Search results for: carbon emissions reduction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8155

Search results for: carbon emissions reduction

1795 Balancing Justice: A Critical Analysis of Plea Bargaining's Impact on Uganda's Criminal Justice System

Authors: Mukisa Daphine Letisha

Abstract:

Plea bargaining, a practice often associated with more developed legal systems, has emerged as a significant tool within Uganda's criminal justice system despite its absence in formal legal structures inherited from its colonial past. Initiated in 2013 with the aim of reducing case backlogs, expediting trials, and addressing prison congestion, plea bargaining reflects a pragmatic response to systemic challenges. While rooted in international statutes and domestic constitutional provisions, its implementation relies heavily on the Judicature (Plea Bargain) Rules of 2016, which outline procedural requirements and safeguards. Advocates argue that plea bargaining has yielded tangible benefits, including a reduction in case backlog and efficient allocation of resources, with notable support from judicial and prosecutorial authorities. Case examples demonstrate successful outcomes, with accused individuals benefitting from reduced sentences in exchange for guilty pleas. However, challenges persist, including procedural irregularities, inadequate statutory provisions, and concerns about coercion and imbalance of power between prosecutors and accused individuals. To enhance efficacy, recommendations focus on establishing monitoring mechanisms, stakeholder training, and public sensitization campaigns. In conclusion, while plea bargaining offers potential advantages in streamlining Uganda's criminal justice system, addressing its challenges requires careful consideration of procedural safeguards and stakeholder engagement to ensure fairness and integrity in the administration of justice.

Keywords: plea-bargaining, criminal-justice system, uganda, efficacy

Procedia PDF Downloads 53
1794 Treatment of NMSC with Traditional Medicine Method

Authors: Aferdita Stroka Koka, Laver Stroka, Juna Musa, Samanda Celaj

Abstract:

Non-melanoma skin cancers (NMSCs) are the most common human malignancies. About 5.4 million basal and squamous cell skin cancers are diagnosed each year in the US and new cases continue to grow. About eight out of ten of these are basal cell cancers. Squamous cell cancers occur less often. NMSC usually are treatable, but treatment is expensive and can leave scars. In 2019, 167 patients of both sexes suffering from NMSC were treated by traditional medicine. Patients who have been diagnosed with Basal Cell Carcinoma were 122 cases, Squamous Cell Carcinoma 32 cases and both of them 13 cases. Of these,122 cases were ulcerated lesions and 45 unulcerated lesions. All patients were treated with the herbal solution called NILS, which contains extracts of some Albanian plants such as Allium sativum, Jugulans regia and Laurus nobilis. The treatment is done locally, on the surface of the tumor, applying the solution until the tumor mass is destroyed and, after that, giving the necessary time to the wound to make the regeneration that coincides with the complete healing of the wound. We have prepared a collection of photos for each case. Since the first sessions, a shrinkage and reduction of the tumor mass were evident, up to the total disappearance of the lesion at the end of treatment. The normal period of treatment lasted 1 to 2 weeks, depending on the size of the tumor, then take care of it until the closure of the wound, taking the whole process from 1 to 3 months. In 7 patients, the lesion failed to be dominated by treatment and they underwent standard treatment with radiotherapy or surgery, while in 10 patients, the lesion recurred and was treated again. The aim of this survey was to put in evidence the good results obtained by treatment of NMSC with Albanian traditional medicine methods.

Keywords: local treatment, nils, NMSC, traditional medicine

Procedia PDF Downloads 210
1793 Health Monitoring of Composite Pile Construction Using Fiber Bragg Gratings Sensor Arrays

Authors: B. Atli-Veltin, A. Vosteen, D. Megan, A. Jedynska, L. K. Cheng

Abstract:

Composite materials combine the advantages of being lightweight and possessing high strength. This is in particular of interest for the development of large constructions, e.g., aircraft, space applications, wind turbines, etc. One of the shortcomings of using composite materials is the complex nature of the failure mechanisms which makes it difficult to predict the remaining lifetime. Therefore, condition and health monitoring are essential for using composite material for critical parts of a construction. Different types of sensors are used/developed to monitor composite structures. These include ultrasonic, thermography, shearography and fiber optic. The first 3 technologies are complex and mostly used for measurement in laboratory or during maintenance of the construction. Optical fiber sensor can be surface mounted or embedded in the composite construction to provide the unique advantage of in-operation measurement of mechanical strain and other parameters of interest. This is identified to be a promising technology for Structural Health Monitoring (SHM) or Prognostic Health Monitoring (PHM) of composite constructions. Among the different fiber optic sensing technologies, Fiber Bragg Grating (FBG) sensor is the most mature and widely used. FBG sensors can be realized in an array configuration with many FBGs in a single optical fiber. In the current project, different aspects of using embedded FBG for composite wind turbine monitoring are investigated. The activities are divided into two parts. Firstly, FBG embedded carbon composite laminate is subjected to tensile and bending loading to investigate the response of FBG which are placed in different orientations with respect to the fiber. Secondly, the demonstration of using FBG sensor array for temperature and strain sensing and monitoring of a 5 m long scale model of a glass fiber mono-pile is investigated. Two different FBG types are used; special in-house fibers and off-the-shelf ones. The results from the first part of the study are showing that the FBG sensors survive the conditions during the production of the laminate. The test results from the tensile and the bending experiments are indicating that the sensors successfully response to the change of strain. The measurements from the sensors will be correlated with the strain gauges that are placed on the surface of the laminates.

Keywords: Fiber Bragg Gratings, embedded sensors, health monitoring, wind turbine towers

Procedia PDF Downloads 243
1792 Effectiveness of Biopesticide against Insects Pest and Its Quality of Pomelo (Citrus maxima Merr.)

