Search results for: collaboration learning
1658 Detection of Keypoint in Press-Fit Curve Based on Convolutional Neural Network
Authors: Shoujia Fang, Guoqing Ding, Xin Chen
Abstract:
The quality of press-fit assembly is closely related to reliability and safety of product. The paper proposed a keypoint detection method based on convolutional neural network to improve the accuracy of keypoint detection in press-fit curve. It would provide an auxiliary basis for judging quality of press-fit assembly. The press-fit curve is a curve of press-fit force and displacement. Both force data and distance data are time-series data. Therefore, one-dimensional convolutional neural network is used to process the press-fit curve. After the obtained press-fit data is filtered, the multi-layer one-dimensional convolutional neural network is used to perform the automatic learning of press-fit curve features, and then sent to the multi-layer perceptron to finally output keypoint of the curve. We used the data of press-fit assembly equipment in the actual production process to train CNN model, and we used different data from the same equipment to evaluate the performance of detection. Compared with the existing research result, the performance of detection was significantly improved. This method can provide a reliable basis for the judgment of press-fit quality.Keywords: keypoint detection, curve feature, convolutional neural network, press-fit assembly
Procedia PDF Downloads 2331657 Modern Nahwu's View about the Theory of Amil
Authors: Kisno Umbar
Abstract:
Arabic grammar (nahwu) is one of the most important disciplines to learn about the Islamic literature (kitab al-turats). In the last century, learning Arabic grammar was difficult for both the Arabian or non-Arabian native. Most of the traditional nahwu scholars viewed that the theory of amil is a major problem. The views had influenced large number of modern nahwu scholars, and some of them refuse the theory of amil to simplify Arabic grammar to make it easier. The aim of the study is to compare many views of the modern nahwu scholars about the theory of amil including their reasons. In addition, the study is to reveal whether they follow classic scholars or give a view. The author uses literature study approach to get data of modern nahwu scholars from their books as a primary resource. As a secondary resource, the author uses the updated relevant researches from journals about the theory of amil. Besides, the author put on several resources from the traditional nahwu scholars to compare the views. The analysis showed the contrasting views about the theory of amil. Most of the scholars refuse the amil because it isn’t originally derived from Arabic tradition, but it is influenced by Aristotelian philosophy. The others persistently use the amil inasmuch as it is one of the characteristics that differ Arabic language and other languages.Keywords: Arabic grammar, Amil, Arabic tradition, Aristotelian philosophy
Procedia PDF Downloads 1621656 The Effectiveness of Dialectical Behavior Therapy in Developing Emotion Regulation Skill for Adolescent with Intellectual Disability
Authors: Shahnaz Safitri, Rose Mini Agoes Salim, Pratiwi Widyasari
Abstract:
Intellectual disability is characterized by significant limitations in intellectual functioning and adaptive behavior that appears before the age of 18 years old. The prominent impacts of intellectual disability in adolescents are failure to establish interpersonal relationships as socially expected and lower academic achievement. Meanwhile, it is known that emotion regulation skills have a role in supporting the functioning of individual, either by nourishing the development of social skills as well as by facilitating the process of learning and adaptation in school. This study aims to look for the effectiveness of Dialectical Behavior Therapy (DBT) in developing emotion regulation skills for adolescents with intellectual disability. DBT's special consideration toward clients’ social environment and their biological condition is foreseen to be the key for developing emotion regulation capacity for subjects with intellectual disability. Through observations on client's behavior, conducted before and after the completion of DBT intervention program, it was found that there is an improvement in client's knowledge and attitudes related to the mastery of emotion regulation skills. In addition, client's consistency to actually practice emotion regulation techniques over time is largely influenced by the support received from the client's social circles.Keywords: adolescent, dialectical behavior therapy, emotion regulation, intellectual disability
Procedia PDF Downloads 3091655 Storytelling as a Pedagogical Tool to Learn English Language in Higher Education: Using Reflection and Experience to Improve Learning
Authors: Barzan Hadi Hama Karim
Abstract:
The purpose of this research study is to determine how educators, students at the university level are using storytelling to support the educational process. This study provides a general framework about educational uses of storytelling as a pedagogical too to learn English language in the higher education and describes the different perceptions of people (teachers and students) at different levels. A survey is used to collect responses from a group of educators and students in educational settings to determine how they are using storytelling for educational purposes. The results show the current situation of educational uses of storytelling and explore some of the benefits and challenges educators face in implementing storytelling in their institutions. The purpose of our research is to investigate the impact of storytelling as a pedagogical tool to learn English language in higher education and its academic achievements on ESL students. It highlights findings that address the following questions: (1) How has storytelling been approached historically? (2) Is storytelling beneficial for students in early grades at university? (3) To what extent do teacher and student prefer storytelling as a pedagogical tool to teach and learn English language in higher education?Keywords: storytelling, teacher's beliefs, student’s beliefs, student’s academic achievement, narrative, pedagogy, ESL
Procedia PDF Downloads 3961654 Transport Hubs as Loci of Multi-Layer Ecosystems of Innovation: Case Study of Airports
Authors: Carolyn Hatch, Laurent Simon
Abstract:
