Search results for: linear congruential algorithm
153 Innovative Technologies of Distant Spectral Temperature Control
Authors: Leonid Zhukov, Dmytro Petrenko
Abstract:
Optical thermometry has no alternative in many cases of industrial most effective continuous temperature control. Classical optical thermometry technologies can be used on available for pyrometers controlled objects with stable radiation characteristics and transmissivity of the intermediate medium. Without using temperature corrections, it is possible in the case of a “black” body for energy pyrometry and the cases of “black” and “grey” bodies for spectral ratio pyrometry or with using corrections – for any colored bodies. Consequently, with increasing the number of operating waves, optical thermometry possibilities to reduce methodical errors significantly expand. That is why, in recent 25-30 years, research works have been reoriented on more perfect spectral (multicolor) thermometry technologies. There are two physical material substances, i.e., substance (controlled object) and electromagnetic field (thermal radiation), to be operated in optical thermometry. Heat is transferred by radiation; therefore, radiation has the energy, entropy, and temperature. Optical thermometry was originating simultaneously with the developing of thermal radiation theory when the concept and the term "radiation temperature" was not used, and therefore concepts and terms "conditional temperatures" or "pseudo temperature" of controlled objects were introduced. They do not correspond to the physical sense and definitions of temperature in thermodynamics, molecular-kinetic theory, and statistical physics. Launched by the scientific thermometric society, discussion about the possibilities of temperature measurements of objects, including colored bodies, using the temperatures of their radiation is not finished. Are the information about controlled objects transferred by their radiation enough for temperature measurements? The positive and negative answers on this fundamental question divided experts into two opposite camps. Recent achievements of spectral thermometry develop events in her favour and don’t leave any hope for skeptics. This article presents the results of investigations and developments in the field of spectral thermometry carried out by the authors in the Department of Thermometry and Physics-Chemical Investigations. The authors have many-year’s of experience in the field of modern optical thermometry technologies. Innovative technologies of optical continuous temperature control have been developed: symmetric-wave, two-color compensative, and based on obtained nonlinearity equation of spectral emissivity distribution linear, two-range, and parabolic. Тhe technologies are based on direct measurements of physically substantiated and proposed by Prof. L. Zhukov, radiation temperatures with the next calculation of the controlled object temperature using this radiation temperatures and corresponding mathematical models. Тhe technologies significantly increase metrological characteristics of continuous contactless and light-guide temperature control in energy, metallurgical, ceramic, glassy, and other productions. For example, under the same conditions, the methodical errors of proposed technologies are less than the errors of known spectral and classical technologies in 2 and 3-13 times, respectively. Innovative technologies provide quality products obtaining at the lowest possible resource-including energy costs. More than 600 publications have been published on the completed developments, including more than 100 domestic patents, as well as 34 patents in Australia, Bulgaria, Germany, France, Canada, the USA, Sweden, and Japan. The developments have been implemented in the enterprises of USA, as well as Western Europe and Asia, including Germany and Japan.Keywords: emissivity, radiation temperature, object temperature, spectral thermometry
Procedia PDF Downloads 98152 Horizontal Stress Magnitudes Using Poroelastic Model in Upper Assam Basin, India
Authors: Jenifer Alam, Rima Chatterjee
Abstract:
Upper Assam sedimentary basin is one of the oldest commercially producing basins of India. Being in a tectonically active zone, estimation of tectonic strain and stress magnitudes has vast application in hydrocarbon exploration and exploitation. This East North East –West South West trending shelf-slope basin encompasses the Bramhaputra valley extending from Mikir Hills in the southwest to the Naga foothills in the northeast. Assam Shelf lying between the Main Boundary Thrust (MBT) and Naga Thrust area is comparatively free from thrust tectonics and depicts normal faulting mechanism. The study area is bounded by the MBT and Main Central Thrust in the northwest. The Belt of Schuppen in the southeast, is bordered by Naga and Disang thrust marking the lower limit of the study area. The entire Assam basin shows low-level seismicity compared to other regions of northeast India. Pore pressure (PP), vertical stress magnitude (SV) and horizontal stress magnitudes have been estimated from two wells - N1 and T1 located in Upper Assam. N1 is located in the Assam gap below the Bramhaputra river while T1, lies in the Belt of Schuppen. N1 penetrates geological formations from top Alluvial through Dhekiajuli, Girujan, Tipam, Barail, Kopili, Sylhet and Langpur to the granitic basement while T1 in trusted zone crosses through Girujan Suprathrust, Tipam Suprathrust, Barail Suprathrust to reach Naga Thrust. Normal compaction trend is drawn through shale points through both wells for estimation of PP using the conventional Eaton sonic equation with an exponent of 1.0 which is validated with Modular Dynamic Tester and mud weight. Observed pore pressure gradient ranges from 10.3 MPa/km to 11.1 MPa/km. The SV has a gradient from 22.20 to 23.80 MPa/km. Minimum and maximum horizontal principal stress (Sh and SH) magnitudes under isotropic conditions are determined using poroelastic model. This approach determines biaxial tectonic strain utilizing static Young’s Modulus, Poisson’s Ratio, SV, PP, leak off test (LOT) and SH derived from breakouts using prior information on unconfined compressive strength. Breakout derived SH information is used for obtaining tectonic strain due to lack of measured SH data from minifrac or hydrofracturing. Tectonic strain varies from 0.00055 to 0.00096 along x direction and from -0.0010 to 0.00042 along y direction. After obtaining tectonic strains at each well, the principal horizontal stress magnitudes are calculated from linear poroelastic model. The magnitude of Sh and SH gradient in normal faulting region are 12.5 and 16.0 MPa/km while in thrust faulted region the gradients are 17.4 and 20.2 MPa/km respectively. Model predicted Sh and SH matches well with the LOT data and breakout derived SH data in both wells. It is observed from this study that the stresses SV>SH>Sh prevailing in the shelf region while near the Naga foothills the regime changes to SH≈SV>Sh area corresponds to normal faulting regime. Hence this model is a reliable tool for predicting stress magnitudes from well logs under active tectonic regime in Upper Assam Basin.Keywords: Eaton, strain, stress, poroelastic model
Procedia PDF Downloads 215151 Evaluation of the Effect of Learning Disabilities and Accommodations on the Prediction of the Exam Performance: Ordinal Decision-Tree Algorithm
Abstract:
Providing students with learning disabilities (LD) with extra time to grant them equal access to the exam is a necessary but insufficient condition to compensate for their LD; there should also be a clear indication that the additional time was actually used. For example, if students with LD use more time than students without LD and yet receive lower grades, this may indicate that a different accommodation is required. If they achieve higher grades but use the same amount of time, then the effectiveness of the accommodation has not been demonstrated. The main goal of this study is to evaluate the effect of including parameters related to LD and extended exam time, along with other commonly-used characteristics (e.g., student background and ability measures such as high-school grades), on the ability of ordinal decision-tree algorithms to predict exam performance. We use naturally-occurring data collected from hundreds of undergraduate engineering students. The sub-goals are i) to examine the improvement in prediction accuracy when the indicator of exam performance includes 'actual time used' in addition to the conventional indicator (exam grade) employed in most research; ii) to explore the effectiveness of extended exam time on exam performance for different courses and for LD students with different profiles (i.e., sets of characteristics). This is achieved by using the patterns (i.e., subgroups) generated by the algorithms to identify pairs of subgroups that differ in just one characteristic (e.g., course or type of LD) but have different outcomes in terms of exam performance (grade and time used). Since grade and time used to exhibit an ordering form, we propose a method based on ordinal decision-trees, which applies a weighted information-gain ratio (WIGR) measure for selecting the classifying attributes. Unlike other known ordinal algorithms, our method does not assume monotonicity in the data. The proposed WIGR is an extension of an information-theoretic measure, in the sense that it adjusts to the case of an ordinal target and takes into account the error severity between two different target classes. Specifically, we use ordinal C4.5, random-forest, and AdaBoost algorithms, as well as an ensemble technique composed of ordinal and non-ordinal classifiers. Firstly, we find that the inclusion of LD and extended exam-time parameters improves prediction of exam performance (compared to specifications of the algorithms that do not include these variables). Secondly, when the indicator of exam performance includes 'actual time used' together with grade (as opposed to grade only), the prediction accuracy improves. Thirdly, our subgroup analyses show clear differences in the effect of extended exam time on exam performance among different courses and different student profiles. From a methodological perspective, we find that the ordinal decision-tree based algorithms outperform their conventional, non-ordinal counterparts. Further, we demonstrate that the ensemble-based approach leverages the strengths of each type of classifier (ordinal and non-ordinal) and yields better performance than each classifier individually.Keywords: actual exam time usage, ensemble learning, learning disabilities, ordinal classification, time extension
Procedia PDF Downloads 100150 Psychological Distress during the COVID-19 Pandemic in Nursing Students: A Mixed-Methods Study
Authors: Mayantoinette F. Watson
Abstract:
During such an unprecedented time of the largest public health crisis, the COVID-19 pandemic, nursing students are of the utmost concern regarding their psychological and physical well-being. Questions are emerging and circulating about what will happen to the nursing students and the long-term effects of the pandemic, especially now that hospitals are being overwhelmed with a significant need for nursing staff. Expectations, demands, change, and the fear of the unknown during this unprecedented time can only contribute to the many stressors that accompany nursing students through laborious clinical and didactic courses in nursing programs. The risk of psychological distress is at a maximum, and its effects can negatively impact not only nursing students but also nursing education and academia. The high exposures to interpersonal, economic, and academic demands contribute to the major health concerns, which include a potential risk for psychological distress. Achievement of educational success among nursing students is directly affected by the high exposure to anxiety and depression from experiences within the program. Working relationships and achieving academic success is imperative to positive student outcomes within the nursing program. The purpose of this study is to identify and establish influences and associations within multilevel factors, including the effects of the COVID-19 pandemic on psychological distress in nursing students. Neuman’s Systems Model Theory was used to determine nursing students’ responses to internal and external stressors. The research in this study utilized a mixed-methods, convergent study design. The study population included undergraduate nursing students from Southeastern U.S. The research surveyed a convenience sample of undergraduate nursing students. The quantitative survey was completed by 202 participants, and 11 participants participated in the qualitative follow-up interview surveys. Participants completed the Kessler Psychological Distress Scale (K6), the Perceived Stress Scale (PSS4), and the Dundee Readiness Educational Environment Scale (DREEM12) to measure psychological distress, perceived stress, and perceived educational environment. Participants also answered open-ended questions regarding their experience during the COVID-19 pandemic. Statistical tests, including bivariate analyses, multiple linear regression analyses, and binary logistics regression analyses were performed in effort to identify and highlight the effects of independent variables on the dependent variable, psychological distress. Coding and qualitative content analysis were performed to identify overarching themes within participants’ interviews. Quantitative data were sufficient in identifying correlations between psychological distress and multilevel factors of coping, marital status, COVID-19 stress, perceived stress, educational environment, and social support in nursing students. Qualitative data were sufficient in identifying common themes of students’ perceptions during COVID-19 and included online learning, workload, finances, experience, breaks, time, unknown, support, encouragement, unchanged, communication, and transmission. The findings are significant, specifically regarding contributing factors to nursing students’ psychological distress, which will help to improve learning in the academic environment.Keywords: nursing education, nursing students, pandemic, psychological distress
Procedia PDF Downloads 86149 Deep Learning Approach for Colorectal Cancer’s Automatic Tumor Grading on Whole Slide Images
Authors: Shenlun Chen, Leonard Wee
Abstract:
Tumor grading is an essential reference for colorectal cancer (CRC) staging and survival prognostication. The widely used World Health Organization (WHO) grading system defines histological grade of CRC adenocarcinoma based on the density of glandular formation on whole slide images (WSI). Tumors are classified as well-, moderately-, poorly- or un-differentiated depending on the percentage of the tumor that is gland forming; >95%, 50-95%, 5-50% and <5%, respectively. However, manually grading WSIs is a time-consuming process and can cause observer error due to subjective judgment and unnoticed regions. Furthermore, pathologists’ grading is usually coarse while a finer and continuous differentiation grade may help to stratifying CRC patients better. In this study, a deep learning based automatic differentiation grading algorithm was developed and evaluated by survival analysis. Firstly, a gland segmentation model was developed for segmenting gland structures. Gland regions of WSIs were delineated and used for differentiation annotating. Tumor regions were annotated by experienced pathologists into high-, medium-, low-differentiation and normal tissue, which correspond to tumor with clear-, unclear-, no-gland structure and non-tumor, respectively. Then a differentiation prediction model was developed on these human annotations. Finally, all enrolled WSIs were processed by gland segmentation model and differentiation prediction model. The differentiation grade can be calculated by deep learning models’ prediction of tumor regions and tumor differentiation status according to WHO’s defines. If multiple WSIs were possessed by a patient, the highest differentiation grade was chosen. Additionally, the differentiation grade was normalized into scale between 0 to 1. The Cancer Genome Atlas, project COAD (TCGA-COAD) project was enrolled into this study. For the gland segmentation model, receiver operating characteristic (ROC) reached 0.981 and accuracy reached 0.932 in validation set. For the differentiation prediction model, ROC reached 0.983, 0.963, 0.963, 0.981 and accuracy reached 0.880, 0.923, 0.668, 0.881 for groups of low-, medium-, high-differentiation and normal tissue in validation set. Four hundred and one patients were selected after removing WSIs without gland regions and patients without follow up data. The concordance index reached to 0.609. Optimized cut off point of 51% was found by “Maxstat” method which was almost the same as WHO system’s cut off point of 50%. Both WHO system’s cut off point and optimized cut off point performed impressively in Kaplan-Meier curves and both p value of logrank test were below 0.005. In this study, gland structure of WSIs and differentiation status of tumor regions were proven to be predictable through deep leaning method. A finer and continuous differentiation grade can also be automatically calculated through above models. The differentiation grade was proven to stratify CAC patients well in survival analysis, whose optimized cut off point was almost the same as WHO tumor grading system. The tool of automatically calculating differentiation grade may show potential in field of therapy decision making and personalized treatment.Keywords: colorectal cancer, differentiation, survival analysis, tumor grading
Procedia PDF Downloads 134148 Academic Major, Gender, and Perceived Helpfulness Predict Help-Seeking Stigma
Authors: Tran Tran
Abstract:
Mental health issues are prevalent among Vietnamese undergraduate students, and they are greatly exacerbated during the COVID-19 pandemic for this population. While there is empirical evidence supporting the effectiveness and efficiency of therapy on mental health issues among college students, the rates of Vietnamese college students seeking professional mental health services were alarmingly low. Multiple factors can prevent those in need from finding support. The Internalized Stigma Model posits that public stigma directly affects intentions to seek psychological help via self-stigma and attitudes toward seeking help. However, little research has focused on what factors can predict public stigma toward seeking professional psychological support, especially among this population. A potential predictor is academic majors since academic majors can influence undergraduate students' perceptions, attitudes, and intentions. A study suggested that students who have completed two or more psychology courses have a more positive attitude toward seeking care for mental health issues and reduced stigma, which might be attributed to increased mental health literacy. In addition, research has shown that women are more likely to utilize mental health services and have lower stigma than men. Finally, studies have also suggested that experience of mental health services can increase endorsement of perceived need and lower stigma. Thus, it is expected that perceived helpfulness from past service uses can reduce stigma. This study aims to address this gap in the literature and investigate which factors can predict public stigma, specifically academic major, gender, and perceived helpfulness, potentially suggesting an avenue of prevention and ultimately improving the well-being of Vietnamese college students. The sample includes 408 undergraduate students (Mage = 20.44; 80.88% female) Hanoi city, Vietnam. Participants completed a pen-and-paper questionnaire. Students completed the Stigma Scale for Receiving Psychological Help, which yielded a mean public stigma score. Participants also completed a measurement assessing their perceived helpfulness of their university’s counseling center, which included eight subscales: future self-development, learning issues, career counseling, medical and health issues, mental health issues, conflicts between teachers and students, conflicts between parents and students, and interpersonal relationships. Items were summed to create a composite perceived helpfulness score. Finally, participants provided demographic information. This included gender, which was dichotomized between female and other. Additionally, it included academic major, which was also similarly dichotomized between psychology and other (e.g., natural science, social science, and pedagogy & social work). Linear relationships between public stigma and gender, academic major, and perceived helpfulness were analyzed individually with a regression model. Findings suggested that academic major, gender, and perceived counseling center's helpfulness predicted stigma against seeking professional psychological help. Specifically, being a psychology major predicted lower levels of public stigma (β = -.25, p < .001). Additionally, gender female predicted lower levels of public stigma (β = -.11, p < .05). Lastly, higher levels of perceived helpfulness of the counseling center also predicted lower levels of public stigma (β = -.16, p < .01). The study’s results offer potential intervention avenues to help reduce stigma and increase well-being for Vietnamese college students.Keywords: stigma, vietnamese college students, counseling services, help-seeking
Procedia PDF Downloads 88147 Microgrid Design Under Optimal Control With Batch Reinforcement Learning
Authors: Valentin Père, Mathieu Milhé, Fabien Baillon, Jean-Louis Dirion
Abstract:
Microgrids offer potential solutions to meet the need for local grid stability and increase isolated networks autonomy with the integration of intermittent renewable energy production and storage facilities. In such a context, sizing production and storage for a given network is a complex task, highly depending on input data such as power load profile and renewable resource availability. This work aims at developing an operating cost computation methodology for different microgrid designs based on the use of deep reinforcement learning (RL) algorithms to tackle the optimal operation problem in stochastic environments. RL is a data-based sequential decision control method based on Markov decision processes that enable the consideration of random variables for control at a chosen time scale. Agents trained via RL constitute a promising class of Energy Management Systems (EMS) for the operation of microgrids with energy storage. Microgrid sizing (or design) is generally performed by minimizing investment costs and operational costs arising from the EMS behavior. The latter might include economic aspects (power purchase, facilities aging), social aspects (load curtailment), and ecological aspects (carbon emissions). Sizing variables are related to major constraints on the optimal operation of the network by the EMS. In this work, an islanded mode microgrid is considered. Renewable generation is done with photovoltaic panels; an electrochemical battery ensures short-term electricity storage. The controllable unit is a hydrogen tank that is used as a long-term storage unit. The proposed approach focus on the transfer of agent learning for the near-optimal operating cost approximation with deep RL for each microgrid size. Like most data-based algorithms, the training step in RL leads to important computer time. The objective of this work is thus to study the potential of Batch-Constrained Q-learning (BCQ) for the optimal sizing of microgrids and especially to reduce the computation time of operating cost estimation in several microgrid configurations. BCQ is an off-line RL algorithm that is known to be data efficient and can learn better policies than on-line RL algorithms on the same buffer. The general idea is to use the learned policy of agents trained in similar environments to constitute a buffer. The latter is used to train BCQ, and thus the agent learning can be performed without update during interaction sampling. A comparison between online RL and the presented method is performed based on the score by environment and on the computation time.Keywords: batch-constrained reinforcement learning, control, design, optimal
