Search results for: students with learning disabilities
4420 An Empirical Study of the Effect of Robot Programming Education on the Computational Thinking of Young Children: The Role of Flowcharts
Abstract:
There is an increasing interest in introducing computational thinking at an early age. Computational thinking, like mathematical thinking, engineering thinking, and scientific thinking, is a kind of analytical thinking. Learning computational thinking skills is not only to improve technological literacy, but also allows learners to equip with practicable skills such as problem-solving skills. As people realize the importance of computational thinking, the field of educational technology faces a problem: how to choose appropriate tools and activities to help students develop computational thinking skills. Robots are gradually becoming a popular teaching tool, as robots provide a tangible way for young children to access to technology, and controlling a robot through programming offers them opportunities to engage in developing computational thinking. This study explores whether the introduction of flowcharts into the robotics programming courses can help children convert natural language into a programming language more easily, and then to better cultivate their computational thinking skills. An experimental study was adopted with a sample of children ages six to seven (N = 16) participated, and a one-meter-tall humanoid robot was used as the teaching tool. Results show that children can master basic programming concepts through robotic courses. Children's computational thinking has been significantly improved. Besides, results suggest that flowcharts do have an impact on young children’s computational thinking skills development, but it only has a significant effect on the "sequencing" and "correspondence" skills. Overall, the study demonstrates that the humanoid robot and flowcharts have qualities that foster young children to learn programming and develop computational thinking skills.Keywords: robotics, computational thinking, programming, young children, flow chart
Procedia PDF Downloads 1504419 Automatic Classification for the Degree of Disc Narrowing from X-Ray Images Using CNN
Authors: Kwangmin Joo
Abstract:
Automatic detection of lumbar vertebrae and classification method is proposed for evaluating the degree of disc narrowing. Prior to classification, deep learning based segmentation is applied to detect individual lumbar vertebra. M-net is applied to segment five lumbar vertebrae and fine-tuning segmentation is employed to improve the accuracy of segmentation. Using the features extracted from previous step, clustering technique, k-means clustering, is applied to estimate the degree of disc space narrowing under four grade scoring system. As preliminary study, techniques proposed in this research could help building an automatic scoring system to diagnose the severity of disc narrowing from X-ray images.Keywords: Disc space narrowing, Degenerative disc disorders, Deep learning based segmentation, Clustering technique
Procedia PDF Downloads 1294418 A Custom Convolutional Neural Network with Hue, Saturation, Value Color for Malaria Classification
Authors: Ghazala Hcini, Imen Jdey, Hela Ltifi
Abstract:
Malaria disease should be considered and handled as a potential restorative catastrophe. One of the most challenging tasks in the field of microscopy image processing is due to differences in test design and vulnerability of cell classifications. In this article, we focused on applying deep learning to classify patients by identifying images of infected and uninfected cells. We performed multiple forms, counting a classification approach using the Hue, Saturation, Value (HSV) color space. HSV is used since of its superior ability to speak to image brightness; at long last, for classification, a convolutional neural network (CNN) architecture is created. Clusters of focus were used to deliver the classification. The highlights got to be forbidden, and a few more clamor sorts are included in the information. The suggested method has a precision of 99.79%, a recall value of 99.55%, and provides 99.96% accuracy.Keywords: deep learning, convolutional neural network, image classification, color transformation, HSV color, malaria diagnosis, malaria cells images
Procedia PDF Downloads 954417 Identification of Breast Anomalies Based on Deep Convolutional Neural Networks and K-Nearest Neighbors
Authors: Ayyaz Hussain, Tariq Sadad
Abstract:
Breast cancer (BC) is one of the widespread ailments among females globally. The early prognosis of BC can decrease the mortality rate. Exact findings of benign tumors can avoid unnecessary biopsies and further treatments of patients under investigation. However, due to variations in images, it is a tough job to isolate cancerous cases from normal and benign ones. The machine learning technique is widely employed in the classification of BC pattern and prognosis. In this research, a deep convolution neural network (DCNN) called AlexNet architecture is employed to get more discriminative features from breast tissues. To achieve higher accuracy, K-nearest neighbor (KNN) classifiers are employed as a substitute for the softmax layer in deep learning. The proposed model is tested on a widely used breast image database called MIAS dataset for experimental purposes and achieved 99% accuracy.Keywords: breast cancer, DCNN, KNN, mammography
Procedia PDF Downloads 1404416 Mixing Students: an Educational Experience with Future Industrial Designers and Mechanical Engineers
Authors: J. Lino Alves, L. Lopes
Abstract:
It is not new that industrial design projects are a result of cooperative work from different areas of knowledge. However, in the academic teaching of Industrial Design and Mechanical Engineering courses, it is not recurrent that those competences are mixed before the professional life arrives. This abstract intends to describe two semester experiences carried out by two professors - a mechanical engineer and an industrial designer - in the last two academic years, for which they created mixed teams of Industrial Design and Mechanical Engineering (UPorto University). The two experiences differ in several factors; the main one is related to the challenges of online education, a constraint that affected the second experience. In the first year, even before foreseeing the effects that the pandemic would reconfigure the education system, a partnership with the Education Service of Águas do Porto was established. The purpose of the exercise was the project development of a game that could be an interaction element oriented to potentiate a positive experience and as an educational contribution to the children. In the second year, already foreseeing that the teaching experience would be carried out online, it was decided to design an open briefing, which allowed the groups to choose among three themes: a hand scale game using additive manufacturing; a modular system for ventilated facade using a parametric design basis; or, a modular system for vertical gardens. In methodological terms, besides the weekly follow-up, with the simultaneous support of the two professors, a group self-evaluation