Search results for: dynamic resource allocation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6719

Search results for: dynamic resource allocation

299 An Investigation on the Sandwich Panels with Flexible and Toughened Adhesives under Flexural Loading

Authors: Emre Kara, Şura Karakuzu, Ahmet Fatih Geylan, Metehan Demir, Kadir Koç, Halil Aykul

Abstract:

The material selection in the design of the sandwich structures is very crucial aspect because of the positive or negative influences of the base materials to the mechanical properties of the entire panel. In the literature, it was presented that the selection of the skin and core materials plays very important role on the behavior of the sandwich. Beside this, the use of the correct adhesive can make the whole structure to show better mechanical results and behavior. By this way, the sandwich structures realized in the study were obtained with the combination of aluminum foam core and three different glass fiber reinforced polymer (GFRP) skins using two different commercial adhesives which are based on flexible polyurethane and toughened epoxy. The static and dynamic tests were already applied on the sandwiches with different types of adhesives. In the present work, the static three-point bending tests were performed on the sandwiches having an aluminum foam core with the thickness of 15 mm, the skins with three different types of fabrics ([0°/90°] cross ply E-Glass Biaxial stitched, [0°/90°] cross ply E-Glass Woven and [0°/90°] cross ply S-Glass Woven which have same thickness value of 1.75 mm) and two different commercial adhesives (flexible polyurethane and toughened epoxy based) at different values of support span distances (L= 55, 70, 80, 125 mm) by aiming the analyses of their flexural performance. The skins used in the study were produced via Vacuum Assisted Resin Transfer Molding (VARTM) technique and were easily bonded onto the aluminum foam core with flexible and toughened adhesives under a very low pressure using press machine with the alignment tabs having the total thickness of the whole panel. The main results of the flexural loading are: force-displacement curves obtained after the bending tests, peak force values, absorbed energy, collapse mechanisms, adhesion quality and the effect of the support span length and adhesive type. The experimental results presented that the sandwiches with epoxy based toughened adhesive and the skins made of S-Glass Woven fabrics indicated the best adhesion quality and mechanical properties. The sandwiches with toughened adhesive exhibited higher peak force and energy absorption values compared to the sandwiches with flexible adhesive. The core shear mode occurred in the sandwiches with flexible polyurethane based adhesive through the thickness of the core while the same mode took place in the sandwiches with toughened epoxy based adhesive along the length of the core. The use of these sandwich structures can lead to a weight reduction of the transport vehicles, providing an adequate structural strength under operating conditions.

Keywords: adhesive and adhesion, aluminum foam, bending, collapse mechanisms

Procedia PDF Downloads 327
298 Enhanced Recoverable Oil in Northern Afghanistan Kashkari Oil Field by Low-Salinity Water Flooding

Authors: Zabihullah Mahdi, Khwaja Naweed Seddiqi

Abstract:

Afghanistan is located in a tectonically complex and dynamic area, surrounded by rocks that originated on the mother continent of Gondwanaland. The northern Afghanistan basin, which runs along the country's northern border, has the potential for petroleum generation and accumulation. The Amu Darya basin has the largest petroleum potential in the region. Sedimentation occurred in the Amu Darya basin from the Jurassic to the Eocene epochs. Kashkari oil field is located in northern Afghanistan's Amu Darya basin. The field structure consists of a narrow northeast-southwest (NE-SW) anticline with two structural highs, the northwest limb being mild and the southeast limb being steep. The first oil production well in the Kashkari oil field was drilled in 1976, and a total of ten wells were drilled in the area between 1976 and 1979. The amount of original oil in place (OOIP) in the Kashkari oil field, based on the results of surveys and calculations conducted by research institutions, is estimated to be around 140 MMbbls. The objective of this study is to increase recoverable oil reserves in the Kashkari oil field through the implementation of low-salinity water flooding (LSWF) enhanced oil recovery (EOR) technique. The LSWF involved conducting a core flooding laboratory test consisting of four sequential steps with varying salinities. The test commenced with the use of formation water (FW) as the initial salinity, which was subsequently reduced to a salinity level of 0.1%. Afterwards, the numerical simulation model of core scale oil recovery by LSWF was designed by Computer Modelling Group’s General Equation Modeler (CMG-GEM) software to evaluate the applicability of the technology to the field scale. Next, the Kahskari oil field simulation model was designed, and the LSWF method was applied to it. To obtain reasonable results, laboratory settings (temperature, pressure, rock, and oil characteristics) are designed as far as possible based on the condition of the Kashkari oil field, and several injection and production patterns are investigated. The relative permeability of oil and water in this study was obtained using Corey’s equation. In the Kashkari oilfield simulation model, three models: 1. Base model (with no water injection), 2. FW injection model, and 3. The LSW injection model were considered for the evaluation of the LSWF effect on oil recovery. Based on the results of the LSWF laboratory experiment and computer simulation analysis, the oil recovery increased rapidly after the FW was injected into the core. Subsequently, by injecting 1% salinity water, a gradual increase of 4% oil can be observed. About 6.4% of the field, is produced by the application of the LSWF technique. The results of LSWF (salinity 0.1%) on the Kashkari oil field suggest that this technology can be a successful method for developing Kashkari oil production.

Keywords: low salinity water flooding, immiscible displacement, kashkari oil field, twophase flow, numerical reservoir simulation model

Procedia PDF Downloads 41
297 Integration of Gravity and Seismic Methods in the Geometric Characterization of a Dune Reservoir: Case of the Zouaraa Basin, NW Tunisia

Authors: Marwa Djebbi, Hakim Gabtni

Abstract:

Gravity is a continuously advancing method that has become a mature technology for geological studies. Increasingly, it has been used to complement and constrain traditional seismic data and even used as the only tool to get information of the sub-surface. In fact, in some regions the seismic data, if available, are of poor quality and hard to be interpreted. Such is the case for the current study area. The Nefza zone is part of the Tellian fold and thrust belt domain in the north west of Tunisia. It is essentially made of a pile of allochthonous units resulting from a major Neogene tectonic event. Its tectonic and stratigraphic developments have always been subject of controversies. Considering the geological and hydrogeological importance of this area, a detailed interdisciplinary study has been conducted integrating geology, seismic and gravity techniques. The interpretation of Gravity data allowed the delimitation of the dune reservoir and the identification of the regional lineaments contouring the area. It revealed the presence of three gravity lows that correspond to the dune of Zouara and Ouchtata separated along with a positive gravity axis espousing the Ain Allega_Aroub Er Roumane axe. The Bouguer gravity map illustrated the compartmentalization of the Zouara dune into two depressions separated by a NW-SE anomaly trend. This constitution was confirmed by the vertical derivative map which showed the individualization of two depressions with slightly different anomaly values. The horizontal gravity gradient magnitude was performed in order to determine the different geological features present in the studied area. The latest indicated the presence of NE-SW parallel folds according to the major Atlasic direction. Also, NW-SE and EW trends were identified. The maxima tracing confirmed this direction by the presence of NE-SW faults, mainly the Ghardimaou_Cap Serrat accident. The quality of the available seismic sections and the absence of borehole data in the region, except few hydraulic wells that been drilled and showing the heterogeneity of the substratum of the dune, required the process of gravity modeling of this challenging area that necessitates to be modeled for the geometrical characterization of the dune reservoir and determine the different stratigraphic series underneath these deposits. For more detailed and accurate results, the scale of study will be reduced in coming research. A more concise method will be elaborated; the 4D microgravity survey. This approach is considered as an expansion of gravity method and its fourth dimension is time. It will allow a continuous and repeated monitoring of fluid movement in the subsurface according to the micro gal (μgall) scale. The gravity effect is a result of a monthly variation of the dynamic groundwater level which correlates with rainfall during different periods.

Keywords: 3D gravity modeling, dune reservoir, heterogeneous substratum, seismic interpretation

Procedia PDF Downloads 297
296 The Effects of Periostin in a Rat Model of Isoproterenol-Mediated Cardiotoxicity

Authors: Mahmut Sozmen, Alparslan Kadir Devrim, Yonca Betil Kabak, Tuba Devrim

Abstract:

Acute myocardial infarction is the leading cause of deaths in the worldwide. Mature cardiomyocytes do not have the ability to regenerate instead fibrous tissue proliferate and granulation tissue to fill out. Periostin is an extracellular matrix protein from fasciclin family and it plays an important role in the cell adhesion, migration, and growth of the organism. Periostin prevents apoptosis while stimulating cardiomyocytes. The main objective of this project is to investigate the effects of the recombinant murine periostin peptide administration for the cardiomyocyte regeneration in a rat model of acute myocardial infarction. The experiment was performed on 84 male rats (6 months old) in 4 group each contains 21 rats. Saline applied subcutaneously (1 ml/kg) two times with 24 hours intervals to the rats in control group (Group 1). Recombinant periostin peptide (1 μg/kg) dissolved in saline applied intraperitoneally in group 2 on 1, 3, 7, 14 and 21. days on same dates in group 4. Isoproterenol dissolved in saline applied intraperitoneally (85mg/kg/day) two times with 24 hours intervals to the groups 3 and 4. Rats in group 4 further received recombinant periostin peptide (1 μg/kg) dissolved in saline intraperitoneally starting one day after the final isoproterenol administration on days 1, 3, 7, 14 and 21. Following the final application of periostin rats continued to feed routinely with pelleted chow and water ad libitum for further seven days. At the end of 7th day rats sacrificed, blood and heart tissue samples collected for the immunohistochemical and biochemical analysis. Angiogenesis in response to tissue damage, is a highly dynamic process regulated by signals from the surrounding extracellular matrix and blood serum. In this project, VEGF, ANGPT, bFGF, TGFβ are the key factors that contribute to cardiomyocyte regeneration were investigated. Additionally, the relationship between mitosis and apoptosis (Bcl-2, Bax, PCNA, Ki-67, Phopho-Histone H3), cell cycle activators and inhibitors (Cyclin D1, D2, A2, Cdc2), the origin of regenerating cells (cKit and CD45) were examined. Present results revealed that periostin stimulated cardiomyocye cell-cycle re-entry in both normal and MCA damaged cardiomyocytes and increased angiogenesis. Thus, periostin contributes to cardiomyocyte regeneration during the healing period following myocardial infarction which provides a better understanding of its role of this mechanism, improving recovery rates and it is expected to contribute the lack of literature on this subject. Acknowledgement: This project was financially supported by Turkish Scientific Research Council- Agriculture, Forestry and Veterinary Research Support Group (TUBİTAK-TOVAG; Project No: 114O734), Ankara, TURKEY.