Procedia PDF Downloads 123146 Zinc Oxide Varistor Performance: A 3D Network Model
Authors: Benjamin Kaufmann, Michael Hofstätter, Nadine Raidl, Peter Supancic
Abstract:
ZnO varistors are the leading overvoltage protection elements in today’s electronic industry. Their highly non-linear current-voltage characteristics, very fast response times, good reliability and attractive cost of production are unique in this field. There are challenges and questions unsolved. Especially, the urge to create even smaller, versatile and reliable parts, that fit industry’s demands, brings manufacturers to the limits of their abilities. Although, the varistor effect of sintered ZnO is known since the 1960’s, and a lot of work was done on this field to explain the sudden exponential increase of conductivity, the strict dependency on sinter parameters, as well as the influence of the complex microstructure, is not sufficiently understood. For further enhancement and down-scaling of varistors, a better understanding of the microscopic processes is needed. This work attempts a microscopic approach to investigate ZnO varistor performance. In order to cope with the polycrystalline varistor ceramic and in order to account for all possible current paths through the material, a preferably realistic model of the microstructure was set up in the form of three-dimensional networks where every grain has a constant electric potential, and voltage drop occurs only at the grain boundaries. The electro-thermal workload, depending on different grain size distributions, was investigated as well as the influence of the metal-semiconductor contact between the electrodes and the ZnO grains. A number of experimental methods are used, firstly, to feed the simulations with realistic parameters and, secondly, to verify the obtained results. These methods are: a micro 4-point probes method system (M4PPS) to investigate the current-voltage characteristics between single ZnO grains and between ZnO grains and the metal electrode inside the varistor, micro lock-in infrared thermography (MLIRT) to detect current paths, electron back scattering diffraction and piezoresponse force microscopy to determine grain orientations, atom probe to determine atomic substituents, Kelvin probe force microscopy for investigating grain surface potentials. The simulations showed that, within a critical voltage range, the current flow is localized along paths which represent only a tiny part of the available volume. This effect could be observed via MLIRT. Furthermore, the simulations exhibit that the electric power density, which is inversely proportional to the number of active current paths, since this number determines the electrical active volume, is dependent on the grain size distribution. M4PPS measurements showed that the electrode-grain contacts behave like Schottky diodes and are crucial for asymmetric current path development. Furthermore, evaluation of actual data suggests that current flow is influenced by grain orientations. The present results deepen the knowledge of influencing microscopic factors on ZnO varistor performance and can give some recommendations on fabrication for obtaining more reliable ZnO varistors.Keywords: metal-semiconductor contact, Schottky diode, varistor, zinc oxide
Procedia PDF Downloads 281145 Modeling Thermal Changes of Urban Blocks in Relation to the Landscape Structure and Configuration in Guilan Province
Authors: Roshanak Afrakhteh, Abdolrasoul Salman Mahini, Mahdi Motagh, Hamidreza Kamyab
Abstract:
Urban Heat Islands (UHIs) are distinctive urban areas characterized by densely populated central cores surrounded by less densely populated peripheral lands. These areas experience elevated temperatures, primarily due to impermeable surfaces and specific land use patterns. The consequences of these temperature variations are far-reaching, impacting the environment and society negatively, leading to increased energy consumption, air pollution, and public health concerns. This paper emphasizes the need for simplified approaches to comprehend UHI temperature dynamics and explains how urban development patterns contribute to land surface temperature variation. To illustrate this relationship, the study focuses on the Guilan Plain, utilizing techniques like principal component analysis and generalized additive models. The research centered on mapping land use and land surface temperature in the low-lying area of Guilan province. Satellite data from Landsat sensors for three different time periods (2002, 2012, and 2021) were employed. Using eCognition software, a spatial unit known as a "city block" was utilized through object-based analysis. The study also applied the normalized difference vegetation index (NDVI) method to estimate land surface radiance. Predictive variables for urban land surface temperature within residential city blocks were identified categorized as intrinsic (related to the block's structure) and neighboring (related to adjacent blocks) variables. Principal Component Analysis (PCA) was used to select significant variables, and a Generalized Additive Model (GAM) approach, implemented using R's mgcv package, modeled the relationship between urban land surface temperature and predictor variables.Notable findings included variations in urban temperature across different years attributed to environmental and climatic factors. Block size, shared boundary, mother polygon area, and perimeter-to-area ratio were identified as main variables for the generalized additive regression model. This model showed non-linear relationships, with block size, shared boundary, and mother polygon area positively correlated with temperature, while the perimeter-to-area ratio displayed a negative trend. The discussion highlights the challenges of predicting urban surface temperature and the significance of block size in determining urban temperature patterns. It also underscores the importance of spatial configuration and unit structure in shaping urban temperature patterns. In conclusion, this study contributes to the growing body of research on the connection between land use patterns and urban surface temperature. Block size, along with block dispersion and aggregation, emerged as key factors influencing urban surface temperature in residential areas. The proposed methodology enhances our understanding of parameter significance in shaping urban temperature patterns across various regions, particularly in Iran.Keywords: urban heat island, land surface temperature, LST modeling, GAM, Gilan province
Procedia PDF Downloads 73144 Rural-To-Urban Migrants' Experiences with Primary Care in Four Types of Medical Institutions in Guangzhou, China
Authors: Jiazhi Zeng, Leiyu Shi, Xia Zou, Wen Chen, Li Ling
Abstract:
Background: China is facing the unprecedented challenge of rapidly increasing rural-to-urban migration. Due to the household registration system, migrants are in a vulnerable state when they attempt to access to primary care services. A strong primary care system can reduce health inequities and mitigate socioeconomic disparities in healthcare utilization. Literature indicated that migrants were more reliant on the primary care system than local residents. Although the Chinese government has attached great importance to creating an efficient health system, primary care services are still underutilized. The referral system between primary care institutions and hospitals has not yet been completely established in China. The general populations often go directly to hospitals instead of primary care institutions for their primary care. Primary care institutions generally consist of community health centers (CHCs) and community health stations (CHSs) in urban areas, and township health centers (THCs) and rural health stations (THSs) in rural areas. In addition, primary care services are also provided by the outpatient department of municipal hospitals and tertiary hospitals. A better understanding of migrants’ experiences with primary care in the above-mentioned medical institutions is critical for improving the performance of primary care institutions and providing indications of the attributes that require further attention. The purpose of this pioneering study is to explore rural-to-urban migrants’ experiences in primary care, compare their primary care experiences in four types of medical institutions in Guangzhou, China, and suggest implications for targeted interventions to improve primary care for the migrants. Methods: This was a cross-sectional study conducted with 736 rural-to-urban migrants in Guangzhou, China, in 2014. A multistage sampling method was employed. A validated Chinese version of Primary Care Assessment Tool - Adult Short Version (PCAT-AS) was used to collect information on migrants’ primary care experiences. The PCAT-AS consists of 10 domains. Analysis of covariance was conducted for comparison on PCAT domain scores and total scores among migrants accessing four types of medical institutions. Multiple linear regression models were used to explore factors associated with PCAT total scores. Results: After controlling for socio-demographic characteristics, migrant characteristics, health status and health insurance status, migrants accessing primary care in tertiary hospitals had the highest PCAT total scores when compared with those accessing primary care THCs/ RHSs (25.49 vs. 24.18, P=0.007) and CHCs/ CHSs(25.49 vs. 24.24, P=0.006). There was no statistical significant difference for PCAT total scores between migrants accessing primary care in CHCs/CHSs and those in municipal hospitals (24.24 vs. 25.02, P=0.436). Factors positively associated with higher PCAT total scores also included insurance covering parts of healthcare payment (P < 0.001). Conclusions: This study highlights the need for improvement in primary care provided by primary care institutions for rural-to-urban migrants. Migrants receiving primary care from THCs, RHSs, CHSs and CHSs reported worse primary care experiences than those receiving primary care from tertiary hospitals. Relevant policies related to medical insurance should be implemented for providing affordable healthcare services for migrants accessing primary care. Further research exploring the specific reasons for poorer PCAT scores of primary care institutions users will be needed.Keywords: China, PCAT, primary care, rural-to-urban migrants
Procedia PDF Downloads 356143 An Improved Atmospheric Correction Method with Diurnal Temperature Cycle Model for MSG-SEVIRI TIR Data under Clear Sky Condition
Authors: Caixia Gao, Chuanrong Li, Lingli Tang, Lingling Ma, Yonggang Qian, Ning Wang
Abstract:
Knowledge of land surface temperature (LST) is of crucial important in energy balance studies and environment modeling. Satellite thermal infrared (TIR) imagery is the primary source for retrieving LST at the regional and global scales. Due to the combination of atmosphere and land surface of received radiance by TIR sensors, atmospheric effect correction has to be performed to remove the atmospheric transmittance and upwelling radiance. Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard Meteosat Second Generation (MSG) provides measurements every 15 minutes in 12 spectral channels covering from visible to infrared spectrum at fixed view angles with 3km pixel size at nadir, offering new and unique capabilities for LST, LSE measurements. However, due to its high temporal resolution, the atmosphere correction could not be performed with radiosonde profiles or reanalysis data since these profiles are not available at all SEVIRI TIR image acquisition times. To solve this problem, a two-part six-parameter semi-empirical diurnal temperature cycle (DTC) model has been applied to the temporal interpolation of ECMWF reanalysis data. Due to the fact that the DTC model is underdetermined with ECMWF data at four synoptic times (UTC times: 00:00, 06:00, 12:00, 18:00) in one day for each location, some approaches are adopted in this study. It is well known that the atmospheric transmittance and upwelling radiance has a relationship with water vapour content (WVC). With the aid of simulated data, the relationship could be determined under each viewing zenith angle for each SEVIRI TIR channel. Thus, the atmospheric transmittance and upwelling radiance are preliminary removed with the aid of instantaneous WVC, which is retrieved from the brightness temperature in the SEVIRI channels 5, 9 and 10, and a group of the brightness temperatures for surface leaving radiance (Tg) are acquired. Subsequently, a group of the six parameters of the DTC model is fitted with these Tg by a Levenberg-Marquardt least squares algorithm (denoted as DTC model 1). Although the retrieval error of WVC and the approximate relationships between WVC and atmospheric parameters would induce some uncertainties, this would not significantly affect the determination of the three parameters, td, ts and β (β is the angular frequency, td is the time where the Tg reaches its maximum, ts is the starting time of attenuation) in DTC model. Furthermore, due to the large fluctuation in temperature and the inaccuracy of the DTC model around sunrise, SEVIRI measurements from two hours before sunrise to two hours after sunrise are excluded. With the knowledge of td , ts, and β, a new DTC model (denoted as DTC model 2) is accurately fitted again with these Tg at UTC times: 05:57, 11:57, 17:57 and 23:57, which is atmospherically corrected with ECMWF data. And then a new group of the six parameters of the DTC model is generated and subsequently, the Tg at any given times are acquired. Finally, this method is applied to SEVIRI data in channel 9 successfully. The result shows that the proposed method could be performed reasonably without assumption and the Tg derived with the improved method is much more consistent with that from radiosonde measurements.Keywords: atmosphere correction, diurnal temperature cycle model, land surface temperature, SEVIRI
Procedia PDF Downloads 268142 Transient Heat Transfer: Experimental Investigation near the Critical Point
Authors: Andreas Kohlhepp, Gerrit Schatte, Wieland Christoph, Spliethoff Hartmut
Abstract:
In recent years the research of heat transfer phenomena of water and other working fluids near the critical point experiences a growing interest for power engineering applications. To match the highly volatile characteristics of renewable energies, conventional power plants need to shift towards flexible operation. This requires speeding up the load change dynamics of steam generators and their heating surfaces near the critical point. In dynamic load transients, both a high heat flux with an unfavorable ratio to the mass flux and a high difference in fluid and wall temperatures, may cause problems. It may lead to deteriorated heat transfer (at supercritical pressures), dry-out or departure from nucleate boiling (at subcritical pressures), all cases leading to an extensive rise of temperatures. For relevant technical applications, the heat transfer coefficients need to be predicted correctly in case of transient scenarios to prevent damage to the heated surfaces (membrane walls, tube bundles or fuel rods). In transient processes, the state of the art method of calculating the heat transfer coefficients is using a multitude of different steady-state correlations for the momentarily existing local parameters for each time step. This approach does not necessarily reflect the different cases that may lead to a significant variation of the heat transfer coefficients and shows gaps in the individual ranges of validity. An algorithm was implemented to calculate the transient behavior of steam generators during load changes. It is used to assess existing correlations for transient heat transfer calculations. It is also desirable to validate the calculation using experimental data. By the use of a new full-scale supercritical thermo-hydraulic test rig, experimental data is obtained to describe the transient phenomena under dynamic boundary conditions as mentioned above and to serve for validation of transient steam generator calculations. Aiming to improve correlations for the prediction of the onset of deteriorated heat transfer in both, stationary and transient cases the test rig was specially designed for this task. It is a closed loop design with a directly electrically heated evaporation tube, the total heating power of the evaporator tube and the preheater is 1MW. To allow a big range of parameters, including supercritical pressures, the maximum pressure rating is 380 bar. The measurements contain the most important extrinsic thermo-hydraulic parameters. Moreover, a high geometric resolution allows to accurately predict the local heat transfer coefficients and fluid enthalpies.Keywords: departure from nucleate boiling, deteriorated heat transfer, dryout, supercritical working fluid, transient operation of steam generators
Procedia PDF Downloads 221141 Gendered Water Insecurity: a Structural Equation Approach for Female-Headed Households in South Africa
Authors: Saul Ngarava, Leocadia Zhou, Nomakhaya Monde
Abstract:
Water crises have the fourth most significant societal impact after weapons of mass destruction, climate change, and extreme weather conditions, ahead of natural disasters. Intricacies between women and water are central to achieving the 2030 Sustainable Development Goals (SDGs). The majority of the 1.2 billion poor people worldwide, with two-thirds being women, and mostly located in Sub Sahara Africa (SSA) and South Asia, do not have access to safe and reliable sources of water. There exist gendered differences in water security based on the division of labour associating women with water. Globally, women and girls are responsible for water collection in 80% of the households which have no water on their premises. Women spend 16 million hours a day collecting water, while men and children spend 6 million and 4 million per day, respectively, which is time foregone in the pursuit of other livelihood activities. Due to their proximity and activities concerning water, women are vulnerable to water insecurity through exposures to water-borne diseases, fatigue from physically carrying water, and exposure to sexual and physical harassment, amongst others. Proximity to treated water and their wellbeing also has an effect on their sensitivity and adaptive capacity to water insecurity. The great distances, difficult terrain and heavy lifting expose women to vulnerabilities of water insecurity. However, few studies have quantified the vulnerabilities and burdens on women, with a few taking a phenomenological qualitative approach. Vulnerability studies have also been scanty in the water security realm, with most studies taking linear forms of either quantifying exposures, sensitivities or adaptive capacities in climate change studies. The current study argues for the need for a water insecurity vulnerability assessment, especially for women into research agendas as well as policy interventions, monitoring, and evaluation. The study sought to identify and provide pathways through which female-headed households were water insecure in South Africa, the 30th driest country in the world. This was through linking the drinking water decision as well as the vulnerability frameworks. Secondary data collected during the 2016 General Household Survey (GHS) was utilised, with a sample of 5928 female-headed households. Principal Component Analysis and Structural Equation Modelling were used to analyse the data. The results show dynamic relationships between water characteristics and water treatment. There were also associations between water access and wealth status of the female-headed households. Association was also found between water access and water treatment as well as between wealth status and water treatment. The study concludes that there are dynamic relationships in water insecurity (exposure, sensitivity, and adaptive capacity) for female-headed households in South Africa. The study recommends that a multi-prong approach is required in tackling exposures, sensitivities, and adaptive capacities to water insecurity. This should include capacitating and empowering women for wealth generation, improve access to water treatment equipment as well as prioritising the improvement of infrastructure that brings piped and safe water to female-headed households.Keywords: gender, principal component analysis, structural equation modelling, vulnerability, water insecurity
Procedia PDF Downloads 121140 Early Impact Prediction and Key Factors Study of Artificial Intelligence Patents: A Method Based on LightGBM and Interpretable Machine Learning
Authors: Xingyu Gao, Qiang Wu
Abstract:
Patents play a crucial role in protecting innovation and intellectual property. Early prediction of the impact of artificial intelligence (AI) patents helps researchers and companies allocate resources and make better decisions. Understanding the key factors that influence patent impact can assist researchers in gaining a better understanding of the evolution of AI technology and innovation trends. Therefore, identifying highly impactful patents early and providing support for them holds immeasurable value in accelerating technological progress, reducing research and development costs, and mitigating market positioning risks. Despite the extensive research on AI patents, accurately predicting their early impact remains a challenge. Traditional methods often consider only single factors or simple combinations, failing to comprehensively and accurately reflect the actual impact of patents. This paper utilized the artificial intelligence patent database from the United States Patent and Trademark Office and the Len.org patent retrieval platform to obtain specific information on 35,708 AI patents. Using six machine learning models, namely Multiple Linear Regression, Random Forest Regression, XGBoost Regression, LightGBM Regression, Support Vector Machine Regression, and K-Nearest Neighbors Regression, and using early indicators of patents as features, the paper comprehensively predicted the impact of patents from three aspects: technical, social, and economic. These aspects include the technical leadership of patents, the number of citations they receive, and their shared value. The SHAP (Shapley Additive exPlanations) metric was used to explain the predictions of the best model, quantifying the contribution of each feature to the model's predictions. The experimental results on the AI patent dataset indicate that, for all three target variables, LightGBM regression shows the best predictive performance. Specifically, patent novelty has the greatest impact on predicting the technical impact of patents and has a positive effect. Additionally, the number of owners, the number of backward citations, and the number of independent claims are all crucial and have a positive influence on predicting technical impact. In predicting the social impact of patents, the number of applicants is considered the most critical input variable, but it has a negative impact on social impact. At the same time, the number of independent claims, the number of owners, and the number of backward citations are also important predictive factors, and they have a positive effect on social impact. For predicting the economic impact of patents, the number of independent claims is considered the most important factor and has a positive impact on economic impact. The number of owners, the number of sibling countries or regions, and the size of the extended patent family also have a positive influence on economic impact. The study primarily relies on data from the United States Patent and Trademark Office for artificial intelligence patents. Future research could consider more comprehensive data sources, including artificial intelligence patent data, from a global perspective. While the study takes into account various factors, there may still be other important features not considered. In the future, factors such as patent implementation and market applications may be considered as they could have an impact on the influence of patents.Keywords: patent influence, interpretable machine learning, predictive models, SHAP