Urban mobility and the transportation industry are undergoing a transformation, shifting from an auto production-consumption model that has dominated since the early 20th century towards new forms of personal and shared multi-modality [1]. This is shaped by key forces such as climate change, which has induced a shift in production and consumption patterns and efforts to decarbonize and improve transport services through, for instance, the integration of vehicle automation, electrification and mobility sharing [2]. Advanced innovation practices and platforms for experimentation and validation of new mobility products and services that are increasingly complex and multi-stakeholder-oriented are shaping this new world of mobility. Transportation hubs – such as airports - are emblematic of these disruptive forces playing out in the mobility industry. Airports are emerging as the core of innovation ecosystems on and around contemporary mobility issues, and increasingly recognized as complex public/private nodes operating in many societal dimensions [3,4]. These include urban development, sustainability transitions, digital experimentation, customer experience, infrastructure development and data exploitation (for instance, airports generate massive and often untapped data flows, with significant potential for use, commercialization and social benefit). Yet airport innovation practices have not been well documented in the innovation literature. This paper addresses this gap by proposing a model of airport innovation that aims to equip airport stakeholders to respond to these new and complex innovation needs in practice. The methodology involves: 1 – a literature review bringing together key research and theory on airport innovation management, open innovation and innovation ecosystems in order to evaluate airport practices through an innovation lens; 2 – an international benchmarking of leading airports and their innovation practices, including such examples as Aéroports de Paris, Schipol in Amsterdam, Changi in Singapore, and others; and 3 – semi-structured interviews with airport managers on key aspects of organizational practice, facilitated through a close partnership with the Airport Council International (ACI), a major stakeholder in this research project. Preliminary results find that the most successful airports are those that have shifted to a multi-stakeholder, platform ecosystem model of innovation. The recent entrance of new actors in airports (Google, Amazon, Accor, Vinci, Airbnb and others) have forced the opening of organizational boundaries to share and exchange knowledge with a broader set of ecosystem players. This has also led to new forms of governance and intermediation by airport actors to connect complex, highly distributed knowledge, along with new kinds of inter-organizational collaboration, co-creation and collective ideation processes. Leading airports in the case study have demonstrated a unique capacity to force traditionally siloed activities to “think together”, “explore together” and “act together”, to share data, contribute expertise and pioneer new governance approaches and collaborative practices. In so doing, they have successfully integrated these many disruptive change pathways and forced their implementation and coordination towards innovative mobility outcomes, with positive societal, environmental and economic impacts. This research has implications for: 1 - innovation theory, 2 - urban and transport policy, and 3 - organizational practice - within the mobility industry and across the economy.Keywords: airport management, ecosystem, innovation, mobility, platform, transport hubs
Procedia PDF Downloads 1821653 Fuzzy Population-Based Meta-Heuristic Approaches for Attribute Reduction in Rough Set Theory
Authors: Mafarja Majdi, Salwani Abdullah, Najmeh S. Jaddi
Abstract:
One of the global combinatorial optimization problems in machine learning is feature selection. It concerned with removing the irrelevant, noisy, and redundant data, along with keeping the original meaning of the original data. Attribute reduction in rough set theory is an important feature selection method. Since attribute reduction is an NP-hard problem, it is necessary to investigate fast and effective approximate algorithms. In this paper, we proposed two feature selection mechanisms based on memetic algorithms (MAs) which combine the genetic algorithm with a fuzzy record to record travel algorithm and a fuzzy controlled great deluge algorithm to identify a good balance between local search and genetic search. In order to verify the proposed approaches, numerical experiments are carried out on thirteen datasets. The results show that the MAs approaches are efficient in solving attribute reduction problems when compared with other meta-heuristic approaches.Keywords: rough set theory, attribute reduction, fuzzy logic, memetic algorithms, record to record algorithm, great deluge algorithm
Procedia PDF Downloads 4571652 Operator Optimization Based on Hardware Architecture Alignment Requirements
Authors: Qingqing Gai, Junxing Shen, Yu Luo
Abstract:
Due to the hardware architecture characteristics, some operators tend to acquire better performance if the input/output tensor dimensions are aligned to a certain minimum granularity, such as convolution and deconvolution commonly used in deep learning. Furthermore, if the requirements are not met, the general strategy is to pad with 0 to satisfy the requirements, potentially leading to the under-utilization of the hardware resources. Therefore, for the convolution and deconvolution whose input and output channels do not meet the minimum granularity alignment, we propose to transfer the W-dimensional data to the C-dimension for computation (W2C) to enable the C-dimension to meet the hardware requirements. This scheme also reduces the number of computations in the W-dimension. Although this scheme substantially increases computation, the operator’s speed can improve significantly. It achieves remarkable speedups on multiple hardware accelerators, including Nvidia Tensor cores, Qualcomm digital signal processors (DSPs), and Huawei neural processing units (NPUs). All you need to do is modify the network structure and rearrange the operator weights offline without retraining. At the same time, for some operators, such as the Reducemax, we observe that transferring the Cdimensional data to the W-dimension(C2W) and replacing the Reducemax with the Maxpool can accomplish acceleration under certain circumstances.Keywords: convolution, deconvolution, W2C, C2W, alignment, hardware accelerator
Procedia PDF Downloads 1081651 A Survey of Recognizing of Daily Living Activities in Multi-User Smart Home Environments
Authors: Kulsoom S. Bughio, Naeem K. Janjua, Gordana Dermody, Leslie F. Sikos, Shamsul Islam