Authors: U. Pangnakorn, S. Chuenchooklin

Abstract:

Effect of biopesticide from wood vinegar and extracted substances from 3 medicinal plants such as: non taai yak (Stemona tuberosa Lour), boraphet (Tinospora crispa Mier) and derris (Derris elliptica Roxb) were tested on the age five years of pomelo. The selected pomelo was carried out for insects pest control and its quality. The experimental site was located at farmer’s orchard in Phichit Province, Thailand. This study was undertaken during the drought season (December to March). The extracted from plants and wood vinegar were evaluated in 6 treatments: 1) water as control; 2) wood vinegar; 3) S. tuberosa Lour; 4) T. crispa Mier; 5) D. elliptica Roxb; 6) mixed (wood vinegar + S. tuberosa Lour + T. crispa Mier + D. elliptica Roxb). The experiment was RCB with 6 treatments and 3 replications per treatment. The results showed that T. crispa Mier was the highest effectiveness for reduction population of thrips (Scirtothrips dorsalis Hood) and citrus leaf miner (Phyllocnistis citrella Stainton) at 14.10 and 15.37 respectively, followed by treatment of mixed, D. elliptica Roxb, S. tuberosa Lour and wood vinegar with significance different. Additionally, T. crispa Mier promoted the high quality of harvested pomelo in term of thickness of skin at 12.45 mm and S. tuberosa Lour gave the high quality of the pomelo in term of firmness (276.5 kg/cm2) and brix (11.0%).

Keywords: wood vinegar, medicinal plants, Pomelo (Citrus maxima Merr.), Thrips (Scirtothrips dorsalis Hood), citrus leaf miner (Phyllocnistis citrella Stainton)

Procedia PDF Downloads 373
1791 Pareto System of Optimal Placement and Sizing of Distributed Generation in Radial Distribution Networks Using Particle Swarm Optimization

Authors: Sani M. Lawal, Idris Musa, Aliyu D. Usman

Abstract:

The Pareto approach of optimal solutions in a search space that evolved in multi-objective optimization problems is adopted in this paper, which stands for a set of solutions in the search space. This paper aims at presenting an optimal placement of Distributed Generation (DG) in radial distribution networks with an optimal size for minimization of power loss and voltage deviation as well as maximizing voltage profile of the networks. And these problems are formulated using particle swarm optimization (PSO) as a constraint nonlinear optimization problem with both locations and sizes of DG being continuous. The objective functions adopted are the total active power loss function and voltage deviation function. The multiple nature of the problem, made it necessary to form a multi-objective function in search of the solution that consists of both the DG location and size. The proposed PSO algorithm is used to determine optimal placement and size of DG in a distribution network. The output indicates that PSO algorithm technique shows an edge over other types of search methods due to its effectiveness and computational efficiency. The proposed method is tested on the standard IEEE 34-bus and validated with 33-bus test systems distribution networks. Results indicate that the sizing and location of DG are system dependent and should be optimally selected before installing the distributed generators in the system and also an improvement in the voltage profile and power loss reduction have been achieved.

Keywords: distributed generation, pareto, particle swarm optimization, power loss, voltage deviation

Procedia PDF Downloads 364
1790 The Therapeutic Effects of Acupuncture on Oral Dryness and Antibody Modification in Sjogren Syndrome: A Meta-Analysis

Authors: Tzu-Hao Li, Yen-Ying Kung, Chang-Youh Tsai

Abstract:

Oral dryness is a common chief complaint among patients with Sjőgren syndrome (SS), which is a disorder currently known as autoantibodies production; however, to author’s best knowledge, there has been no satisfying pharmacy to relieve the associated symptoms. Hence the effectiveness of other non-pharmacological interventions such as acupuncture should be accessed. We conducted a meta-analysis of randomized clinical trials (RCTs) which evaluated the effectiveness of xerostomia in SS. PubMed, Embase, Cochrane Central Register of Controlled Trials (CENTRAL), Chongqing Weipu Database (CQVIP), China Academic Journals Full-text Database, AiritiLibrary, Chinese Electronic Periodicals Service (CEPS), China National Knowledge Infrastructure (CNKI) Database were searches through May 12, 2018 to select studies. Data for evaluation of subjective and objective xerostomia was extracted and was assessed with random-effects meta-analysis. After searching, a total of 541 references were yielded and five RCTs were included, covering 340 patients dry mouth resulted from SS, among whom 169 patients received acupuncture and 171 patients were control group. Acupuncture group was associated with higher subjective response rate (odds ratio 3.036, 95% confidence interval [CI] 1.828 – 5.042, P < 0.001) and increased salivary flow rate (weighted mean difference [WMD] 3.066, 95% CI 2.969 – 3.164, P < 0.001), as an objective marker. In addition, two studies examined IgG levels, which were lower in the acupuncture group (WMD -166.857, 95% CI -233.138 - -100.576, P < 0.001). Therefore, in the present meta-analysis, acupuncture improves both subjective and objective markers of dry mouth with autoantibodies reduction in patients with SS and is considered as an option of non-pharmacological treatment for SS.

Keywords: acupuncture, meta-analysis, Sjogren syndrome, xerostomia

Procedia PDF Downloads 125
1789 Planning for Sustainability in the Built Environment

Authors: Adedayo Jeremiah Adeyekun, Samuel Oluwagbemiga Ishola

Abstract:

This paper aimed to identify the significance of sustainability in the built environment, the economic and environmental importance to building and construction projects. Sustainability in the built environment has been a key objective of research over the past several decades. Sustainability in the built environment requires reconciliation between economic, environmental and social impacts of design and planning decisions made during the life cycle of a project from inception to termination. Planning for sustainability in the built environment needs us to go beyond our individual disciplines to consider the variety of economic, social and environmental impacts of our decisions in the long term. A decision to build a green residential development in an isolated location may pass some of the test of sustainability through its reduction in stormwater runoff, energy efficiency, and ecological sustainability in the building, but it may fail to be sustainable from a transportation perspective. Sustainability is important to the planning, design, construction, and preservation of the built environment; because it helps these activities reflect multiple values and considerations. In fact, the arts and sciences of the built environment have traditionally integrated values and fostered creative expression, capabilities that can and should lead the sustainability movement as society seeks ways to live in dynamic balance with its own diverse needs and the natural world. This research aimed to capture the state-of-the-art in the development of innovative sustainable design and planning strategies for building and construction projects. Therefore, there is a need for a holistic selection and implication approach for identifying potential sustainable strategies applicable to a particular project and evaluating the overall life cycle impact of each alternative by accounting for different applicable impacts and making the final selection among various viable alternatives.