Procedia PDF Downloads 50139 International Coffee Trade in Solidarity with the Zapatista Rebellion: Anthropological Perspectives on Commercial Ethics within Political Antagonistic Movements
Authors: Miria Gambardella
Abstract:
The influence of solidarity demonstrations towards the Zapatista National Liberation Army has been constantly present over the years, both locally and internationally, guaranteeing visibility to the cause, shaping the movement’s choices, and influencing its hopes of impact worldwide. Most of the coffee produced by the autonomous cooperatives from Chiapas is exported, therefore making coffee trade the main income from international solidarity networks. The question arises about the implications of the relations established between the communities in resistance in Southeastern Mexico and international solidarity movements, specifically on the strategies adopted to conciliate army's demands for autonomy and economic asymmetries between Zapatista cooperatives producing coffee and European collectives who hold purchasing power. In order to deepen the inquiry on those topics, a year-long multi-site investigation was carried out. The first six months of fieldwork were based in Barcelona, where Zapatista coffee was first traded in Spain and where one of the historical and most important European solidarity groups can be found. The last six months of fieldwork were carried out directly in Chiapas, in contact with coffee producers, Zapatista political authorities, international activists as well as vendors, and the rest of the network implicated in coffee production, roasting, and sale. The investigation was based on qualitative research methods, including participatory observation, focus groups, and semi-structured interviews. The analysis did not only focus on retracing the steps of the market chain as if it could be considered a linear and unilateral process, but it rather aimed at exploring actors’ reciprocal perceptions, roles, and dynamics of power. Demonstrations of solidarity and the money circulation they imply aim at changing the system in place and building alternatives, among other things, on the economic level. This work analyzes the formulation of discourse and the organization of solidarity activities that aim at building opportunities for action within a highly politicized economic sphere to which access must be regularly legitimized. The meaning conveyed by coffee is constructed on a symbolic level by the attribution of moral criteria to transactions. The latter participate in the construction of imaginaries that circulate through solidarity movements with the Zapatista rebellion. Commercial exchanges linked to solidarity networks turned out to represent much more than monetary transactions. The social, cultural, and political spheres are invested by ethics, which penetrates all aspects of militant action. It is at this level that the boundaries of different collective actors connect, contaminating each other: merely following the money flow would have been limiting in order to account for a reality within which imaginary is one of the main currencies. The notions of “trust”, “dignity” and “reciprocity” are repeatedly mobilized to negotiate discontinuous and multidirectional flows in the attempt to balance and justify commercial relations in a politicized context that characterizes its own identity through demonizing “market economy” and its dehumanizing powers.Keywords: coffee trade, economic anthropology, international cooperation, Zapatista National Liberation Army
Procedia PDF Downloads 87138 A Geospatial Approach to Coastal Vulnerability Using Satellite Imagery and Coastal Vulnerability Index: A Case Study Mauritius
Authors: Manta Nowbuth, Marie Anais Kimberley Therese
Abstract:
The vulnerability of coastal areas to storm surges stands as a critical global concern. The increasing frequency and intensity of extreme weather events have increased the risks faced by communities living along the coastlines Worldwide. Small Island developing states (SIDS) stands out as being exceptionally vulnerable, coastal regions, ecosystems of human habitation and natural forces, bear witness to the frontlines of climate-induced challenges, and the intensification of storm surges underscores the urgent need for a comprehensive understanding of coastal vulnerability. With limited landmass, low-lying terrains, and resilience on coastal resources, SIDS face an amplified vulnerability to the consequences of storm surges, the delicate balance between human activities and environmental dynamics in these island nations increases the urgency of tailored strategies for assessing and mitigating coastal vulnerability. This research uses an approach to evaluate the vulnerability of coastal communities in Mauritius. The Satellite imagery analysis makes use of sentinel satellite imageries, modified normalised difference water index, classification techniques and the DSAS add on to quantify the extent of shoreline erosion or accumulation, providing a spatial perspective on coastal vulnerability. The coastal Vulnerability Index (CVI) is applied by Gonitz et al Formula, this index considers factors such as coastal slope, sea level rise, mean significant wave height, and tidal range. Weighted assessments identify regions with varying levels of vulnerability, ranging from low to high. The study was carried out in a Village Located in the south of Mauritius, namely Rivière des Galets, with a population of about 500 people over an area of 60,000m². The Village of Rivière des Galets being located in the south, and the southern coast of Mauritius being exposed to the open Indian ocean, is vulnerable to swells, The swells generated by the South east trade winds can lead to large waves and rough sea conditions along the Southern Coastline which has an impact on the coastal activities, including fishing, tourism and coastal Infrastructures, hence, On the one hand, the results highlighted that from a stretch of 123km of coastline the linear rate regression for the 5 –year span varies from-24.1m/yr. to 8.2m/yr., the maximum rate of change in terms of eroded land is -24m/yr. and the maximum rate of accretion is 8.2m/yr. On the other hand, the coastal vulnerability index varies from 9.1 to 45.6 and it was categorised into low, moderate, high and very high risks zones. It has been observed that region which lacks protective barriers and are made of sandy beaches are categorised as high risks zone and hence it is imperative to high risk regions for immediate attention and intervention, as they will most likely be exposed to coastal hazards and impacts from climate change, which demands proactive measures for enhanced resilience and sustainable adaptation strategies.Keywords: climate change, coastal vulnerability, disaster management, remote sensing, satellite imagery, storm surge
Procedia PDF Downloads 8137 Using Scilab® as New Introductory Method in Numerical Calculations and Programming for Computational Fluid Dynamics (CFD)
Authors: Nicoly Coelho, Eduardo Vieira Vilas Boas, Paulo Orestes Formigoni
Abstract:
Faced with the remarkable developments in the various segments of modern engineering, provided by the increasing technological development, professionals of all educational areas need to overcome the difficulties generated due to the good understanding of those who are starting their academic journey. Aiming to overcome these difficulties, this article aims at an introduction to the basic study of numerical methods applied to fluid mechanics and thermodynamics, demonstrating the modeling and simulations with its substance, and a detailed explanation of the fundamental numerical solution for the use of finite difference method, using SCILAB, a free software easily accessible as it is free and can be used for any research center or university, anywhere, both in developed and developing countries. It is known that the Computational Fluid Dynamics (CFD) is a necessary tool for engineers and professionals who study fluid mechanics, however, the teaching of this area of knowledge in undergraduate programs faced some difficulties due to software costs and the degree of difficulty of mathematical problems involved in this way the matter is treated only in postgraduate courses. This work aims to bring the use of DFC low cost in teaching Transport Phenomena for graduation analyzing a small classic case of fundamental thermodynamics with Scilab® program. The study starts from the basic theory involving the equation the partial differential equation governing heat transfer problem, implies the need for mastery of students, discretization processes that include the basic principles of series expansion Taylor responsible for generating a system capable of convergence check equations using the concepts of Sassenfeld, finally coming to be solved by Gauss-Seidel method. In this work we demonstrated processes involving both simple problems solved manually, as well as the complex problems that required computer implementation, for which we use a small algorithm with less than 200 lines in Scilab® in heat transfer study of a heated plate in rectangular shape on four sides with different temperatures on either side, producing a two-dimensional transport with colored graphic simulation. With the spread of computer technology, numerous programs have emerged requiring great researcher programming skills. Thinking that this ability to program DFC is the main problem to be overcome, both by students and by researchers, we present in this article a hint of use of programs with less complex interface, thus enabling less difficulty in producing graphical modeling and simulation for DFC with an extension of the programming area of experience for undergraduates.Keywords: numerical methods, finite difference method, heat transfer, Scilab
Procedia PDF Downloads 387136 Compass Bar: A Visualization Technique for Out-of-View-Objects in Head-Mounted Displays
Authors: Alessandro Evangelista, Vito M. Manghisi, Michele Gattullo, Enricoandrea Laviola
Abstract:
In this work, we propose a custom visualization technique for Out-Of-View-Objects in Virtual and Augmented Reality applications using Head Mounted Displays. In the last two decades, Augmented Reality (AR) and Virtual Reality (VR) technologies experienced a remarkable growth of applications for navigation, interaction, and collaboration in different types of environments, real or virtual. Both environments can be potentially very complex, as they can include many virtual objects located in different places. Given the natural limitation of the human Field of View (about 210° horizontal and 150° vertical), humans cannot perceive objects outside this angular range. Moreover, despite recent technological advances in AR e VR Head-Mounted Displays (HMDs), these devices still suffer from a limited Field of View, especially regarding Optical See-Through displays, thus greatly amplifying the challenge of visualizing out-of-view objects. This problem is not negligible when the user needs to be aware of the number and the position of the out-of-view objects in the environment. For instance, during a maintenance operation on a construction site where virtual objects serve to improve the dangers' awareness. Providing such information can enhance the comprehension of the scene, enable fast navigation and focused search, and improve users' safety. In our research, we investigated how to represent out-of-view-objects in HMD User Interfaces (UI). Inspired by commercial video games such as Call of Duty Modern Warfare, we designed a customized Compass. By exploiting the Unity 3D graphics engine, we implemented our custom solution that can be used both in AR and VR environments. The Compass Bar consists of a graduated bar (in degrees) at the top center of the UI. The values of the bar range from -180 (far left) to +180 (far right), the zero is placed in front of the user. Two vertical lines on the bar show the amplitude of the user's field of view. Every virtual object within the scene is represented onto the compass bar as a specific color-coded proxy icon (a circular ring with a colored dot at its center). To provide the user with information about the distance, we implemented a specific algorithm that increases the size of the inner dot as the user approaches the virtual object (i.e., when the user reaches the object, the dot fills the ring). This visualization technique for out-of-view objects has some advantages. It allows users to be quickly aware of the number and the position of the virtual objects in the environment. For instance, if the compass bar displays the proxy icon at about +90, users will immediately know that the virtual object is to their right and so on. Furthermore, by having qualitative information about the distance, users can optimize their speed, thus gaining effectiveness in their work. Given the small size and position of the Compass Bar, our solution also helps lessening the occlusion problem thus increasing user acceptance and engagement. As soon as the lockdown measures will allow, we will carry out user-tests comparing this solution with other state-of-the-art existing ones such as 3D Radar, SidebARs and EyeSee360.Keywords: augmented reality, situation awareness, virtual reality, visualization design