Abstract:
The advancement in information and communication technologies (ICT) and wireless sensor networks have played a pivotal role in the design and development of real-time healthcare solutions, mainly targeting the elderly living in health-assistive smart homes. Such smart homes are equipped with sensor technologies to detect and record activities of daily living (ADL). This survey reviews and evaluates existing approaches and techniques based on real-time sensor-based modeling and reasoning in single-user and multi-user environments. It classifies the approaches into three main categories: learning-based, knowledge-based, and hybrid, and evaluates how they handle temporal relations, granularity, and uncertainty. The survey also highlights open challenges across various disciplines (including computer and information sciences and health sciences) to encourage interdisciplinary research for the detection and recognition of ADLs and discusses future directions.Keywords: daily living activities, smart homes, single-user environment, multi-user environment
Procedia PDF Downloads 1421650 Development and Evaluation of Preceptor Training Program for Nurse Preceptors in King Chulalongkorn Memorial Hospital
Authors: Pataraporn Kheawwan
Abstract:
Preceptorship represents an important aspect in new nurse orientation. However, there was no formal preceptor training program developed for nurse preceptor in Thailand. The purposes of this study were to develop and evaluate formal preceptor training program for nurse preceptors in King Chulalongkorn Memorial Hospital, Thailand. A research and development study design was utilized in this study. Participants were 37 nurse preceptors. The program contents were delivered by e-learning material, class lecture, group discussion followed by simulation training. Knowledge of the participants was assessed pre and post program. Skill and critical thinking were assessed using Preceptor Skill and Decision Making Evaluation form at the end of program. Statistical significant difference in knowledge regarding preceptor role and coaching strategies between pre and post program were found. All participants had satisfied skill and decision making score after completed the program. Most of participants perceived benefits of preceptor training course. In conclusion, The results of this study reveal that the newly developed preceptorship course is an effective formal training course for nurse preceptors.Keywords: preceptor, preceptorship, new nurse, clinical education
Procedia PDF Downloads 2621649 Flo: Period-Tracking App with AI Powered Tools
Authors: Dania Baaboud, Renad Al-zahrani, Mahnoor Khan, Riya Afroz
Abstract:
Flo is a smart period-tracking tool that uses artificial intelligence (AI) to offer individualized reproductive health predictions and insights. Flo makes very accurate predictions about menstrual cycles, ovulation, and fertility windows by evaluating user inputs, including cycle duration, symptoms, and patterns. Its machine learning algorithms are constantly evolving, providing personalized health recommendations, instructional materials, and early identification of possible health abnormalities such as reproductive problems and hormone imbalances. Flo, which was introduced in 2015 and upgraded with AI in 2017, is a revolutionary use of technology in healthcare that empowers people to make knowledgeable decisions regarding their well-being. Despite its advantages, our study included drawbacks, such as limited access to premium services and a small sample size. While highlighting unique characteristics, a comparative comparison with similar applications such as Clue and Glow confirmed Flo's outstanding AI integration for individualized healthcare. All things considered, Flo is a prime example of how AI can be used to tackle intricate biological processes, giving consumers the ability to efficiently control their reproductive health and opening the door for improvements in individualized medical technology.Keywords: Flo, period-tracking app, period symptoms, women’s health, machinery
Procedia PDF Downloads 91648 Thai Student Teachers' Prior Understanding of Nature of Science (NOS)
Authors: N. Songumpai, W. Sumranwanich, S. Chatmaneerungcharoen
Abstract:
This research aims to study the understanding of 8 aspects of nature of science (NOS). The research participants were 39 General Science student teachers who were selected by purposive sampling. In 2015 academic year, they enrolled in the course of Science Education Learning Management. Qualitative research was used as research methodology to understand how the student teachers propose on NOS. The research instruments consisted of open-ended questionnaires and semi-structure interviews that were used to assess students’ understanding of NOS. Research data was collected by 8 items- questionnaire and was categorized into students’ understanding of NOS, which consisted of complete understanding (CU), partial understanding (PU), misunderstanding (MU) and no understanding (NU). The findings reveal the majority of students’ misunderstanding of NOS regarding the aspects of theory and law(89.7%), scientific method(61.5%) and empirical evidence(15.4%) respectively. From the interview data, the student teachers present their misconceptions of NOS that indicate about theory and law cannot change; science knowledge is gained through experiment only (step by step); science is the things that are around humans. These results suggest that for effective science teacher education, the composition of design of NOS course needs to be considered. Therefore, teachers’ understanding of NOS is necessary to integrate into professional development program/course for empowering student teachers to begin their careers as strong science teachers in schools.Keywords: nature of science, student teacher, no understanding, misunderstanding, partial understanding, complete understanding
Procedia PDF Downloads 2651647 Domain Adaptation Save Lives - Drowning Detection in Swimming Pool Scene Based on YOLOV8 Improved by Gaussian Poisson Generative Adversarial Network Augmentation
Authors: Simiao Ren, En Wei
Abstract:
Drowning is a significant safety issue worldwide, and a robust computer vision-based alert system can easily prevent such tragedies in swimming pools. However, due to domain shift caused by the visual gap (potentially due to lighting, indoor scene change, pool floor color etc.) between the training swimming pool and the test swimming pool, the robustness of such algorithms has been questionable. The annotation cost for labeling each new swimming pool is too expensive for mass adoption of such a technique. To address this issue, we propose a domain-aware data augmentation pipeline based on Gaussian Poisson Generative Adversarial Network (GP-GAN). Combined with YOLOv8, we demonstrate that such a domain adaptation technique can significantly improve the model performance (from 0.24 mAP to 0.82 mAP) on new test scenes. As the augmentation method only require background imagery from the new domain (no annotation needed), we believe this is a promising, practical route for preventing swimming pool drowning.Keywords: computer vision, deep learning, YOLOv8, detection, swimming pool, drowning, domain adaptation, generative adversarial network, GAN, GP-GAN
Procedia PDF Downloads 1031646 English as a Foreign Language Students’ Perceptions towards the British Culture: The Case of Batna 2 University, Algeria
Authors: Djelloul Nedjai
Abstract:
The issue of cultural awareness triggers many controversies, especially in a context where individuals do not share the same cultural backgrounds and characteristics. The Algerian context is no exception. It has been widely documented by the literature that culture remains essential in many domains. In higher education, for instance, culture plays a pivotal role in shaping individuals’ perceptions and attitudes. Henceforth, the current paper attempts to look at the perceptions of the British culture held by students engaged in learning English as a Foreign Language (EFL) at the department of English at Banta 2 University, Algeria. It also inquires into EFL students’ perceptions of British culture. To address the aforementioned research queries, a descriptive study has been carried out wherein a questionnaire of fifteen (15) items has been deployed to collect students’ attitudes and perceptions toward British culture. Results showcase that, indeed, EFL students of the department of English at Banta 2 University hold both positive and negative perceptions towards British culture at different levels. The explanation could relate to the student's lack of acquaintance with and awareness of British culture. Consequently, this paper is an attempt to address the issue of cultural awareness from the perspective of EFL students.Keywords: British culture, cultural awareness, EFL students’ perceptions, higher education
Procedia PDF Downloads 911645 Italian Speech Vowels Landmark Detection through the Legacy Tool 'xkl' with Integration of Combined CNNs and RNNs
Authors: Kaleem Kashif, Tayyaba Anam, Yizhi Wu
Abstract:
This paper introduces a methodology for advancing Italian speech vowels landmark detection within the distinctive feature-based speech recognition domain. Leveraging the legacy tool 'xkl' by integrating combined convolutional neural networks (CNNs) and recurrent neural networks (RNNs), the study presents a comprehensive enhancement to the 'xkl' legacy software. This integration incorporates re-assigned spectrogram methodologies, enabling meticulous acoustic analysis. Simultaneously, our proposed model, integrating combined CNNs and RNNs, demonstrates unprecedented precision and robustness in landmark detection. The augmentation of re-assigned spectrogram fusion within the 'xkl' software signifies a meticulous advancement, particularly enhancing precision related to vowel formant estimation. This augmentation catalyzes unparalleled accuracy in landmark detection, resulting in a substantial performance leap compared to conventional methods. The proposed model emerges as a state-of-the-art solution in the distinctive feature-based speech recognition systems domain. In the realm of deep learning, a synergistic integration of combined CNNs and RNNs is introduced, endowed with specialized temporal embeddings, harnessing self-attention mechanisms, and positional embeddings. The proposed model allows it to excel in capturing intricate dependencies within Italian speech vowels, rendering it highly adaptable and sophisticated in the distinctive feature domain. Furthermore, our advanced temporal modeling approach employs Bayesian temporal encoding, refining the measurement of inter-landmark intervals. Comparative analysis against state-of-the-art models reveals a substantial improvement in accuracy, highlighting the robustness and efficacy of the proposed methodology. Upon rigorous testing on a database (LaMIT) speech recorded in a silent room by four Italian native speakers, the landmark detector demonstrates exceptional performance, achieving a 95% true detection rate and a 10% false detection rate. A majority of missed landmarks were observed in proximity to reduced vowels. These promising results underscore the robust identifiability of landmarks within the speech waveform, establishing the feasibility of employing a landmark detector as a front end in a speech recognition system. The synergistic integration of re-assigned spectrogram fusion, CNNs, RNNs, and Bayesian temporal encoding not only signifies a significant advancement in Italian speech vowels landmark detection but also positions the proposed model as a leader in the field. The model offers distinct advantages, including unparalleled accuracy, adaptability, and sophistication, marking a milestone in the intersection of deep learning and distinctive feature-based speech recognition. This work contributes to the broader scientific community by presenting a methodologically rigorous framework for enhancing landmark detection accuracy in Italian speech vowels. The integration of cutting-edge techniques establishes a foundation for future advancements in speech signal processing, emphasizing the potential of the proposed model in practical applications across various domains requiring robust speech recognition systems.Keywords: landmark detection, acoustic analysis, convolutional neural network, recurrent neural network
Procedia PDF Downloads 651644 Improved Multi-Channel Separation Algorithm for Satellite-Based Automatic Identification System Signals Based on Artificial Bee Colony and Adaptive Moment Estimation
Authors: Peng Li, Luan Wang, Haifeng Fei, Renhong Xie, Yibin Rui, Shanhong Guo
Abstract:
The applications of satellite-based automatic identification system (S-AIS) pave the road for wide-range maritime traffic monitoring and management. But the coverage of satellite’s view includes multiple AIS self-organizing networks, which leads to the collision of AIS signals from different cells. The contribution of this work is to propose an improved multi-channel blind source separation algorithm based on Artificial Bee Colony (ABC) and advanced stochastic optimization to perform separation of the mixed AIS signals. The proposed approach adopts modified ABC algorithm to get an optimized initial separating matrix, which can expedite the initialization bias correction, and utilizes the Adaptive Moment Estimation (Adam) to update the separating matrix by adjusting the learning rate for each parameter dynamically. Simulation results show that the algorithm can speed up convergence and lead to better performance in separation accuracy.Keywords: satellite-based automatic identification system, blind source separation, artificial bee colony, adaptive moment estimation
Procedia PDF Downloads 1881643 Digital Economy as an Alternative for Post-Pandemic Recovery in Latin America: A Literature Review
Authors: Armijos-Orellana Ana, González-Calle María, Maldonado-Matute Juan, Guerrero-Maxi Pedro
Abstract:
Nowadays, the digital economy represents a fundamental element to guarantee economic and social development, whose importance increased significantly with the arrival of the COVID-19 pandemic. However, despite the benefits it offers, it can also be detrimental to those developing countries characterized by a wide digital divide. It is for this reason that the objective of this research was to identify and describe the main characteristics, benefits, and obstacles of the digital economy for Latin American countries. Through a bibliographic review, using the analytical-synthetic method in the period 1995-2021, it was determined that the digital economy could give way to structural changes, reduce inequality, and promote processes of social inclusion, as well as promote the construction and participatory development of organizational structures and institutional capacities in Latin American countries. However, the results showed that the digital economy is still incipient in the region and at least three factors are needed to establish it: joint work between academia, the business sector and the State, greater emphasis on learning and application of digital transformation and the creation of policies that encourage the creation of digital organizations.Keywords: developing countries, digital divide, digital economy, digital literacy, digital transformation
Procedia PDF Downloads 1431642 Socio-Cultural Factors to Support Knowledge Management and Organizational Innovation: A Study of Small and Medium-Sized Enterprises in Latvia
Authors: Madara Apsalone
Abstract:
Knowledge management and innovation is key to competitive advantage and sustainable business development in advanced economies. Small and medium-sized enterprises (SMEs) have lower capacity and more constrained resources for long-term and high-uncertainty research and development investments. At the same time, SMEs can implement organizational innovation to improve their performance and further foster other types of innovation. The purpose of this study is to analyze, how socio-cultural factors such as shared values, organizational behaviors, work organization and decision making processes can influence knowledge management and help to develop organizational innovation via an empirical study. Surveying 600 SMEs in Latvia, the author explores the contribution of different socio-cultural factors to organizational innovation and the role of knowledge management and organizational learning in this process. A conceptual model, explaining the impact of organizational team, development, result-orientation and structure is created. The study also proposes insights that contribute to theoretical and practical discussions on fostering innovation of small businesses in small economies.Keywords: knowledge management, organizational innovation, small and medium-sized enterprises, socio-cultural factors
Procedia PDF Downloads 3931641 3D Printing for Maritime Cultural Heritage: A Design for All Approach to Public Interpretation
Authors: Anne Eugenia Wright
Abstract:
This study examines issues in accessibility to maritime cultural heritage. Using the Pillar Dollar Wreck in Biscayne National Park, Florida, this study presents an approach to public outreach based on the concept of Design for All. Design for All advocates creating products that are accessible and functional for all users, including those with visual, hearing, learning, mobility, or economic impairments. As a part of this study, a small exhibit was created that uses 3D products as a way to bring maritime cultural heritage to the public. It was presented to the public at East Carolina University’s Joyner Library. Additionally, this study presents a methodology for 3D printing scaled photogrammetry models of archaeological sites in full color. This methodology can be used to present a realistic depiction of underwater archaeological sites to those who are incapable of accessing them in the water. Additionally, this methodology can be used to present underwater archaeological sites that are inaccessible to the public due to conditions such as visibility, depth, or protected status. This study presents a practical use for 3D photogrammetry models, as well as an accessibility strategy to expand the outreach potential for maritime archaeology.Keywords: Underwater Archaeology, 3D Printing, Photogrammetry, Design for All
Procedia PDF Downloads 1421640 A New Approach of Preprocessing with SVM Optimization Based on PSO for Bearing Fault Diagnosis
Authors: Tawfik Thelaidjia, Salah Chenikher
Abstract:
Bearing fault diagnosis has attracted significant attention over the past few decades. It consists of two major parts: vibration signal feature extraction and condition classification for the extracted features. In this paper, feature extraction from faulty bearing vibration signals is performed by a combination of the signal’s Kurtosis and features obtained through the preprocessing of the vibration signal samples using Db2 discrete wavelet transform at the fifth level of decomposition. In this way, a 7-dimensional vector of the vibration signal feature is obtained. After feature extraction from vibration signal, the support vector machine (SVM) was applied to automate the fault diagnosis procedure. To improve the classification accuracy for bearing fault prediction, particle swarm optimization (PSO) is employed to simultaneously optimize the SVM kernel function parameter and the penalty parameter. The results have shown feasibility and effectiveness of the proposed approachKeywords: condition monitoring, discrete wavelet transform, fault diagnosis, kurtosis, machine learning, particle swarm optimization, roller bearing, rotating machines, support vector machine, vibration measurement
Procedia PDF Downloads 4401639 Advocating for Indigenous Music in Latin American Music Education
