Search results for: mechanical stress
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7068

Search results for: mechanical stress

588 Atypical Intoxication Due to Fluoxetine Abuse with Symptoms of Amnesia

Authors: Ayse Gul Bilen

Abstract:

Selective serotonin reuptake inhibitors (SSRIs) are commonly prescribed antidepressants that are used clinically for the treatment of anxiety disorders, obsessive-compulsive disorder (OCD), panic disorders and eating disorders. The first SSRI, fluoxetine (sold under the brand names Prozac and Sarafem among others), had an adverse effect profile better than any other available antidepressant when it was introduced because of its selectivity for serotonin receptors. They have been considered almost free of side effects and have become widely prescribed, however questions about the safety and tolerability of SSRIs have emerged with their continued use. Most SSRI side effects are dose-related and can be attributed to serotonergic effects such as nausea. Continuous use might trigger adverse effects such as hyponatremia, tremor, nausea, weight gain, sleep disturbance and sexual dysfunction. Moderate toxicity can be safely observed in the hospital for 24 hours, and mild cases can be safely discharged (if asymptomatic) from the emergency department once cleared by Psychiatry in cases of intentional overdose and after 6 to 8 hours of observation. Although fluoxetine is relatively safe in terms of overdose, it might still be cardiotoxic and inhibit platelet secretion, aggregation, and plug formation. There have been reported clinical cases of seizures, cardiac conduction abnormalities, and even fatalities associated with fluoxetine ingestions. While the medical literature strongly suggests that most fluoxetine overdoses are benign, emergency physicians need to remain cognizant that intentional, high-dose fluoxetine ingestions may induce seizures and can even be fatal due to cardiac arrhythmia. Our case is a 35-year old female patient who was sent to ER with symptoms of confusion, amnesia and loss of orientation for time and location after being found wandering in the streets unconsciously by police forces that informed 112. Upon laboratory examination, no pathological symptom was found except sinus tachycardia in the EKG and high levels of aspartate transaminase (AST) and alanine transaminase (ALT). Diffusion MRI and computed tomography (CT) of the brain all looked normal. Upon physical and sexual examination, no signs of abuse or trauma were found. Test results for narcotics, stimulants and alcohol were negative as well. There was a presence of dysrhythmia which required admission to the intensive care unit (ICU). The patient gained back her conscience after 24 hours. It was discovered from her story afterward that she had been using fluoxetine due to post-traumatic stress disorder (PTSD) for 6 months and that she had attempted suicide after taking 3 boxes of fluoxetine due to the loss of a parent. She was then transferred to the psychiatric clinic. Our study aims to highlight the need to consider toxicologic drug use, in particular, the abuse of selective serotonin reuptake inhibitors (SSRIs), which have been widely prescribed due to presumed safety and tolerability, for diagnosis of patients applying to the emergency room (ER).

Keywords: abuse, amnesia, fluoxetine, intoxication, SSRI

Procedia PDF Downloads 195
587 Management of Recurrent Temporomandibular Joint True Bony Ankylosis : A Case Report

Authors: Mahmoud A. Amin, Essam Taman, Ahmed Omran, Mahmoud Shawky, Ahmed Mekawy, Abdallah M. Kotkat, Saber Younes, Nehad N. Ghonemy, Amin Saad, Ezz-Aleslam, Abdullah M. Elosh

Abstract:

Introduction: TMJ is a one-of-a-kind, complicated synovial joint that helps with masticatory function by allowing the mandible to open and close the mouth. True ankylosis is a situation in which condylar movement is limited by a mechanical defect in the joint, whereas false ankylosis is a condition in which there is a restriction in mandibular movement due to muscular spasm myositis ossificans, and coronoid process hyperplasia. Ankylosis is characterized by the inability to open the mouth due to fusion of the TMJ condyle to the base of the skull as a result of trauma, infection, or systemic diseases such as rheumatoid arthritis (the most common) and psoraisis. Ankylosis causes facial asymmetry and affects the patient psychologically as well as speech, difficult mastication, poor oral hygiene, malocclusion, and other factors. TMJ is a technically challenging joint; hence TMJ ankylosis management is complicated. Case presentation: this case is a male patient 25 years old reported to our maxillofacial clinic in Damietta faculty of medicine, Al-Azhar University with the inability to open the mouth at all, with a history of difficulty of mouth breathing and eating foods, there was a history of falling from height at 2006, and the patient underwent corrective surgery before with no improvement because the ankylosis was relapsed short period after the previous operations with that done out of our hospital inter-incisor distant ZERO so, this condition need mandatory management. Clinical examination and radiological investigations were done after complete approval from the patient and his brother; tracheostomy was done for our patient before the operation. The patient entered the operation in our hospital and drastic improvement in mouth opening was noticed, helping to restore the physical psychological health of the patient.

Keywords: temporomandibular joint, TMJ, Ankylosis, mouth opening, physiotherapy, condylar plate

Procedia PDF Downloads 148
586 Management of Mycotoxin Production and Fungicide Resistance by Targeting Stress Response System in Fungal Pathogens

Authors: Jong H. Kim, Kathleen L. Chan, Luisa W. Cheng

Abstract:

Control of fungal pathogens, such as foodborne mycotoxin producers, is problematic as effective antimycotic agents are often very limited. Mycotoxin contamination significantly interferes with the safe production of foods or crops worldwide. Moreover, expansion of fungal resistance to commercial drugs or fungicides is a global human health concern. Therefore, there is a persistent need to enhance the efficacy of commercial antimycotic agents or to develop new intervention strategies. Disruption of the cellular antioxidant system should be an effective method for pathogen control. Such disruption can be achieved with safe, redox-active compounds. Natural phenolic derivatives are potent redox cyclers that inhibit fungal growth through destabilization of the cellular antioxidant system. The goal of this study is to identify novel, redox-active compounds that disrupt the fungal antioxidant system. The identified compounds could also function as sensitizing agents to conventional antimycotics (i.e., chemosensitization) to improve antifungal efficacy. Various benzo derivatives were tested against fungal pathogens. Gene deletion mutants of the yeast Saccharomyces cerevisiae were used as model systems for identifying molecular targets of benzo analogs. The efficacy of identified compounds as potent antifungal agents or as chemosensitizing agents to commercial drugs or fungicides was examined with methods outlined by the Clinical Laboratory Standards Institute or the European Committee on Antimicrobial Susceptibility Testing. Selected benzo derivatives possessed potent antifungal or antimycotoxigenic activity. Molecular analyses by using S. cerevisiae mutants indicated antifungal activity of benzo derivatives was through disruption of cellular antioxidant or cell wall integrity system. Certain benzo analogs screened overcame tolerance of Aspergillus signaling mutants, namely mitogen-activated protein kinase mutants, to fludioxonil fungicide. Synergistic antifungal chemosensitization greatly lowered minimum inhibitory or fungicidal concentrations of test compounds, including inhibitors of mitochondrial respiration. Of note, salicylaldehyde is a potent antimycotic volatile that has some practical application as a fumigant. Altogether, benzo derivatives targeting cellular antioxidant system of fungi (along with cell wall integrity system) effectively suppress fungal growth. Candidate compounds possess the antifungal, antimycotoxigenic or chemosensitizing capacity to augment the efficacy of commercial antifungals. Therefore, chemogenetic approaches can lead to the development of novel antifungal intervention strategies, which enhance the efficacy of established microbe intervention practices and overcome drug/fungicide resistance. Chemosensitization further reduces costs and alleviates negative side effects associated with current antifungal treatments.

Keywords: antifungals, antioxidant system, benzo derivatives, chemosensitization

Procedia PDF Downloads 257
585 Geopolymerization Methods for Clay Soils Treatment

Authors: Baba Hassane Ahmed Hisseini, Abdelkrim Bennabi, Rabah Hamzaoui, Lamis Makki, Gaetan Blanck

Abstract:

Most of the clay soils are known as problematic soils due to their water content, which varies greatly over time. It is observed that they are used to be subject to shrinkage and swelling, thus causing a problem of stability on the structures of civil engineering construction work. They are often excavated and placed in a storage area giving rise to the opening of new quarries. This method has become obsolete today because to protect the environment, we are leading to think differently and opening the way to new research for the improvement of the performance of this type of clay soils to reuse them in the construction field. The solidification and stabilization technique is used to improve the properties of poor quality soils to transform them into materials with a suitable performance for a new use in the civil engineering field rather than to excavate them and store them in the discharge area. In our case, the polymerization method is used for bad clay soils classified as high plasticity soil class A4 according to the French standard NF P11-300, where classical treatment methods with cement or lime are not efficient. Our work concerns clay soil treatment study using raw materials as additives for solidification and stabilization. The geopolymers are synthesized by aluminosilicates materials like fly ash, metakaolin, or blast furnace slag and activated by alkaline solution based on sodium hydroxide (NaOH), sodium silicate (Na2SiO3) or a mixture of both of them. In this study, we present the mechanical properties of the soil clay (A4 type) evolution with geopolymerisation methods treatment. Various mix design of aluminosilicates materials and alkaline solutions were carried at different percentages and different curing times of 1, 7, and 28 days. The compressive strength of the untreated clayey soil could be increased from simple to triple. It is observed that the improvement of compressive strength is associated with a geopolymerization mechanism. The highest compressive strength was found with metakaolin at 28 days.