Keywords: cardiotoxicity, immunohistochemistry, isoproterenol, periostin

Procedia PDF Downloads 233
295 Problem, Policy and Polity in Agenda Setting: Analyzing Safe Motherhood Program in India

Authors: Vanita Singh

Abstract:

In developing countries, there are conflicting political agendas; policy makers have to prioritize issues from a list of issues competing for the limited resources. Thus, it is imperative to understand how some issues gain attention, and others lose in the policy circles. Multiple-Streams Theory of Kingdon (1984) is among the influential theories that help to understand the public policy process and is utilitarian for health policy makers to understand how certain health issues emerge on the policy agendas. The issue of maternal mortality was long standing in India and was linked with high birth rate thus the focus of maternal health policy was on family planning since India’s independence. However, a paradigm shift was noted in the maternal health policy in the year 1992 with the launch of Safe Motherhood Programme and then in the year 2005, when the agenda of maternal health policy became universalizing institutional deliveries and phasing-out of Traditional Birth Attendants (TBAs) from the health system. There were many solutions proposed by policy communities other than universalizing of institutional deliveries, including training of TBAs and improving socio-economic conditions of pregnant women. However, Government of India favored medical community, which was advocating for the policy of universalizing institutional delivery, and neglected the solutions proposed by other policy communities. It took almost 15 years for the advocates of institutional delivery to transform their proposed solution into a program - the Janani Suraksha Yojana (JSY), a safe-motherhood program promoting institutional delivery through cash incentives to pregnant women. Thus, the case of safe motherhood policy in India is worth studying to understand how certain issues/problems gain political attention and how advocacy work in policy circles. This paper attempts to understand the factors that favored the agenda of safe-motherhood in the policy circle in India, using John Kingdon’s Multiple-Stream model of agenda-setting. Through document analysis and literature review, the paper traces the evolution of safe motherhood program and maternal health policy. The study has used open source documents available on the website of Ministry of Health and Family Welfare, media reports (Times of India Archive) and related research papers. The documents analyzed include National health policy-1983, National Health Policy-2002, written reports of Ministry of Health and Family Welfare Department, National Rural Health Mission (NRHM) document, documents related to Janani Suraksha Yojana and research articles related to maternal health programme in India. The study finds that focusing events and credible indicators coupled with media attention has the potential to recognize a problem. The political elites favor clearly defined and well-accepted solutions. The trans-national organizations affect the agenda-setting process in a country through conditional resource provision. The closely-knit policy communities and political entrepreneurship are required for advocating solutions high on agendas. The study has implications for health policy makers in identifying factors that have the potential to affect the agenda-setting process for a desired policy agenda and identify the challenges in generating political priorities.

Keywords: agenda-setting, focusing events, Kingdon’s model, safe motherhood program India

Procedia PDF Downloads 145
294 Cultural Heritage, Urban Planning and the Smart City in Indian Context

Authors: Paritosh Goel

Abstract:

The conservation of historic buildings and historic Centre’s over recent years has become fully encompassed in the planning of built-up areas and their management following climate changes. The approach of the world of restoration, in the Indian context on integrated urban regeneration and its strategic potential for a smarter, more sustainable and socially inclusive urban development introduces, for urban transformations in general (historical centers and otherwise), the theme of sustainability. From this viewpoint, it envisages, as a primary objective, a real “green, ecological or environmental” requalification of the city through interventions within the main categories of sustainability: mobility, energy efficiency, use of sources of renewable energy, urban metabolism (waste, water, territory, etc.) and natural environment. With this the concept of a “resilient city” is also introduced, which can adapt through progressive transformations to situations of change which may not be predictable, behavior that the historical city has always been able to express. Urban planning on the other hand, has increasingly focused on analyses oriented towards the taxonomic description of social/economic and perceptive parameters. It is connected with human behavior, mobility and the characterization of the consumption of resources, in terms of quantity even before quality to inform the city design process, which for ancient fabrics, and mainly affects the public space also in its social dimension. An exact definition of the term “smart city” is still essentially elusive, since we can attribute three dimensions to the term: a) That of a virtual city, evolved based on digital networks and web networks b) That of a physical construction determined by urban planning based on infrastructural innovation, which in the case of historic Centre’s implies regeneration that stimulates and sometimes changes the existing fabric; c) That of a political and social/economic project guided by a dynamic process that provides new behavior and requirements of the city communities that orients the future planning of cities also through participation in their management. This paper is a preliminary research into the connections between these three dimensions applied to the specific case of the fabric of ancient cities with the aim of obtaining a scientific theory and methodology to apply to the regeneration of Indian historical Centre’s. The Smart city scheme if contextualize with heritage of the city it can be an initiative which intends to provide a transdisciplinary approach between various research networks (natural sciences, socio-economics sciences and humanities, technological disciplines, digital infrastructures) which are united in order to improve the design, livability and understanding of urban environment and high historical/cultural performance levels.

Keywords: historical cities regeneration, sustainable restoration, urban planning, smart cities, cultural heritage development strategies

Procedia PDF Downloads 281
293 Increasing Recoverable Oil in Northern Afghanistan Kashkari Oil Field by Low-Salinity Water Flooding

Authors: Zabihullah Mahdi, Khwaja Naweed Seddiqi

Abstract:

Afghanistan is located in a tectonically complex and dynamic area, surrounded by rocks that originated on the mother continent of Gondwanaland. The northern Afghanistan basin, which runs along the country's northern border, has the potential for petroleum generation and accumulation. The Amu Darya basin has the largest petroleum potential in the region. Sedimentation occurred in the Amu Darya basin from the Jurassic to the Eocene epochs. Kashkari oil field is located in northern Afghanistan's Amu Darya basin. The field structure consists of a narrow northeast-southwest (NE-SW) anticline with two structural highs, the northwest limb being mild and the southeast limb being steep. The first oil production well in the Kashkari oil field was drilled in 1976, and a total of ten wells were drilled in the area between 1976 and 1979. The amount of original oil in place (OOIP) in the Kashkari oil field, based on the results of surveys and calculations conducted by research institutions, is estimated to be around 140 MMbbls. The objective of this study is to increase recoverable oil reserves in the Kashkari oil field through the implementation of low-salinity water flooding (LSWF) enhanced oil recovery (EOR) technique. The LSWF involved conducting a core flooding laboratory test consisting of four sequential steps with varying salinities. The test commenced with the use of formation water (FW) as the initial salinity, which was subsequently reduced to a salinity level of 0.1%. Afterward, the numerical simulation model of core scale oil recovery by LSWF was designed by Computer Modelling Group’s General Equation Modeler (CMG-GEM) software to evaluate the applicability of the technology to the field scale. Next, the Kahskari oil field simulation model was designed, and the LSWF method was applied to it. To obtain reasonable results, laboratory settings (temperature, pressure, rock, and oil characteristics) are designed as far as possible based on the condition of the Kashkari oil field, and several injection and production patterns are investigated. The relative permeability of oil and water in this study was obtained using Corey’s equation. In the Kashkari oilfield simulation model, three models: 1. Base model (with no water injection), 2. FW injection model, and 3. The LSW injection model was considered for the evaluation of the LSWF effect on oil recovery. Based on the results of the LSWF laboratory experiment and computer simulation analysis, the oil recovery increased rapidly after the FW was injected into the core. Subsequently, by injecting 1% salinity water, a gradual increase of 4% oil can be observed. About 6.4% of the field is produced by the application of the LSWF technique. The results of LSWF (salinity 0.1%) on the Kashkari oil field suggest that this technology can be a successful method for developing Kashkari oil production.

Keywords: low-salinity water flooding, immiscible displacement, Kashkari oil field, two-phase flow, numerical reservoir simulation model

Procedia PDF Downloads 38
292 WASH Governance Opportunity for Inspiring Innovation and a Circular Economy in Karnali Province of Nepal

Authors: Nirajan Shrestha

Abstract:

Karnali is one of the most vulnerable provinces in Nepal, facing challenges from climate change, poverty, and natural calamities across different regions. In recent years, the province has been severely impacted by climate change stress such as temperature rises in glacier lake of mountainous region and spring source water shortages, particularly in hilly areas where settlements are located, and water sources have depleted from their original ground levels. As a result, Karnali could face a future without enough water for all. Deep causes of sustainable safe water supply have always been neglected in rural areas of Nepal, and communities are unfairly burdened with a challenge of keeping water facilities functioning in areas affected by frequent natural disasters where there is a substantial, well-documented funding gap between the revenues from user payments and the full cost of sustained services. The key importance of a permanent system to support communities in service delivery has been always underrated so far. The complexity of water service sustainability as a topic should be simplified to one clear indicator: the functionality rate, which can be expressed as uptime or the percentage of time that the service is delivered over the total time. For example, a functionality rate of 80% means that the water service is operational 80% of the time, while 20% of the time the system is not functioning. This represents 0.2 multiplied by 365, which equals 73 days every year, or roughly two and a half months without water. This percentage should be widely understood and used in Karnali. All local governments should report their targets and performance in improving it, and there should be a broader discussion about what target is acceptable and what can be realistically achieved. In response to these challenges, the Sustainable WASH for All (SUSWA) project has introduced innovative models and policy formulation strategies in various working local government. SUSWA’s approach, which delegates rural water supply and sanitation responsibilities to local governments, has been instrumental in addressing these issues. To keep pace with the growing demand, the province has adopted a service support center model, linking local governments with federal authorities to ensure effective service delivery to the communities By enhancing WASH governance through local governments engagement, capacity building and inclusive WASH policy frameworks, there is potential to address WASH gaps while fostering a circular economy. This strategy emphasizes resource recovery, waste minimization and the creation of local employment generation opportunities. The research highlights key governance mechanisms, innovative practices and policy interventions that can be scaled up across other regions. It also provides recommendations on how to leverage Karnali’s unique socio-economic and environmental context nature-based solutions to inspire innovation and drive sustainable WASH solutions. Key findings suggest that with strong ownership and leadership of local governments, community engagement and appropriate technology, Karnali Province can become a model for integrating WASH governance with circular economy concept, providing broader lessons for other regions in Nepal.