was requested; and a form to be filled individually to evaluate other groups. One of the first conclusions is related to the briefing format. Industrial Design students seem comfortable working on an open briefing that allows them to draw the project on a conceptual basis created for that purpose; on the other hand, Mechanical Engineering students were uncomfortable and insecure in the initial phase due to the absence of concrete, closed "order." In other words, it is not recurrent for Mechanical Engineering students that the creative component is stimulated, seemingly leaving them reserved to the technical solution and execution, depriving them of the co-creation phase during the conceptual construction of the project's own brief. Another fact that was registered is related to the leadership positions in the groups, which alternated according to the state of development of the project: design students took the lead during the ideation/concept phase, while mechanical engineering ones took a greater lead during the intermediate development process, namely in the definition of constructive solutions, mass/volume calculations, manufacturing, and material resistance. Designers' competences were again more evident and assumed in the final phase, especially in communication skills, as well as in simulations in the context of use. However, at some moments, it was visible the capacity for quite balanced leadership between engineering and design, in a constant debate centered on the human factor of the project - evidenced in the final solution, in the compromise and balance between technical constraints, functionality, usability, and aesthetics.Keywords: education, industrial design, mechanical engineering, teaching ethodologies
Procedia PDF Downloads 1784415 Image Processing-Based Maize Disease Detection Using Mobile Application
Authors: Nathenal Thomas
Abstract:
In the food chain and in many other agricultural products, corn, also known as maize, which goes by the scientific name Zea mays subsp, is a widely produced agricultural product. Corn has the highest adaptability. It comes in many different types, is employed in many different industrial processes, and is more adaptable to different agro-climatic situations. In Ethiopia, maize is among the most widely grown crop. Small-scale corn farming may be a household's only source of food in developing nations like Ethiopia. The aforementioned data demonstrates that the country's requirement for this crop is excessively high, and conversely, the crop's productivity is very low for a variety of reasons. The most damaging disease that greatly contributes to this imbalance between the crop's supply and demand is the corn disease. The failure to diagnose diseases in maize plant until they are too late is one of the most important factors influencing crop output in Ethiopia. This study will aid in the early detection of such diseases and support farmers during the cultivation process, directly affecting the amount of maize produced. The diseases in maize plants, such as northern leaf blight and cercospora leaf spot, have distinct symptoms that are visible. This study aims to detect the most frequent and degrading maize diseases using the most efficiently used subset of machine learning technology, deep learning so, called Image Processing. Deep learning uses networks that can be trained from unlabeled data without supervision (unsupervised). It is a feature that simulates the exercises the human brain goes through when digesting data. Its applications include speech recognition, language translation, object classification, and decision-making. Convolutional Neural Network (CNN) for Image Processing, also known as convent, is a deep learning class that is widely used for image classification, image detection, face recognition, and other problems. it will also use this algorithm as the state-of-the-art for my research to detect maize diseases by photographing maize leaves using a mobile phone.Keywords: CNN, zea mays subsp, leaf blight, cercospora leaf spot
Procedia PDF Downloads 784414 The Saudi Arabia 2030 Strategy: Translation Reception and Translator Readiness
Authors: Budur Alsulami
Abstract:
One of the aims of the recently implemented Saudi Arabia Vision 2030 strategy is focused on strengthening education, entertainment, and tourism to attract international visitors to the country. To promote and increase the tourism sector, tourism translation can serve the tourism industry by translating various materials that promote the country’s tourism such as brochures, catalogues, and websites. In order to achieve the goal of enhancing tourism in Saudi Arabia, promotional texts related to tourism and Saudi culture will need to be translated into English and addressed to non-Arabic-speaking potential tourists. This research aims to measure student readiness to be professional translators who can introduce and promote Saudi Arabia to non-Arabic-speaking tourists. The study will also evaluate students' abilities to promote and convey Saudi culture to non-Arabic tourists by translating tourism texts. Translating tourism materials demands considerable effort and specific translation skills to capture tourists' interest and encourage visits. Numerous scholars have explored challenges in translating tourism promotional materials, focusing on translation methods, cultural issues, course design, and necessary knowledge for tourism translation. Based on these insights, experts recommend that translators prioritize audience expectations, cultural appropriateness, and linguistic conventions while revising course syllabi to include practical skills. This research aims to assess students' readiness to become professional translators aligned with Vision 2030 tourism goals. To accomplish this, in the first stage of the project, twenty students from two Saudi Arabian Universities who have completed at least two years of Translation Studies were invited to translate two tourism texts of 300 words each. These tourism texts contain information about famous tourist sights and traditional food in Saudi Arabia and contained cultural terms and heritage information. The students then completed a questionnaire about the challenges of the text and the process of their translation, and then participated in a semi-structured interview. In the second stage of the project, the students’ translations will be evaluated by a qualified National Accreditation Authority of Translators and Interpreters (NAATI) examiner applying the NAATI rubrics. Finally, these translations will be read and assessed by fifteen to twenty native and near-native readers of English, who will evaluate the quality of the translations based on their understanding and perception of these texts. Results analysed to date suggest that a number of student translators faced challenges such as choosing a suitable translation method, omitting some key terms or words during the translation process, and managing their time, all of which may indicate a lack of practice in translating texts of this nature and lack of awareness regarding translation strategies most suitable for the genre.Keywords: Saudi Arabia Vision 2030, translation, tourism, reader reception, culture, heritage, translator training/competencies