Authors: Francisco Luis Reyes
Abstract:
European colonization had a profound impact on Latin America. The influence of the old continent can be perceived in the culture, religion, and language of the region as well as the beliefs and attitudes of the population. Music education is not an exception to this phenomenon. With Europeans controlling cultural life and erecting educational institutions across the continent for several centuries, Western European Art Music (WEAM) has polarized music learning in formal spaces. In contrast, the musics from the indigenous population, the African slaves, and the ones that emerged as a result of the cultural mélanges have largely been excluded from primary and secondary schooling. The purpose of this paper is to suggest the inclusion of indigenous music education in primary and secondary music education. The paper employs a philosophical inquiry in order to achieve this aim. Philosophical inquiry seeks to uncover and examine individuals' unconscious beliefs, principles, values, and assumptions to envision potential possibilities. This involves identifying and describing issues within current music teaching and learning practices. High-quality philosophical research tackles problems that are sufficiently narrow (addressing a specific aspect of a single complex topic), realistic (reflecting the experiences of music education), and significant (addressing a widespread and timely issue). Consequently, this methodological approach fits this topic, as the research addresses the omnipresence of WEAM in Latin American music education, the exclusion of indigenous music, and argues about the transformational impact said artistic expressions can have on practices in the region. The paper initially addresses how WEAM became ubiquitous in the region by recounting historical events, and adressing the issues other types of music face entering higher education. According to Shifres and Rosabal-Coto (2017) Latin America still upholds the musical heritage of their colonial period, and its formal music education institutions promote the European ontology instilled during European expansion. In accordance, the work of Reyes and Lorenzo-Quiles (2024), and Soler, Lorenzo-Quiles, and Hargreaves (2014), demonstrate how music institutions in the region uphold foreign narratives. Their studies show that music programs in Puerto Rico and Colombia instruct students in WEAM as well as require skills in said art form to enter the profession, just like other authors have argued (Cain & Walden, 2019, Walden, 2016). Subsequently, the research explains the issues faced by prospective music educators that do not practice WEAM. Roberts (1991a, 1991b, 1993), Green (2012) have found that music education students that do not adhere to the musical culture of their institution, are less likely to finish their degrees. Hence, practicioners of tradional musics might feel out of place in the environment. The ubiquity of WEAM and the exclusion of traditional musics of the region, provide the primary challenges to the inclusion of indigenous musics in formal spaces in primary and secondary education. The presentation then laids the framework for the inclusion indigenous music, and conclusively offers examples of how the musical expressions from the continent can improove the music education practices of the region. As an ending, the article highlights the benefits of these musics that are lacking in current practices.Keywords: indigenous music education, postmodern music education, decolonization in music education, music education practice, Latin American music education
Procedia PDF Downloads 391638 The Role of Metacognitive Strategy Intervention through Dialogic Interaction on Listeners’ Level of Cognitive Load
Authors: Ali Babajanzade, Hossein Bozorgian
Abstract:
Cognitive load plays an important role in learning in general and L2 listening comprehension in particular. This study is an attempt to investigate the effect of metacognitive strategy intervention through dialogic interaction (MSIDI) on L2 listeners’ cognitive load. A mixed-method design with 50 participants of male and female Iranian lower-intermediate learners between 20 to 25 years of age was used. An experimental group (n=25) received weekly interventions based on metacognitive strategy intervention through dialogic interaction for ten sessions. The second group, which was control (n=25), had the same listening samples with the regular procedure without a metacognitive intervention program in each session. The study used three different instruments: a) a modified version of the cognitive load questionnaire, b) digit span tests, and c) focused group interviews to investigate listeners’ level of cognitive load throughout the process. Results testified not only improvements in listening comprehension in MSIDI but a radical shift of cognitive load rate within this group. In other words, listeners experienced a lower level of cognitive load in MSIDI in comparison with their peers in the control group.Keywords: cognitive load theory, human mental functioning, metacognitive theory, listening comprehension, sociocultural theory
Procedia PDF Downloads 1501637 Action Research-Informed Multiliteracies-Enhanced Pedagogy in an Online English for Academic Purposes Course
Authors: Heejin Song
Abstract:
Employing a critical action research approach that rejects essentialist onto-epistemological orientations to research in English language teaching (ELT) and interrogates the hegemonic relations in the knowledge construction and reconstruction processes, this study illuminates how an action research-informed pedagogical practice can transform the English for academic purposes (EAP) teaching to be more culturally and linguistically inclusive and critically oriented for English language learners’ advancement in academic literacies skills. More specifically, this paper aims to showcase the action research-informed pedagogical innovations that emphasize multilingual learners’ multiliteracies engagement and experiential education-oriented learning to facilitate the development of learners’ academic literacies, intercultural communicative competence, and inclusive global citizenship in the context of Canadian university EAP classrooms. The pedagogical innovations through action research embarked in response to growing discussions surrounding pedagogical possibilities of plurilingualism in ELT and synchronous online teaching. The paper is based on two iterations of action research over the pandemic years between 2020 and 2022. The data includes student work samples, focus