Keywords: sustainability, built environment, planning, design, construction

Procedia PDF Downloads 176
1788 Patterns of Malignant and Benign Breast Lesions in Hail Region: A Retrospective Study at King Khalid Hospital

Authors: Laila Seada, Ashraf Ibrahim, Amjad Al Shammari

Abstract:

Background and Objectives: Breast carcinoma is the most common cancer of females in Hail region, accounting for 31% of all diagnosed cancer cases followed by thyroid carcinoma (25%) and colorectal carcinoma (13%). Methods: In the present retrospective study, all cases of breast lesions received at the histopathology department in King Khalid Hospital, Hail, during the period from May 2011 to April 2016 have been retrieved from department files. For all cases, a trucut biopsy, lumpectomy, or modified radical mastectomy was available for histopathologic diagnosis, while 105/140 (75%) had, as well, preoperative fine needle aspirates (FNA). Results: 49 cases out of 140 (35%) breast lesions were carcinomas: 44/49 (89.75%) was invasive ductal, 2/49(4.1%) invasive lobular carcinomas, 1/49(2.05%) intracystic low grade papillary carcinoma and 2/49 (4.1%) ductal carcinoma in situ (DCIS). Mean age for malignant cases was 45.06 (+/-10.58): 32.6% were below the age of 40 and 30.6 below 50 years, 18.3% below 60 and 16.3% below 70 years. For the benign group, mean age was 32.52 (+/10.5) years. Benign lesions were in order of frequency: 34 fibroadenomas, 14 fibrocystic disease, 12 chronic mastitis, five granulomatous mastitis, three intraductal papillomas, and three benign phyllodes tumor. Tubular adenoma, lipoma, skin nevus, pilomatrixoma, and breast reduction specimens constituted the remaining specimens. Conclusion: Breast lesions are common in our series and invasive carcinoma accounts for more than 1/3rd of the lumps, with 63.2% incidence in pre-menopausal ladies, below the age of 50 years. FNA as a non-invasive procedure, proved to be an effective tool in diagnosing both benign and malignant/suspicious breast lumps and should continue to be used as a first assessment line of palpable breast masses.

Keywords: age incidence, breast carcinoma, fine needle aspiration, hail region

Procedia PDF Downloads 279
1787 Computational Investigation of Secondary Flow Losses in Linear Turbine Cascade by Modified Leading Edge Fence

Authors: K. N. Kiran, S. Anish

Abstract:

It is well known that secondary flow loses account about one third of the total loss in any axial turbine. Modern gas turbine height is smaller and have longer chord length, which might lead to increase in secondary flow. In order to improve the efficiency of the turbine, it is important to understand the behavior of secondary flow and device mechanisms to curtail these losses. The objective of the present work is to understand the effect of a stream wise end-wall fence on the aerodynamics of a linear turbine cascade. The study is carried out computationally by using commercial software ANSYS CFX. The effect of end-wall on the flow field are calculated based on RANS simulation by using SST transition turbulence model. Durham cascade which is similar to high-pressure axial flow turbine for simulation is used. The aim of fencing in blade passage is to get the maximum benefit from flow deviation and destroying the passage vortex in terms of loss reduction. It is observed that, for the present analysis, fence in the blade passage helps reducing the strength of horseshoe vortex and is capable of restraining the flow along the blade passage. Fence in the blade passage helps in reducing the under turning by 70 in comparison with base case. Fence on end-wall is effective in preventing the movement of pressure side leg of horseshoe vortex and helps in breaking the passage vortex. Computations are carried for different fence height whose curvature is different from the blade camber. The optimum fence geometry and location reduces the loss coefficient by 15.6% in comparison with base case.

Keywords: boundary layer fence, horseshoe vortex, linear cascade, passage vortex, secondary flow

Procedia PDF Downloads 349
1786 Supercritical Water Gasification of Organic Wastes for Hydrogen Production and Waste Valorization

Authors: Laura Alvarez-Alonso, Francisco Garcia-Carro, Jorge Loredo

Abstract:

Population growth and industrial development imply an increase in the energy demands and the problems caused by emissions of greenhouse effect gases, which has inspired the search for clean sources of energy. Hydrogen (H₂) is expected to play a key role in the world’s energy future by replacing fossil fuels. The properties of H₂ make it a green fuel that does not generate pollutants and supplies sufficient energy for power generation, transportation, and other applications. Supercritical Water Gasification (SCWG) represents an attractive alternative for the recovery of energy from wastes. SCWG allows conversion of a wide range of raw materials into a fuel gas with a high content of hydrogen and light hydrocarbons through their treatment at conditions higher than those that define the critical point of water (temperature of 374°C and pressure of 221 bar). Methane used as a transport fuel is another important gasification product. The number of different uses of gas and energy forms that can be produced depending on the kind of material gasified and type of technology used to process it, shows the flexibility of SCWG. This feature allows it to be integrated with several industrial processes, as well as power generation systems or waste-to-energy production systems. The final aim of this work is to study which conditions and equipment are the most efficient and advantageous to explore the possibilities to obtain streams rich in H₂ from oily wastes, which represent a major problem both for the environment and human health throughout the world. In this paper, the relative complexity of technology needed for feasible gasification process cycles is discussed with particular reference to the different feedstocks that can be used as raw material, different reactors, and energy recovery systems. For this purpose, a review of the current status of SCWG technologies has been carried out, by means of different classifications based on key features as the feed treated or the type of reactor and other apparatus. This analysis allows to improve the technology efficiency through the study of model calculations and its comparison with experimental data, the establishment of kinetics for chemical reactions, the analysis of how the main reaction parameters affect the yield and composition of products, or the determination of the most common problems and risks that can occur. The results of this work show that SCWG is a promising method for the production of both hydrogen and methane. The most significant choices of design are the reactor type and process cycle, which can be conveniently adopted according to waste characteristics. Regarding the future of the technology, the design of SCWG plants is still to be optimized to include energy recovery systems in order to reduce costs of equipment and operation derived from the high temperature and pressure conditions that are necessary to convert water to the SC state, as well as to find solutions to remove corrosion and clogging of components of the reactor.