Keywords: treatment and valorization of clay-soil, solidification and stabilization, alkali-activation of co-product, geopolymerization

Procedia PDF Downloads 159
584 Moringa olifera Curate The Toxic Potential of CuO Nanoparticles in Oreochromis mossambicus

Authors: Farhat Jabeen, Muhammad Asad

Abstract:

The study assessed the curative potential of Moringa olifera seeds against copper oxide nanoparticles induced toxicity in Oreochromis mossambicus. In order to investigate the curative potential of M. olifera seeds, firstly we examine its chemical composition, secondary metabolites, and bioactive compounds including hydroxyl-cinnamic acids, flavanols and hydroxybenzoic acids through standard methods and high performance liquid chromatography. In current study, the potential sub-lethal toxic dose of CuO-NPs (0.12 mg/l) was investigated through pilot experiment and three non-lethal doses (low=32, medium=48 and high=96 mg/l) of M. olifera were selected on the basis of its LC50 value for O. mossambicus. The experimental fish, O. mossambicus (n=100 of approximately 20 g each) were procured from Manawan Fisheries Complex, Lahore, and acclimatized for two weeks in glass aquaria. Experiment was conducted in accordance with the guidelines of Institutional Animal Ethics Committee, Government College University Faisalabad, Pakistan. During acclimatization and experimental period, fish received the commercial fish feed at 2.5% body weight daily. In order to assess the curative effect of M. olifera against CuO NPs induced toxicity, O. mossambicus were randomly divided into five groups and were designated as control (C) without any treatment, positive control (G*) exposed to potential toxic dose of CuO-NPs at 0.12 mg/l, and three treated groups namely G1, G2, and G3 co-treated with 0.12 mg/l of CuO-NPs plus different doses of M. olifera seed extract at 32, 48, and 96 mg/l, respectively for 56 days. Fish were exposed to waterborne CuO NPs and M. olifera seed extract. CuO-NPs treatment was ceased after 28 days but the doses of M. olifera were continued for 56 days. Blood was taken after 28 and 56 days through caudal venipuncture. Liver and intestine were taken for oxidative stress and histological studies after 56 days. In M. olifera seeds, moisture contents, crude protein, lipids, carbohydrates and ash were recorded as 3.8, 37.83, 32.52, 46.12, and 7.75%, respectively on dry weight basis. Total energy was recorded as 627.36 kcal/100g. Qualitative analysis of M. olifera seeds showed the presence of terpenoids, saponins, flavonoids, alkaloids and phenolics, while its quantitative analysis showed the considerable amount of total phenolics, flavonoids, saponins, and alkaloids as 134.75, 170.15, 1.57, and 0.4 µg/mg, respectively. Analysis of bioactive compounds in M. olifera seeds showed the presence of hydroxy-cinnamic acids (6.07 µg/ml), flavanols (71.72 µg/ml), and hydroxyl benzoic acids (97.82 µg/ml). The results showed that M. oliefera seed extract at 48 and 56 mg/l was able to cure against the toxic effects of CuO-NPs. The significant changes were observed in G* and G1 for sero-hepatic enzymes, anti-oxidants and histological profile. The investigations of this study showed that M. olifera is a good curative agent against potential induced toxicity of CuO-NPs in O. mossambicus. The curative effect of M. olifera is attributed to the presence of higher amount of secondary metabolites and bioactive compounds. This study suggested the use of M. olifera to curate different ailments in fish and other organisms.

Keywords: CuO nanoparticles, curative, Moringa olifera, Oreochromis mossambicus

Procedia PDF Downloads 141
583 The Impact of a Leadership Change on Individuals' Behaviour and Incentives: Evidence from the Top Tier Italian Football League

Authors: Kaori Narita, Juan de Dios Tena Horrillo, Claudio Detotto

Abstract:

Decisions on replacement of leaders are of significance and high prevalence in any organization, and concerns many of its stakeholders, whether it is a leader in a political party or a CEO of a firm, as indicated by high media coverage of such events. This merits an investigation into the consequences and implications of a leadership change on the performances and behavior of organizations and their workers. Sport economics provides a fruitful field to explore these issues due to the high frequencies of managerial changes in professional sports clubs and the transparency and regularity of observations of team performance and players’ abilities. Much of the existing research on managerial change focuses on how this affects the performance of an organization. However, there is scarcely attention paid to the consequences of such events on the behavior of individuals within the organization. Changes in behavior and attitudes of a group of workers due to a managerial change could be of great interest in management science, psychology, and operational research. On the other hand, these changes cannot be observed in the final outcome of the organization, as this is affected by many other unobserved shocks, for example, the stress level of workers with the need to deal with a difficult situation. To fill this gap, this study shows the first attempt to evaluate the impact of managerial change on players’ behaviors such as attack intensity, aggressiveness, and efforts. The data used in this study is from the top tier Italian football league (“Serie A”), where an average of 13 within season replacements of head coaches were observed over the period of seasons from 2000/2001 to 2017/18. The preliminary estimation employs Pooled Ordinary Least Square (POLS) and club-season Fixed Effect (FE) in order to assess the marginal effect of having a new manager on the number of shots, corners and red/yellow cards after controlling for a home-field advantage, ex ante abilities and current positions in the league of a team and their opponent. The results from this preliminary estimation suggest that the teams do not show a significant difference in their behaviors before and after the managerial change. To build on these preliminary results, other methods, including propensity score matching and non-linear model estimates, will be used. Moreover, the study will further investigate these issues by considering other measurements of attack intensity, aggressiveness, and efforts, such as possessions, a number of fouls and the athletic performance of players, respectively. Finally, the study is going to investigate whether these results vary over the characteristics of a new head coach, for example, their age and experience as a manager and a player. Thus far, this study suggests that certain behaviours of individuals in an organisation are not immediately affected by a change in leadership. To confirm this preliminary finding and lead to a more solid conclusion, further investigation will be conducted in the aforementioned manner, and the results will be elaborated in the conference.

Keywords: behaviour, effort, manager characteristics, managerial change, sport economics

Procedia PDF Downloads 130
582 “Post-Industrial” Journalism as a Creative Industry

Authors: Lynette Sheridan Burns, Benjamin J. Matthews

Abstract:

The context of post-industrial journalism is one in which the material circumstances of mechanical publication have been displaced by digital technologies, increasing the distance between the orthodoxy of the newsroom and the culture of journalistic writing. Content is, with growing frequency, created for delivery via the internet, publication on web-based ‘platforms’ and consumption on screen media. In this environment, the question is not ‘who is a journalist?’ but ‘what is journalism?’ today. The changes bring into sharp relief new distinctions between journalistic work and journalistic labor, providing a key insight into the current transition between the industrial journalism of the 20th century, and the post-industrial journalism of the present. In the 20th century, the work of journalists and journalistic labor went hand-in-hand as most journalists were employees of news organizations, whilst in the 21st century evidence of a decoupling of ‘acts of journalism’ (work) and journalistic employment (labor) is beginning to appear. This 'decoupling' of the work and labor that underpins journalism practice is far reaching in its implications, not least for institutional structures. Under these conditions we are witnessing the emergence of expanded ‘entrepreneurial’ journalism, based on smaller, more independent and agile - if less stable - enterprise constructs that are a feature of creative industries. Entrepreneurial journalism is realized in a range of organizational forms from social enterprise, through to profit driven start-ups and hybrids of the two. In all instances, however, the primary motif of the organization is an ideological definition of journalism. An example is the Scoop Foundation for Public Interest Journalism in New Zealand, which owns and operates Scoop Publishing Limited, a not for profit company and social enterprise that publishes an independent news site that claims to have over 500,000 monthly users. Our paper demonstrates that this journalistic work meets the ideological definition of journalism; conducted within the creative industries using an innovative organizational structure that offers a new, viable post-industrial future for journalism.