Procedia PDF Downloads 127135 Bio-Hub Ecosystems: Profitability through Circularity for Sustainable Forestry, Energy, Agriculture and Aquaculture
Authors: Kimberly Samaha
Abstract:
The Bio-Hub Ecosystem model was developed to address a critical area of concern within the global energy market regarding biomass as a feedstock for power plants. Yet the lack of an economically-viable business model for bioenergy facilities has resulted in the continuation of idled and decommissioned plants. This study analyzed data and submittals to the Born Global Maine Innovation Challenge. The Innovation Challenge was a global innovation challenge to identify process innovations that could address a ‘whole-tree’ approach of maximizing the products, byproducts, energy value and process slip-streams into a circular zero-waste design. Participating companies were at various stages of developing bioproducts and included biofuels, lignin-based products, carbon capture platforms and biochar used as both a filtration medium and as a soil amendment product. This case study shows the QCA (Qualitative Comparative Analysis) methodology of the prequalification process and the resulting techno-economic model that was developed for the maximizing profitability of the Bio-Hub Ecosystem through continuous expansion of system waste streams into valuable process inputs for co-hosts. A full site plan for the integration of co-hosts (biorefinery, land-based shrimp and salmon aquaculture farms, a tomato green-house and a hops farm) at an operating forestry-based biomass to energy plant in West Enfield, Maine USA. This model and process for evaluating the profitability not only proposes models for integration of forestry, aquaculture and agriculture in cradle-to-cradle linkages of what have typically been linear systems, but the proposal also allows for the early measurement of the circularity and impact of resource use and investment risk mitigation, for these systems. In this particular study, profitability is assessed at two levels CAPEX (Capital Expenditures) and in OPEX (Operating Expenditures). Given that these projects start with repurposing facilities where the industrial level infrastructure is already built, permitted and interconnected to the grid, the addition of co-hosts first realizes a dramatic reduction in permitting, development times and costs. In addition, using the biomass energy plant’s waste streams such as heat, hot water, CO₂ and fly ash as valuable inputs to their operations and a significant decrease in the OPEX costs, increasing overall profitability to each of the co-hosts bottom line. This case study utilizes a proprietary techno-economic model to demonstrate how utilizing waste streams of a biomass energy plant and/or biorefinery, results in significant reduction in OPEX for both the biomass plants and the agriculture and aquaculture co-hosts. Economically viable Bio-Hubs with favorable environmental and community impacts may prove critical in garnering local and federal government support for pilot programs and more wide-scale adoption, especially for those living in severely economically depressed rural areas where aging industrial sites have been shuttered and local economies devastated.Keywords: bio-economy, biomass energy, financing, zero-waste
Procedia PDF Downloads 134134 Thermodynamic Modeling of Cryogenic Fuel Tanks with a Model-Based Inverse Method
Authors: Pedro A. Marques, Francisco Monteiro, Alessandra Zumbo, Alessia Simonini, Miguel A. Mendez
Abstract:
Cryogenic fuels such as Liquid Hydrogen (LH₂) must be transported and stored at extremely low temperatures. Without expensive active cooling solutions, preventing fuel boil-off over time is impossible. Hence, one must resort to venting systems at the cost of significant energy and fuel mass loss. These losses increase significantly in propellant tanks installed on vehicles, as the presence of external accelerations induces sloshing. Sloshing increases heat and mass transfer rates and leads to significant pressure oscillations, which might further trigger propellant venting. To make LH₂ economically viable, it is essential to minimize these factors by using advanced control techniques. However, these require accurate modelling and a full understanding of the tank's thermodynamics. The present research aims to implement a simple thermodynamic model capable of predicting the state of a cryogenic fuel tank under different operating conditions (i.e., filling, pressurization, fuel extraction, long-term storage, and sloshing). Since this model relies on a set of closure parameters to drive the system's transient response, it must be calibrated using experimental or numerical data. This work focuses on the former approach, wherein the model is calibrated through an experimental campaign carried out on a reduced-scale model of a cryogenic tank. The thermodynamic model of the system is composed of three control volumes: the ullage, the liquid, and the insulating walls. Under this lumped formulation, the governing equations are derived from energy and mass balances in each region, with mass-averaged properties assigned to each of them. The gas-liquid interface is treated as an infinitesimally thin region across which both phases can exchange mass and heat. This results in a coupled system of ordinary differential equations, which must be closed with heat and mass transfer coefficients between each control volume. These parameters are linked to the system evolution via empirical relations derived from different operating regimes of the tank. The derivation of these relations is carried out using an inverse method to find the optimal relations that allow the model to reproduce the available data. This approach extends classic system identification methods beyond linear dynamical systems via a nonlinear optimization step. Thanks to the data-driven assimilation of the closure problem, the resulting model accurately predicts the evolution of the tank's thermodynamics at a negligible computational cost. The lumped model can thus be easily integrated with other submodels to perform complete system simulations in real time. Moreover, by setting the model in a dimensionless form, a scaling analysis allowed us to relate the tested configurations to a representative full-size tank for naval applications. It was thus possible to compare the relative importance of different transport phenomena between the laboratory model and the full-size prototype among the different operating regimes.Keywords: destratification, hydrogen, modeling, pressure-drop, pressurization, sloshing, thermodynamics
Procedia PDF Downloads 92133 Deep Learning for SAR Images Restoration
Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo Ferraioli
Abstract:
In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring. SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.Keywords: SAR image, polarimetric SAR image, convolutional neural network, deep learnig, deep neural network
Procedia PDF Downloads 67132 Bio-Hub Ecosystems: Expansion of Traditional Life Cycle Analysis Metrics to Include Zero-Waste Circularity Measures
Authors: Kimberly Samaha
Abstract:
In order to attract new types of investors into the emerging Bio-Economy, a new set of metrics and measurement system is needed to better quantify the environmental, social and economic impacts of circular zero-waste design. The Bio-Hub Ecosystem model was developed to address a critical area of concern within the global energy market regarding the use of biomass as a feedstock for power plants. Lack of an economically-viable business model for bioenergy facilities has resulted in the continuation of idled and decommissioned plants. In particular, the forestry-based plants which have been an invaluable outlet for woody biomass surplus, forest health improvement, timber production enhancement, and especially reduction of wildfire risk. This study looked at repurposing existing biomass-energy plants into Circular Zero-Waste Bio-Hub Ecosystems. A Bio-Hub model that first targets a ‘whole-tree’ approach and then looks at the circular economics of co-hosting diverse industries (wood processing, aquaculture, agriculture) in the vicinity of the Biomass Power Plants facilities. It proposes not only models for integration of forestry, aquaculture, and agriculture in cradle-to-cradle linkages of what have typically been linear systems, but the proposal also allows for the early measurement of the circularity and impact of resource use and investment risk mitigation, for these systems. Typically, life cycle analyses measure environmental impacts of different industrial production stages and are not integrated with indicators of material use circularity. This concept paper proposes the further development of a new set of metrics that would illustrate not only the typical life-cycle analysis (LCA), which shows the reduction in greenhouse gas (GHG) emissions, but also the zero-waste circularity measures of mass balance of the full value chain of the raw material and energy content/caloric value. These new measures quantify key impacts in making hyper-efficient use of natural resources and eliminating waste to landfills. The project utilized traditional LCA using the GREET model where the standalone biomass energy plant case was contrasted with the integration of a jet-fuel biorefinery. The methodology was then expanded to include combinations of co-hosts that optimize the life cycle of woody biomass from tree to energy, CO₂, heat and wood ash both from an energy/caloric value and for mass balance to include reuse of waste streams which are typically landfilled. The major findings of both a formal LCA study resulted in the masterplan for the first Bio-Hub to be built in West Enfield, Maine. Bioenergy facilities are currently at a critical juncture where they have an opportunity to be repurposed into efficient, profitable and socially responsible investments, or be idled and scrapped. If proven as a model, the expedited roll-out of these innovative scenarios can set a new standard for circular zero-waste projects that advance the critical transition from the current ‘take-make-dispose’ paradigm inherent in the energy, forestry and food industries to a more sustainable bio-economy paradigm where waste streams become valuable inputs, supporting local and rural communities in simple, sustainable ways.Keywords: bio-economy, biomass energy, financing, metrics