Keywords: vulnerable provinces, natural calamities, climate change stres, spring source depletion, resources recovery, governance mechanisms, appropriate technology, community engagement, innovation

Procedia PDF Downloads 13
291 Modified Graphene Oxide in Ceramic Composite

Authors: Natia Jalagonia, Jimsher Maisuradze, Karlo Barbakadze, Tinatin Kuchukhidze

Abstract:

At present intensive scientific researches of ceramics, cermets and metal alloys have been conducted for improving materials physical-mechanical characteristics. In purpose of increasing impact strength of ceramics based on alumina, simple method of graphene homogenization was developed. Homogeneous distribution of graphene (homogenization) in pressing composite became possible through the connection of functional groups of graphene oxide (-OH, -COOH, -O-O- and others) and alumina superficial OH groups with aluminum organic compounds. These two components connect with each other with -O-Al–O- bonds, and by their thermal treatment (300–500°C), graphene and alumina phase are transformed. Thus, choosing of aluminum organic compounds for modification is stipulated by the following opinion: aluminum organic compounds fragments fixed on graphene and alumina finally are transformed into an integral part of the matrix. By using of other elements as modifier on the matrix surface (Al2O3) other phases are transformed, which change sharply physical-mechanical properties of ceramic composites, for this reason, effect caused by the inclusion of graphene will be unknown. Fixing graphene fragments on alumina surface by alumoorganic compounds result in new type graphene-alumina complex, in which these two components are connected by C-O-Al bonds. Part of carbon atoms in graphene oxide are in sp3 hybrid state, so functional groups (-OH, -COOH) are located on both sides of graphene oxide layer. Aluminum organic compound reacts with graphene oxide at the room temperature, and modified graphene oxide is obtained: R2Al-O-[graphene]–COOAlR2. Remaining Al–C bonds also reacts rapidly with surface OH groups of alumina. In a result of these process, pressing powdery composite [Al2O3]-O-Al-O-[graphene]–COO–Al–O–[Al2O3] is obtained. For the purpose, graphene oxide suspension in dry toluene have added alumoorganic compound Al(iC4H9)3 in toluene with equimolecular ratio. Obtained suspension has put in the flask and removed solution in a rotary evaporate presence nitrogen atmosphere. Obtained powdery have been researched and used to consolidation of ceramic materials based on alumina. Ceramic composites are obtained in high temperature vacuum furnace with different temperature and pressure conditions. Received ceramics do not have open pores and their density reaches 99.5 % of TD. During the work, the following devices have been used: High temperature vacuum furnace OXY-GON Industries Inc (USA), device of spark-plasma synthesis, induction furnace, Electronic Scanning Microscopes Nikon Eclipse LV 150, Optical Microscope NMM-800TRF, Planetary mill Pulverisette 7 premium line, Shimadzu Dynamic Ultra Micro Hardness Tester DUH-211S, Analysette 12 Dynasizer and others.

Keywords: graphene oxide, alumo-organic, ceramic

Procedia PDF Downloads 307
290 Production, Characterization and In vitro Evaluation of [223Ra]RaCl2 Nanomicelles for Targeted Alpha Therapy of Osteosarcoma

Authors: Yang Yang, Luciana Magalhães Rebelo Alencar, Martha Sahylí Ortega Pijeira, Beatriz da Silva Batista, Alefe Roger Silva França, Erick Rafael Dias Rates, Ruana Cardoso Lima, Sara Gemini-Piperni, Ralph Santos-Oliveira

Abstract:

Radium-²²³ dichloride ([²²³Rₐ]RₐCl₂) is an alpha particle-emitting radiopharmaceutical currently approved for the treatment of patients with castration-resistant prostate cancer, symptomatic bone metastases, and no known visceral metastatic disease. [²²³Rₐ]RₐCl₂ is bone-seeking calcium mimetic that bonds into the newly formed bone stroma, especially osteoblastic or sclerotic metastases, killing the tumor cells by inducing DNA breaks in a potent and localized manner. Nonetheless, the successful therapy of osteosarcoma as primary bone tumors is still a challenge. Nanomicelles are colloidal nanosystems widely used in drug development to improve blood circulation time, bioavailability, and specificity of therapeutic agents, among other applications. In addition, the enhanced permeability and retention effect of the nanosystems, and the renal excretion of the nanomicelles reported in most cases so far, are very attractive to achieve selective and increased accumulation in tumor site as well as to increase the safety of [²²³Rₐ]RₐCl₂ in the clinical routine. In the present work, [²²³Rₐ]RₐCl₂ nanomicelles were produced, characterized, in vitro evaluated, and compared with pure [²²³Rₐ]RₐCl2 solution using SAOS2 osteosarcoma cells. The [²²³Rₐ]RₐCl₂ nanomicelles were prepared using the amphiphilic copolymer Pluronic F127. The dynamic light scattering analysis of freshly produced [²²³Rₐ]RₐCl₂ nanomicelles demonstrated a mean size of 129.4 nm with a polydispersity index (PDI) of 0.303. After one week stored in the refrigerator, the mean size of the [²²³Rₐ]RₐCl₂ nanomicelles increased to 169.4 with a PDI of 0.381. Atomic force microscopy analysis of [223Rₐ]RₐCl₂ nanomicelles exhibited spherical structures whose heights reach 1 µm, suggesting the filling of 127-Pluronic nanomicelles with [²²³Rₐ]RₐCl₂. The viability assay with [²²³Rₐ]RₐCl₂ nanomicelles displayed a dose-dependent response as it was observed using pure [²²³Rₐ]RₐCl2. However, at the same dose, [²²³Rₐ]RₐCl₂ nanomicelles were 20% higher efficient in killing SAOS2 cells when compared with pure [²²³Rₐ]RₐCl₂. These findings demonstrated the effectiveness of the nanosystem validating the application of nanotechnology in targeted alpha therapy with [²²³Ra]RₐCl₂. In addition, the [²²³Rₐ]RaCl₂nanomicelles may be decorated and incorporated with a great variety of agents and compounds (e.g., monoclonal antibodies, aptamers, peptides) to overcome the limited use of [²²³Ra]RₐCl₂.

Keywords: nanomicelles, osteosarcoma, radium dichloride, targeted alpha therapy

Procedia PDF Downloads 114
289 Influence of Structured Capillary-Porous Coatings on Cryogenic Quenching Efficiency

Authors: Irina P. Starodubtseva, Aleksandr N. Pavlenko

Abstract:

Quenching is a term generally accepted for the process of rapid cooling of a solid that is overheated above the thermodynamic limit of the liquid superheat. The main objective of many previous studies on quenching is to find a way to reduce the total time of the transient process. Computational experiments were performed to simulate quenching by a falling liquid nitrogen film of an extremely overheated vertical copper plate with a structured capillary-porous coating. The coating was produced by directed plasma spraying. Due to the complexities in physical pattern of quenching from chaotic processes to phase transition, the mechanism of heat transfer during quenching is still not sufficiently understood. To our best knowledge, no information exists on when and how the first stable liquid-solid contact occurs and how the local contact area begins to expand. Here we have more models and hypotheses than authentically established facts. The peculiarities of the quench front dynamics and heat transfer in the transient process are studied. The created numerical model determines the quench front velocity and the temperature fields in the heater, varying in space and time. The dynamic pattern of the running quench front obtained numerically satisfactorily correlates with the pattern observed in experiments. Capillary-porous coatings with straight and reverse orientation of crests are investigated. The results show that the cooling rate is influenced by thermal properties of the coating as well as the structure and geometry of the protrusions. The presence of capillary-porous coating significantly affects the dynamics of quenching and reduces the total quenching time more than threefold. This effect is due to the fact that the initialization of a quench front on a plate with a capillary-porous coating occurs at a temperature significantly higher than the thermodynamic limit of the liquid superheat, when a stable solid-liquid contact is thermodynamically impossible. Waves present on the liquid-vapor interface and protrusions on the complex micro-structured surface cause destabilization of the vapor film and the appearance of local liquid-solid micro-contacts even though the average integral surface temperature is much higher than the liquid superheat limit. The reliability of the results is confirmed by direct comparison with experimental data on the quench front velocity, the quench front geometry, and the surface temperature change over time. Knowledge of the quench front velocity and total time of transition process is required for solving practically important problems of nuclear reactors safety.