group interviews, anonymous surveys, teacher feedback and comments on student work and teaching reflections. The first iteration of the action research focused on the affordances of multimodal expressions in individual learners’ academic endeavors for their literacy skills development through individual online activities such as ‘my language autobiography,’ ‘multimodal expression corner’ and public speeches. While these activities help English language learners enhance their knowledge and skills of English-spoken discourses, these tasks did not necessarily require learners’ team-based collaborative endeavors to complete the assigned tasks. Identifying this area for improvement in the instructional design, the second action research cycle/iteration emphasized collaborative performativity through newly added performance/action-based innovative learning tasks, including ‘situational role-playing’, ‘my cooking show & interview’, and group debates in order to provide learners increased opportunities to communicate with peers who joined the class virtually from different parts of the world and enhance learners’ intercultural competence through various strategic and pragmatic communicative skills to collaboratively achieve their shared goals (i.e., successful completion of the given group tasks). The paper exemplifies instances wherein learners’ unique and diverse linguistic and cultural strengths were amplified, and critical literacies were further developed through learners’ performance-oriented multiliteracies engagement. The study suggests that the action research-informed teaching practice that advocates for collaborative multiliteracies engagement serves to facilitate learners’ activation of their existing linguistic and cultural knowledge and contributes to the development of learners’ academic literacy skills. Importantly, the study illuminates that such action research-informed pedagogical initiatives create an inclusive space for learners to build a strong sense of connectedness as global citizens with increased intercultural awareness in their community of language and cultural practices, and further allow learners to actively participate in the construction of ‘collaborative relations of power’ with their peers.Keywords: action research, EAP, higher education, multiliteracies
Procedia PDF Downloads 801636 Enhancing Knowledge Graph Convolutional Networks with Structural Adaptive Receptive Fields for Improved Node Representation and Information Aggregation
Authors: Zheng Zhihao
Abstract:
Recently, Knowledge Graph Framework Network (KGCN) has developed powerful capabilities in knowledge representation and reasoning tasks. However, traditional KGCN often uses a fixed weight mechanism when aggregating information, failing to make full use of rich structural information, resulting in a certain expression ability of node representation, and easily causing over-smoothing problems. In order to solve these challenges, the paper proposes an new graph neural network model called KGCN-STAR (Knowledge Graph Convolutional Network with Structural Adaptive Receptive Fields). This model dynamically adjusts the perception of each node by introducing a structural adaptive receptive field. wild range, and a subgraph aggregator is designed to capture local structural information more effectively. Experimental results show that KGCN-STAR shows significant performance improvement on multiple knowledge graph data sets, especially showing considerable capabilities in the task of representation learning of complex structures.Keywords: knowledge graph, graph neural networks, structural adaptive receptive fields, information aggregation
Procedia PDF Downloads 381635 Artificial Intelligence Methods for Returns Expectations in Financial Markets
Authors: Yosra Mefteh Rekik, Younes Boujelbene
Abstract:
We introduce in this paper a new conceptual model representing the stock market dynamics. This model is essentially based on cognitive behavior of the intelligence investors. In order to validate our model, we build an artificial stock market simulation based on agent-oriented methodologies. The proposed simulator is composed of market supervisor agent essentially responsible for executing transactions via an order book and various kinds of investor agents depending to their profile. The purpose of this simulation is to understand the influence of psychological character of an investor and its neighborhood on its decision-making and their impact on the market in terms of price fluctuations. Therefore, the difficulty of the prediction is due to several features: the complexity, the non-linearity and the dynamism of the financial market system, as well as the investor psychology. The Artificial Neural Networks learning mechanism take on the role of traders, who from their futures return expectations and place orders based on their expectations. The results of intensive analysis indicate that the existence of agents having heterogeneous beliefs and preferences has provided a better understanding of price dynamics in the financial market.Keywords: artificial intelligence methods, artificial stock market, behavioral modeling, multi-agent based simulation
Procedia PDF Downloads 4461634 The Effect of Al Andalus Improvement Model on the Teachers Performance and Their High School Students' Skills Acquiring
Authors: Sobhy Fathy A. Hashesh
Abstract:
The study was carried out in the High School Classes of Andalus Private Schools, boys section, using control and experimental groups that were randomly assigned. The study investigated the effect of Al-Andalus Improvement Model (AIM) on the development of students’ skills acquiring. The society of the study composed of Al-Andalus Private Schools, high school students, boys Section (N=700), while the sample of the study composed of four randomly assigned groups two groups of teachers (N=16) and two groups of students (N=42) with one experimental group and one control group for teachers and their students respectively. The study followed the quantitative and qualitative approaches in collecting and analyzing data to investigate the study hypotheses. Results of the study revealed that there were significant statistical differences in teachers’ performances and students' skills acquiring for the favor of the experimental groups and there was a strong correlation between the teachers performances and the students skills acquiring. The study recommended the implementation of the AIM model for the sake of teachers performances and students’ learning outcomes.Keywords: AIM, improvement model, Classera, Al-Andalus Improvement Model.