Keywords: hydrogen production, organic wastes, supercritical water gasification, system integration, waste-to-energy

Procedia PDF Downloads 147
1785 Livability and Growth Performance of Noiler Chickens Fed with Different Biotic Additives

Authors: Idowu Kemi Ruth, Adeyemo Adedayo Akinade, Iyanda Adegboyega Ibukun, Idowu Olubukola Precious Akinade

Abstract:

Liveability and mortality rate is a germane aspect of product performance that cannot be overlooked in poultry production, while the disease is a major threat in the poultry industry which can cause a major loss for the farmer and a reduction in the total income generated from the stock. Therefore, efforts must be made to enhance the health status of chickens to reduce mortality. The study was conducted to investigate the effect of different biotic additives (prebiotic, probiotic and synbiotic ) on the performance of Noiler females at the growing phase (forty-nine days) till the point of the first egg across the biotic additive. A total of one hundred and twenty-eight female Noiler were used for the experiment. Experimental treatment consisted of prebiotic, probiotic, synbiotic and control at the inclusion rate of a gram into a kilogram of feed. Parameters measured are Feed intake, feed conversion ratio, the weight of the first egg, age of the first egg and livability. Data collected were subjected to a one-way analysis of variance. The result obtained revealed a better growth performance across the treatments than the control group with the least final weight at nineteen weeks of point of lay. Prebiotic treatment had the best age at first lay on day one hundred and thirty seven followed by other treatments on day one hundred and fifty four. However, the size of the eggs was not significantly influenced by the biotic additive. Hence, the experiment can be concluded that the inclusion of different biotic additives influenced the growth performance; likewise, the Prebiotic had a significant effect on the age of first laying in Noiler chicken, and livability was a hundred percent throughout the duration of the experiment.

Keywords: prebiotic, probiotic, synbiotic, noiler

Procedia PDF Downloads 94
1784 Intelligent Fault Diagnosis for the Connection Elements of Modular Offshore Platforms

Authors: Jixiang Lei, Alexander Fuchs, Franz Pernkopf, Katrin Ellermann

Abstract:

Within the Space@Sea project, funded by the Horizon 2020 program, an island consisting of multiple platforms was designed. The platforms are connected by ropes and fenders. The connection is critical with respect to the safety of the whole system. Therefore, fault detection systems are investigated, which could detect early warning signs for a possible failure in the connection elements. Previously, a model-based method called Extended Kalman Filter was developed to detect the reduction of rope stiffness. This method detected several types of faults reliably, but some types of faults were much more difficult to detect. Furthermore, the model-based method is sensitive to environmental noise. When the wave height is low, a long time is needed to detect a fault and the accuracy is not always satisfactory. In this sense, it is necessary to develop a more accurate and robust technique that can detect all rope faults under a wide range of operational conditions. Inspired by this work on the Space at Sea design, we introduce a fault diagnosis method based on deep neural networks. Our method cannot only detect rope degradation by using the acceleration data from each platform but also estimate the contributions of the specific acceleration sensors using methods from explainable AI. In order to adapt to different operational conditions, the domain adaptation technique DANN is applied. The proposed model can accurately estimate rope degradation under a wide range of environmental conditions and help users understand the relationship between the output and the contributions of each acceleration sensor.

Keywords: fault diagnosis, deep learning, domain adaptation, explainable AI

Procedia PDF Downloads 180
1783 Detection and Molecular Identification of Bacteria Forming Polyhydroxyalkanoate and Polyhydroxybutyrate Isolated from Soil in Saudi Arabia

Authors: Ali Bahkali, Rayan Yousef Booq, Mohammad Khiyami

Abstract:

Soil samples were collected from five different regions in the Kingdom of Saudi Arabia. Microbiological methods included dilution methods and pour plates to isolate and purify bacteria soil. The ability of isolates to develop biopolymer was investigated on petri dishes containing elements and substance concentrations stimulating developing biopolymer. Fluorescent stains, Nile red and Nile blue were used to stain the bacterial cells developing biopolymers. In addition, Sudan black was used to detect biopolymers in bacterial cells. The isolates which developed biopolymers were identified based on their gene sequence of 1 6sRNA and their ability to grow and synthesize PHAs on mineral medium supplemented with 1% dates molasses as the only carbon source under nitrogen limitation. During the study 293 bacterial isolates were isolated and detected. Through the initial survey on the petri dishes, 84 isolates showed the ability to develop biopolymers. These bacterial colonies developed a pink color due to accumulation of the biopolymers in the cells. Twenty-three isolates were able to grow on dates molasses, three strains of which showed the ability to accumulate biopolymers. These strains included Bacillus sp., Ralstonia sp. and Microbacterium sp. They were detected by Nile blue A stain with fluorescence microscopy (OLYMPUS IX 51). Among the isolated strains Ralstonia sp. was selected after its ability to grow on molasses dates in the presence of a limited nitrogen source was detected. The optimum conditions for formation of biopolymers by isolated strains were investigated. Conditions studied included, best incubation duration (2 days), temperature (30°C) and pH (7-8). The maximum PHB production was raised by 1% (v1v) when using concentrations of dates molasses 1, 2, 3, 4 and 5% in MSM. The best inoculated with 1% old inoculum (1= OD). The ideal extraction method of PHA and PHB proved to be 0.4% sodium hypochlorite solution, producing a quantity of polymer 98.79% of the cell's dry weight. The maximum PHB production was 1.79 g/L recorded by Ralstonia sp. after 48 h, while it was 1.40 g/L produced by R.eutropha ATCC 17697 after 48 h.

Keywords: bacteria forming polyhydroxyalkanoate, detection, molecular, Saudi Arabia

Procedia PDF Downloads 347
1782 Insights and Observation for Optimum Work Roll Cooling in Flat Hot Mills: A Case Study on Shape Defect Elimination

Authors: Uday S. Goel, G. Senthil Kumar, Biswajit Ghosh, V. V. Mahashabde, Dhirendra Kumar, H. Manjunath, Ritesh Kumar, Mahesh Bhagwat, Subodh Pandey

Abstract:

Tata Steel Bhushan Steel Ltd.(TSBSL)’s Hot Mill at Angul , Orissa , India, was facing shape issues in Hot Rolled (HR) coils. This was resulting in a defect called as ‘Ridge’, which was appearing in subsequent cold rolling operations at various cold mills (CRM) and external customers. A collaborative project was undertaken to resolve this issue. One of the reasons identified was the strange drop in thermal crown after rolling of 20-25 coils in the finishing mill (FM ) schedule. On the shop floor, it was observed that work roll temperatures in the FM after rolling were very high and non uniform across the work roll barrel. Jammed work roll cooling nozzles, insufficient roll bite lubrication and inadequate roll cooling water quality were found to be the main reasons. Regular checking was initiated to check roll cooling nozzles health, and quick replacement done if found jammed was implemented. Improvements on roll lubrication, especially flow rates, was done. Usage of anti-peeling headers and inter stand descaling was enhanced. A subsequent project was also taken up for improving the quality of roll cooling water. Encouraging results were obtained from the project with a reduction in rejection due to ridge at CRM’s by almost 95% of the pre project start levels. Poor profile occurrence of HR coils at HSM was also reduced from a high of 32% in May’19 to <1% since Apr’20.