Keywords: capillary-porous coating, heat transfer, Leidenfrost phenomenon, numerical simulation, quenching

Procedia PDF Downloads 129
288 Comparison of Equivalent Linear and Non-Linear Site Response Model Performance in Kathmandu Valley

Authors: Sajana Suwal, Ganesh R. Nhemafuki

Abstract:

Evaluation of ground response under earthquake shaking is crucial in geotechnical earthquake engineering. Damage due to seismic excitation is mainly correlated to local geological and geotechnical conditions. It is evident from the past earthquakes (e.g. 1906 San Francisco, USA, 1923 Kanto, Japan) that the local geology has strong influence on amplitude and duration of ground motions. Since then significant studies has been conducted on ground motion amplification revealing the importance of influence of local geology on ground. Observations from the damaging earthquakes (e.g. Nigata and San Francisco, 1964; Irpinia, 1980; Mexico, 1985; Kobe, 1995; L’Aquila, 2009) divulged that non-uniform damage pattern, particularly in soft fluvio-lacustrine deposit is due to the local amplification of seismic ground motion. Non-uniform damage patterns are also observed in Kathmandu Valley during 1934 Bihar Nepal earthquake and recent 2015 Gorkha earthquake seemingly due to the modification of earthquake ground motion parameters. In this study, site effects resulting from amplification of soft soil in Kathmandu are presented. A large amount of subsoil data was collected and used for defining the appropriate subsoil model for the Kathamandu valley. A comparative study of one-dimensional total-stress equivalent linear and non-linear site response is performed using four strong ground motions for six sites of Kathmandu valley. In general, one-dimensional (1D) site-response analysis involves the excitation of a soil profile using the horizontal component and calculating the response at individual soil layers. In the present study, both equivalent linear and non-linear site response analyses were conducted using the computer program DEEPSOIL. The results show that there is no significant deviation between equivalent linear and non-linear site response models until the maximum strain reaches to 0.06-0.1%. Overall, it is clearly observed from the results that non-linear site response model perform better as compared to equivalent linear model. However, the significant deviation between two models is resulted from other influencing factors such as assumptions made in 1D site response, lack of accurate values of shear wave velocity and nonlinear properties of the soil deposit. The results are also presented in terms of amplification factors which are predicted to be around four times more in case of non-linear analysis as compared to equivalent linear analysis. Hence, the nonlinear behavior of soil prevails the urgent need of study of dynamic characteristics of the soft soil deposit that can specifically represent the site-specific design spectra for the Kathmandu valley for building resilient structures from future damaging earthquakes.

Keywords: deep soil, equivalent linear analysis, non-linear analysis, site response

Procedia PDF Downloads 289
287 The Effect of Interpersonal Relationships on Eating Patterns and Physical Activity among Asian-American and European-American Adolescents

Authors: Jamil Lane, Jason Freeman

Abstract:

Background: The role of interpersonal relationships is vital predictors of adolescents’ eating habits, exercise activity, and health problems including obesity. The effect of interpersonal relationships (i.e. family, friends, and intimate partners) on individual health behaviors and development have gained considerable attention during the past 10 years. Teenagers eating habits and exercise activities are established through a dynamic course involving internal and external factors such as food preferences, body weight perception, and parental and peer influence. When conceptualizing one’s interpersonal relationships, it is important to understand that how one relates to others is shaped by their culture. East-Asian culture has been characterized as collectivistic, which describes the significant role intergroup relationships play in their construction of the self. Cultures found in North America, on the other hand, can be characterized as individualistic, meaning that these cultures encourage individuals to prioritize their interest over the needs and want of their compatriots. Individuals from collectivistic cultures typically have stronger boundaries between in-group and out-group membership, whereas those from individualistic cultures see themselves as distinct and separate from strangers as well as family or friends. Objective: The purpose of this study is to examine the effect of collectivism and individualism on interpersonal relationships that shapes eating patterns and physical activity among Asian-American and European-American adolescents. Design/Methods: Analyses were based on data from the National Longitudinal Study of Adolescent Health, a nationally representative sample of adolescents in the United States who were surveyed from 1994 through 2008. This data will be used to examine interpersonal relationship factors that shape dietary intake and physical activity patterns within the Asian-American and European-American population in the United States. Factors relating to relationship strength, eating, and exercise behaviors were reported by participants in this first wave of data collection (1995). We plan to analyze our data using intragroup comparisons among those who identified as 'Asian-American' (n = 270) and 'White or European American' (n = 4,294) among the domains of positivity of peer influence and level of physical activity / healthy eating. Further, intergroup comparisons of these relationships will be made to extricate how the role positive peer influence in maintaining healthy eating and exercise habits differs with cultural variation. Results: We hypothesize that East-Asian participants with a higher degree of positivity in their peer and family relationships will experience a significantly greater rise in healthy eating and exercise behaviors than European-American participants with similar degrees of relationship positivity.

Keywords: interpersonal relationships, eating patterns, physical activity, adolescent health

Procedia PDF Downloads 196
286 Towards Achieving Total Decent Work: Occupational Safety and Health Issues, Problems and Concerns of Filipino Domestic Workers

Authors: Ronahlee Asuncion

Abstract:

The nature of their work and employment relationship make domestic workers easy prey to abuse, maltreatment, and exploitation. Considering their plight, this research was conceptualized and examined the: a) level of awareness of Filipino domestic workers on occupational safety and health (OSH); b) their issues/problems/concerns on OSH; c) their intervention strategies at work to address OSH related issues/problems/concerns; d) issues/problems/concerns of government, employers, and non-government organizations with regard to implementation of OSH to Filipino domestic workers; e) the role of government, employers and non-government organizations to help Filipino domestic workers address OSH related issues/problems/concerns; and f) the necessary policy amendments/initiatives/programs to address OSH related issues/problems/concerns of Filipino domestic workers. The study conducted a survey using non-probability sampling, two focus group discussions, two group interviews, and fourteen face-to-face interviews. These were further supplemented with an email correspondence to a key informant based in another country. Books, journals, magazines, and relevant websites further substantiated and enriched data of the research. Findings of the study point to the fact that domestic workers have low level of awareness on OSH because of poor information drive, fragmented implementation of the Domestic Workers Act, inactive campaign at the barangay level, weakened advocacy for domestic workers, absence of law on OSH for domestic workers, and generally low safety culture in the country among others. Filipino domestic workers suffer from insufficient rest, long hours of work, heavy workload, occupational stress, poor accommodation, insufficient hours of sleep, deprivation of day off, accidents and injuries such as cuts, burns, slipping, stumbling, electrical grounding, and fire, verbal, physical and sexual abuses, lack of medical assistance, none provision of personal protective equipment (PPE), absence of knowledge on the proper way of lifting, working at heights, and insufficient food provision. They also suffer from psychological problems because of separation from one’s family, limited mobility in the household where they work, injuries and accidents from using advanced home appliances and taking care of pets, low self-esteem, ergonomic problems, the need to adjust to all household members who have various needs and demands, inability to voice their complaints, drudgery of work, and emotional stress. With regard to illness or health problems, they commonly experience leg pains, back pains, and headaches. In the absence of intervention programs like those offered in the formal employment set up, domestic workers resort to praying, turn to family, relatives and friends for social and emotional support, connect with them through social media like Facebook which also serve as a means of entertainment to them, talk to their employer, and just try to be optimistic about their situation. Promoting OSH for domestic workers is very challenging and complicated because of interrelated factors such as cultural, knowledge, attitudinal, relational, social, resource, economic, political, institutional and legal problems. This complexity necessitates using a holistic and integrated approach as this is not a problem requiring simple solutions. With this recognition comes the full understanding that its success involves the action and cooperation of all duty bearers in attaining decent work for domestic workers.

Keywords: decent work, Filipino domestic workers, occupational safety and health, working conditions

Procedia PDF Downloads 260
285 Managing Climate Change: Vulnerability Reduction or Resilience Building

Authors: Md Kamrul Hassan

Abstract:

Adaptation interventions are the common response to manage the vulnerabilities of climate change. The nature of adaptation intervention depends on the degree of vulnerability and the capacity of a society. The coping interventions can take the form of hard adaptation – utilising technologies and capital goods like dykes, embankments, seawalls, and/or soft adaptation – engaging knowledge and information sharing, capacity building, policy and strategy development, and innovation. Hard adaptation is quite capital intensive but provides immediate relief from climate change vulnerabilities. This type of adaptation is not real development, as the investment for the adaptation cannot improve the performance – just maintain the status quo of a social or ecological system, and often lead to maladaptation in the long-term. Maladaptation creates a two-way loss for a society – interventions bring further vulnerability on top of the existing vulnerability and investment for getting rid of the consequence of interventions. Hard adaptation is popular to the vulnerable groups, but it focuses so much on the immediate solution and often ignores the environmental issues and future risks of climate change. On the other hand, soft adaptation is education oriented where vulnerable groups learn how to live with climate change impacts. Soft adaptation interventions build the capacity of vulnerable groups through training, innovation, and support, which might enhance the resilience of a system. In consideration of long-term sustainability, soft adaptation can contribute more to resilience than hard adaptation. Taking a developing society as the study context, this study aims to investigate and understand the effectiveness of the adaptation interventions of the coastal community of Sundarbans mangrove forest in Bangladesh. Applying semi-structured interviews with a range of Sundarbans stakeholders including community residents, tourism demand-supply side stakeholders, and conservation and management agencies (e.g., Government, NGOs and international agencies) and document analysis, this paper reports several key insights regarding climate change adaptation. Firstly, while adaptation interventions may offer a short-term to medium-term solution to climate change vulnerabilities, interventions need to be revised for long-term sustainability. Secondly, soft adaptation offers advantages in terms of resilience in a rapidly changing environment, as it is flexible and dynamic. Thirdly, there is a challenge to communicate to educate vulnerable groups to understand more about the future effects of hard adaptation interventions (and the potential for maladaptation). Fourthly, hard adaptation can be used if the interventions do not degrade the environmental balance and if the investment of interventions does not exceed the economic benefit of the interventions. Overall, the goal of an adaptation intervention should be to enhance the resilience of a social or ecological system so that the system can with stand present vulnerabilities and future risks. In order to be sustainable, adaptation interventions should be designed in such way that those can address vulnerabilities and risks of climate change in a long-term timeframe.