Procedia PDF Downloads 184413 Future-Proofing the Workforce: A Case Study of Integrated Human Capability Frameworks to Support Business Success
Authors: Penelope Paliadelis, Asheley Jones, Glenn Campbell
Abstract:
This paper discusses the development of co-designed capability frameworks for two large multinational organizations led by a university department. The aim was to create evidence-based, integrated capability frameworks that could define, identify, and measure human skill capabilities independent of specific work roles. The frameworks capture and cluster human skills required in the workplace and capture their application at various levels of mastery. Identified capability gaps inform targeted learning opportunities for workers to enhance their employability skills. The paper highlights the value of this evidence-based framework development process in capturing, defining, and assessing desired human-focused capabilities for organizational growth and success.Keywords: capability framework, human skills, work-integrated learning, credentialing, digital badging
Procedia PDF Downloads 824412 A System to Detect Inappropriate Messages in Online Social Networks
Authors: Shivani Singh, Shantanu Nakhare, Kalyani Nair, Rohan Shetty
Abstract:
As social networking is growing at a rapid pace today it is vital that we work on improving its management. Research has shown that the content present in online social networks may have significant influence on impressionable minds. If such platforms are misused, it will lead to negative consequences. Detecting insults or inappropriate messages continues to be one of the most challenging aspects of Online Social Networks (OSNs) today. We address this problem through a Machine Learning Based Soft Text Classifier approach using Support Vector Machine algorithm. The proposed system acts as a screening mechanism the alerts the user about such messages. The messages are classified according to their subject matter and each comment is labeled for the presence of profanity and insults.Keywords: machine learning, online social networks, soft text classifier, support vector machine
Procedia PDF Downloads 5134411 Exploring the Determinants of Personal Finance Difficulties by Machine Learning: Focus on Socio-Economic and Behavioural Changes Brought by COVID-19
Authors: Brian Tung, Yam Wing Siu, Tsun Se Cheong
Abstract:
Purpose: This research aims to explore how personal and environmental factors, especially the socio-economic changes and behavioral changes fostered by the COVID-19 outbreak pandemic, affect the financial vulnerability of a specific segment of people in financial distress. Innovative research methodology of machine learning will be applied to data collected from over 300 local individuals in Hong Kong seeking counseling or similar services in recent years. Results: First, machine learning has found that too much exposure to digital services and information on digitized services may lead to adverse effects on respondents’ financial vulnerability. Second, the improvement in financial literacy level provides benefits to the financially vulnerable group, especially those respondents who have started with a lower level. Third, serious addiction to digital technology can lead to worsened debt servicing ability. Machine learning also has found a strong correlation between debt servicing situations and income-seeking behavior as well as spending behavior. In addition, if the vulnerable groups are able to make appropriate investments, they can reduce the probability of incurring financial distress. Finally, being too active in borrowing and repayment can result in a higher likelihood of over-indebtedness. Conclusion: Findings can be employed in formulating a better counseling strategy for professionals. Debt counseling services can be more preventive in nature. For example, according to the findings, with a low level of financial literacy, the respondents are prone to overspending and unable to react properly to the e-marketing promotion messages pop-up from digital services or even falling into financial/investment scams. In addition, people with low levels of financial knowledge will benefit from financial education. Therefore, financial education programs could include tech-savvy matters as special features.Keywords: personal finance, digitization of the economy, COVID-19 pandemic, addiction to digital technology, financial vulnerability
Procedia PDF Downloads 624410 Prevention of Road Accidents by Computerized Drowsiness Detection System
Authors: Ujjal Chattaraj, P. C. Dasbebartta, S. Bhuyan
Abstract:
This paper aims to propose a method to detect the action of the driver’s eyes, using the concept of face detection. There are three major key contributing methods which can rapidly process the framework of the facial image and hence produce results which further can program the reactions of the vehicles as pre-programmed for the traffic safety. This paper compares and analyses the methods on the basis of their reaction time and their ability to deal with fluctuating images of the driver. The program used in this study is simple and efficient, built using the AdaBoost learning algorithm. Through this program, the system would be able to discard background regions and focus on the face-like regions. The results are analyzed on a common computer which makes it feasible for the end users. The application domain of this experiment is quite wide, such as detection of drowsiness or influence of alcohols in drivers or detection for the case of identification.Keywords: AdaBoost learning algorithm, face detection, framework, traffic safety
Procedia PDF Downloads 1584409 A Time-Varying and Non-Stationary Convolution Spectral Mixture Kernel for Gaussian Process
Authors: Kai Chen, Shuguang Cui, Feng Yin
Abstract:
Gaussian process (GP) with spectral mixture (SM) kernel demonstrates flexible non-parametric Bayesian learning ability in modeling unknown function. In this work a novel time-varying and non-stationary convolution spectral mixture (TN-CSM) kernel with a significant enhancing of interpretability by using process convolution is introduced. A way decomposing the SM component into an auto-convolution of base SM component and parameterizing it to be input dependent is outlined. Smoothly, performing a convolution between two base SM component yields a novel structure of non-stationary SM component with much better generalized expression and interpretation. The TN-CSM perfectly allows compatibility with the stationary SM kernel in terms of kernel form and spectral base ignored and confused by previous non-stationary kernels. On synthetic and real-world datatsets, experiments show the time-varying characteristics of hyper-parameters in TN-CSM and compare the learning performance of TN-CSM with popular and representative non-stationary GP.Keywords: Gaussian process, spectral mixture, non-stationary, convolution
Procedia PDF Downloads 2004408 Analyzing Inclusion Attempts: Simultaneous Performance of Two Teachers at the Same Classroom
Authors: Mara A. C. Lopes
Abstract:
Hiring a second teacher to accompany deaf students inserted at Brazilian inclusive school system has raised questions about its role in the educational process of deaf students. Federal policies determine that deaf students inserted in regular education are accompanied by sign language interpreters, which leads to the understanding that the second teacher should assume this function. However, what those professionals do is to assume the function of teaching deaf student, instead of the classroom main teacher. Historical-Cultural Psychology was used as a reference for analysis, which aimed to identify the social function of the second teacher in the classroom. Two studies were accomplished in the public schools of Sao Paulo State: In Study 1, videotaped lectures provided by the Department of Education for collective reflection about the second teacher's role were examined, to identify the social meaning of that professional activity. Study 2 aimed to analyze the process of assigning personal sense to the teacher activity, considering the opinions of 21 professionals from Sao Paulo. Those teachers were interviewed individually with the support of a semi-structured interview. The analysis method utilized was: empirical description of data; development of categories, for reality abstraction; identifying the unit analysis; and return to reality, in order to explain it. Study 1 showed that the social meaning of the second teacher's activity is, also, to teach. However, Study 2 showed that this meaning is not shared among professionals of the school, so they understand that they must act as sign language interpreters. That comprehension causes a disruption between social meaning and the personal sense they attach to their activity. It also shows the need of both teachers at the classroom planning and executing activity together. On the contrary, a relationship of subordination of one teacher to another was identified, excluding the second teacher and the deaf student of the main activity. Results indicate that the second teacher, as a teacher, must take the responsibility for deaf student education, consciously, and to promote the full development of the subjects involved.Keywords: deaf education, historical-cultural psychology, inclusion, teacher function
Procedia PDF Downloads 2194407 Cadaveric Dissection versus Systems-Based Anatomy: Testing Final Year Student Surface Anatomy Knowledge to Compare the Long-Term Effectiveness of Different Course Structures
Authors: L. Sun, T. Hargreaves, Z. Ahmad
Abstract:
Newly-qualified Foundation Year 1 doctors in the United Kingdom are frequently expected to perform practical skills involving the upper limb in clinical practice (for example, venipuncture, cannulation, and blood gas sampling). However, a move towards systems-based undergraduate medical education in the United Kingdom often precludes or limits dedicated time to anatomy teaching with cadavers or prosections, favouring only applied anatomy in the context of pathology. The authors hypothesised that detailed anatomical knowledge may consequently be adversely affected, particularly with respect to long-term retention. A simple picture quiz and accompanying questionnaire testing the identification of 7 upper limb surface landmarks was distributed to a total of 98 final year medical students from two universities - one with a systems-based curriculum, and one with a dedicated longitudinal dissection-based anatomy module in the first year of study. Students with access to dissection and prosection-based anatomy teaching performed more strongly, with a significantly higher rate of correct identification of all but one of the landmarks. Furthermore, it was notable that none of the students who had previously undertaken a systems-based course scored full marks, compared with 20% of those who had participated in the more dedicated anatomy course. This data suggests that a traditional, dissection-based approach to undergraduate anatomy teaching is superior to modern system-based curricula, in terms of aiding long-term retention of anatomical knowledge pertinent to newly-qualified doctors. The authors express concern that this deficit in proficiency could be detrimental to patient care in clinical practice, and propose that, where dissection-led anatomy teaching is not available, further anatomy revision modules are implemented throughout undergraduate education to aid knowledge retention and support clinical excellence.Keywords: dissection, education, surface anatomy, upper limb
Procedia PDF Downloads 1374406 Cultural Adaptation of Foreign Students in Vienna, A Sociolinguistic Case Study of Iranian Students in Vienna
Authors: Roshanak Nouralian
Abstract:
The primary focus of my Ph.D. dissertation revolves around the interconnection between language and culture, as well as the crucial role that language plays in facilitating communication and fostering integration within the host society for immigrants. This research specifically focuses on Iranian students studying at various universities in Vienna. Throughout this study, I have attempted to examine and analyze their challenges in various life situations in Austria. The broad dimensions of the research question led the research process to apply a constructivist grounded theory strategy. I have also used critical discourse analysis that is in line with constructivist GT's point of view to look closely at the borders, contradictions, and inequalities that came up in the participants' real-life experiences. Data from individual interviews and group discussions have expanded the research trajectory beyond disciplinary boundaries toward a transdisciplinary approach. The research findings indicate how the language policy of the host society leads to the establishment of power relationships and the arousal of a sense of cultural dominance among the research participants. This study investigates the problems experienced by participants in their daily interactions within the host society. Additionally, the results illustrate the development of a dependency relationship between participants and their host society despite linguistic policies that cause a sense of cultural hegemony. Conversely, the obtained data allowed me to examine the participants' language ideologies. The findings of this study show that social linguistics has the potential to go beyond the boundaries of its field. This is possible by using a variety of research strategies and analyzing people's real-life experiences to find out how language affects different parts of their daily lives. Therefore, in this conference, discussing the logic of employing a constructivist GT strategy along with critical discourse analysis (CDA) in this research, I intend to discuss the achieved results.Keywords: cultural adapttaion, language policy, language ideology, cultural hegemony, transdisciplinary research, constructivist grounded theory, critical discourse analysis
Procedia PDF Downloads 704405 Machine Learning Techniques in Seismic Risk Assessment of Structures
Authors: Farid Khosravikia, Patricia Clayton
Abstract:
The main objective of this work is to evaluate the advantages and disadvantages of various machine learning techniques in two key steps of seismic hazard and risk assessment of different types of structures. The first step is the development of ground-motion models, which are used for forecasting ground-motion intensity measures (IM) given source characteristics, source-to-site distance, and local site condition for future events. IMs such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available. Second, it is investigated how machine learning techniques could be beneficial for developing probabilistic seismic demand models (PSDMs), which provide the relationship between the structural demand responses (e.g., component deformations, accelerations, internal forces, etc.) and the ground motion IMs. In the risk framework, such models are used to develop fragility curves estimating exceeding probability of damage for pre-defined limit states, and therefore, control the reliability of the predictions in the risk assessment. In this study, machine learning algorithms like artificial neural network, random forest, and support vector machine are adopted and trained on the demand parameters to derive PSDMs for them. It is observed that such models can provide more accurate estimates of prediction in relatively shorter about of time compared to conventional methods. Moreover, they can be used for sensitivity analysis of fragility curves with respect to many modeling parameters without necessarily requiring more intense numerical response-history analysis.Keywords: artificial neural network, machine learning, random forest, seismic risk analysis, seismic hazard analysis, support vector machine
Procedia PDF Downloads 1104404 Preparation of Papers - Developing a Leukemia Diagnostic System Based on Hybrid Deep Learning Architectures in Actual Clinical Environments
Authors: Skyler Kim
Abstract:
An early diagnosis of leukemia has always been a challenge to doctors and hematologists. On a worldwide basis, it was reported that there were approximately 350,000 new cases in 2012, and diagnosing leukemia was time-consuming and inefficient because of an endemic shortage of flow cytometry equipment in current clinical practice. As the number of medical diagnosis tools increased and a large volume of high-quality data was produced, there was an urgent need for more advanced data analysis methods. One of these methods was the AI approach. This approach has become a major trend in recent years, and several research groups have been working on developing these diagnostic models. However, designing and implementing a leukemia diagnostic system in real clinical environments based on a deep learning approach with larger sets remains complex. Leukemia is a major hematological malignancy that results in mortality and morbidity throughout different ages. We decided to select acute lymphocytic leukemia to develop our diagnostic system since acute lymphocytic leukemia is the most common type of leukemia, accounting for 74% of all children diagnosed with leukemia. The results from this development work can be applied to all other types of leukemia. To develop our model, the Kaggle dataset was used, which consists of 15135 total images, 8491 of these are images of abnormal cells, and 5398 images are normal. In this paper, we design and implement a leukemia diagnostic system in a real clinical environment based on deep learning approaches with larger sets. The proposed diagnostic system has the function of detecting and classifying leukemia. Different from other AI approaches, we explore hybrid architectures to improve the current performance. First, we developed two independent convolutional neural network models: VGG19 and ResNet50. Then, using both VGG19 and ResNet50, we developed a hybrid deep learning architecture employing transfer learning techniques to extract features from each input image. In our approach, fusing the features from specific abstraction layers can be deemed as auxiliary features and lead to further improvement of the classification accuracy. In this approach, features extracted from the lower levels are combined into higher dimension feature maps to help improve the discriminative capability of intermediate features and also overcome the problem of network gradient vanishing or exploding. By comparing VGG19 and ResNet50 and the proposed hybrid model, we concluded that the hybrid model had a significant advantage in accuracy. The detailed results of each model’s performance and their pros and cons will be presented in the conference.Keywords: acute lymphoblastic leukemia, hybrid model, leukemia diagnostic system, machine learning
Procedia PDF Downloads 1914403 Facial Emotion Recognition with Convolutional Neural Network Based Architecture
Authors: Koray U. Erbas
Abstract:
Neural networks are appealing for many applications since they are able to learn complex non-linear relationships between input and output data. As the number of neurons and layers in a neural network increase, it is possible to represent more complex relationships with automatically extracted features. Nowadays Deep Neural Networks (DNNs) are widely used in Computer Vision problems such as; classification, object detection, segmentation image editing etc. In this work, Facial Emotion Recognition task is performed by proposed Convolutional Neural Network (CNN)-based DNN architecture using FER2013 Dataset. Moreover, the effects of different hyperparameters (activation function, kernel size, initializer, batch size and network size) are investigated and ablation study results for Pooling Layer, Dropout and Batch Normalization are presented.Keywords: convolutional neural network, deep learning, deep learning based FER, facial emotion recognition
Procedia PDF Downloads 2824402 Utilization of Cloud-Based Learning Platform for the Enhancement of IT Onboarding System
Authors: Christian Luarca
Abstract:
The study aims to define the efficiency of e-Trainings by the use of cloud platform as part of the onboarding process for IT support engineers. Traditional lecture based trainings involves human resource to guide and assist new hires as part of onboarding which takes time and effort. The use of electronic medium as a platform for training provides a two-way basic communication that can be done in a repetitive manner. The study focuses on determining the most efficient manner of learning the basic knowledge on IT support in the shortest time possible. This was determined by conducting the same set of knowledge transfer categories in two different approaches, one being the e-Training and the other using the traditional method. Performance assessment will be done by the use of Service Tracker Assessment (STA) Tool and Service Manager. Data gathered from this ongoing study will promote the utilization of e-Trainings in the IT onboarding process.Keywords: cloud platform, e-Training, efficiency, onboarding
Procedia PDF Downloads 1544401 Theorising Chinese as a Foreign Language Curriculum Justice in the Australian School Context
Authors: Wen Xu
Abstract:
The expansion of Confucius institutes and Chinese as a Foreign Language (CFL) education is often considered as cultural invasion and part of much bigger, if not ambitious, Chinese central government agenda among Western public opinion. The CFL knowledge and teaching practice inherent in textbooks are also harshly critiqued as failing to align with Western educational principles. This paper takes up these concerns and attempts to articulate that Confucius’s idea of ‘education without discrimination’ appears to have become synonymous with social justice touted in contemporary Australian education and policy discourses. To do so, it capitalises on Bernstein's conceptualization of classification and pedagogic rights to articulate CFL curriculum's potential of drawing in and drawing out curriculum boundaries to achieve educational justice. In this way, the potential useful knowledge of CFL constitutes a worthwhile tool to engage in a peripheral Western country’s education issues, as well as to include disenfranchised students in the multicultural Australian society. It opens spaces for critically theorising CFL curricular justice in Australian educational contexts, and makes an original contribution to scholarly argumentation that CFL curriculum has the potential of including socially and economically disenfranchised students in schooling.Keywords: curriculum justice, Chinese as a Foreign Language curriculum, Bernstein, equity
Procedia PDF Downloads 1474400 Social Media Use and Social Connectedness
Authors: Jessica Torres, James W. Sturges
Abstract:
This correlational study explored the potential relationship between social media use and social connectedness. College students (n = 190) were surveyed using the revised Social Connectedness Scale (SCS-R) and were asked about the number of hours they used social media platforms such as Instagram, TikTok, Twitter, Snapchat, and Facebook. We also developed and administered a 14-item Social Media Use Scale (SMUS) to measure potentially maladaptive social media use, such as use that likely interfered with other activities. The SMUS was found to have good inter-item consistency (Cronbach’s alpha = .92) and was significantly correlated with hours of use, r(182) = .622, p < .001. As expected, we found that the SCS-R scores were inversely related to total hours of social media use, r(182) = -.188 (p < .005). This suggested that lots of time allocated to online interactions is negatively associated with social connectedness in general. Interestingly, however, higher social connectedness scores were associated specifically with Snapchat use, r(28) = .210, p = .004. This may have to do with the specific nature of the Snapchat experience and perhaps its original use for one-to-one communication. The use of other social media platforms (Tiktok, Instagram, Twitter) was not related to better social connectedness scores. Although we failed to find that scores on our measure of problem use (the SMUS) were correlated with social connectedness, we are hopeful that the SMUS will be of use in identifying patterns of maladaptive social media use that may have an impact on other important outcome measures of adaptive functioning and well-being.Keywords: adaptive functioning, college students, social connectedness, social media use
Procedia PDF Downloads 1004399 The Model of Learning Centre on OTOP Production Process Based on Sufficiency Economic Philosophy for Sustainable Life Quality
Authors: Napasri Suwanajote
Abstract:
The purposes of this research were to analyse and evaluate successful factors in OTOP production process for the developing of learning centre on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality. The research has been designed as a qualitative study to gather information from 30 OTOP producers in Bangkontee District, Samudsongkram Province. They were all interviewed on 3 main parts. Part 1 was about the production process including 1) production 2) product development 3) the community strength 4) marketing possibility and 5) product quality. Part 2 evaluated appropriate successful factors including 1) the analysis of the successful factors 2) evaluate the strategy based on Sufficiency Economic Philosophy and 3) the model of learning centre on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality. The results showed that the production did not affect the environment with potential in continuing standard quality production. They used the raw materials in the country. On the aspect of product and community strength in the past 1 year, it was found that there was no appropriate packaging showing product identity according to global market standard. They needed the training on packaging especially for food and drink products. On the aspect of product quality and product specification, it was found that the products were certified by the local OTOP standard. There should be a responsible organization to help the uncertified producers pass the standard. However, there was a problem on food contamination which was hazardous to the consumers. The producers should cooperate with the government sector or educational institutes involving with food processing to reach FDA standard. The results from small group discussion showed that the community expected high education and better standard living. Some problems reported by the community included informal debt and drugs in the community. There were 8 steps in developing the model of learning centre on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality.Keywords: production process, OTOP, sufficiency economic philosophy, marketing management
Procedia PDF Downloads 2374398 Continuous Professional Development of Teachers: Implementation Mechanisms in the Republic of Kazakhstan Based on the Professional Standard 'Teacher'
Authors: Yelena Agranovich, Larissa Ageyeva, Aigul Syzdykbayeva, Violetta Tyan
Abstract:
The modernization of the education system in the Republic of Kazakhstan is aimed at improving the quality of teacher training and enhancing key competencies among teachers. The current professional standard ‘Teacher’ defines the general characteristics of teachers’ activities, key competencies, and criteria according to relevant qualification categories structured on the principle of progression, thereby enabling Continuous Professional Development (CPD). The essence of CPD lies in the constant integration of new knowledge and skills that help teachers adapt to changes in the education system, in technologies, and teaching methods. This developmental process enables teachers to stay updated on recent scientific achievements, innovations, and modern pedagogical practices. Continuous learning helps teachers remain flexible and open to new developments, creating conditions for improving educational quality and fostering students' personal growth. This study aims to address the following objectives: analysis of international CPD practices, identification of conceptual foundations, and investigation of CPD implementation mechanisms in Kazakhstan. The core principles of CPD are identified as longitudinality, systematicity, and fragmentation. CPD implementation is based on various theoretical approaches: axiological, systemic, competency-based, activity-based, and learner-centered. The study analyzes leading models of teacher CPD, with a target sample that includes countries such as Australia, Japan, South Korea, England, Singapore, Sweden, Finland, and Kazakhstan. The research methods include analysis (comparative, historical, content