Keywords: hot rolling flat, shape, ridge, work roll, roll cooling nozzle, lubrication

Procedia PDF Downloads 98
1781 The Effect of Shredded Polyurethane Foams on Shear Modulus and Damping Ratio of Sand

Authors: Javad Saeidaskari, Nader Khalafian

Abstract:

The undesirable impact of vibrations induced by road and railway traffic is an important concern in modern world. These vibrations are transmitted through soil and cause disturbances to the residence area and high-tech production facilities alongside the train/traffic lines. In this paper for the first time a new method of soil improvement with vibration absorber material, is used to increase the damping factor, in other word, to reduce the ability of wave transitions in sand. In this study standard Firoozkooh No. 161 sand is used as the host sand. The semi rigid polyurethane (PU) foam which used in this research is one of the common materials for vibration absorbing purposes. Series of cyclic triaxial tests were conducted on remolded samples with identical relative density of 70% of maximum dry density for different volume percentage of shredded PU foam. The frequency of tests was 0.1 Htz with shear strain of 0.37% and 0.75% and also the effective confining pressures during the tests were 100 kPa and 350 kPa. In order to find out the best soil-PU foam mixture, different volume percent of PU foam varying from 10% to 30% were examined. The results show that adding PU foam up to 20%, as its optimum content, causes notable enhancement in damping ratio for both shear strains of 0.37% (52.19% and 69% increase for effective confining pressures of 100 kPa and 350 kPa, respectively) and 0.75% (59.56% and 59.11% increase for effective confining pressures of 100 kPa and 350 kPa, respectively). The results related to shear modulus present significant reduction for both shear strains of 0.37% (82.22% and 56.03% decrease for effective confining pressures of 100 kPa and 350 kPa, respectively) and 0.75% (89.32% and 39.9% decrease for effective confining pressures of 100 kPa and 350 kPa, respectively). In conclusion, shredded PU foams effectively affect the dynamic properties of sand and act as vibration absorber in soil.

Keywords: polyurethane foam, sand, damping ratio, shear modulus

Procedia PDF Downloads 449
1780 Triangular Libration Points in the R3bp under Combined Effects of Oblateness, Radiation and Power-Law Profile

Authors: Babatunde James Falaye, Shi Hai Dong, Kayode John Oyewumi

Abstract:

We study the e ffects of oblateness up to J4 of the primaries and power-law density pro file (PDP) on the linear stability of libration location of an in nitesimal mass within the framework of restricted three body problem (R3BP), by using a more realistic model in which a disc with PDP is rotating around the common center of the system mass with perturbed mean motion. The existence and stability of triangular equilibrium points have been explored. It has been shown that triangular equilibrium points are stable for 0 < μ < μc and unstable for μc ≤ μ ≤ 1/2, where c denotes the critical mass parameter. We find that, the oblateness up to J2 of the primaries and the radiation reduces the stability range while the oblateness up to J4 of the primaries increases the size of stability both in the context where PDP is considered and ignored. The PDP has an e ect of about ≈0:01 reduction on the application of c to Earth-Moon and Jupiter-Moons systems. We find that the comprehensive eff ects of the perturbations have a stabilizing proclivity. However, the oblateness up to J2 of the primaries and the radiation of the primaries have tendency for instability, while coecients up to J4 of the primaries have stability predisposition. In the limiting case c = 0, and also by setting appropriate parameter(s) to zero, our results are in excellent agreement with the ones obtained previously. Libration points play a very important role in space mission and as a consequence, our results have a practical application in space dynamics and related areas. The model may be applied to study the navigation and station-keeping operations of spacecraft (in nitesimal mass) around the Jupiter (more massive) -Callisto (less massive) system, where PDP accounts for the circumsolar ring of asteroidal dust, which has a cloud of dust permanently in its wake.

Keywords: libration points, oblateness, power-law density profile, restricted three-body problem

Procedia PDF Downloads 326
1779 Microbial Pathogens Associated with Banded Sugar Ants (Camponotus consobrinus) in Calabar, Nigeria

Authors: Ofonime Ogba, Augustine Akpan

Abstract:

Objectives and Goals: The study was aimed at determining pathogenic microbial carriage on the external body parts of Camponotus consobrinus which is also known as the banded sugar ant because of its liking for sugar and sweet food. The level of pathogenic microbial carriage of Camponotus consobrinus in association to the environment in which they have been collected is not known. Methods: The ants were purposively collected from four locations including the kitchens, bedroom of various homes, food shops, and bakeries. The sample collection took place within the hours of 6:30 pm to 11:00 pm. The ants were trapped in transparent plastic containers of which sugar, pineapple peels, sugar cane and soft drinks were used as bait. The ants were removed with a sterile spatula and put in 10mls of peptone water in sterile universal bottles. The containers were vigorously shaken to wash the external surface of the ant. It was left overnight and transported to the Microbiology Laboratory, University of Calabar Teaching Hospital for analysis. The overnight peptone broths were inoculated on Chocolate agar, Blood agar, Cystine Lactose Electrolyte-Deficient agar (CLED) and Sabouraud dextrose agar. Incubation was done aerobically and in a carbon dioxide jar for 24 to 48 hours at 37°C. Isolates were identified based on colonial characteristics, Gram staining, and biochemical tests. Results: Out of the 250 Camponotus consobrinus caught for the study, 90(36.0%) were caught in the kitchen, 75(30.0%) in the bedrooms 40(16.0%) in the bakery while 45(18.0%) were caught in the shops. A total of 82.0% prevalence of different microbial isolates was associated with the ants. The kitchen had the highest number of isolates 75(36.6%) followed by the bedroom 55(26.8%) while the bakery recorded the lowest number of isolates 35(17.1%). The profile of micro-organisms associated with Camponotus consobrinus was Escherichia coli 73(30.0%), Morganella morganii 45(18.0%), Candida species 25(10.0%), Serratia marcescens 10(4.0%) and Citrobacter freundii 10(4.0%). Conclusion: Most of the Camponotus consobrinus examined in the four locations harboured potential pathogens. The presence of ants in homes and shops can facilitate the propagation and spread of pathogenic microorganisms. Therefore, the development of basic preventive measures and the control of ants must be taken seriously.