Keywords: adaptation, climate change, maladaptation, resilience, Sundarbans, sustainability, vulnerability

Procedia PDF Downloads 191
284 Probing Mechanical Mechanism of Three-Hinge Formation on a Growing Brain: A Numerical and Experimental Study

Authors: Mir Jalil Razavi, Tianming Liu, Xianqiao Wang

Abstract:

Cortical folding, characterized by convex gyri and concave sulci, has an intrinsic relationship to the brain’s functional organization. Understanding the mechanism of the brain’s convoluted patterns can provide useful clues into normal and pathological brain function. During the development, the cerebral cortex experiences a noticeable expansion in volume and surface area accompanied by tremendous tissue folding which may be attributed to many possible factors. Despite decades of endeavors, the fundamental mechanism and key regulators of this crucial process remain incompletely understood. Therefore, to taking even a small role in unraveling of brain folding mystery, we present a mechanical model to find mechanism of 3-hinges formation in a growing brain that it has not been addressed before. A 3-hinge is defined as a gyral region where three gyral crests (hinge-lines) join. The reasons that how and why brain prefers to develop 3-hinges have not been answered very well. Therefore, we offer a theoretical and computational explanation to mechanism of 3-hinges formation in a growing brain and validate it by experimental observations. In theoretical approach, the dynamic behavior of brain tissue is examined and described with the aid of a large strain and nonlinear constitutive model. Derived constitute model is used in the computational model to define material behavior. Since the theoretical approach cannot predict the evolution of cortical complex convolution after instability, non-linear finite element models are employed to study the 3-hinges formation and secondary morphological folds of the developing brain. Three-dimensional (3D) finite element analyses on a multi-layer soft tissue model which mimics a small piece of the brain are performed to investigate the fundamental mechanism of consistent hinge formation in the cortical folding. Results show that after certain amount growth of cortex, mechanical model starts to be unstable and then by formation of creases enters to a new configuration with lower strain energy. By further growth of the model, formed shallow creases start to form convoluted patterns and then develop 3-hinge patterns. Simulation results related to 3-hinges in models show good agreement with experimental observations from macaque, chimpanzee and human brain images. These results have great potential to reveal fundamental principles of brain architecture and to produce a unified theoretical framework that convincingly explains the intrinsic relationship between cortical folding and 3-hinges formation. This achieved fundamental understanding of the intrinsic relationship between cortical folding and 3-hinges formation would potentially shed new insights into the diagnosis of many brain disorders such as schizophrenia, autism, lissencephaly and polymicrogyria.

Keywords: brain, cortical folding, finite element, three hinge

Procedia PDF Downloads 235
283 Evaluation of Rheological Properties, Anisotropic Shrinkage, and Heterogeneous Densification of Ceramic Materials during Liquid Phase Sintering by Numerical-Experimental Procedure

Authors: Hamed Yaghoubi, Esmaeil Salahi, Fateme Taati

Abstract:

The effective shear and bulk viscosity, as well as dynamic viscosity, describe the rheological properties of the ceramic body during the liquid phase sintering process. The rheological parameters depend on the physical and thermomechanical characteristics of the material such as relative density, temperature, grain size, and diffusion coefficient and activation energy. The main goal of this research is to acquire a comprehensive understanding of the response of an incompressible viscose ceramic material during liquid phase sintering process such as stress-strain relations, sintering and hydrostatic stress, the prediction of anisotropic shrinkage and heterogeneous densification as a function of sintering time by including the simultaneous influence of gravity field, and frictional force. After raw materials analysis, the standard hard porcelain mixture as a ceramic body was designed and prepared. Three different experimental configurations were designed including midpoint deflection, sinter bending, and free sintering samples. The numerical method for the ceramic specimens during the liquid phase sintering process are implemented in the CREEP user subroutine code in ABAQUS. The numerical-experimental procedure shows the anisotropic behavior, the complete difference in spatial displacement through three directions, the incompressibility for ceramic samples during the sintering process. The anisotropic shrinkage factor has been proposed to investigate the shrinkage anisotropy. It has been shown that the shrinkage along the normal axis of casting sample is about 1.5 times larger than that of casting direction, the gravitational force in pyroplastic deformation intensifies the shrinkage anisotropy more than the free sintering sample. The lowest and greatest equivalent creep strain occurs at the intermediate zone and around the central line of the midpoint distorted sample, respectively. In the sinter bending test sample, the equivalent creep strain approaches to the maximum near the contact area with refractory support. The inhomogeneity in Von-Misses, pressure, and principal stress intensifies the relative density non-uniformity in all samples, except in free sintering one. The symmetrical distribution of stress around the center of free sintering sample, cause to hinder the pyroplastic deformations. Densification results confirmed that the effective bulk viscosity was well-defined with relative density values. The stress analysis confirmed that the sintering stress is more than the hydrostatic stress from start to end of sintering time so, from both theoretically and experimentally point of view, the sintering process occurs completely.

Keywords: anisotropic shrinkage, ceramic material, liquid phase sintering process, rheological properties, numerical-experimental procedure

Procedia PDF Downloads 340
282 Effects of Prescribed Surface Perturbation on NACA 0012 at Low Reynolds Number

Authors: Diego F. Camacho, Cristian J. Mejia, Carlos Duque-Daza

Abstract:

The recent widespread use of Unmanned Aerial Vehicles (UAVs) has fueled a renewed interest in efficiency and performance of airfoils, particularly for applications at low and moderate Reynolds numbers, typical of this kind of vehicles. Most of previous efforts in the aeronautical industry, regarding aerodynamic efficiency, had been focused on high Reynolds numbers applications, typical of commercial airliners and large size aircrafts. However, in order to increase the levels of efficiency and to boost the performance of these UAV, it is necessary to explore new alternatives in terms of airfoil design and application of drag reduction techniques. The objective of the present work is to carry out the analysis and comparison of performance levels between a standard NACA0012 profile against another one featuring a wall protuberance or surface perturbation. A computational model, based on the finite volume method, is employed to evaluate the effect of the presence of geometrical distortions on the wall. The performance evaluation is achieved in terms of variations of drag and lift coefficients for the given profile. In particular, the aerodynamic performance of the new design, i.e. the airfoil with a surface perturbation, is examined under conditions of incompressible and subsonic flow in transient state. The perturbation considered is a shaped protrusion prescribed as a small surface deformation on the top wall of the aerodynamic profile. The ultimate goal by including such a controlled smooth artificial roughness was to alter the turbulent boundary layer. It is shown in the present work that such a modification has a dramatic impact on the aerodynamic characteristics of the airfoil, and if properly adjusted, in a positive way. The computational model was implemented using the unstructured, FVM-based open source C++ platform OpenFOAM. A number of numerical experiments were carried out at Reynolds number 5x104, based on the length of the chord and the free-stream velocity, and angles of attack 6° and 12°. A Large Eddy Simulation (LES) approach was used, together with the dynamic Smagorinsky approach as subgrid scale (SGS) model, in order to account for the effect of the small turbulent scales. The impact of the surface perturbation on the performance of the airfoil is judged in terms of changes in the drag and lift coefficients, as well as in terms of alterations of the main characteristics of the turbulent boundary layer on the upper wall. A dramatic change in the whole performance can be appreciated, including an arguably large level of lift-to-drag coefficient ratio increase for all angles and a size reduction of laminar separation bubble (LSB) for a twelve-angle-of-attack.

Keywords: CFD, LES, Lift-to-drag ratio, LSB, NACA 0012 airfoil

Procedia PDF Downloads 385
281 Implications of Agricultural Subsidies Since Green Revolution: A Case Study of Indian Punjab

Authors: Kriti Jain, Sucha Singh Gill

Abstract:

Subsidies have been a major part of agricultural policies around the world, and more extensively since the green revolution in developing countries, for the sake of attaining higher agricultural productivity and achieving food security. But entrenched subsidies lead to distorted incentives and promote inefficiencies in the agricultural sector, threatening the viability of these very subsidies and sustainability of the agricultural production systems, posing a threat to the livelihood of farmers and laborers dependent on it. This paper analyzes the economic and ecological sustainability implications of prolonged input and output subsidies in agriculture by studying the case of Indian Punjab, an agriculturally developed state responsible for ensuring food security in the country when it was facing a major food crisis. The paper focuses specifically on the environmentally unsustainable cropping pattern changes as a result of Minimum Support Price (MSP) and assured procurement and on the resource use efficiency and cost implications of power subsidy for irrigation in Punjab. The study is based on an analysis of both secondary and primary data sources. Using secondary data, a time series analysis was done to capture the changes in Punjab’s cropping pattern, water table depth, fertilizer consumption, and electrification of agriculture. This has been done to examine the role of price and output support adopted to encourage the adoption of green revolution technology in changing the cropping structure of the state, resulting in increased input use intensities (especially groundwater and fertilizers), which harms the ecological balance and decreases factor productivity. Evaluation of electrification of Punjab agriculture helped evaluate the trend in electricity productivity of agriculture and how free power imposed further pressure on the extant agricultural ecosystem. Using data collected from a primary survey of 320 farmers in Punjab, the extent of wasteful application of groundwater irrigation, water productivity of output, electricity usage, and cost of irrigation driven electricity subsidy to the exchequer were estimated for the dominant cropping pattern amongst farmers. The main findings of the study revealed how because of a subsidy has driven agricultural framework, Punjab has lost area under agro climatically suitable and staple crops and moved towards a paddy-wheat cropping system, that is gnawing away the state’s natural resources like water table has been declining at a significant rate of 25 cms per year since 1975-76, and excessive and imbalanced fertilizer usage has led to declining soil fertility in the state. With electricity-driven tubewells as the major source of irrigation within a regime of free electricity and water-intensive crop cultivation, there is both wasteful application of irrigation water and electricity in the cultivation of paddy crops, burning an unproductive hole in the exchequer’s pocket. There is limited access to both agricultural extension services and water-conserving technology, along with policy imbalance, keeping farmers in an intensive and unsustainable production system. Punjab agriculture is witnessing diminishing returns to factor, which under the business-as-usual scenario, will soon enter the phase of negative returns to factor.

