three variants in exploratory sequential designs. There are three linked steps in one of the designs: qualitative data collection and analysis, quantitative measure, instrument, intervention, and quantitative data collection analysis. The study used a scoring model of analysis of variance (ANOVA) as a content domain. The research study is to examine students’ learning in both semantic and performance aspects at fine grain level. The ANOVA score model, y = α+ βx1 + γx1+ ε, as a cognitive task to collect data during the student learning process. When the learning processes were decomposed into multiple steps in both semantic and performance aspects, a hierarchical Bayesian network was established. This is a theory-driven process. The hierarchical structure was gained based on qualitative cognitive analysis. The data from students’ ANOVA score model learning was used to give evidence to the hierarchical Bayesian network model from the evidential variables. Finally, the assessment results of students’ ANOVA score model learning were reported. Briefly, this was a mixed method research design applied to statistics learning assessment. The mixed methods designs expanded more possibilities for researchers to establish advanced quantitative models initially with a theory-driven qualitative mode.Keywords: exploratory sequential design, ANOVA score model, Bayesian network model, mixed methods research design, cognitive analysis
Procedia PDF Downloads 19124371 The Analysis of Differential Item and Test Functioning between Sexes by Studying on the Scholastic Aptitude Test 2013
Authors: Panwasn Mahalawalert
Abstract:
The purposes of this research were analyzed differential item functioning and differential test functioning of SWUSAT aptitude test classification by sex variable. The data used in this research is the secondary data from Srinakharinwirot University Scholastic Aptitude Test 2013 (SWUSAT). SWUSAT test consists of four subjects. There are verbal ability test, number ability test, reasoning ability test and spatial ability test. The data analysis was analyzed in 2 steps. The first step was analyzing descriptive statistics. In the second step were analyzed differential item functioning (DIF) and differential test functioning (DTF) by using the DIFAS program. The research results were as follows: The results of DIF and DTF analysis for all 10 tests in year 2013. Gender was the characteristic that found DIF all 10 tests. The percentage of item number that found DIF is between 6.67% - 60%. There are 5 tests that most of items favors female group and 2 tests that most of items favors male group. There are 3 tests that the number of items favors female group equal favors male group. For Differential test functioning (DTF), there are 8 tests that have small level.Keywords: aptitude test, differential item functioning, differential test functioning, educational measurement
Procedia PDF Downloads 41724370 Elicitation Methods of Requirements Gathering in Shopping Mobile Application Development
Authors: Xiao Yihong, Li Zhixuan, Wong Kah Seng, Shen Xingcang
Abstract:
Requirement Elicitation is one of the important factors in developing any new application. Most systems fail just because of wrong elicitation practice. As a result, developers always choose different methods in different fields to achieve optimal results. This paper analyses four cases to understand the effectiveness of different requirement elicitation methods in the field of mobile shopping applications. The elicitation methods we studied included interviews, questionnaires, prototypes, analysis of existing systems, focus groups, brainstorming, and so on. Through the research and analysis results, we ensured the need for a mixture of elicitation methods. Meanwhile, the method adopted should be determined according to the scale of the project and be operated in a reasonable order to ensure the high efficiency of requirement elicitation.Keywords: requirements elicitation method, shopping, mobile application, software requirement engineering
Procedia PDF Downloads 13024369 Terrestrial Laser Scans to Assess Aerial LiDAR Data
Authors: J. F. Reinoso-Gordo, F. J. Ariza-López, A. Mozas-Calvache, J. L. García-Balboa, S. Eddargani
Abstract:
The DEMs quality may depend on several factors such as data source, capture method, processing type used to derive them, or the cell size of the DEM. The two most important capture methods to produce regional-sized DEMs are photogrammetry and LiDAR; DEMs covering entire countries have been obtained with these methods. The quality of these DEMs has traditionally been evaluated by the national cartographic agencies through punctual sampling that focused on its vertical component. For this type of evaluation there are standards such as NMAS and ASPRS Positional Accuracy Standards for Digital Geospatial Data. However, it seems more appropriate to carry out this evaluation by means of a method that takes into account the superficial nature of the DEM and, therefore, its sampling is superficial and not punctual. This work is part of the Research Project "Functional Quality of Digital Elevation Models in Engineering" where it is necessary to control the quality of a DEM whose data source is an experimental LiDAR flight with a density of 14 points per square meter to which we call Point Cloud Product (PCpro). In the present work it is described the capture data on the ground and the postprocessing tasks until getting the point cloud that will be used as reference (PCref) to evaluate the PCpro quality. Each PCref consists of a patch 50x50 m size coming from a registration of 4 different scan stations. The area studied was the Spanish region of Navarra that covers an area of 10,391 km2; 30 patches homogeneously distributed were necessary to sample the entire surface. The patches have been captured using a Leica BLK360 terrestrial laser scanner mounted on a pole that reached heights of up to 7 meters; the position of the scanner was inverted so that the characteristic shadow circle does not exist when the scanner is in direct position. To ensure that the accuracy of the PCref is greater than that of the PCpro, the georeferencing of the PCref has been carried out with real-time GNSS, and its accuracy positioning was better than 4 cm; this accuracy is much better than the altimetric mean square error estimated for the PCpro (<15 cm); The kind of DEM of interest is the corresponding to the bare earth, so that it was necessary to apply a filter to eliminate vegetation and auxiliary elements such as poles, tripods, etc. After the postprocessing tasks the PCref is ready to be compared with the PCpro using different techniques: cloud to cloud or after a resampling process DEM to DEM.Keywords: data quality, DEM, LiDAR, terrestrial laser scanner, accuracy
Procedia PDF Downloads 10424368 A Comparative Study of Burnout and Coping Strategies between HIV Counselors: Face to Face and Online Counseling Services in Addis Ababa