Keywords: Camponotus consobrinus, potential pathogens, microbial isolates, spread

Procedia PDF Downloads 166
1778 Performance Evaluation of Conical Solar Concentrator System with Different Flow Rate

Authors: Gwi Hyun Lee, Mun Soo Na

Abstract:

Solar energy has many advantages of infinite and clean source, and also it can be used for reduction of greenhouse gases and environment pollution. Concentrated solar system is a very useful to achieve reasonably high thermal efficiency. Different types of solar concentrating systems have been developed such as parabolic trough and parabolic dish. Conical solar concentrator is one of the most reliable and promising renewable energy systems for higher temperature applications. The objectives of this study were to investigate the influence of flow rate affecting the thermal efficiency of a conical solar collector, which has a double tube absorber placed at focal axis for collecting solar radiation. A conical solar concentrator consists of a conical reflector, which reflects direct solar radiation into an absorber. A double tube absorber was placed at the center of focal axis for collecting the solar radiation reflected from a conical reflector. A dual tracking system consists of a linear actuator and slew drive with driving cycle of 6 seconds. Water was used as circulating fluid, which flows from inlet to outlet of an absorber for collecting solar radiation. Three identical conical solar concentrator systems were installed side by side at the same place for the accurate performance analysis under the same environmental conditions. Performance evaluations were carried out with different volumetric flow rate of 2, 4 and 6 L/min to find the influence of flow rate affecting on thermal efficiency. The results indicated that average thermal efficiency was 73.24%, 81.96%, and 79.78% for each flow rate of 2 L/min, 4 L/min, and 6 L/min. It shows that the flow rate of circulating water has a significant effect on the thermal efficiency of the conical solar concentrator. It is concluded that an optimum flow rate of conical solar concentrator is 6 L/min.

Keywords: conical solar concentrator, performance evaluation, solar energy, solar energy system

Procedia PDF Downloads 279
1777 Non-Linear Finite Element Investigation on the Behavior of CFRP Strengthened Steel Square HSS Columns under Eccentric Loading

Authors: Tasnuba Binte Jamal, Khan Mahmud Amanat

Abstract:

Carbon Fiber-Reinforced Polymer (CFRP) composite materials have proven to have valuable properties and suitability to be used in the construction of new buildings and in upgrading the existing ones due to its effectiveness, ease of implementation and many more. In the present study, a numerical finite element investigation has been conducted using ANSYS 18.1 to study the behavior of square HSS AISC sections under eccentric compressive loading strengthened with CFRP materials. A three-dimensional finite element model for square HSS section using shell element was developed. Application of CFRP strengthening was incorporated in the finite element model by adding an additional layer of shell elements. Both material and geometric nonlinearities were incorporated in the model. The developed finite element model was applied to simulate experimental studies done by past researchers and it was found that good agreement exists between the current analysis and past experimental results, which established the acceptability and validity of the developed finite element model to carry out further investigation. Study was then focused on some selected non-compact AISC square HSS columns and the effects of number of CFRP layers, amount of eccentricities and cross-sectional geometry on the strength gain of those columns were observed. Load was applied at a distance equal to the column dimension and twice that of column dimension. It was observed that CFRP strengthening is comparatively effective for smaller eccentricities. For medium sized sections, strengthening tends to be effective at smaller eccentricities as well. For relatively large AISC square HSS columns, with increasing number of CFRP layers (from 1 to 3 layers) the gain in strength is approximately 1 to 38% to that of unstrengthened section for smaller eccentricities and slenderness ratio ranging from 27 to 54. For medium sized square HSS sections, effectiveness of CFRP strengthening increases approximately by about 12 to 162%. The findings of the present study provide a better understanding of the behavior of HSS sections strengthened with CFRP subjected to eccentric compressive load.

Keywords: CFRP strengthening, eccentricity, finite element model, square hollow section

Procedia PDF Downloads 144
1776 Numerical Simulations of Acoustic Imaging in Hydrodynamic Tunnel with Model Adaptation and Boundary Layer Noise Reduction

Authors: Sylvain Amailland, Jean-Hugh Thomas, Charles Pézerat, Romuald Boucheron, Jean-Claude Pascal

Abstract:

The noise requirements for naval and research vessels have seen an increasing demand for quieter ships in order to fulfil current regulations and to reduce the effects on marine life. Hence, new methods dedicated to the characterization of propeller noise, which is the main source of noise in the far-field, are needed. The study of cavitating propellers in closed-section is interesting for analyzing hydrodynamic performance but could involve significant difficulties for hydroacoustic study, especially due to reverberation and boundary layer noise in the tunnel. The aim of this paper is to present a numerical methodology for the identification of hydroacoustic sources on marine propellers using hydrophone arrays in a large hydrodynamic tunnel. The main difficulties are linked to the reverberation of the tunnel and the boundary layer noise that strongly reduce the signal-to-noise ratio. In this paper it is proposed to estimate the reflection coefficients using an inverse method and some reference transfer functions measured in the tunnel. This approach allows to reduce the uncertainties of the propagation model used in the inverse problem. In order to reduce the boundary layer noise, a cleaning algorithm taking advantage of the low rank and sparse structure of the cross-spectrum matrices of the acoustic and the boundary layer noise is presented. This approach allows to recover the acoustic signal even well under the boundary layer noise. The improvement brought by this method is visible on acoustic maps resulting from beamforming and DAMAS algorithms.