Keywords: cropping pattern, electrification, subsidy, sustainability

Procedia PDF Downloads 184
280 An Unified Model for Longshore Sediment Transport Rate Estimation

Authors: Aleksandra Dudkowska, Gabriela Gic-Grusza

Abstract:

Wind wave-induced sediment transport is an important multidimensional and multiscale dynamic process affecting coastal seabed changes and coastline evolution. The knowledge about sediment transport rate is important to solve many environmental and geotechnical issues. There are many types of sediment transport models but none of them is widely accepted. It is bacause the process is not fully defined. Another problem is a lack of sufficient measurment data to verify proposed hypothesis. There are different types of models for longshore sediment transport (LST, which is discussed in this work) and cross-shore transport which is related to different time and space scales of the processes. There are models describing bed-load transport (discussed in this work), suspended and total sediment transport. LST models use among the others the information about (i) the flow velocity near the bottom, which in case of wave-currents interaction in coastal zone is a separate problem (ii) critical bed shear stress that strongly depends on the type of sediment and complicates in the case of heterogeneous sediment. Moreover, LST rate is strongly dependant on the local environmental conditions. To organize existing knowledge a series of sediment transport models intercomparisons was carried out as a part of the project “Development of a predictive model of morphodynamic changes in the coastal zone”. Four classical one-grid-point models were studied and intercompared over wide range of bottom shear stress conditions, corresponding with wind-waves conditions appropriate for coastal zone in polish marine areas. The set of models comprises classical theories that assume simplified influence of turbulence on the sediment transport (Du Boys, Meyer-Peter & Muller, Ribberink, Engelund & Hansen). It turned out that the values of estimated longshore instantaneous mass sediment transport are in general in agreement with earlier studies and measurements conducted in the area of interest. However, none of the formulas really stands out from the rest as being particularly suitable for the test location over the whole analyzed flow velocity range. Therefore, based on the models discussed a new unified formula for longshore sediment transport rate estimation is introduced, which constitutes the main original result of this study. Sediment transport rate is calculated based on the bed shear stress and critical bed shear stress. The dependence of environmental conditions is expressed by one coefficient (in a form of constant or function) thus the model presented can be quite easily adjusted to the local conditions. The discussion of the importance of each model parameter for specific velocity ranges is carried out. Moreover, it is shown that the value of near-bottom flow velocity is the main determinant of longshore bed-load in storm conditions. Thus, the accuracy of the results depends less on the sediment transport model itself and more on the appropriate modeling of the near-bottom velocities.

Keywords: bedload transport, longshore sediment transport, sediment transport models, coastal zone

Procedia PDF Downloads 385
279 Narcissism in the Life of Howard Hughes: A Psychobiographical Exploration

Authors: Alida Sandison, Louise A. Stroud

Abstract:

Narcissism is a personality configuration which has both normal and pathological personality expressions. Narcissism is highly complex, and is linked to a broad field of research. There are both dimensional and categorical conceptualisations of narcissism, and a variety of theoretical formulations that have been put forward to understand the narcissistic personality configuration. Currently, Kernberg’s Object Relations theory is well supported for this purpose. The complexity and particular defense mechanisms at play in the narcissistic personality make it a difficult personality configuration worth further research. Psychobiography as a methodology allows for the exploration of the lived life, and is thus a useful methodology to surmount these inherent challenges. Narcissism has been a focus of academic interest for a long time, and although there is a lot of research done in this area, to the researchers' knowledge, narcissistic dynamics have never been explored within a psychobiographical format. Thus, the primary aim of the research was to explore and describe narcissism in the life of Howard Hughes, with the objective of gaining further insight into narcissism through the use of this unconventional research approach. Hughes was chosen as subject for the study as he is renowned as an eccentric billionaire who had his revolutionary effect on the world, but was concurrently disturbed within his personal pathologies. Hughes was dynamic in three different sectors, namely motion pictures, aviation and gambling. He became more and more reclusive as he entered into middle age. From his early fifties he was agoraphobic, and the social network of connectivity that could reasonably be expected from someone in the top of their field was notably distorted. Due to his strong narcissistic personality configuration, and the interpersonal difficulties he experienced, Hughes represents an ideal figure to explore narcissism. The study used a single case study design, and purposive sampling to select Hughes. Qualitative data was sampled, using secondary data sources. Given that Hughes was a famous figure, there is a plethora of information on his life, which is primarily autobiographical. This includes books written about his life, and archival material in the form of newspaper articles, interviews and movies. Gathered data were triangulated to avoid the effect of author bias, and increase the credibility of the data used. It was collected using Yin’s guidelines for data collection. Data was analysed using Miles and Huberman strategy of data analysis, which consists of three steps, namely, data reduction, data display, and conclusion drawing and verification. Patterns which emerged in the data highlighted the defense mechanisms used by Hughes, in particular that of splitting and projection, in defending his sense of self. These defense mechanisms help us to understand the high levels of entitlement and paranoia experienced by Hughes. Findings provide further insight into his sense of isolation and difference, and the consequent difficulty he experienced in maintaining connections with others. Findings furthermore confirm the effectiveness of Kernberg’s theory in understanding narcissism observing an individual life.

Keywords: Howard Hughes, narcissism, narcissistic defenses, object relations

Procedia PDF Downloads 355
278 Transitioning Towards a Circular Economy in the Textile Industry: Approaches to Address Environmental Challenges

Authors: Atefeh Salehipoor

Abstract:

Textiles play a vital role in human life, particularly in the form of clothing. However, the alarming rate at which textiles end up in landfills presents a significant environmental risk. With approximately one garbage truck per second being filled with discarded textiles, urgent measures are required to mitigate this trend. Governments and responsible organizations are calling upon various stakeholders to shift from a linear economy to a circular economy model in the textile industry. This article highlights several key approaches that can be undertaken to address this pressing issue. These approaches include the creation of renewable raw material sources, rethinking production processes, maximizing the use and reuse of textile products, implementing reproduction and recycling strategies, exploring redistribution to new markets, and finding innovative means to extend the lifespan of textiles. However, the rapid accumulation of textiles in landfills poses a significant threat to the environment. This article explores the urgent need for the textile industry to transition from a linear economy model to a circular economy model. The linear model, characterized by the creation, use, and disposal of textiles, is unsustainable in the long term. By adopting a circular economy approach, the industry can minimize waste, reduce environmental impact, and promote sustainable practices. This article outlines key approaches that can be undertaken to drive this transition. Approaches to Address Environmental Challenges: 1. Creation of Renewable Raw Materials Sources: Exploring and promoting the use of renewable and sustainable raw materials, such as organic cotton, hemp, and recycled fibers, can significantly reduce the environmental footprint of textile production. 2. Rethinking Production Processes: Implementing cleaner production techniques, optimizing resource utilization, and minimizing waste generation are crucial steps in reducing the environmental impact of textile manufacturing. 3. Maximizing Use and Reuse of Textile Products: Encouraging consumers to prolong the lifespan of textile products through proper care, maintenance, and repair services can reduce the frequency of disposal and promote a culture of sustainability. 4. Reproduction and Recycling Strategies: Investing in innovative technologies and infrastructure to enable efficient reproduction and recycling of textiles can close the loop and minimize waste generation. 5. Redistribution of Textiles to New Markets: Exploring opportunities to redistribute textiles to new and parallel markets, such as resale platforms, can extend their lifecycle and prevent premature disposal. 6. Improvising Means to Extend Textile Lifespan: Encouraging design practices that prioritize durability, versatility, and timeless aesthetics can contribute to prolonging the lifespan of textiles. Conclusion The textile industry must urgently transition from a linear economy to a circular economy model to mitigate the adverse environmental impact caused by textile waste. By implementing the outlined approaches, such as sourcing renewable raw materials, rethinking production processes, promoting reuse and recycling, exploring new markets, and extending the lifespan of textiles, stakeholders can work together to create a more sustainable and environmentally friendly textile industry. These measures require collective action and collaboration between governments, organizations, manufacturers, and consumers to drive positive change and safeguard the planet for future generations.

Keywords: textiles, circular economy, environmental challenges, renewable raw materials, production processes, reuse, recycling, redistribution, textile lifespan extension

Procedia PDF Downloads 82
277 Numerical Simulation on Two Components Particles Flow in Fluidized Bed

Authors: Wang Heng, Zhong Zhaoping, Guo Feihong, Wang Jia, Wang Xiaoyi

Abstract:

Flow of gas and particles in fluidized beds is complex and chaotic, which is difficult to measure and analyze by experiments. Some bed materials with bad fluidized performance always fluidize with fluidized medium. The material and the fluidized medium are different in many properties such as density, size and shape. These factors make the dynamic process more complex and the experiment research more limited. Numerical simulation is an efficient way to describe the process of gas-solid flow in fluidized bed. One of the most popular numerical simulation methods is CFD-DEM, i.e., computational fluid dynamics-discrete element method. The shapes of particles are always simplified as sphere in most researches. Although sphere-shaped particles make the calculation of particle uncomplicated, the effects of different shapes are disregarded. However, in practical applications, the two-component systems in fluidized bed also contain sphere particles and non-sphere particles. Therefore, it is needed to study the two component flow of sphere particles and non-sphere particles. In this paper, the flows of mixing were simulated as the flow of molding biomass particles and quartz in fluidized bad. The integrated model was built on an Eulerian–Lagrangian approach which was improved to suit the non-sphere particles. The constructed methods of cylinder-shaped particles were different when it came to different numerical methods. Each cylinder-shaped particle was constructed as an agglomerate of fictitious small particles in CFD part, which means the small fictitious particles gathered but not combined with each other. The diameter of a fictitious particle d_fic and its solid volume fraction inside a cylinder-shaped particle α_fic, which is called the fictitious volume fraction, are introduced to modify the drag coefficient β by introducing the volume fraction of the cylinder-shaped particles α_cld and sphere-shaped particles α_sph. In a computational cell, the void ε, can be expressed as ε=1-〖α_cld α〗_fic-α_sph. The Ergun equation and the Wen and Yu equation were used to calculate β. While in DEM method, cylinder-shaped particles were built by multi-sphere method, in which small sphere element merged with each other. Soft sphere model was using to get the connect force between particles. The total connect force of cylinder-shaped particle was calculated as the sum of the small sphere particles’ forces. The model (size=1×0.15×0.032 mm3) contained 420000 sphere-shaped particles (diameter=0.8 mm, density=1350 kg/m3) and 60 cylinder-shaped particles (diameter=10 mm, length=10 mm, density=2650 kg/m3). Each cylinder-shaped particle was constructed by 2072 small sphere-shaped particles (d=0.8 mm) in CFD mesh and 768 sphere-shaped particles (d=3 mm) in DEM mesh. The length of CFD and DEM cells are 1 mm and 2 mm. Superficial gas velocity was changed in different models as 1.0 m/s, 1.5 m/s, 2.0m/s. The results of simulation were compared with the experimental results. The movements of particles were regularly as fountain. The effect of superficial gas velocity on cylinder-shaped particles was stronger than that of sphere-shaped particles. The result proved this present work provided a effective approach to simulation the flow of two component particles.