Keywords: creative industries, digital communication, journalism, post industrial

Procedia PDF Downloads 278
581 Effects of Exposure to a Language on Perception of Non-Native Phonologically Contrastive Duration

Authors: Chuyu Huang, Itsuki Minemi, Kuanlin Chen, Yuki Hirose

Abstract:

It remains unclear how language speakers are able to perceive phonological contrasts that do not exist on their own. This experiment uses the vowel-length distinction in Japanese, which is phonologically contrastive and co-occurs with tonal change in some cases. For speakers whose first language does not distinguish vowel length, contrastive duration is usually misperceived, e.g., Mandarin speakers. Two alternative hypotheses for how Mandarin speakers would perceive a phonological contrast that does not exist in their language make different predictions. The stress parameter model does not have a clear prediction about the impact of tonal type. Mandarin speakers will likely be not able to perceive vowel length as well as Japanese native speakers do, but the performance might not correlate to tonal type because the prosody of their language is distinctive, which requires users to encode lexical prosody and notice subtle differences in word prosody. By contrast, cue-based phonetic models predict that Mandarin speakers may rely on pitch differences, a secondary cue, to perceive vowel length. Two groups of Mandarin speakers, including naive non-Japanese speakers and beginner learners, were recruited to participate in an AX discrimination task involving two Japanese sound stimuli that contain a phonologically contrastive environment. Participants were asked to indicate whether the two stimuli containing a vowel-length contrast (e.g., maapero vs. mapero) sound the same. The experiment was bifactorial. The first factor contrasted three syllabic positions (syllable position; initial/medial/final), as it would be likely to affect the perceptual difficulty, as seen in previous studies, and the second factor contrasted two pitch types (accent type): one with accentual change that could be distinguished with the lexical tones in Mandarin (the different condition), with the other group having no tonal distinction but only differing in vowel length (the same condition). The overall results showed that a significant main effect of accent type by applying a linear mixed-effects model (β = 1.48, SE = 0.35, p < 0.05), which implies that Mandarin speakers tend to more successfully recognize vowel-length differences when the long vowel counterpart takes on a tone that exists in Mandarin. The interaction between the accent type and the syllabic position is also significant (β = 2.30, SE = 0.91, p < 0.05), showing that vowel lengths in the different conditions are more difficult to recognize in the word-final case relative to the initial condition. The second statistical model, which compares naive speakers to beginners, was conducted with logistic regression to test the effects of the participant group. A significant difference was found between the two groups (β = 1.06, 95% CI = [0.36, 2.03], p < 0.05). This study shows that: (1) Mandarin speakers are likely to use pitch cues to perceive vowel length in a non-native language, which is consistent with the cue-based approaches; (2) an exposure effect was observed: the beginner group achieved a higher accuracy for long vowel perception, which implied the exposure effect despite the short period of language learning experience.

Keywords: cue-based perception, exposure effect, prosodic perception, vowel duration

Procedia PDF Downloads 216
580 Multilayered Assembly of Gelatin on Nanofibrous Matrix for 3-D Cell Cultivation

Authors: Ji Un Shin, Wei Mao, Hyuk Sang Yoo

Abstract:

Electrospinning is a versatile tool for fabricating nano-structured polymeric materials. Gelatin hydrogels are considered to be a good material for cell cultivation because of high water swellability as well as good biocompatibility. Three-dimensional (3-D) cell cultivation is a desirable method of cell cultivation for preparing tissues and organs because cell-to-cell interactions or cell-to-matrix interactions can be much enhanced through this approach. For this reason, hydrogels were widely employed as tissue scaffolds because they can support cultivating cells and tissue in multi-dimensions. Major disadvantages of hydrogel-based cell cultivation include low mechanical properties, lack of topography, which should be enhanced for successful tissue engineering. Herein we surface-immobilized gelatin on the surface of nanofibrous matrix for 3-D cell cultivation in topographical cues added environments. Electrospun nanofibers were electrospun with injection of poly(caprolactone) through a single nozzle syringe. Electrospun meshes were then chopped up with a high speed grinder to fine powders. This was hydrolyzed in optimized concentration of sodium hydroxide solution from 1 to 6 hours and harvested by centrifugation. The freeze-dried powders were examined by scanning electron microscopy (SEM) for revealing the morphology and fibrilar shaped with a length of ca. 20um was observed. This was subsequently immersed in gelatin solution for surface-coating of gelatin, where the process repeated up to 10 times for obtaining desirable coating of gelatin on the surface. Gelatin-coated nanofibrils showed high waterswellability in comparison to the unmodified nanofibrils, and this enabled good dispersion properties of the modified nanofibrils in aqueous phase. The degree of water-swellability was increased as the coating numbers of gelatin increased, however, it did not any meaning result after 10 times of gelatin coating process. Thus, by adjusting the gelatin coating times, we could successfully control the degree of hydrophilicity and water-swellability of nanofibrils.

Keywords: nano, fiber, cell, tissue

Procedia PDF Downloads 162
579 Giving Children with Osteogenesis Imperfecta a Voice: Overview of a Participatory Approach for the Development of an Interactive Communication Tool

Authors: M. Siedlikowski, F. Rauch, A. Tsimicalis

Abstract:

Osteogenesis Imperfecta (OI) is a genetic disorder of childhood onset that causes frequent fractures after minimal physical stress. To date, OI research has focused on medically- and surgically-oriented outcomes with little attention on the perspective of the affected child. It is a challenge to elicit the child’s voice in health care, in other words, their own perspective on their symptoms, but software development offers a way forward. Sisom (Norwegian acronym derived from ‘Si det som det er’ meaning ‘Tell it as it is’) is an award-winning, rigorously tested, interactive, computerized tool that helps children with chronic illnesses express their symptoms to their clinicians. The successful Sisom software tool, that addresses the child directly, has not yet been adapted to attend to symptoms unique to children with OI. The purpose of this study was to develop a Sisom paper prototype for children with OI by seeking the perspectives of end users, particularly, children with OI and clinicians. Our descriptive qualitative study was conducted at Shriners Hospitals for Children® – Canada, which follows the largest cohort of children with OI in North America. Purposive sampling was used to recruit 12 children with OI over three cycles. Nine clinicians oversaw the development process, which involved determining the relevance of current Sisom symptoms, vignettes, and avatars, as well as generating new Sisom OI components. Data, including field notes, transcribed audio-recordings, and drawings, were deductively analyzed using content analysis techniques. Guided by the following framework, data pertaining to symptoms, vignettes, and avatars were coded into five categories: a) Relevant; b) Irrelevant; c) To modify; d) To add; e) Unsure. Overall, 70.8% of Sisom symptoms were deemed relevant for inclusion, with 49.4% directly incorporated, and 21.3% incorporated with changes to syntax, and/or vignette, and/or location. Three additions were made to the ‘Avatar’ island. This allowed children to celebrate their uniqueness: ‘Makes you feel like you’re not like everybody else.’ One new island, ‘About Me’, was added to capture children’s worldviews. One new sub-island, ‘Getting Around’, was added to reflect accessibility issues. These issues were related to the children’s independence, their social lives, as well as the perceptions of others. In being consulted as experts throughout the co-creation of the Sisom OI paper prototype, children coded the Sisom symptoms and provided sound rationales for their chosen codes. In rationalizing their codes, all children shared personal stories about themselves and their relationships, insights about their OI, and an understanding of the strengths and challenges they experience on a day-to-day basis. The child’s perspective on their health is a basic right, and allowing it to be heard is the next frontier in the care of children with genetic diseases. Sisom OI, a methodological breakthrough within OI research, will offer clinicians an innovative and child-centered approach to capture this neglected perspective. It will provide a tool for the delivery of health care in the center that established the worldwide standard of care for children with OI.

Keywords: child health, interactive computerized communication tool, participatory approach, symptom management

Procedia PDF Downloads 153
578 Traditional Rainwater Harvesting Systems: A Sustainable Solution for Non-Urban Populations in the Mediterranean

Authors: S. Fares, K. Mellakh, A. Hmouri

Abstract:

The StorMer project aims to set up a network of researchers to study traditional hydraulic rainwater harvesting systems in the Mediterranean basin, a region suffering from the major impacts of climate change and limited natural water resources. The arid and semi-arid Mediterranean basin has a long history of pioneering water management practices. The region has developed various ancient traditional water management systems, such as cisterns and qanats, to sustainably manage water resources under historical conditions of scarcity. Therefore, the StorMer project brings together Spain, France, Italy, Greece, Jordan and Morocco to explore traditional rainwater harvesting practices and systems in the Mediterranean region and to develop accurate modeling to simulate the performance and sustainability of these technologies under present-day climatic conditions. The ultimate goal of this project was to resuscitate and valorize these practices in the context of contemporary challenges. This project was intended to establish a Mediterranean network to serve as a basis for a more ambitious project. The ultimate objective was to analyze traditional hydraulic systems and create a prototype hydraulic ecosystem using a coupled environmental approach and traditional and ancient know-how, with the aim of reinterpreting them in the light of current techniques. The combination of ‘traditional’ and ‘modern knowledge/techniques’ is expected to lead to proposals for innovative hydraulic systems. The pandemic initially slowed our progress, but in the end it forced us to carry out the fieldwork in Morocco and Saudi Arabia, and so restart the project. With the participation of colleagues from chronologically distant fields (archaeology, sociology), we are now prepared to share our observations and propose the next steps. This interdisciplinary approach should give us a global vision of the project's objectives and challenges. A diachronic approach is needed to tackle the question of the long-term adaptation of societies in a Mediterranean context that has experienced several periods of water stress. The next stage of the StorMer project is the implementation of pilots in non-urbanized regions. These pilots will test the implementation of traditional systems and will be maintained and evaluated in terms of effectiveness, cost and acceptance. Based on these experiences, larger projects will be proposed and could provide information for regional water management policies. One of the most important lessons learned from this project is the highly social nature of managing traditional rainwater harvesting systems. Unlike modern, centralized water infrastructures, these systems often require the involvement of communities, which assume ownership and responsibility for them. This kind of community engagement leads to greater maintenance and, therefore, sustainability of the systems. Knowledge of the socio-cultural characteristics of these communities means that the systems can be adapted to the needs of each location, ensuring greater acceptance and efficiency.