analysis, systematic), case studies of CPD models, and synthesis and systematization of scientific data. As research results, the mechanisms for CPD implementation in Kazakhstan will be identified, along with further perspectives on transforming resources within the teacher professional development system. In comparing CPD models from various countries, it is noted that teacher CPD in the Republic of Kazakhstan: (1) is implemented through educational programs, professional development courses, teacher certification, professional networks, in-school professional development, self-education, and self-assessment; (2) includes the development of pedagogical values and competencies (tolerance, inclusivity, communication, critical thinking, creativity, reflection, etc.); (3) is carried out based on traditional forms (professional development courses, retraining) and informal forms (self-learning, self-development, experience sharing and exchange). Further research will focus on creating a digital ecosystem for teacher CPD, based on an educational platform that facilitates individualized professional development pathways for teachers (competency diagnostics, course selection, and a methodological system of course and post-course support for teachers).Keywords: continuous professional development, CPD models, professional development, professional upgrading, teacher, teacher training
Procedia PDF Downloads 264397 Soybean Seed Composition Prediction From Standing Crops Using Planet Scope Satellite Imagery and Machine Learning
Authors: Supria Sarkar, Vasit Sagan, Sourav Bhadra, Meghnath Pokharel, Felix B.Fritschi
Abstract:
Soybean and their derivatives are very important agricultural commodities around the world because of their wide applicability in human food, animal feed, biofuel, and industries. However, the significance of soybean production depends on the quality of the soybean seeds rather than the yield alone. Seed composition is widely dependent on plant physiological properties, aerobic and anaerobic environmental conditions, nutrient content, and plant phenological characteristics, which can be captured by high temporal resolution remote sensing datasets. Planet scope (PS) satellite images have high potential in sequential information of crop growth due to their frequent revisit throughout the world. In this study, we estimate soybean seed composition while the plants are in the field by utilizing PlanetScope (PS) satellite images and different machine learning algorithms. Several experimental fields were established with varying genotypes and different seed compositions were measured from the samples as ground truth data. The PS images were processed to extract 462 hand-crafted vegetative and textural features. Four machine learning algorithms, i.e., partial least squares (PLSR), random forest (RFR), gradient boosting machine (GBM), support vector machine (SVM), and two recurrent neural network architectures, i.e., long short-term memory (LSTM) and gated recurrent unit (GRU) were used in this study to predict oil, protein, sucrose, ash, starch, and fiber of soybean seed samples. The GRU and LSTM architectures had two separate branches, one for vegetative features and the other for textures features, which were later concatenated together to predict seed composition. The results show that sucrose, ash, protein, and oil yielded comparable prediction results. Machine learning algorithms that best predicted the six seed composition traits differed. GRU worked well for oil (R-Squared: of 0.53) and protein (R-Squared: 0.36), whereas SVR and PLSR showed the best result for sucrose (R-Squared: 0.74) and ash (R-Squared: 0.60), respectively. Although, the RFR and GBM provided comparable performance, the models tended to extremely overfit. Among the features, vegetative features were found as the most important variables compared to texture features. It is suggested to utilize many vegetation indices for machine learning training and select the best ones by using feature selection methods. Overall, the study reveals the feasibility and efficiency of PS images and machine learning for plot-level seed composition estimation. However, special care should be given while designing the plot size in the experiments to avoid mixed pixel issues.Keywords: agriculture, computer vision, data science, geospatial technology
Procedia PDF Downloads 1414396 Multimedia Technologies Utilisation as Predictors of Lecturers’ Teaching Effectiveness in Colleges of Education in South-West, Nigeria
Authors: Abel Olusegun Egunjobi, Olusegun Oyeleye Adesanya
Abstract:
Teaching effectiveness of lecturers in a tertiary institution in Nigeria is one of the determinants of the lecturer’s productivity. In this study, therefore, lecturers’ teaching effectiveness was examined vis-à-vis their multimedia technologies utilisation in Colleges of Education (CoE) in South-West, Nigeria. This is for the purpose of ascertaining the relationship and contribution of multimedia technologies utilisation to lecturers’ teaching effectiveness in Nigerian colleges of education. The descriptive survey research design was adopted in the study, while a multi-stage sampling procedure was used in the study. A stratified sampling technique was used to select colleges of education, and a simple random sampling method was employed to select lecturers from the selected colleges of education. A total of 862 lecturers (627 males and 235 females) were selected from the colleges of education used for the study. The instrument used was lecturers’ questionnaire on multimedia technologies utilisation and teaching effectiveness with a reliability coefficient of 0.85 at 0.05 level of significance. The data collected were analysed using descriptive statistics, multiple regression, and t-test. The findings showed that the level of multimedia technologies utilisation in colleges of education was low, whereas lecturers’ teaching effectiveness was high. Findings also revealed that the lecturers used multimedia technologies purposely for personal and professional developments, so also for up to date news on economic and political matters. Also, findings indicated that laptop, Ipad, CD-ROMs, and computer instructional software were the multimedia technologies frequently utilised by the lecturers. There was also a significant difference in the teaching effectiveness between lecturers in the Federal and State COE. The government should, therefore, make adequate provision for multimedia technologies in the COE in Nigeria for lecturers’ utilisation in their instructions so as to boost their students’ learning outcomes.Keywords: colleges of education, lecturers’ teaching effectiveness, multimedia technologies utilisation, Southwest Nigeria
Procedia PDF Downloads 1464395 Interlingual Interference in Students’ Writing
Authors: Zakaria Khatraoui
Abstract:
Interlanguage has transcendentally capitalized its central role over a considerable metropolitan landscape. Either academically driven or pedagogically oriented, Interlanguage has principally floated as important than ever before. It academically probes theoretical and linguistic issues in the turf and further malleably flows from idea to reality to vindicate a bridging philosophy between theory and educational rehearsal. Characteristically, the present research grants a prolifically developed theoretical framework that is conversely sustained by empirical teaching practices, along with teasing apart the narrowly confined implementation. The focus of this interlingual study is placed stridently on syntactic errors projected in students’ writing as performance. To attain this endeavor, the paper appropriates qualitatively a plethora of focal methodological choices sponsored by a solid design. The steadily undeniable ipso facto to be examined is the creative sense of syntactic errors unequivocally endorsed by the tangible dominance of cognitively intralingual errors over linguistically interlingual ones. Subsequently, this paper attempts earnestly to highlight transferable implications worth indicating both theoretical and pedagogically professional principles. In particular, results are fundamentally relative to the scholarly community in a multidimensional sense to recommend actions of educational value.Keywords: interlanguage, interference, error, writing
Procedia PDF Downloads 814394 Springback Prediction for Sheet Metal Cold Stamping Using Convolutional Neural Networks
Abstract:
Cold stamping has been widely applied in the automotive industry for the mass production of a great range of automotive panels. Predicting the springback to ensure the dimensional accuracy of the cold-stamped components is a critical step. The main approaches for the prediction and compensation of springback in cold stamping include running Finite Element (FE) simulations and conducting experiments, which require forming process expertise and can be time-consuming and expensive for the design of cold stamping tools. Machine learning technologies have been proven and successfully applied in learning complex system behaviours using presentative samples. These technologies exhibit the promising potential to be used as supporting design tools for metal forming technologies. This study, for the first time, presents a novel application of a Convolutional Neural Network (CNN) based surrogate model to predict the springback fields for variable U-shape cold bending geometries. A dataset is created based on the U-shape cold bending geometries and the corresponding FE simulations results. The dataset is then applied to train the CNN surrogate model. The result shows that the surrogate model can achieve near indistinguishable full-field predictions in real-time when compared with the FE simulation results. The application of CNN in efficient springback prediction can be adopted in industrial settings to aid both conceptual and final component designs for designers without having manufacturing knowledge.Keywords: springback, cold stamping, convolutional neural networks, machine learning
Procedia PDF Downloads 1544393 Predictive Analysis of Chest X-rays Using NLP and Large Language Models with the Indiana University Dataset and Random Forest Classifier
Authors: Azita Ramezani, Ghazal Mashhadiagha, Bahareh Sanabakhsh
Abstract:
This study researches the combination of Random. Forest classifiers with large language models (LLMs) and natural language processing (NLP) to improve diagnostic accuracy in chest X-ray analysis using the Indiana University dataset. Utilizing advanced NLP techniques, the research preprocesses textual data from radiological reports to extract key features, which are then merged with image-derived data. This improved dataset is analyzed with Random Forest classifiers to predict specific clinical results, focusing on the identification of health issues and the estimation of case urgency. The findings reveal that the combination of NLP, LLMs, and machine learning not only increases diagnostic precision but also reliability, especially in quickly identifying critical conditions. Achieving an accuracy of 99.35%, the model shows significant advancements over conventional diagnostic techniques. The results emphasize the large potential of machine learning in medical imaging, suggesting that these technologies could greatly enhance clinician judgment and patient outcomes by offering quicker and more precise diagnostic approximations.Keywords: natural language processing (NLP), large language models (LLMs), random forest classifier, chest x-ray analysis, medical imaging, diagnostic accuracy, indiana university dataset, machine learning in healthcare, predictive modeling, clinical decision support systems
Procedia PDF Downloads 524392 Relationship between ISO 14001 and Market Performance of Firms in China: An Institutional and Market Learning Perspective
Authors: Hammad Riaz, Abubakr Saeed
Abstract:
Environmental Management System (EMS), i.e., ISO 14001 helps to build corporate reputation, legitimacy and can also be considered as firms’ strategic response to institutional pressure to reduce the impact of business activity on natural environment. The financial outcomes of certifying with ISO 14001 are still unclear and equivocal. Drawing on institutional and market learning theories, the impact of ISO 14001 on firms’ market performance is examined for Chinese firms. By employing rigorous event study approach, this paper compared ISO 14001 certified firms with non-certified counterpart firms based on different matching criteria that include size, return on assets and industry. The results indicate that the ISO 14001 has been negatively signed by the investors both in the short and long-run. This paper suggested implications for policy makers, managers, and other nonprofit organizations.Keywords: ISO 14001, legitimacy, institutional forces, event study approach, emerging markets
Procedia PDF Downloads 1674391 Optimal Rest Interval between Sets in Robot-Based Upper-Arm Rehabilitation
Authors: Virgil Miranda, Gissele Mosqueda, Pablo Delgado, Yimesker Yihun
Abstract:
Muscular fatigue affects the muscle activation that is needed for producing the desired clinical outcome. Integrating optimal muscle relaxation periods into a variety of health care rehabilitation protocols is important to maximize the efficiency of the therapy. In this study, four muscle relaxation periods (30, 60, 90, and 120 seconds) and their effectiveness in producing consistent muscle activation of the muscle biceps brachii between sets of elbow flexion and extension task was investigated among a sample of 10 subjects with no disabilities. The same resting periods were then utilized in a controlled exoskeleton-based exercise for a sample size of 5 subjects and have shown similar results. On average, the muscle activity of the biceps brachii decreased by 0.3% when rested for 30 seconds, and it increased by 1.25%, 0.76%, and 0.82% when using muscle relaxation periods of 60, 90, and 120 seconds, respectively. The preliminary results suggest that a muscle relaxation period of about 60 seconds is needed for optimal continuous muscle activation within rehabilitation regimens. Robot-based rehabilitation is good to produce repetitive tasks with the right intensity, and knowing the optimal resting period will make the automation more effective.Keywords: rest intervals, muscle biceps brachii, robot rehabilitation, muscle fatigue
Procedia PDF Downloads 196