Procedia PDF Downloads 156131 Shear Strength Characterization of Coal Mine Spoil in Very-High Dumps with Large Scale Direct Shear Testing
Authors: Leonie Bradfield, Stephen Fityus, John Simmons
Abstract:
The shearing behavior of current and planned coal mine spoil dumps up to 400m in height is studied using large-sample-high-stress direct shear tests performed on a range of spoils common to the coalfields of Eastern Australia. The motivation for the study is to address industry concerns that some constructed spoil dump heights ( > 350m) are exceeding the scale ( ≤ 120m) for which reliable design information exists, and because modern geotechnical laboratories are not equipped to test representative spoil specimens at field-scale stresses. For more than two decades, shear strength estimation for spoil dumps has been based on either infrequent, very small-scale tests where oversize particles are scalped to comply with device specimen size capacity such that the influence of prototype-sized particles on shear strength is not captured; or on published guidelines that provide linear shear strength envelopes derived from small-scale test data and verified in practice by slope performance of dumps up to 120m in height. To date, these published guidelines appear to have been reliable. However, in the field of rockfill dam design there is a broad acceptance of a curvilinear shear strength envelope, and if this is applicable to coal mine spoils, then these industry-accepted guidelines may overestimate the strength and stability of dumps at higher stress levels. The pressing need to rationally define the shearing behavior of more representative spoil specimens at field-scale stresses led to the successful design, construction and operation of a large direct shear machine (LDSM) and its subsequent application to provide reliable design information for current and planned very-high dumps. The LDSM can test at a much larger scale, in terms of combined specimen size (720mm x 720mm x 600mm) and stress (σn up to 4.6MPa), than has ever previously been achieved using a direct shear machine for geotechnical testing of rockfill. The results of an extensive LDSM testing program on a wide range of coal-mine spoils are compared to a published framework that widely accepted by the Australian coal mining industry as the standard for shear strength characterization of mine spoil. A critical outcome is that the LDSM data highlights several non-compliant spoils, and stress-dependent shearing behavior, for which the correct application of the published framework will not provide reliable shear strength parameters for design. Shear strength envelopes developed from the LDSM data are also compared with dam engineering knowledge, where failure envelopes of rockfills are curved in a concave-down manner. The LDSM data indicates that shear strength envelopes for coal-mine spoils abundant with rock fragments are not in fact curved and that the shape of the failure envelope is ultimately determined by the strength of rock fragments. Curvilinear failure envelopes were found to be appropriate for soil-like spoils containing minor or no rock fragments, or hard-soil aggregates.Keywords: coal mine, direct shear test, high dump, large scale, mine spoil, shear strength, spoil dump
Procedia PDF Downloads 161130 Vortex Control by a Downstream Splitter Plate in Psudoplastic Fluid Flow
Authors: Sudipto Sarkar, Anamika Paul
Abstract:
Pseudoplastic (n<1, n is the power index) fluids have great importance in food, pharmaceutical and chemical process industries which require a lot of attention. Unfortunately, due to its complex flow behavior inadequate research works can be found even in laminar flow regime. A practical problem is solved in the present research work by numerical simulation where we tried to control the vortex shedding from a square cylinder using a horizontal splitter plate placed at the downstream flow region. The position of the plate is at the centerline of the cylinder with varying distance from the cylinder to calculate the critical gap-ratio. If the plate is placed inside this critical gap, the vortex shedding from the cylinder suppressed completely. The Reynolds number considered here is in unsteady laminar vortex shedding regime, Re = 100 (Re = U∞a/ν, where U∞ is the free-stream velocity of the flow, a is the side of the cylinder and ν is the maximum value of kinematic viscosity of the fluid). Flow behavior has been studied for three different gap-ratios (G/a = 2, 2.25 and 2.5, where G is the gap between cylinder and plate) and for a fluid with three different flow behavior indices (n =1, 0.8 and 0.5). The flow domain is constructed using Gambit 2.2.30 and this software is also used to generate the mesh and to impose the boundary conditions. For G/a = 2, the domain size is considered as 37.5a × 16a with 316 × 208 grid points in the streamwise and flow-normal directions respectively after a thorough grid independent study. Fine and equal grid spacing is used close to the geometry to capture the vortices shed from the cylinder and the boundary layer developed over the flat plate. Away from the geometry meshes are unequal in size and stretched out. For other gap-ratios, proportionate domain size and total grid points are used with similar kind of mesh distribution. Velocity inlet (u = U∞), pressure outlet (Neumann condition), symmetry (free-slip boundary condition) at upper and lower domain boundary conditions are used for the simulation. Wall boundary condition (u = v = 0) is considered both on the cylinder and the splitter plate surfaces. Discretized forms of fully conservative 2-D unsteady Navier Stokes equations are then solved by Ansys Fluent 14.5. SIMPLE algorithm written in finite volume method is selected for this purpose which is a default solver inculcate in Fluent. The results obtained for Newtonian fluid flow agree well with previous works supporting Fluent’s usefulness in academic research. A thorough analysis of instantaneous and time-averaged flow fields are depicted both for Newtonian and pseudoplastic fluid flow. It has been observed that as the value of n reduces the stretching of shear layers also reduce and these layers try to roll up before the plate. For flow with high pseudoplasticity (n = 0.5) the nature of vortex shedding changes and the value of critical gap-ratio reduces. These are the remarkable findings for laminar periodic vortex shedding regime in pseudoplastic flow environment.Keywords: CFD, pseudoplastic fluid flow, wake-boundary layer interactions, critical gap-ratio
Procedia PDF Downloads 111129 An Infrared Inorganic Scintillating Detector Applied in Radiation Therapy
Authors: Sree Bash Chandra Debnath, Didier Tonneau, Carole Fauquet, Agnes Tallet, Julien Darreon
Abstract:
Purpose: Inorganic scintillating dosimetry is the most recent promising technique to solve several dosimetric issues and provide quality assurance in radiation therapy. Despite several advantages, the major issue of using scintillating detectors is the Cerenkov effect, typically induced in the visible emission range. In this context, the purpose of this research work is to evaluate the performance of a novel infrared inorganic scintillator detector (IR-ISD) in the radiation therapy treatment to ensure Cerenkov free signal and the best matches between the delivered and prescribed doses during treatment. Methods: A simple and small-scale infrared inorganic scintillating detector of 100 µm diameter with a sensitive scintillating volume of 2x10-6 mm3 was developed. A prototype of the dose verification system has been introduced based on PTIR1470/F (provided by Phosphor Technology®) material used in the proposed novel IR-ISD. The detector was tested on an Elekta LINAC system tuned at 6 MV/15MV and a brachytherapy source (Ir-192) used in the patient treatment protocol. The associated dose rate was measured in count rate (photons/s) using a highly sensitive photon counter (sensitivity ~20ph/s). Overall measurements were performed in IBATM water tank phantoms by following international Technical Reports series recommendations (TRS 381) for radiotherapy and TG43U1 recommendations for brachytherapy. The performance of the detector was tested through several dosimetric parameters such as PDD, beam profiling, Cerenkov measurement, dose linearity, dose rate linearity repeatability, and scintillator stability. Finally, a comparative study is also shown using a reference microdiamond dosimeter, Monte-Carlo (MC) simulation, and data from recent literature. Results: This study is highlighting the complete removal of the Cerenkov effect especially for small field radiation beam characterization. The detector provides an entire linear response with the dose in the 4cGy to 800 cGy range, independently of the field size selected from 5 x 5 cm² down to 0.5 x 0.5 cm². A perfect repeatability (0.2 % variation from average) with day-to-day reproducibility (0.3% variation) was observed. Measurements demonstrated that ISD has superlinear behavior with dose rate (R2=1) varying from 50 cGy/s to 1000 cGy/s. PDD profiles obtained in water present identical behavior with a build-up maximum depth dose at 15 mm for different small fields irradiation. A low dimension of 0.5 x 0.5 cm² field profiles have been characterized, and the field cross profile presents a Gaussian-like shape. The standard deviation (1σ) of the scintillating signal remains within 0.02% while having a very low convolution effect, thanks to lower sensitive volume. Finally, during brachytherapy, a comparison with MC simulations shows that considering energy dependency, measurement agrees within 0.8% till 0.2 cm source to detector distance. Conclusion: The proposed scintillating detector in this study shows no- Cerenkov radiation and efficient performance for several radiation therapy measurement parameters. Therefore, it is anticipated that the IR-ISD system can be promoted to validate with direct clinical investigations, such as appropriate dose verification and quality control in the Treatment Planning System (TPS).Keywords: IR-Scintillating detector, dose measurement, micro-scintillators, Cerenkov effect
Procedia PDF Downloads 182128 High School Gain Analytics From National Assessment Program – Literacy and Numeracy and Australian Tertiary Admission Rankin Linkage
Authors: Andrew Laming, John Hattie, Mark Wilson
Abstract:
Nine Queensland Independent high schools provided deidentified student-matched ATAR and NAPLAN data for all 1217 ATAR graduates since 2020 who also sat NAPLAN at the school. Graduating cohorts from the nine schools contained a mean 100 ATAR graduates with previous NAPLAN data from their school. Excluded were vocational students (mean=27) and any ATAR graduates without NAPLAN data (mean=20). Based on Index of Community Socio-Educational Access (ICSEA) prediction, all schools had larger that predicted proportions of their students graduating with ATARs. There were an additional 173 students not releasing their ATARs to their school (14%), requiring this data to be inferred by schools. Gain was established by first converting each student’s strongest NAPLAN domain to a statewide percentile, then subtracting this result from final ATAR. The resulting ‘percentile shift’ was corrected for plausible ATAR participation at each NAPLAN level. Strongest NAPLAN domain had the highest correlation with ATAR (R2=0.58). RESULTS School mean NAPLAN scores fitted ICSEA closely (R2=0.97). Schools achieved a mean cohort gain of two ATAR rankings, but only 66% of students gained. This ranged from 46% of top-NAPLAN decile students gaining, rising to 75% achieving gains outside the top decile. The 54% of top-decile students whose ATAR fell short of prediction lost a mean 4.0 percentiles (or 6.2 percentiles prior to correction for regression to the mean). 71% of students in smaller schools gained, compared to 63% in larger schools. NAPLAN variability in each of the 13 ICSEA1100 cohorts was 17%, with both intra-school and inter-school variation of these values extremely low (0.3% to 1.8%). Mean ATAR change between years in each school was just 1.1 ATAR ranks. This suggests consecutive school cohorts and ICSEA-similar schools share very similar distributions and outcomes over time. Quantile analysis of the NAPLAN/ATAR revealed heteroscedasticity, but splines offered little additional benefit over simple linear regression. The NAPLAN/ATAR R2 was 0.33. DISCUSSION Standardised data like NAPLAN and ATAR offer educators a simple no-cost progression metric to analyse performance in conjunction with their internal test results. Change is expressed in percentiles, or ATAR shift per student, which is layperson intuitive. Findings may also reduce ATAR/vocational stream mismatch, reveal proportions of cohorts meeting or falling short of expectation and demonstrate by how much. Finally, ‘crashed’ ATARs well below expectation are revealed, which schools can reasonably work to minimise. The percentile shift method is neither value-add nor a growth percentile. In the absence of exit NAPLAN testing, this metric is unable to discriminate academic gain from legitimate ATAR-maximizing strategies. But by controlling for ICSEA, ATAR proportion variation and student mobility, it uncovers progression to ATAR metrics which are not currently publicly available. However achieved, ATAR maximisation is a sought-after private good. So long as standardised nationwide data is available, this analysis offers useful analytics for educators and reasonable predictivity when counselling subsequent cohorts about their ATAR prospects.Keywords: NAPLAN, ATAR, analytics, measurement, gain, performance, data, percentile, value-added, high school, numeracy, reading comprehension, variability, regression to the mean