Keywords: oasis, rainfall harvesting, arid regions, Mediterranean

Procedia PDF Downloads 36
577 Review of the Nutritional Value of Spirulina as a Potential Replacement of Fishmeal in Aquafeed

Authors: Onada Olawale Ahmed

Abstract:

As the intensification of aquaculture production increases on global scale, the growing concern of fish farmers around the world is related to cost of fish production, where cost of feeding takes substantial percentage. Fishmeal (FM) is one of the most expensive ingredients, and its high dependence in aqua-feed production translates to high cost of feeding of stocked fish. However, to reach a sustainable aquaculture, new alternative protein sources including cheaper plant or animal origin proteins are needed to be introduced for stable aqua-feed production. Spirulina is a cyanobacterium that has good nutrient profile that could be useful in aquaculture. This review therefore emphasizes on the nutritional value of Spirulina as a potential replacement of FM in aqua-feed. Spirulina is a planktonic photosynthetic filamentous cyanobacterium that forms massive populations in tropical and subtropical bodies of water with high levels of carbonate and bicarbonate. Spirulina grows naturally in nutrient rich alkaline lake with water salinity ( > 30 g/l) and high pH (8.5–11.0). Its artificial production requires luminosity (photo-period 12/12, 4 luxes), temperature (30 °C), inoculum, water stirring device, dissolved solids (10–60 g/litre), pH (8.5– 10.5), good water quality, and macro and micronutrient presence (C, N, P, K, S, Mg, Na, Cl, Ca and Fe, Zn, Cu, Ni, Co, Se). Spirulina has also been reported to grow on agro-industrial waste such as sugar mill waste effluent, poultry industry waste, fertilizer factory waste, and urban waste and organic matter. Chemical composition of Spirulina indicates that it has high nutritional value due to its content of 55-70% protein, 14-19% soluble carbohydrate, high amount of polyunsaturated fatty acids (PUFAs), 1.5–2.0 percent of 5–6 percent total lipid, all the essential minerals are available in spirulina which contributes about 7 percent (average range 2.76–3.00 percent of total weight) under laboratory conditions, β-carotene, B-group vitamin, vitamin E, iron, potassium and chlorophyll are also available in spirulina. Spirulina protein has a balanced composition of amino acids with concentration of methionine, tryptophan and other amino acids almost similar to those of casein, although, this depends upon the culture media used. Positive effects of spirulina on growth, feed utilization and stress and disease resistance of cultured fish have been reported in earlier studies. Spirulina was reported to replace up to 40% of fishmeal protein in tilapia (Oreochromis mossambicus) diet and even higher replacement of fishmeal was possible in common carp (Cyprinus carpio), partial replacement of fish meal with spirulina in diets for parrot fish (Oplegnathus fasciatus) and Tilapia (Orechromis niloticus) has also been conducted. Spirulina have considerable potential for development, especially as a small-scale crop for nutritional enhancement and health improvement of fish. It is important therefore that more research needs to be conducted on its production, inclusion level in aqua-feed and its possible potential use of aquaculture.

Keywords: aquaculture, spirulina, fish nutrition, fish feed

Procedia PDF Downloads 517
576 Metal Contents in Bird Feathers (Columba livia) from Mt Etna Volcano: Volcanic Plume Contribution and Biological Fractionation

Authors: Edda E. Falcone, Cinzia Federico, Sergio Bellomo, Lorenzo Brusca, Manfredi Longo, Walter D’Alessandro

Abstract:

Although trace metals are an essential element for living beings, they can become toxic at high concentrations. Their potential toxicity is related not only to the total content in the environment but mostly upon their bioavailability. Volcanoes are important natural metal emitters and they can deeply affect the quality of air, water and soils, as well as the human health. Trace metals tend to accumulate in the tissues of living organisms, depending on the metal contents in food, air and water and on the exposure time. Birds are considered as bioindicators of interest, because their feathers directly reflects the metals uptake from the blood. Birds are exposed to the atmospheric pollution through the contact with rainfall, dust, and aerosol, and they accumulate metals over the whole life cycle. We report on the first data combining the rainfall metal content in three different areas of Mt Etna, variably fumigated by the volcanic plume, and the metal contents in the feathers of pigeons, collected in the same areas. Rainfall samples were collected from three rain gauges placed at different elevation on the Eastern flank of the volcano, the most exposed to airborne plume, filtered, treated with HNO₃ Suprapur-grade and analyzed for Fe, Cr, Co, Ni, Se, Zn, Cu, Sr, Ba, Cd and As by ICP-MS technique, and major ions by ion chromatography. Feathers were collected from single individuals, in the same areas where the rain gauges were installed. Additionally, some samples were collected in an urban area, poorly interested by the volcanic plume. The samples were rinsed in MilliQ water and acetone, dried at 50°C until constant weight and digested in a mixture of 2:1 HNO₃ (65%) - H₂O₂ (30%) Suprapur-grade for 25-50 mg of sample, in a bath at near-to-boiling temperature. The solutions were diluted up to 20 ml prior to be analyzed by ICP-MS. The rainfall samples most contaminated by the plume were collected at close distance from the summit craters (less than 6 km), and show lower pH values and higher concentrations for all analyzed metals relative to those from the sites at lower elevation. Analyzed samples are enriched in both metals directly emitted by the volcanic plume and transported by acidic gases (SO₂, HCl, HF), and metals leached from the airborne volcanic ash. Feathers show different patterns in the different sites related to the exposure to natural or anthropogenic pollutants. They show abundance ratios similar to rainfall for lithophile elements (Ba, Sr), whereas are enriched in Zn and Se, known for their antioxidant properties, probably as adaptive response to oxidative stress induced by toxic metal exposure. The pigeons revealed a clear heterogeneity of metal uptake in the different parts of the volcano, as an effect of volcanic plume impact. Additionally, some physiological processes can modify the fate of some metals after uptake and this offer some insights for translational studies.

Keywords: bioindicators, environmental pollution, feathers, trace metals, volcanic plume

Procedia PDF Downloads 139
575 Characterization of AlOOH Film Containing Mg-Al Layered Double Hydroxide Prepared on Al Alloy by Steam Coating

Authors: Ai Serizawa, Kotaro Mori, Takahiro Ishizaki

Abstract:

Al alloys have been used as advanced structural materials in automobile and railway industries because of excellent physical and mechanical properties such as low density, good heat conductivity, and high specific strength. Their low corrosion resistance, however, limits their use in the corrosive environment. To improve the corrosion resistance of the Al alloys, the development of a novel coating technology has been highly desirable. Chemical conversion methods using layered double hydroxide (LDH) have attracted much attention because the LDH can suppress corrosion reaction due to their trapping ability of corrosive anions such as Cl- between layers. In this presentation, we report on a novel preparation method of AlOOH film containing Mg-Al layered double hydroxide (LDH) on Al alloy by steam coating. The corrosion resistance of the composite film including LDH was especially focused. Al-Mg-Si alloy was used as the substrate. The substrates were ultrasonically cleaned in ethanol for 10 min. The cleaned substrates were set in the autoclave with a 100 mL capacity. 20 ml of ultrapure water was located at the bottom of the autoclave to produce steam. The autoclave was heated up to a temperature of 100 to 200 °C, and then held at this temperature for up to 48 h, and was subsequently cooled naturally to room temperature, resulting in the formation of anticorrosive films on Al alloys. The resultant films were characterized by XRD, FT-IR, FE-SEM and electrochemical measurements. FE-SEM image of film surface treated at 180 °C for 48 h demonstrated that needle-like nanostructure was densely formed on the surface. XRD patterns revealed that the film formed on the Al alloys by steam coating was composed of crystal AlOOH and Mg-Al LDH. The corrosion resistance of the film was evaluated using electrochemical measurements. The potentiodynamic polarization curves of the film coated and uncoated substrates of Al-Mg-Si alloy after immersion in the 5 wt% NaCl aqueous solution for 30 min revealed that the corrosion current density, jcorr, of the film coated sample decreased by more than two orders of magnitude as compared to the uncoated sample, indicating that the corrosion resistance of the substrates of Al-Mg-Si alloy were improved by the formation of the anticorrosive film via steam coating.