Procedia PDF Downloads 1681633 AI-based Radio Resource and Transmission Opportunity Allocation for 5G-V2X HetNets: NR and NR-U Networks
Authors: Farshad Zeinali, Sajedeh Norouzi, Nader Mokari, Eduard Jorswieck
Abstract:
The capacity of fifth-generation (5G) vehicle-to-everything (V2X) networks poses significant challenges. To ad- dress this challenge, this paper utilizes New Radio (NR) and New Radio Unlicensed (NR-U) networks to develop a heterogeneous vehicular network (HetNet). We propose a new framework, named joint BS assignment and resource allocation (JBSRA) for mobile V2X users and also consider coexistence schemes based on flexible duty cycle (DC) mechanism for unlicensed bands. Our objective is to maximize the average throughput of vehicles while guaranteeing the WiFi users' throughput. In simulations based on deep reinforcement learning (DRL) algorithms such as deep deterministic policy gradient (DDPG) and deep Q network (DQN), our proposed framework outperforms existing solutions that rely on fixed DC or schemes without consideration of unlicensed bands.Keywords: vehicle-to-everything (V2X), resource allocation, BS assignment, new radio (NR), new radio unlicensed (NR-U), coexistence NR-U and WiFi, deep deterministic policy gradient (DDPG), deep Q-network (DQN), joint BS assignment and resource allocation (JBSRA), duty cycle mechanism
Procedia PDF Downloads 1061632 Fast Adjustable Threshold for Uniform Neural Network Quantization
Authors: Alexander Goncharenko, Andrey Denisov, Sergey Alyamkin, Evgeny Terentev
Abstract:
The neural network quantization is highly desired procedure to perform before running neural networks on mobile devices. Quantization without fine-tuning leads to accuracy drop of the model, whereas commonly used training with quantization is done on the full set of the labeled data and therefore is both time- and resource-consuming. Real life applications require simplification and acceleration of quantization procedure that will maintain accuracy of full-precision neural network, especially for modern mobile neural network architectures like Mobilenet-v1, MobileNet-v2 and MNAS. Here we present a method to significantly optimize training with quantization procedure by introducing the trained scale factors for discretization thresholds that are separate for each filter. Using the proposed technique, we quantize the modern mobile architectures of neural networks with the set of train data of only ∼ 10% of the total ImageNet 2012 sample. Such reduction of train dataset size and small number of trainable parameters allow to fine-tune the network for several hours while maintaining the high accuracy of quantized model (accuracy drop was less than 0.5%). Ready-for-use models and code are available in the GitHub repository.Keywords: distillation, machine learning, neural networks, quantization
Procedia PDF Downloads 3301631 A Case Study on EFL Teachers’ Experience with Reflective Practice in a Professional Development Course in Kuwait
Authors: Maaly Jarrah
Abstract:
There is no doubt that reflective practice has become a stable component in continuous professional development (CPD) courses around the world for the purpose of promoting teacher development, meaningful learning, and deliberate teacher personal and professional growth. However, while there is much research on the benefits of integrating reflective practice in teacher CPD courses, not enough research explores EFL teachers’ experiences with engagement in reflective practice in the CPD from their own perspectives. This research employed a case study approach to explore the experience of 7 EFL teachers with engaging in reflective practice in a CPD course that took place in Kuwait.The participating EFL teachers engaged in collaborative dialogue reflections and completed reflection journal entries as part of the course. Data was collected through semi-structured interviews and analyzed thematically. Findings indicate that the participating teachers’ positive experience with reflective practice is associated with their engagement in collaborative dialogue reflections, while challenges and negative feelings are associated with writing their reflection journal entries. Accordingly, the study offers recommendations for CPD courses to help improve EFL teachers’ experiences with engagement in reflective practice.Keywords: Collaborative dialogue reflections, continuous professional development, EFL teachers, reflection journals, teacher reflective practice
Procedia PDF Downloads 1731630 Ubiquitous Life People Informatics Engine (U-Life PIE): Wearable Health Promotion System
Authors: Yi-Ping Lo, Shi-Yao Wei, Chih-Chun Ma
Abstract:
Since Google launched Google Glass in 2012, numbers of commercial wearable devices were released, such as smart belt, smart band, smart shoes, smart clothes ... etc. However, most of these devices perform as sensors to show the readings of measurements and few of them provide the interactive feedback to the user. Furthermore, these devices are single task devices which are not able to communicate with each other. In this paper a new health promotion system, Ubiquitous Life People Informatics Engine (U-Life PIE), will be presented. This engine consists of People Informatics Engine (PIE) and the interactive user interface. PIE collects all the data from the compatible devices, analyzes this data comprehensively and communicates between devices via various application programming interfaces. All the data and informations are stored on the PIE unit, therefore, the user is able to view the instant and historical data on their mobile devices any time. It also provides the real-time hands-free feedback and instructions through the user interface visually, acoustically and tactilely. These feedback and instructions suggest the user to adjust their posture or habits in order to avoid the physical injuries and prevent illness.Keywords: machine learning, wearable devices, user interface, user experience, internet of things
Procedia PDF Downloads 2951629 The Impact of Information and Communication Technologies on Teaching Performance at an Iranian University
Authors: Yusef Hedjazi, Saeedeh Nazari Nooghabi
Abstract:
New information and communication technologies (ICT) as one of the main needs of Faculty members in the process of teaching and learning has used in Irans higher education system since 2000.The main purpose of this study is to investigate the role of information and communication technologies (ICT) in teaching performance of Agricultural and Natural Resources Faculties at University of Tehran. The statistical population of the study consisted of all 250 faculties in Agriculture and Natural Resources Colleges and a questionnaire was used to collect data. The reliability of the questionnaire was confirmed by computing of Cronbachs Alpha coefficient at greater than .72. The study showed a significant relationship between agricultural Faculty members teaching performance and competency in using ICT. The results of the regression analysis also explained 51.7% of the variance, teaching performance. The six independent variables that accounted for the explained variance were experience in using educational websites or software, use of educational multimedia (e.g. film and CD, etc), making a presentation using PowerPoint, familiarity with online education websites, using News group to discuss on educational subjects with colleagues and students, and using Electronic communication (messengers) to solve studentsproblems.Keywords: information and communication technologies, agricultural and natural resources, faculties, teaching performance
Procedia PDF Downloads 336