Authors: Yemisrach Mihertu Amsale
Abstract:
The purpose of this study was to compare burnout and coping strategies between HIV counselors in face to face and online counseling settings in Addis Ababa. The study was mixed approach design that was quantitative and qualitative. For the quantitative data the participants involved in this study included 64 face to face and 47 online HIV counselors in both counseling settings. In addition, 23 participants were involved to offer qualitative data from both counseling settings. For the purpose of gathering the quantitative data, the instruments, namely, demographic questionnaire, Maslach Burnout Inventory and the COPE questionnaire, were used to gather quantitative data. Qualitative data was also gathered in the FGD Guide and Interview Guide. Thus, this study revealed that HIV counselors in online counseling settings scored high on emotional exhaustion, depersonalization and low in personal accomplishment dimensions of burnout as compared to HIV counselors in face to face setting and the difference was statistically significant in emotional exhaustion and personal accomplishment, but there was no a significant difference on depersonalization dimension of burnout between the two groups. In addition, the present study revealed a statistically significant difference on problem focused coping strategy between the two groups and yet for on the emotion focused coping strategy the difference was not statistically significant. Statistically negative correlation was observed between some demographic variables such as age with emotional exhaustion and depersonalization dimensions of burnout; years of experiences and personal accomplishment dimension of burnout. A statistically positive correlation was also observed between average number of clients served per day and emotional exhaustion. Sex was having a statistically positive correlation with coping strategy. Lastly, a significant positive correlation was also observed in the emotional exhaustion dimension of the burnout and the emotional focused coping strategy. Generally, this study has shown that HIV counselors suffer from moderate to high level of burnout. Based on the findings, conclusions were made and recommendations were forwarded.Keywords: counseling, burnout management, psychological, behavioral sciences
Procedia PDF Downloads 30724367 Predicting the Diagnosis of Alzheimer’s Disease: Development and Validation of Machine Learning Models
Authors: Jay L. Fu
Abstract:
Patients with Alzheimer's disease progressively lose their memory and thinking skills and, eventually, the ability to carry out simple daily tasks. The disease is irreversible, but early detection and treatment can slow down the disease progression. In this research, publicly available MRI data and demographic data from 373 MRI imaging sessions were utilized to build models to predict dementia. Various machine learning models, including logistic regression, k-nearest neighbor, support vector machine, random forest, and neural network, were developed. Data were divided into training and testing sets, where training sets were used to build the predictive model, and testing sets were used to assess the accuracy of prediction. Key risk factors were identified, and various models were compared to come forward with the best prediction model. Among these models, the random forest model appeared to be the best model with an accuracy of 90.34%. MMSE, nWBV, and gender were the three most important contributing factors to the detection of Alzheimer’s. Among all the models used, the percent in which at least 4 of the 5 models shared the same diagnosis for a testing input was 90.42%. These machine learning models allow early detection of Alzheimer’s with good accuracy, which ultimately leads to early treatment of these patients.Keywords: Alzheimer's disease, clinical diagnosis, magnetic resonance imaging, machine learning prediction
Procedia PDF Downloads 14624366 The Effect of Group Counseling Program on 9th Grade Students' Assertiveness Levels
Authors: Ismail Seçer, Kerime Meryem Dereli̇oğlu
Abstract:
This study is conducted to determine the effects of group counseling program on secondary school 9th grade students’ assertiveness skills. The study group was formed of 100 students who have received education in Erzurum Kültür Elementary School in 2015-2016 education years. RAE-Rathus Assertiveness Schedule developed by Voltan Acar was applied on this group to gather data. 40 students who got lower grades from the inventory were divided randomly into experimental and control groups. Each group is formed of 20 students. Group counseling program was carried out on the experimental group to improve the students’ assertiveness skills for 8 weeks. Single-way and two-way analysis of covariance (ANCOVA) were used in the analysis of the data. The data was analyzed by using the SPSS 19.00. The results of the study show that assertiveness skills of the students who participate in the group counseling program increased meaningfully compared to the control group and pre-experiment. Besides, it was determined that the change observed in the experimental group occurred separately from the age and socio-economic level variables, and it was determined with the monitoring test applied after four months that this affect was continued. According to this result, it can be said that the applied group counseling program is an effective means to improve the assertiveness skills of secondary school students.Keywords: high school, assertiveness, assertiveness inventory, assertiveness education
Procedia PDF Downloads 24724365 Peak Data Rate Enhancement Using Switched Micro-Macro Diversity in Cellular Multiple-Input-Multiple-Output Systems
Authors: Jihad S. Daba, J. P. Dubois, Yvette Antar
Abstract:
With the exponential growth of cellular users, a new generation of cellular networks is needed to enhance the required peak data rates. The co-channel interference between neighboring base stations inhibits peak data rate increase. To overcome this interference, multi-cell cooperation known as coordinated multipoint transmission is proposed. Such a solution makes use of multiple-input-multiple-output (MIMO) systems under two different structures: Micro- and macro-diversity. In this paper, we study the capacity and bit error rate in cellular networks using MIMO technology. We analyse both micro- and macro-diversity schemes and develop a hybrid model that switches between macro- and micro-diversity in the case of hard handoff based on a cut-off range of signal-to-noise ratio values. We conclude that our hybrid switched micro-macro MIMO system outperforms classical MIMO systems at the cost of increased hardware and software complexity.Keywords: cooperative multipoint transmission, ergodic capacity, hard handoff, macro-diversity, micro-diversity, multiple-input-multiple output systems, orthogonal frequency division multiplexing
Procedia PDF Downloads 317