Keywords: aluminum alloy, boehmite, corrosion resistance, steam process

Procedia PDF Downloads 287
574 Training in Communicational Skills in Students of Medicine: Differences in Bilingualism

Authors: Naiara Ozamiz Etcebarria, Sonia Ruiz De Azua Garcia, Agurtzane Ortiz Jauregi, Virginia Guillen Cañas

Abstract:

Introduction: The most relevant competencies of a health professional are an adequate communication capacity, which will influence the satisfaction of professionals and patients, therapeutic compliance, conflict prevention, clinical outcomes´ improvement and efficiency of health services. The ability of Active listening , empathy, assertiveness and social skills, are important abilities to develop in all professions in which there is a relationship with other people. In the field of health, it is even more important to have adequate qualities so that the treatment with the patient will be adequate and satisfactory. We conducted a research with students of third year in the Degree of Medicine with the objectives: - to know how the active listening, empathy, assertiveness and social skills of students are. - to know if there are differences according to different demographic variables, such as sex, language, age, number of siblings and interest in the subject. Material and Methods: The students of the Third year in the Degree of Medicine (N = 212) participated voluntarily. Sociodemographic data were collected. Descriptive and comparative analysis of the averages of the students with respect to active listening, empathy, assertiveness and social skills were performed. Once the questionnaires were collected, they were entered into the SPSS 21 database. Four communicational aspects were evaluated: The active listening questionnaire, the TECA empathy questionnaire, the ACDA questionnaire and the EHS questionnaire Social Skills Scale. The active listening questionnaire assesses these factors: Listening without interruption and less contradiction, Listening with 100% attention, Listening beyond words, Listening encouraging the other to go deeper. The TECA questionnaire of cognitive and affective empathy evaluates: Adoption of perspectives, Emotional Comprehension, Emphasizing stress, Empathic joy. The EHS questionnaire Social Skills Scale: Self-expression in social situations, Defending one's own rights as a consumer, Expressing anger or dissatisfaction, Refusing to do and cutting interactions off, Making requests, Initiating positive interactions with the other sex. The ACDA questionnaire Assertiveness Assessment Scale evaluates self-assertiveness and heteroaservitivity. Applicability: To train these skills is so important for clinical practice of medical students and these capabilities that can be measured in a longitudinal way time. Ethical-legal aspects: The data were anonymous. The study was approved by the Ethics Committee. Results: The students of the Third year in the Degree of Medicine (34.4% Basque speakers and 65.6% Spanish speakers) with average age 20.93, (27.8% men and 72.2% women). There are no differences in social skills between men and women. The Basque speaker students of are more heteroactive (ACDA) than Spanish students. Active listening has a high correlation with social skills, especially with self-expression in social situations. Listening without interruption has a high correlation with self-expression in social situations and initiating positive interactions with the opposite sex. Adoption of perspectives presents a high correlation with auto- assertiveness. Emotional understanding presents a high correlation with positive interactions with the opposite sex. Empathic joy correlates with self-assertiveness, self-expression in social situations, and initiating positive interactions with the opposite sex.

Keywords: active listening, assertiveness, communicational skills, empathy, students of medicine

Procedia PDF Downloads 297
573 Non-Waste Utilization of Copper Smelting Slags for Production of Demanded Products

Authors: V. D. Povolockiy, V. E. Roshchin, Y. Kapelyushin

Abstract:

Smelting of copper matte is followed by production of a large amount of slag. This slag mostly contains silicates and can be utilized in a construction industry. In addition to silicates it also contains Fe; if the Fe content is high, the density of the silicate phases increases and such a slag cannot be used as an additive for the concrete. Furthermore, slags obtained during copper matte production contain copper, sulphur, zinc and some other elements. Fe is the element with the highest price in these slags. An extraction of Fe is possible even using the conventional methods, e.g., the addition of slag to the charge materials during production of sinter for the blast furnace smelting. However, in this case, the blast furnace hot metal would accumulate sulphur and copper which is very harmful impurity for the steelmaking. An accumulation of copper by the blast furnace hot metal is unacceptable, as copper cannot be removed during further steelmaking operations having a critical effect on the properties of steel. In present work, the technological scheme for non-waste utilization of the copper smelting slags has been suggested and experimentally confirmed. This scheme includes a solid state reduction of Fe and smelting for the separation of cast iron and slag. During solid state reduction, the zinc vapor was trapped. After the reduction and smelting operations, the cast iron containing copper was used for the production of metal balls with increased mechanical properties allowing their utilization for milling of ore minerals. Such a cast iron could also be applied in the production of special types of steel with copper. The silicate slag freed from Fe might be used as a propping agent in the oil industry, or granulated for application as an additive for concrete in a construction industry. Thereby, the suggested products for a Mini Mill plant with non-waste utilization of the copper smelting slags are cast iron grinding balls for the ore minerals, special types of steel with copper, silicate slag utilized as an additive for the concrete and propping agents for the oil industry.

Keywords: utilization of copper slag, cast iron, grinding balls, propping agents

Procedia PDF Downloads 153
572 Personalizing Human Physical Life Routines Recognition over Cloud-based Sensor Data via AI and Machine Learning

Authors: Kaushik Sathupadi, Sandesh Achar

Abstract:

Pervasive computing is a growing research field that aims to acknowledge human physical life routines (HPLR) based on body-worn sensors such as MEMS sensors-based technologies. The use of these technologies for human activity recognition is progressively increasing. On the other hand, personalizing human life routines using numerous machine-learning techniques has always been an intriguing topic. In contrast, various methods have demonstrated the ability to recognize basic movement patterns. However, it still needs to be improved to anticipate the dynamics of human living patterns. This study introduces state-of-the-art techniques for recognizing static and dy-namic patterns and forecasting those challenging activities from multi-fused sensors. Further-more, numerous MEMS signals are extracted from one self-annotated IM-WSHA dataset and two benchmarked datasets. First, we acquired raw data is filtered with z-normalization and denoiser methods. Then, we adopted statistical, local binary pattern, auto-regressive model, and intrinsic time scale decomposition major features for feature extraction from different domains. Next, the acquired features are optimized using maximum relevance and minimum redundancy (mRMR). Finally, the artificial neural network is applied to analyze the whole system's performance. As a result, we attained a 90.27% recognition rate for the self-annotated dataset, while the HARTH and KU-HAR achieved 83% on nine living activities and 90.94% on 18 static and dynamic routines. Thus, the proposed HPLR system outperformed other state-of-the-art systems when evaluated with other methods in the literature.

Keywords: artificial intelligence, machine learning, gait analysis, local binary pattern (LBP), statistical features, micro-electro-mechanical systems (MEMS), maximum relevance and minimum re-dundancy (MRMR)

Procedia PDF Downloads 15
571 Nanostructured Oxide Layer by Anodization on Austenitic Stainless Steels: Structural and Corrosion Insights

Authors: Surya Prakash Gajagouni, Akram Alfantazi, Imad Barsoum

Abstract:

Austenitic stainless steels are widely recognized for their exceptional corrosion resistance and mechanical properties, rendering them indispensable materials across various industries from construction to biomedical applications. However, in chloride and high temperature atmosphere it to further enhance their surface properties, anodization has emerged as a promising surface treatment technique. Anodization modifies the surface of stainless steels by creating a protective oxide layer, improving corrosion resistance and imparting additional functional characteristics. This paper explores the structural and corrosion characteristics of anodized austenitic stainless steels (AISI 304) using a two-step anodic technique. We utilized a perchloric acid-based electrolyte followed by an ammonium fluoride-based electrolyte. This sequential approach aimed to cultivate deeper and intricately self-ordered nanopore oxide arrays on a substrate made of 304 stainless steel. Electron Microscopic (SEM and TEM) images revealed nanoporous layered structures with increased length and crack development correlating with higher voltage and anodization time. Surface composition and chemical oxidation state of surface-treated SS were determined using X-ray photoelectron spectroscopy (XPS) techniques, revealing a surface layer rich in Ni and suppressed Cr, resulting in a thin film composed of Ni and Fe oxide compared to untreated SS. Electrochemical studies demonstrated enhanced corrosion resistance in a strong alkaline medium compared to untreated SS. Understanding the intricate relationship between the structural features of anodized stainless steels and their corrosion resistance is crucial for optimizing the performance of these materials in diverse applications. This study aims to contribute to the advancement of surface engineering strategies for enhancing the durability and functionality of austenitic stainless steels in aggressive environments.