Keywords: computational fluid dynamics, discrete element method, fluidized bed, multiphase flow

Procedia PDF Downloads 325
276 Entrepreneurial Dynamism and Socio-Cultural Context

Authors: Shailaja Thakur

Abstract:

Managerial literature abounds with discussions on business strategies, success stories as well as cases of failure, which provide an indication of the parameters that should be considered in gauging the dynamism of an entrepreneur. Neoclassical economics has reduced entrepreneurship to a mere factor of production, driven solely by the profit motive, thus stripping him of all creativity and restricting his decision making to mechanical calculations. His ‘dynamism’ is gauged simply by the amount of profits he earns, marginalizing any discussion on the means that he employs to attain this objective. With theoretical backing, we have developed an Index of Entrepreneurial Dynamism (IED) giving weights to the different moves that the entrepreneur makes during his business journey. Strategies such as changes in product lines, markets and technology are gauged as very important (weighting of 4); while adaptations in terms of technology, raw materials used, upgradations in skill set are given a slightly lesser weight of 3. Use of formal market analysis, diversification in related products are considered moderately important (weight of 2) and being a first generation entrepreneur, employing managers and having plans to diversify are taken to be only slightly important business strategies (weight of 1). The maximum that an entrepreneur can score on this index is 53. A semi-structured questionnaire is employed to solicit the responses from the entrepreneurs on the various strategies that have been employed by them during the course of their business. Binary as well as graded responses are obtained, weighted and summed up to give the IED. This index was tested on about 150 tribal entrepreneurs in Mizoram, a state of India and was found to be highly effective in gauging their dynamism. This index has universal acceptability but is devoid of the socio-cultural context, which is very central to the success and performance of the entrepreneurs. We hypothesize that a society that respects risk taking takes failures in its stride, glorifies entrepreneurial role models, promotes merit and achievement is one that has a conducive socio- cultural environment for entrepreneurship. For obtaining an idea about the social acceptability, we are putting forth questions related to the social acceptability of business to another set of respondents from different walks of life- bureaucracy, academia, and other professional fields. Similar weighting technique is employed, and index is generated. This index is used for discounting the IED of the respondent entrepreneurs from that region/ society. This methodology is being tested for a sample of entrepreneurs from two very different socio- cultural milieus- a tribal society and a ‘mainstream’ society- with the hypothesis that the entrepreneurs in the tribal milieu might be showing a higher level of dynamism than their counterparts in other regions. An entrepreneur who scores high on IED and belongs to society and culture that holds entrepreneurship in high esteem, might not be in reality as dynamic as a person who shows similar dynamism in a relatively discouraging or even an outright hostile environment.

Keywords: index of entrepreneurial dynamism, India, social acceptability, tribal entrepreneurs

Procedia PDF Downloads 256
275 Transition Dynamic Analysis of the Urban Disparity in Iran “Case Study: Iran Provinces Center”

Authors: Marzieh Ahmadi, Ruhullah Alikhan Gorgani

Abstract:

The usual methods of measuring regional inequalities can not reflect the internal changes of the country in terms of their displacement in different development groups, and the indicators of inequalities are not effective in demonstrating the dynamics of the distribution of inequality. For this purpose, this paper examines the dynamics of the urban inertial transport in the country during the period of 2006-2016 using the CIRD multidimensional index and stochastic kernel density method. it firstly selects 25 indicators in five dimensions including macroeconomic conditions, science and innovation, environmental sustainability, human capital and public facilities, and two-stage Principal Component Analysis methodology are developed to create a composite index of inequality. Then, in the second stage, using a nonparametric analytical approach to internal distribution dynamics and a stochastic kernel density method, the convergence hypothesis of the CIRD index of the Iranian provinces center is tested, and then, based on the ergodic density, long-run equilibrium is shown. Also, at this stage, for the purpose of adopting accurate regional policies, the distribution dynamics and process of convergence or divergence of the Iranian provinces for each of the five. According to the results of the first Stage, in 2006 & 2016, the highest level of development is related to Tehran and zahedan is at the lowest level of development. The results show that the central cities of the country are at the highest level of development due to the effects of Tehran's knowledge spillover and the country's lower cities are at the lowest level of development. The main reason for this may be the lack of access to markets in the border provinces. Based on the results of the second stage, which examines the dynamics of regional inequality transmission in the country during 2006-2016, the first year (2006) is not multifaceted and according to the kernel density graph, the CIRD index of about 70% of the cities. The value is between -1.1 and -0.1. The rest of the sequence on the right is distributed at a level higher than -0.1. In the kernel distribution, a convergence process is observed and the graph points to a single peak. Tends to be a small peak at about 3 but the main peak at about-0.6. According to the chart in the final year (2016), the multidimensional pattern remains and there is no mobility in the lower level groups, but at the higher level, the CIRD index accounts for about 45% of the provinces at about -0.4 Take it. That this year clearly faces the twin density pattern, which indicates that the cities tend to be closely related to each other in terms of development, so that the cities are low in terms of development. Also, according to the distribution dynamics results, the provinces of Iran follow the single-density density pattern in 2006 and the double-peak density pattern in 2016 at low and moderate inequality index levels and also in the development index. The country diverges during the years 2006 to 2016.

Keywords: Urban Disparity, CIRD Index, Convergence, Distribution Dynamics, Random Kernel Density

Procedia PDF Downloads 123
274 Regional Dynamics of Innovation and Entrepreneurship in the Optics and Photonics Industry

Authors: Mustafa İlhan Akbaş, Özlem Garibay, Ivan Garibay

Abstract:

The economic entities in innovation ecosystems form various industry clusters, in which they compete and cooperate to survive and grow. Within a successful and stable industry cluster, the entities acquire different roles that complement each other in the system. The universities and research centers have been accepted to have a critical role in these systems for the creation and development of innovations. However, the real effect of research institutions on regional economic growth is difficult to assess. In this paper, we present our approach for the identification of the impact of research activities on the regional entrepreneurship for a specific high-tech industry: optics and photonics. The optics and photonics has been defined as an enabling industry, which combines the high-tech photonics technology with the developing optics industry. The recent literature suggests that the growth of optics and photonics firms depends on three important factors: the embedded regional specializations in the labor market, the research and development infrastructure, and a dynamic small firm network capable of absorbing new technologies, products and processes. Therefore, the role of each factor and the dynamics among them must be understood to identify the requirements of the entrepreneurship activities in optics and photonics industry. There are three main contributions of our approach. The recent studies show that the innovation in optics and photonics industry is mostly located around metropolitan areas. There are also studies mentioning the importance of research center locations and universities in the regional development of optics and photonics industry. These studies are mostly limited with the number of patents received within a short period of time or some limited survey results. Therefore the first contribution of our approach is conducting a comprehensive analysis for the state and recent history of the photonics and optics research in the US. For this purpose, both the research centers specialized in optics and photonics and the related research groups in various departments of institutions (e.g. Electrical Engineering, Materials Science) are identified and a geographical study of their locations is presented. The second contribution of the paper is the analysis of regional entrepreneurship activities in optics and photonics in recent years. We use the membership data of the International Society for Optics and Photonics (SPIE) and the regional photonics clusters to identify the optics and photonics companies in the US. Then the profiles and activities of these companies are gathered by extracting and integrating the related data from the National Establishment Time Series (NETS) database, ES-202 database and the data sets from the regional photonics clusters. The number of start-ups, their employee numbers and sales are some examples of the extracted data for the industry. Our third contribution is the utilization of collected data to investigate the impact of research institutions on the regional optics and photonics industry growth and entrepreneurship. In this analysis, the regional and periodical conditions of the overall market are taken into consideration while discovering and quantifying the statistical correlations.