Procedia PDF Downloads 68127 Automatic Identification and Classification of Contaminated Biodegradable Plastics using Machine Learning Algorithms and Hyperspectral Imaging Technology
Authors: Nutcha Taneepanichskul, Helen C. Hailes, Mark Miodownik
Abstract:
Plastic waste has emerged as a critical global environmental challenge, primarily driven by the prevalent use of conventional plastics derived from petrochemical refining and manufacturing processes in modern packaging. While these plastics serve vital functions, their persistence in the environment post-disposal poses significant threats to ecosystems. Addressing this issue necessitates approaches, one of which involves the development of biodegradable plastics designed to degrade under controlled conditions, such as industrial composting facilities. It is imperative to note that compostable plastics are engineered for degradation within specific environments and are not suited for uncontrolled settings, including natural landscapes and aquatic ecosystems. The full benefits of compostable packaging are realized when subjected to industrial composting, preventing environmental contamination and waste stream pollution. Therefore, effective sorting technologies are essential to enhance composting rates for these materials and diminish the risk of contaminating recycling streams. In this study, it leverage hyperspectral imaging technology (HSI) coupled with advanced machine learning algorithms to accurately identify various types of plastics, encompassing conventional variants like Polyethylene terephthalate (PET), Polypropylene (PP), Low density polyethylene (LDPE), High density polyethylene (HDPE) and biodegradable alternatives such as Polybutylene adipate terephthalate (PBAT), Polylactic acid (PLA), and Polyhydroxyalkanoates (PHA). The dataset is partitioned into three subsets: a training dataset comprising uncontaminated conventional and biodegradable plastics, a validation dataset encompassing contaminated plastics of both types, and a testing dataset featuring real-world packaging items in both pristine and contaminated states. Five distinct machine learning algorithms, namely Partial Least Squares Discriminant Analysis (PLS-DA), Support Vector Machine (SVM), Convolutional Neural Network (CNN), Logistic Regression, and Decision Tree Algorithm, were developed and evaluated for their classification performance. Remarkably, the Logistic Regression and CNN model exhibited the most promising outcomes, achieving a perfect accuracy rate of 100% for the training and validation datasets. Notably, the testing dataset yielded an accuracy exceeding 80%. The successful implementation of this sorting technology within recycling and composting facilities holds the potential to significantly elevate recycling and composting rates. As a result, the envisioned circular economy for plastics can be established, thereby offering a viable solution to mitigate plastic pollution.Keywords: biodegradable plastics, sorting technology, hyperspectral imaging technology, machine learning algorithms
Procedia PDF Downloads 79126 Risks beyond Cyber in IoT Infrastructure and Services
Authors: Mattias Bergstrom
Abstract:
Significance of the Study: This research will provide new insights into the risks with digital embedded infrastructure. Through this research, we will analyze each risk and its potential negation strategies, especially for AI and autonomous automation. Moreover, the analysis that is presented in this paper will convey valuable information for future research that can create more stable, secure, and efficient autonomous systems. To learn and understand the risks, a large IoT system was envisioned, and risks with hardware, tampering, and cyberattacks were collected, researched, and evaluated to create a comprehensive understanding of the potential risks. Potential solutions have then been evaluated on an open source IoT hardware setup. This list shows the identified passive and active risks evaluated in the research. Passive Risks: (1) Hardware failures- Critical Systems relying on high rate data and data quality are growing; SCADA systems for infrastructure are good examples of such systems. (2) Hardware delivers erroneous data- Sensors break, and when they do so, they don’t always go silent; they can keep going, just that the data they deliver is garbage, and if that data is not filtered out, it becomes disruptive noise in the system. (3) Bad Hardware injection- Erroneous generated sensor data can be pumped into a system by malicious actors with the intent to create disruptive noise in critical systems. (4) Data gravity- The weight of the data collected will affect Data-Mobility. (5) Cost inhibitors- Running services that need huge centralized computing is cost inhibiting. Large complex AI can be extremely expensive to run. Active Risks: Denial of Service- It is one of the most simple attacks, where an attacker just overloads the system with bogus requests so that valid requests disappear in the noise. Malware- Malware can be anything from simple viruses to complex botnets created with specific goals, where the creator is stealing computer power and bandwidth from you to attack someone else. Ransomware- It is a kind of malware, but it is so different in its implementation that it is worth its own mention. The goal with these pieces of software is to encrypt your system so that it can only be unlocked with a key that is held for ransom. DNS spoofing- By spoofing DNS calls, valid requests and data dumps can be sent to bad destinations, where the data can be extracted for extortion or to corrupt and re-inject into a running system creating a data echo noise loop. After testing multiple potential solutions. We found that the most prominent solution to these risks was to use a Peer 2 Peer consensus algorithm over a blockchain to validate the data and behavior of the devices (sensors, storage, and computing) in the system. By the devices autonomously policing themselves for deviant behavior, all risks listed above can be negated. In conclusion, an Internet middleware that provides these features would be an easy and secure solution to any future autonomous IoT deployments. As it provides separation from the open Internet, at the same time, it is accessible over the blockchain keys.Keywords: IoT, security, infrastructure, SCADA, blockchain, AI
Procedia PDF Downloads 107125 Deep Learning Based Polarimetric SAR Images Restoration
Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo ferraioli
Abstract:
In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring . SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.Keywords: SAR image, deep learning, convolutional neural network, deep neural network, SAR polarimetry
Procedia PDF Downloads 90124 Rheological and Microstructural Characterization of Concentrated Emulsions Prepared by Fish Gelatin
Authors: Helen S. Joyner (Melito), Mohammad Anvari
Abstract:
Concentrated emulsions stabilized by proteins are systems of great importance in food, pharmaceutical and cosmetic products. Controlling emulsion rheology is critical for ensuring desired properties during formation, storage, and consumption of emulsion-based products. Studies on concentrated emulsions have focused on rheology of monodispersed systems. However, emulsions used for industrial applications are polydispersed in nature, and this polydispersity is regarded as an important parameter that also governs the rheology of the concentrated emulsions. Therefore, the objective of this study was to characterize rheological (small and large deformation behaviors) and microstructural properties of concentrated emulsions which were not truly monodispersed as usually encountered in food products such as margarines, mayonnaise, creams, spreads, and etc. The concentrated emulsions were prepared at different concentrations of fish gelatin (0.2, 0.4, 0.8% w/v in the whole emulsion system), oil-water ratio 80-20 (w/w), homogenization speed 10000 rpm, and 25oC. Confocal laser scanning microscopy (CLSM) was used to determine the microstructure of the emulsions. To prepare samples for CLSM analysis, FG solutions were stained by Fluorescein isothiocyanate dye. Emulsion viscosity profiles were determined using shear rate sweeps (0.01 to 100 1/s). The linear viscoelastic regions (LVRs) of the emulsions were determined using strain sweeps (0.01 to 100% strain) for each sample. Frequency sweeps were performed in the LVR (0.1% strain) from 0.6 to 100 rad/s. Large amplitude oscillatory shear (LAOS) testing was conducted by collecting raw waveform data at 0.05, 1, 10, and 100% strain at 4 different frequencies (0.5, 1, 10, and 100 rad/s). All measurements were performed in triplicate at 25oC. The CLSM results revealed that increased fish gelatin concentration resulted in more stable oil-in-water emulsions with homogeneous, finely dispersed oil droplets. Furthermore, the protein concentration had a significant effect on emulsion rheological properties. Apparent viscosity and dynamic moduli at small deformations increased with increasing fish gelatin concentration. These results were related to increased inter-droplet network connections caused by increased fish gelatin adsorption at the surface of oil droplets. Nevertheless, all samples showed shear-thinning and weak gel behaviors over shear rate and frequency sweeps, respectively. Lissajous plots, or plots of stress versus strain, and phase lag values were used to determine nonlinear behavior of the emulsions in LAOS testing. Greater distortion in the elliptical shape of the plots followed by higher phase lag values was observed at large strains and frequencies in all samples, indicating increased nonlinear behavior. Shifts from elastic-dominated to viscous dominated behavior were also observed. These shifts were attributed to damage to the sample microstructure (e.g. gel network disruption), which would lead to viscous-type behaviors such as permanent deformation and flow. Unlike the small deformation results, the LAOS behavior of the concentrated emulsions was not dependent on fish gelatin concentration. Systems with different microstructures showed similar nonlinear viscoelastic behaviors. The results of this study provided valuable information that can be used to incorporate concentrated emulsions in emulsion-based food formulations.Keywords: concentrated emulsion, fish gelatin, microstructure, rheology
Procedia PDF Downloads 275