Keywords: austenitic stainless steel, anodization, nanoporous oxides, marine corrosion

Procedia PDF Downloads 32
570 Exploring the Carer Gender Support Gap: Results from Freedom of Information Requests to Adult Social Services in England

Authors: Stephen Bahooshy

Abstract:

Our understanding of gender inequality has advanced in recent years. Differences in pay and societal gendered behaviour expectations have been emphasized. It is acknowledged globally that gender shapes everyone’s experiences of health and social care, including access to care, use of services and products, and the interaction with care providers. NHS Digital in England collects data from local authorities on the number of carers and people with support needs and the services they access. This data does not provide a gender breakdown. Caring can have many positive and negative impacts on carers’ health and wellbeing. For example, caring can improve physical health, provide a sense of pride and purpose, and reduced stress levels for those who undertake a caring role by choice. Negatives of caring include financial concerns, social isolation, a reduction in earnings, and not being recognized as a carer or involved and consulted by health and social care professionals. Treating male and female carers differently is by definition unequitable and precludes one gender from receiving the benefits of caring whilst potentially overburdening the other with the negatives of caring. In order to explore the issue on a preliminary basis, five local authorities who provide statutory adult social care services in England were sent Freedom of Information requests in 2019. The authorities were selected to include county councils and London boroughs. The authorities were asked to provide data on the amount of money spent on care at home packages to people over 65 years, broken down by gender and carer gender for each financial year between 2013 and 2019. Results indicated that in each financial year, female carers supporting someone over 65 years received less financial support for care at home support packages than male carers. Over the six-year period, this difference equated to a £9.5k deficit in financial support received on average per female carer when compared to male carers. An example of a London borough with the highest disparity presented an average weekly spend on care at home for people over 65 with a carer of £261.35 for male carers and £165.46 for female carers. Consequently, female carers in this borough received on average £95.89 less per week in care at home support than male carers. This highlights a real and potentially detrimental disparity in the care support received to female carers in order to support them to continue to care in parts of England. More research should be undertaken in this area to better explore this issue and to understand if these findings are unique to these social care providers or part of a wider phenomenon. NHS Digital should request local authorities collect data on gender in the same way that large employers in the United Kingdom are required by law to provide data on staff salaries by gender. People who allocate social care packages of support should consider the impact of gender when allocating support packages to people with support needs and who have carers to reduce any potential impact of gender bias on their decision-making.

Keywords: caregivers, carers, gender equality, social care

Procedia PDF Downloads 164
569 Rhizobium leguminosarum: Selecting Strain and Exploring Delivery Systems for White Clover

Authors: Laura Villamizar, David Wright, Claudia Baena, Marie Foxwell, Maureen O'Callaghan

Abstract:

Leguminous crops can be self-sufficient for their nitrogen requirements when their roots are nodulated with an effective Rhizobium strain and for this reason seed or soil inoculation is practiced worldwide to ensure nodulation and nitrogen fixation in grain and forage legumes. The most widely used method of applying commercially available inoculants is using peat cultures which are coated onto seeds prior to sowing. In general, rhizobia survive well in peat, but some species die rapidly after inoculation onto seeds. The development of improved formulation methodology is essential to achieve extended persistence of rhizobia on seeds, and improved efficacy. Formulations could be solid or liquid. Most popular solid formulations or delivery systems are: wettable powders (WP), water dispersible granules (WG), and granules (DG). Liquid formulation generally are: suspension concentrates (SC) or emulsifiable concentrates (EC). In New Zealand, R. leguminosarum bv. trifolii strain TA1 has been used as a commercial inoculant for white clover over wide areas for many years. Seeds inoculation is carried out by mixing the seeds with inoculated peat, some adherents and lime, but rhizobial populations on stored seeds decline over several weeks due to a number of factors including desiccation and antibacterial compounds produced by the seeds. In order to develop a more stable and suitable delivery system to incorporate rhizobia in pastures, two strains of R. leguminosarum (TA1 and CC275e) and several formulations and processes were explored (peat granules, self-sticky peat for seed coating, emulsions and a powder containing spray dried microcapsules). Emulsions prepared with fresh broth of strain TA1 were very unstable under storage and after seed inoculation. Formulations where inoculated peat was used as the active ingredient were significantly more stable than those prepared with fresh broth. The strain CC275e was more tolerant to stress conditions generated during formulation and seed storage. Peat granules and peat inoculated seeds using strain CC275e maintained an acceptable loading of 108 CFU/g of granules or 105 CFU/g of seeds respectively, during six months of storage at room temperature. Strain CC275e inoculated on peat was also microencapsulated with a natural biopolymer by spray drying and after optimizing operational conditions, microparticles containing 107 CFU/g and a mean particle size between 10 and 30 micrometers were obtained. Survival of rhizobia during storage of the microcapsules is being assessed. The development of a stable product depends on selecting an active ingredient (microorganism), robust enough to tolerate some adverse conditions generated during formulation, storage, and commercialization and after its use in the field. However, the design and development of an adequate formulation, using compatible ingredients, optimization of the formulation process and selecting the appropriate delivery system, is possibly the best tool to overcome the poor survival of rhizobia and provide farmers with better quality inoculants to use.

Keywords: formulation, Rhizobium leguminosarum, storage stability, white clover

Procedia PDF Downloads 146
568 Effect of Good Agriculture Management Practices and Constraints on Grape Farming: A Case Study in Mirbachakot, Kalakan and Shakardara Districts Kabul, Afghanistan

Authors: Mohammad Mirwais Yusufi

Abstract:

Skillful management is one of the most important success factors for today’s farms. When a farm is well managed, it can generate funds for its sustainability. Grape is one of the most diffused fruits in the world and one of the most important cash crops with high potential of production in Afghanistan as well. While there are several organizations intervening for improvement of this cash crop, the quality and quantity are still not satisfactory for producers and external markets. The situation has not changed over the years. Therefore, a survey was conducted in 2017 with 60 grape growers, supported by questionnaires in Mirbachakot, Kalakan and Shakardara districts of Kabul province. The purpose was to get an understanding of the current socio-demographic characteristics of farmers, management methods, constraints, farm size, yield and contribution of grape farming to household income. Findings indicate that grape farming was predominant 83.3% male, 16.6% female and small-scale farmers were the main grape producers, 60% < 1 ha of land under grape production. Likewise, 50% had more than > 10 years and 33.3% between 1-5 years’ experience in grape farming. The high level of illiteracy and diseases had significant digit effect on growth, yield and quality of grapes. The results showed that vineyard management operations to protect grapes from mechanical damage are very poor or completely absent. Comparing developed countries, table grape is one of the fruits with the highest input of technology, while in developing countries the cost of labor is low but the purchase of the equipment is very high due to financial situation. Hence the low quality and quantity of grape are influenced by poor management methods, such as non-availability of experts and lack of technical guidance in the study site. Thereby, the study suggested that improved agricultural extension services and managerial skills could contribute to addressing the problems.

Keywords: constraints, effect, management, Kabul

Procedia PDF Downloads 106
567 Performance of Reinforced Concrete Beams under Different Fire Durations

Authors: Arifuzzaman Nayeem, Tafannum Torsha, Tanvir Manzur, Shaurav Alam

Abstract:

Performance evaluation of reinforced concrete (RC) beams subjected to accidental fire is significant for post-fire capacity measurement. Mechanical properties of any RC beam degrade due to heating since the strength and modulus of concrete and reinforcement suffer considerable reduction under elevated temperatures. Moreover, fire-induced thermal dilation and shrinkage cause internal stresses within the concrete and eventually result in cracking, spalling, and loss of stiffness, which ultimately leads to lower service life. However, conducting full-scale comprehensive experimental investigation for RC beams exposed to fire is difficult and cost-intensive, where the finite element (FE) based numerical study can provide an economical alternative for evaluating the post-fire capacity of RC beams. In this study, an attempt has been made to study the fire behavior of RC beams using FE software package ABAQUS under different durations of fire. The damaged plasticity model of concrete in ABAQUS was used to simulate behavior RC beams. The effect of temperature on strength and modulus of concrete and steel was simulated following relevant Eurocodes. Initially, the result of FE models was validated using several experimental results from available scholarly articles. It was found that the response of the developed FE models matched quite well with the experimental outcome for beams without heat. The FE analysis of beams subjected to fire showed some deviation from the experimental results, particularly in terms of stiffness degradation. However, the ultimate strength and deflection of FE models were similar to that of experimental values. The developed FE models, thus, exhibited the good potential to predict the fire behavior of RC beams. Once validated, FE models were then used to analyze several RC beams having different strengths (ranged between 20 MPa and 50 MPa) exposed to the standard fire curve (ASTM E119) for different durations. The post-fire performance of RC beams was investigated in terms of load-deflection behavior, flexural strength, and deflection characteristics.