Keywords: entrepreneurship, industrial clusters, optics, photonics, emerging industries, research centers

Procedia PDF Downloads 405
273 Tailorability of Poly(Aspartic Acid)/BSA Complex by Self-Assembling in Aqueous Solutions

Authors: Loredana E. Nita, Aurica P. Chiriac, Elena Stoleru, Alina Diaconu, Tudorachi Nita

Abstract:

Self-assembly processes are an attractive method to form new and complex structures between macromolecular compounds to be used for specific applications. In this context, intramolecular and intermolecular bonds play a key role during self-assembling processes in preparation of carrier systems of bioactive substances. Polyelectrolyte complexes (PECs) are formed through electrostatic interactions, and though they are significantly below of the covalent linkages in their strength, these complexes are sufficiently stable owing to the association processes. The relative ease way of PECs formation makes from them a versatile tool for preparation of various materials, with properties that can be tuned by adjusting several parameters, such as the chemical composition and structure of polyelectrolytes, pH and ionic strength of solutions, temperature and post-treatment procedures. For example, protein-polyelectrolyte complexes (PPCs) are playing an important role in various chemical and biological processes, such as protein separation, enzyme stabilization and polymer drug delivery systems. The present investigation is focused on evaluation of the PPC formation between a synthetic polypeptide (poly(aspartic acid) – PAS) and a natural protein (bovine serum albumin - BSA). The PPC obtained from PAS and BSA in different ratio was investigated by corroboration of various techniques of characterization as: spectroscopy, microscopy, thermo-gravimetric analysis, DLS and zeta potential determination, measurements which were performed in static and/or dynamic conditions. The static contact angle of the sample films was also determined in order to evaluate the changes brought upon surface free energy of the prepared PPCs in interdependence with the complexes composition. The evolution of hydrodynamic diameter and zeta potential of the PPC, recorded in situ, confirm changes of both co-partners conformation, a 1/1 ratio between protein and polyelectrolyte being benefit for the preparation of a stable PPC. Also, the study evidenced the dependence of PPC formation on the temperature of preparation. Thus, at low temperatures the PPC is formed with compact structure, small dimension and hydrodynamic diameter, close to those of BSA. The behavior at thermal treatment of the prepared PPCs is in agreement with the composition of the complexes. From the contact angle determination results the increase of the PPC films cohesion, which is higher than that of BSA films. Also, a higher hydrophobicity corresponds to the new PPC films denoting a good adhesion of the red blood cells onto the surface of PSA/BSA interpenetrated systems. The SEM investigation evidenced as well the specific internal structure of PPC concretized in phases with different size and shape in interdependence with the interpolymer mixture composition.

Keywords: polyelectrolyte – protein complex, bovine serum albumin, poly(aspartic acid), self-assembly

Procedia PDF Downloads 244
272 A Protocol of Procedures and Interventions to Accelerate Post-Earthquake Reconstruction

Authors: Maria Angela Bedini, Fabio Bronzini

Abstract:

The Italian experiences, positive and negative, of the post-earthquake are conditioned by long times and structural bureaucratic constraints, also motivated by the attempt to contain mafia infiltration and corruption. The transition from the operational phase of the emergency to the planning phase of the reconstruction project is thus hampered by a series of inefficiencies and delays, incompatible with the need for rapid recovery of the territories in crisis. In fact, intervening in areas affected by seismic events means at the same time associating the reconstruction plan with an urban and territorial rehabilitation project based on strategies and tools in which prevention and safety play a leading role in the regeneration of territories in crisis and the return of the population. On the contrary, the earthquakes that took place in Italy have instead further deprived the territories affected of the minimum requirements for habitability, in terms of accessibility and services, accentuating the depopulation process, already underway before the earthquake. The objective of this work is to address with implementing and programmatic tools the procedures and strategies to be put in place, today and in the future, in Italy and abroad, to face the challenge of the reconstruction of activities, sociality, services, risk mitigation: a protocol of operational intentions and firm points, open to a continuous updating and implementation. The methodology followed is that of the comparison in a synthetic form between the different Italian experiences of the post-earthquake, based on facts and not on intentions, to highlight elements of excellence or, on the contrary, damage. The main results obtained can be summarized in technical comparison cards on good and bad practices. With this comparison, we intend to make a concrete contribution to the reconstruction process, certainly not only related to the reconstruction of buildings but privileging the primary social and economic needs. In this context, the recent instrument applied in Italy of the strategic urban and territorial SUM (Minimal Urban Structure) and the strategic monitoring process become dynamic tools for supporting reconstruction. The conclusions establish, by points, a protocol of interventions, the priorities for integrated socio-economic strategies, multisectoral and multicultural, and highlight the innovative aspects of 'inversion' of priorities in the reconstruction process, favoring the take-off of 'accelerator' interventions social and economic and a more updated system of coexistence with risks. In this perspective, reconstruction as a necessary response to the calamitous event can and must become a unique opportunity to raise the level of protection from risks and rehabilitation and development of the most fragile places in Italy and abroad.

Keywords: an operational protocol for reconstruction, operational priorities for coexistence with seismic risk, social and economic interventions accelerators of building reconstruction, the difficult post-earthquake reconstruction in Italy

Procedia PDF Downloads 126
271 Thermo-Economic Evaluation of Sustainable Biogas Upgrading via Solid-Oxide Electrolysis

Authors: Ligang Wang, Theodoros Damartzis, Stefan Diethelm, Jan Van Herle, François Marechal

Abstract:

Biogas production from anaerobic digestion of organic sludge from wastewater treatment as well as various urban and agricultural organic wastes is of great significance to achieve a sustainable society. Two upgrading approaches for cleaned biogas can be considered: (1) direct H₂ injection for catalytic CO₂ methanation and (2) CO₂ separation from biogas. The first approach usually employs electrolysis technologies to generate hydrogen and increases the biogas production rate; while the second one usually applies commercially-available highly-selective membrane technologies to efficiently extract CO₂ from the biogas with the latter being then sent afterward for compression and storage for further use. A straightforward way of utilizing the captured CO₂ is on-site catalytic CO₂ methanation. From the perspective of system complexity, the second approach may be questioned, since it introduces an additional expensive membrane component for producing the same amount of methane. However, given the circumstance that the sustainability of the produced biogas should be retained after biogas upgrading, renewable electricity should be supplied to drive the electrolyzer. Therefore, considering the intermittent nature and seasonal variation of renewable electricity supply, the second approach offers high operational flexibility. This indicates that these two approaches should be compared based on the availability and scale of the local renewable power supply and not only the technical systems themselves. Solid-oxide electrolysis generally offers high overall system efficiency, and more importantly, it can achieve simultaneous electrolysis of CO₂ and H₂O (namely, co-electrolysis), which may bring significant benefits for the case of CO₂ separation from the produced biogas. When taking co-electrolysis into account, two additional upgrading approaches can be proposed: (1) direct steam injection into the biogas with the mixture going through the SOE, and (2) CO₂ separation from biogas which can be used later for co-electrolysis. The case study of integrating SOE to a wastewater treatment plant is investigated with wind power as the renewable power. The dynamic production of biogas is provided on an hourly basis with the corresponding oxygen and heating requirements. All four approaches mentioned above are investigated and compared thermo-economically: (a) steam-electrolysis with grid power, as the base case for steam electrolysis, (b) CO₂ separation and co-electrolysis with grid power, as the base case for co-electrolysis, (c) steam-electrolysis and CO₂ separation (and storage) with wind power, and (d) co-electrolysis and CO₂ separation (and storage) with wind power. The influence of the scale of wind power supply is investigated by a sensitivity analysis. The results derived provide general understanding on the economic competitiveness of SOE for sustainable biogas upgrading, thus assisting the decision making for biogas production sites. The research leading to the presented work is funded by European Union’s Horizon 2020 under grant agreements n° 699892 (ECo, topic H2020-JTI-FCH-2015-1) and SCCER BIOSWEET.

Keywords: biogas upgrading, solid-oxide electrolyzer, co-electrolysis, CO₂ utilization, energy storage

Procedia PDF Downloads 153
270 Reverse Logistics Network Optimization for E-Commerce

Authors: Albert W. K. Tan

Abstract:

This research consolidates a comprehensive array of publications from peer-reviewed journals, case studies, and seminar reports focused on reverse logistics and network design. By synthesizing this secondary knowledge, our objective is to identify and articulate key decision factors crucial to reverse logistics network design for e-commerce. Through this exploration, we aim to present a refined mathematical model that offers valuable insights for companies seeking to optimize their reverse logistics operations. The primary goal of this research endeavor is to develop a comprehensive framework tailored to advising organizations and companies on crafting effective networks for their reverse logistics operations, thereby facilitating the achievement of their organizational goals. This involves a thorough examination of various network configurations, weighing their advantages and disadvantages to ensure alignment with specific business objectives. The key objectives of this research include: (i) Identifying pivotal factors pertinent to network design decisions within the realm of reverse logistics across diverse supply chains. (ii) Formulating a structured framework designed to offer informed recommendations for sound network design decisions applicable to relevant industries and scenarios. (iii) Propose a mathematical model to optimize its reverse logistics network. A conceptual framework for designing a reverse logistics network has been developed through a combination of insights from the literature review and information gathered from company websites. This framework encompasses four key stages in the selection of reverse logistics operations modes: (1) Collection, (2) Sorting and testing, (3) Processing, and (4) Storage. Key factors to consider in reverse logistics network design: I) Centralized vs. decentralized processing: Centralized processing, a long-standing practice in reverse logistics, has recently gained greater attention from manufacturing companies. In this system, all products within the reverse logistics pipeline are brought to a central facility for sorting, processing, and subsequent shipment to their next destinations. Centralization offers the advantage of efficiently managing the reverse logistics flow, potentially leading to increased revenues from returned items. Moreover, it aids in determining the most appropriate reverse channel for handling returns. On the contrary, a decentralized system is more suitable when products are returned directly from consumers to retailers. In this scenario, individual sales outlets serve as gatekeepers for processing returns. Considerations encompass the product lifecycle, product value and cost, return volume, and the geographic distribution of returns. II) In-house vs. third-party logistics providers: The decision between insourcing and outsourcing in reverse logistics network design is pivotal. In insourcing, a company handles the entire reverse logistics process, including material reuse. In contrast, outsourcing involves third-party providers taking on various aspects of reverse logistics. Companies may choose outsourcing due to resource constraints or lack of expertise, with the extent of outsourcing varying based on factors such as personnel skills and cost considerations. Based on the conceptual framework, the authors have constructed a mathematical model that optimizes reverse logistics network design decisions. The model will consider key factors identified in the framework, such as transportation costs, facility capacities, and lead times. The authors have employed mixed LP to find the optimal solutions that minimize costs while meeting organizational objectives.

Keywords: reverse logistics, supply chain management, optimization, e-commerce

Procedia PDF Downloads 38