Keywords: fire durations, flexural strength, post fire capacity, reinforced concrete beam, standard fire

Procedia PDF Downloads 135
566 A Simulation-Based Method for Evaluation of Energy System Cooperation between Pulp and Paper Mills and a District Heating System: A Case Study

Authors: Alexander Hedlund, Anna-Karin Stengard, Olof Björkqvist

Abstract:

A step towards reducing greenhouse gases and energy consumption is to collaborate with the energy system between several industries. This work is based on a case study on integration of pulp and paper mills with a district heating system in Sundsvall, Sweden. Present research shows that it is possible to make a significant reduction in the electricity demand in the mechanical pulping process. However, the profitability of the efficiency measures could be an issue, as the excess steam recovered from the refiners decreases with the electricity consumption. A consequence will be that the fuel demand for steam production will increase. If the fuel price is similar to the electricity price it would reduce the profit of such a project. If the paper mill can be integrated with a district heating system, it is possible to upgrade excess heat from a nearby kraft pulp mill to process steam via the district heating system in order to avoid the additional fuel need. The concept is investigated by using a simulation model describing both the mass and energy balance as well as the operating margin. Three scenarios were analyzed: reference, electricity reduction and energy substitution. The simulation show that the total input to the system is lowest in the Energy substitution scenario. Additionally, in the Energy substitution scenario the steam from the incineration boiler covers not only the steam shortage but also a part of the steam produced using the biofuel boiler, the cooling tower connected to the incineration boiler is no longer needed and the excess heat can cover the whole district heating load during the whole year. The study shows a substantial economic advantage if all stakeholders act together as one system. However, costs and benefits are unequally shared between the actors. This means that there is a need for new business models in order to share the system costs and benefits.

Keywords: energy system, cooperation, simulation method, excess heat, district heating

Procedia PDF Downloads 224
565 Numerical Methodology to Support the Development of a Double Chamber Syringe

Authors: Lourenço Bastos, Filipa Carneiro, Bruno Vale, Rita Marques Joana Silva, Ricardo Freitas, Ângelo Marques, Sara Cortez, Alberta Coelho, Pedro Parreira, Liliana Sousa, Anabela Salgueiro, Bruno Silva

Abstract:

The process of flushing is considered to be an adequate technique to reduce the risk of infection during the clinical practice of venous catheterization. Nonetheless, there is still a lack of adhesion to this method, in part due to the complexity of this procedure. The project SeringaDuo aimed to develop an innovative double-chamber syringe for intravenous sequential administration of drugs and serums. This device served the purpose of improving the adherence to the practice, through the reduction of manipulations needed, which also improves patient safety, and though the promotion of flushing practice by health professionals, by simplifying this task. To assist on the development of this innovative syringe, a numerical methodology was developed and validated in order to predict the syringe’s mechanical and flow behavior during the fluids’ loading and administration phases, as well as to allow the material behavior evaluation during its production. For this, three commercial numerical simulation software was used, namely ABAQUS, ANSYS/FLUENT, and MOLDFLOW. This methodology aimed to evaluate the concepts feasibility and to optimize the geometries of the syringe’s components, creating this way an iterative process for product development based on numerical simulations, validated by the production of prototypes. Through this methodology, it was possible to achieve a final design that fulfils all the characteristics and specifications defined. This iterative process based on numerical simulations is a powerful tool for product development that allows obtaining fast and accurate results without the strict need for prototypes. An iterative process can be implemented, consisting of consecutive constructions and evaluations of new concepts, to obtain an optimized solution, which fulfils all the predefined specifications and requirements.

Keywords: Venous catheterization, flushing, syringe, numerical simulation

Procedia PDF Downloads 164
564 Humins: From Industrial By-Product to High Value Polymers

Authors: Pierluigi Tosi, Ed de Jong, Gerard van Klink, Luc Vincent, Alice Mija

Abstract:

During the last decades renewable and low-cost resources have attracted increasingly interest. Carbohydrates can be derived by lignocellulosic biomasses, which is an attractive option since they represent the most abundant carbon source available in nature. Carbohydrates can be converted in a plethora of industrially relevant compounds, such as 5-hydroxymethylfurfural (HMF) and levulinic acid (LA), within acid catalyzed dehydration of sugars with mineral acids. Unfortunately, these acid catalyzed conversions suffer of the unavoidable formation of highly viscous heterogeneous poly-disperse carbon based materials known as humins. This black colored low value by-product is made by a complex mixture of macromolecules built by covalent random condensations of the several compounds present during the acid catalyzed conversion. Humins molecular structure is still under investigation but seems based on furanic rings network linked by aliphatic chains and decorated by several reactive moieties (ketones, aldehydes, hydroxyls, …). Despite decades of research, currently there is no way to avoid humins formation. The key parameter for enhance the economic viability of carbohydrate conversion processes is, therefore, increasing the economic value of the humins by-product. Herein are presented new humins based polymeric materials that can be prepared starting from the raw by-product by thermal treatment, without any step of purification or pretreatment. Humins foams can be produced with the control of reaction key parameters, obtaining polymeric porous materials with designed porosity, density, thermal and electrical conductivity, chemical and electrical stability, carbon amount and mechanical properties. Physico chemical properties can be enhanced by modifications on the starting raw material or adding different species during the polymerization. A comparisons on the properties of different compositions will be presented, along with tested applications. The authors gratefully acknowledge the European Community for financial support through Marie-Curie H2020-MSCA-ITN-2015 "HUGS" Project.

Keywords: by-product, humins, polymers, valorization

Procedia PDF Downloads 139
563 Combined Effect of Therapeutic Exercises and Shock Wave versus Therapeutic Exercises and Phonophoresis in Treatment of Shoulder Impingement Syndrome: A Randomized Controlled Trial

Authors: Mohamed M. Mashaly, Ahmed M. F. El Shiwi

Abstract:

Background: Shoulder impingement syndrome is an encroachment of subacromial tissues, rotator cuff, subacromial bursa, and the long head of the biceps tendon, as a result of narrowing of the subacromial space. Activities requiring repetitive or sustained use of the arms over head often predispose the rotator cuff tendon to injury. Purpose: To compare between Combined effect therapeutic exercises and Shockwave therapy versus therapeutic exercises and phonophoresis in the treatment of shoulder impingement syndrome. Methods: Thirty patients diagnosed as shoulder impingement syndrome stage II Neer classification due to mechanical causes. Patients were randomly distributed into two equal groups. The first group consisted of 15 patients with a mean age of (45.46+8.64) received therapeutic exercises (stretching exercise of posterior shoulder capsule and strengthening exercises of shoulder muscles) and shockwave therapy (6000 shocks, 2000/session, 3 sessions, 2 weeks apart, 0.22mJ/mm^2) years. The second group consisted of 15 patients with a mean age of 46.26 (+ 8.05) received same therapeutic exercises and phonophoresis (3 times per week, each other day, for 4 consecutive weeks). Patients were evaluated pretreatment and post treatment for shoulder pain severity, shoulder functional disability, shoulder flexion, abduction and internal rotation motions. Results: Patients of both groups showed significant improvement in all the measured variables. In between groups difference the shock wave group showed a significant improvement in all measured variables than phonophoresis group. Interpretation/Conclusion: Combined effect of therapeutic exercises and shock wave were more effective than therapeutic exercises and phonophoresis on decreasing shoulder pain severity, shoulder functional disability, increasing in shoulder flexion, abduction, internal rotation in patients with shoulder impingement syndrome.

Keywords: shoulder impingement syndrome, therapeutic exercises, shockwave, phonophoresis

Procedia PDF Downloads 468
562 Hardware Implementation for the Contact Force Reconstruction in Tactile Sensor Arrays

Authors: María-Luisa Pinto-Salamanca, Wilson-Javier Pérez-Holguín

Abstract:

Reconstruction of contact forces is a fundamental technique for analyzing the properties of a touched object and is essential for regulating the grip force in slip control loops. This is based on the processing of the distribution, intensity, and direction of the forces during the capture of the sensors. Currently, efficient hardware alternatives have been used more frequently in different fields of application, allowing the implementation of computationally complex algorithms, as is the case with tactile signal processing. The use of hardware for smart tactile sensing systems is a research area that promises to improve the processing time and portability requirements of applications such as artificial skin and robotics, among others. The literature review shows that hardware implementations are present today in almost all stages of smart tactile detection systems except in the force reconstruction process, a stage in which they have been less applied. This work presents a hardware implementation of a model-driven reported in the literature for the contact force reconstruction of flat and rigid tactile sensor arrays from normal stress data. From the analysis of a software implementation of such a model, this implementation proposes the parallelization of tasks that facilitate the execution of matrix operations and a two-dimensional optimization function to obtain a vector force by each taxel in the array. This work seeks to take advantage of the parallel hardware characteristics of Field Programmable Gate Arrays, FPGAs, and the possibility of applying appropriate techniques for algorithms parallelization using as a guide the rules of generalization, efficiency, and scalability in the tactile decoding process and considering the low latency, low power consumption, and real-time execution as the main parameters of design. The results show a maximum estimation error of 32% in the tangential forces and 22% in the normal forces with respect to the simulation by the Finite Element Modeling (FEM) technique of Hertzian and non-Hertzian contact events, over sensor arrays of 10×10 taxels of different sizes. The hardware implementation was carried out on an MPSoC XCZU9EG-2FFVB1156 platform of Xilinx® that allows the reconstruction of force vectors following a scalable approach, from the information captured by means of tactile sensor arrays composed of up to 48 × 48 taxels that use various transduction technologies. The proposed implementation demonstrates a reduction in estimation time of x / 180 compared to software implementations. Despite the relatively high values of the estimation errors, the information provided by this implementation on the tangential and normal tractions and the triaxial reconstruction of forces allows to adequately reconstruct the tactile properties of the touched object, which are similar to those obtained in the software implementation and in the two FEM simulations taken as reference. Although errors could be reduced, the proposed implementation is useful for decoding contact forces for portable tactile sensing systems, thus helping to expand electronic skin applications in robotic and biomedical contexts.

Keywords: contact forces reconstruction, forces estimation, tactile sensor array, hardware implementation

Procedia PDF Downloads 191
561 Field Prognostic Factors on Discharge Prediction of Traumatic Brain Injuries

Authors: Mohammad Javad Behzadnia, Amir Bahador Boroumand

Abstract:

Introduction: Limited facility situations require allocating the most available resources for most casualties. Accordingly, Traumatic Brain Injury (TBI) is the one that may need to transport the patient as soon as possible. In a mass casualty event, deciding when the facilities are restricted is hard. The Extended Glasgow Outcome Score (GOSE) has been introduced to assess the global outcome after brain injuries. Therefore, we aimed to evaluate the prognostic factors associated with GOSE. Materials and Methods: In a multicenter cross-sectional study conducted on 144 patients with TBI admitted to trauma emergency centers. All the patients with isolated TBI who were mentally and physically healthy before the trauma entered the study. The patient’s information was evaluated, including demographic characteristics, duration of hospital stays, mechanical ventilation on admission laboratory measurements, and on-admission vital signs. We recorded the patients’ TBI-related symptoms and brain computed tomography (CT) scan findings. Results: GOSE assessments showed an increasing trend by the comparison of on-discharge (7.47 ± 1.30), within a month (7.51 ± 1.30), and within three months (7.58 ± 1.21) evaluations (P < 0.001). On discharge, GOSE was positively correlated with Glasgow Coma Scale (GCS) (r = 0.729, P < 0.001) and motor GCS (r = 0.812, P < 0.001), and inversely with age (r = −0.261, P = 0.002), hospitalization period (r = −0.678, P < 0.001), pulse rate (r = −0.256, P = 0.002) and white blood cell (WBC). Among imaging signs and trauma-related symptoms in univariate analysis, intracranial hemorrhage (ICH), interventricular hemorrhage (IVH) (P = 0.006), subarachnoid hemorrhage (SAH) (P = 0.06; marginally at P < 0.1), subdural hemorrhage (SDH) (P = 0.032), and epidural hemorrhage (EDH) (P = 0.037) were significantly associated with GOSE at discharge in multivariable analysis. Conclusion: Our study showed some predictive factors that could help to decide which casualty should transport earlier to a trauma center. According to the current study findings, GCS, pulse rate, WBC, and among imaging signs and trauma-related symptoms, ICH, IVH, SAH, SDH, and EDH are significant independent predictors of GOSE at discharge in TBI patients.

Keywords: field, Glasgow outcome score, prediction, traumatic brain injury.

Procedia PDF Downloads 72
560 Computational and Experimental Study of the Mechanics of Heart Tube Formation in the Chick Embryo

Authors: Hadi S. Hosseini, Larry A. Taber

Abstract:

In the embryo, heart is initially a simple tubular structure that undergoes complex morphological changes as it transforms into a four-chambered pump. This work focuses on mechanisms that create heart tube (HT). The early embryo is composed of three relatively flat primary germ layers called endoderm, mesoderm, and ectoderm. Precardiac cells located within bilateral regions of the mesoderm called heart fields (HFs) fold and fuse along the embryonic midline to create the HT. The right and left halves of this plate fold symmetrically to bring their upper edges into contact along the midline, where they fuse. In a region near the fusion line, these layers then separate to generate the primitive HT and foregut, which then extend vertically. The anterior intestinal portal (AIP) is the opening at the caudal end of the foregut, which descends as the HT lengthens. The biomechanical mechanisms that drive this folding are poorly understood. Our central hypothesis is that folding is caused by differences in growth between the endoderm and mesoderm while subsequent extension is driven by contraction along the AIP. The feasibility of this hypothesis is examined using experiments with chick embryos and finite-element modeling (FEM). Fertilized white Leghorn chicken eggs were incubated for approximately 22-33 hours until appropriate Hamburger and Hamilton stage (HH5 to HH9) was reached. To inhibit contraction, embryos were cultured in media containing blebbistatin (myosin II inhibitor) for 18h. Three-dimensional models were created using ABAQUS (D. S. Simulia). The initial geometry consists of a flat plate including two layers representing the mesoderm and endoderm. Tissue was considered as a nonlinear elastic material with growth and contraction (negative growth) simulated using a theory, in which the total deformation gradient is given by F=F^*.G, where G is growth tensor and F* is the elastic deformation gradient tensor. In embryos exposed to blebbistatin, initial folding and AIP descension occurred normally. However, after HFs partially fused to create the upper part of the HT, fusion, and AIP descension stopped, and the HT failed to grow longer. These results suggest that cytoskeletal contraction is required only for the later stages of HT formation. In the model, a larger biaxial growth rate in the mesoderm compared to the endoderm causes the bilayered plate to bend ventrally, as the upper edge moves toward the midline, where it 'fuses' with the other half . This folding creates the upper section of the HT, as well as the foregut pocket bordered by the AIP. After this phase completes by stage HH7, contraction along the arch-shaped AIP pulls the lower edge of the plate downward, stretching the two layers. Results given by model are in reasonable agreement with experimental data for the shape of HT, as well as patterns of stress and strain. In conclusion, results of our study support our hypothesis for the creation of the heart tube.

Keywords: heart tube formation, FEM, chick embryo, biomechanics

Procedia PDF Downloads 295
559 The Onset of Ironing during Casing Expansion

Authors: W. Assaad, D. Wilmink, H. R. Pasaribu, H. J. M. Geijselaers

Abstract:

Shell has developed a mono-diameter well concept for oil and gas wells as opposed to the traditional telescopic well design. A Mono-diameter well design allows well to have a single inner diameter from the surface all the way down to reservoir to increase production capacity, reduce material cost and reduce environmental footprint. This is achieved by expansion of liners (casing string) concerned using an expansion tool (e.g. a cone). Since the well is drilled in stages and liners are inserted to support the borehole, overlap sections between consecutive liners exist which should be expanded. At overlap, the previously inserted casing which can be expanded or unexpanded is called the host casing and the newly inserted casing is called the expandable casing. When the cone enters the overlap section, an expandable casing is expanded against a host casing, a cured cement layer and formation. In overlap expansion, ironing or lengthening may appear instead of shortening in the expandable casing when the pressure exerted by the host casing, cured cement layer and formation exceeds a certain limit. This pressure is related to cement strength, thickness of cement layer, host casing material mechanical properties, host casing thickness, formation type and formation strength. Ironing can cause implications that hinder the deployment of the technology. Therefore, the understanding of ironing becomes essential. A physical model is built in-house to calculate expansion forces, stresses, strains and post expansion casing dimensions under different conditions. In this study, only free casing and overlap expansion of two casings are addressed while the cement and formation will be incorporated in future study. Since the axial strain can be predicted by the physical model, the onset of ironing can be confirmed. In addition, this model helps in understanding ironing and the parameters influencing it. Finally, the physical model is validated with Finite Element (FE) simulations and small-scale experiments. The results of the study confirm that high pressure leads to ironing when the casing is expanded in tension mode.

Keywords: casing expansion, cement, formation, metal forming, plasticity, well design

Procedia PDF Downloads 176