Keywords: acoustic imaging, boundary layer noise denoising, inverse problems, model adaptation

Procedia PDF Downloads 335
1775 Review of Capitalization of Construction Industry on Sustainable Risk Management in Nigeria

Authors: Nnadi Ezekiel Ejiofor

Abstract:

The construction industry plays a decisive role in the healthy development of any nation. Not only large but even small construction projects contribute to a country’s economic growth. There is a need for good management to ensure successful delivery and sustainability because of the plethora of risks that have resulted in low-profit margins for contractors, cost and schedule overruns, poor quality delivery, and abandoned projects. This research reviewed Capitalization on Sustainable Risk Management. Questionnaires and oral interviews conducted were utilized as means of data collection. One hundred and ninety-eight (198) large construction firms in Nigeria form the population of this study. 15 (fifteen) companies that emanated from merger and acquisition were used for the study. The instruments used for data collection were a researcher-developed structured questionnaire based on a five-point rating scale, interviews, focus group discussion, and secondary sources (bill of quantities and stock and exchange commission). The instrument was validated by two experts in the field. The reliability of the instrument was established by applying the split-half method. Kendall’s coefficient of concordance was used to test the data, and a degree of agreement was obtained. Data were subjected to descriptive statistics and analyzed using analysis of variance, t-test, and SPSS. The identified impacts of capitalization were an increase in turnover (24.5%), improvement in the image (24.5%), risk reduction (20%), business expansion (17.3%), and geographical spread (13.6%). The study strongly advocates the inclusion of risk management evaluation as part of the construction procurement process.

Keywords: capitalization, project delivery, risks, risk management, sustainability

Procedia PDF Downloads 59
1774 A Preparatory Method for Building Construction Implemented in a Case Study in Brazil

Authors: Aline Valverde Arroteia, Tatiana Gondim do Amaral, Silvio Burrattino Melhado

Abstract:

During the last twenty years, the construction field in Brazil has evolved significantly in response to its market growing and competitiveness. However, this evolving path has faced many obstacles such as cultural barriers and the lack of efforts to achieve quality at the construction site. At the same time, the greatest amount of information generated on the designing or construction phases is lost due to the lack of an effective coordination of these activities. Face this problem, the aim of this research was to implement a French method named PEO which means preparation for building construction (in Portuguese) seeking to understand the design management process and its interface with the building construction phase. The research method applied was qualitative, and it was carried out through two case studies in the city of Goiania, in Goias, Brazil. The research was divided into two stages called pilot study at Company A and implementation of PEO at Company B. After the implementation; the results demonstrated the PEO method's effectiveness and feasibility while a booster on the quality improvement of design management. The analysis showed that the method has a purpose to improve the design and allow the reduction of failures, errors and rework commonly found in the production of buildings. Therefore, it can be concluded that the PEO is feasible to be applied to real estate and building companies. But, companies need to believe in the contribution they can make to the discovery of design failures in conjunction with other stakeholders forming a construction team. The result of PEO can be maximized when adopting the principles of simultaneous engineering and insertion of new computer technologies, which use a three-dimensional model of the building with BIM process.

Keywords: communication, design and construction interface management, preparation for building construction (PEO), proactive coordination (CPA)

Procedia PDF Downloads 161
1773 Reactive Learning about Food Waste Reduction in a Food Processing Plant in Gauteng Province, South Africa

Authors: Nesengani Elelwani Clinton

Abstract:

This paper presents reflective learning as an opportunity commonly available and used for food waste learning in a food processing company in the transition to sustainable and just food systems. In addressing how employees learn about food waste during food processing, the opportunities available for food waste learning were investigated. Reflective learning appeared to be the most used approach to learning about food waste. In the case of food waste learning, reflective learning was a response after employees wasted a substantial amount of food, where process controllers and team leaders would highlight the issue to employees who wasted food and explain how food waste could be reduced. This showed that learning about food waste is not proactive, and there continues to be a lack of structured learning around food waste. Several challenges were highlighted around reflective learning about food waste. Some of the challenges included understanding the language, lack of interest from employees, set times to reach production targets, and working pressures. These challenges were reported to be hindering factors in understanding food waste learning, which is not structured. A need was identified for proactive learning through structured methods. This is because it was discovered that in the plant, where food processing activities happen, the signage and posters that are there are directly related to other sustainability issues such as food safety and health. This indicated that there are low levels of awareness about food waste. Therefore, this paper argues that food waste learning should be proactive. The proactive learning approach should include structured learning materials around food waste during food processing. In the structuring of the learning materials, individual trainers should be multilingual. This will make it possible for those who do not understand English to understand in their own language. And lastly, there should be signage and posters in the food processing plant around food waste. This will bring more awareness around food waste, and employees' behaviour can be influenced by the posters and signage in the food processing plant. Thus, will enable a transition to a just and sustainable food system.

Keywords: sustainable and just food systems, food waste, food waste learning, reflective learning approach

Procedia PDF Downloads 129
1772 Hybrid Renewable Energy Systems for Electricity and Hydrogen Production in an Urban Environment

Authors: Same Noel Ngando, Yakub Abdulfatai Olatunji

Abstract:

Renewable energy micro-grids, such as those powered by solar or wind energy, are often intermittent in nature. This means that the amount of energy generated by these systems can vary depending on weather conditions or other factors, which can make it difficult to ensure a steady supply of power. To address this issue, energy storage systems have been developed to increase the reliability of renewable energy micro-grids. Battery systems have been the dominant energy storage technology for renewable energy micro-grids. Batteries can store large amounts of energy in a relatively small and compact package, making them easy to install and maintain in a micro-grid setting. Additionally, batteries can be quickly charged and discharged, allowing them to respond quickly to changes in energy demand. However, the process involved in recycling batteries is quite costly and difficult. An alternative energy storage system that is gaining popularity is hydrogen storage. Hydrogen is a versatile energy carrier that can be produced from renewable energy sources such as solar or wind. It can be stored in large quantities at low cost, making it suitable for long-distance mass storage. Unlike batteries, hydrogen does not degrade over time, so it can be stored for extended periods without the need for frequent maintenance or replacement, allowing it to be used as a backup power source when the micro-grid is not generating enough energy to meet demand. When hydrogen is needed, it can be converted back into electricity through a fuel cell. Energy consumption data is got from a particular residential area in Daegu, South Korea, and the data is processed and analyzed. From the analysis, the total energy demand is calculated, and different hybrid energy system configurations are designed using HOMER Pro (Hybrid Optimization for Multiple Energy Resources) and MATLAB software. A techno-economic and environmental comparison and life cycle assessment (LCA) of the different configurations using battery and hydrogen as storage systems are carried out. The various scenarios included PV-hydrogen-grid system, PV-hydrogen-grid-wind, PV-hydrogen-grid-biomass, PV-hydrogen-wind, PV-hydrogen-biomass, biomass-hydrogen, wind-hydrogen, PV-battery-grid-wind, PV- battery -grid-biomass, PV- battery -wind, PV- battery -biomass, and biomass- battery. From the analysis, the least cost system for the location was the PV-hydrogen-grid system, with a net present cost of about USD 9,529,161. Even though all scenarios were environmentally friendly, taking into account the recycling cost and pollution involved in battery systems, all systems with hydrogen as a storage system produced better results. In conclusion, hydrogen is becoming a very prominent energy storage solution for renewable energy micro-grids. It is easier to store compared with electric power, so it is suitable for long-distance mass storage. Hydrogen storage systems have several advantages over battery systems, including flexibility, long-term stability, and low environmental impact. The cost of hydrogen storage is still relatively high, but it is expected to decrease as more hydrogen production, and storage infrastructure is built. With the growing focus on renewable energy and the need to reduce greenhouse gas emissions, hydrogen is expected to play an increasingly important role in the energy storage landscape.

Keywords: renewable energy systems, microgrid, hydrogen production, energy storage systems

Procedia PDF Downloads 94
1771 The Effects of L-Arginine Supplementation on Clinical Symptoms, Quality of Life, and Anal Internal Sphincter Pressure in Patients with Chronic Anal Fissure

Authors: Masoumeh Khailghi Sikaroudi, Mohsen Masoodi, Fazad Shidfar, Meghdad Sedaghat

Abstract:

Background: The hypertonicity of internal anal sphincter resting pressure is one of the main reasons for chronic anal fissures. The aim of this study is to assess the effect of oral administration of L-arginine on anal fissure symptom improvement by relaxation of the internal anal sphincter. Method: Seventy-six chronic anal fissure patients (age: 18-65 years) took part in this randomized, double-blind, placebo-controlled trial study from February 2019 to October 2020 at Rasoul-e-Akram Hospital, Tehran, Iran. Participants were allocated into treatment (L-arginine) or placebo groups. They took a 1000 mg capsule three times a day for one month and were followed up at the end of the first and third months after receiving the intervention. Clinical symptoms, anal sphincter resting pressure, and quality of life (QoL) were completed at baseline and the end of the study. Result: The analysis of data was shown significant improvement in bleeding, fissure size, and pain within each group; however, this effect was more seen in the arginine group compared to the control group at the end of the study (P-values<0.001). Following that, a significant increase in QoL was seen just in patients who were treated with arginine (P-value=0.006). Also, the comparison of anal pressures to baseline and between groups at the end of the study showed a significant reduction in sphincter pressure in treated patients (P-value<0.001, =0.049; respectively). Conclusion: Oral administration of 3000 mg L-arginine can heal chronic anal fissures by reducing anal internal sphincter pressure with fewer side effects. However, a long-term study with more follow-up is recommended.

Keywords: L-arginine, anal fissure, sphincter pressure, clinical symptoms, quality of life

Procedia PDF Downloads 72
1770 Impact of Unusual Dust Event on Regional Climate in India

Authors: Kanika Taneja, V. K. Soni, Kafeel Ahmad, Shamshad Ahmad

Abstract:

A severe dust storm generated from a western disturbance over north Pakistan and adjoining Afghanistan affected the north-west region of India between May 28 and 31, 2014, resulting in significant reductions in air quality and visibility. The air quality of the affected region degraded drastically. PM10 concentration peaked at a very high value of around 1018 μgm-3 during dust storm hours of May 30, 2014 at New Delhi. The present study depicts aerosol optical properties monitored during the dust days using ground based multi-wavelength Sky radiometer over the National Capital Region of India. High Aerosol Optical Depth (AOD) at 500 nm was observed as 1.356 ± 0.19 at New Delhi while Angstrom exponent (Alpha) dropped to 0.287 on May 30, 2014. The variation in the Single Scattering Albedo (SSA) and real n(λ) and imaginary k(λ) parts of the refractive index indicated that the dust event influences the optical state to be more absorbing. The single scattering albedo, refractive index, volume size distribution and asymmetry parameter (ASY) values suggested that dust aerosols were predominant over the anthropogenic aerosols in the urban environment of New Delhi. The large reduction in the radiative flux at the surface level caused significant cooling at the surface. Direct Aerosol Radiative Forcing (DARF) was calculated using a radiative transfer model during the dust period. A consistent increase in surface cooling was evident, ranging from -31 Wm-2 to -82 Wm-2 and an increase in heating of the atmosphere from 15 Wm-2 to 92 Wm-2 and -2 Wm-2 to 10 Wm-2 at top of the atmosphere.

Keywords: aerosol optical properties, dust storm, radiative transfer model, sky radiometer

Procedia PDF Downloads 377
1769 Kinetic Study of Municipal Plastic Waste

Authors: Laura Salvia Diaz Silvarrey, Anh Phan

Abstract:

Municipal Plastic Waste (MPW) comprises a mixture of thermoplastics such as high and low density polyethylene (HDPE and LDPE), polypropylene (PP), polystyrene (PS) and polyethylene terephthalate (PET). Recycling rate of these plastics is low, e.g. only 27% in 2013. The remains were incinerated or disposed in landfills. As MPW generation increases approximately 5% per annum, MPW management technologies have to be developed to comply with legislation . Pyrolysis, thermochemical decomposition, provides an excellent alternative to convert MPW into valuable resources like fuels and chemicals. Most studies on waste plastic kinetics only focused on HDPE and LDPE with a simple assumption of first order decomposition, which is not the real reaction mechanism. The aim of this study was to develop a kinetic study for each of the polymers in the MPW mixture using thermogravimetric analysis (TGA) over a range of heating rates (5, 10, 20 and 40°C/min) in N2 atmosphere and sample size of 1 – 4mm. A model-free kinetic method was applied to quantify the activation energy at each level of conversion. Kissinger–Akahira–Sunose (KAS) and Flynn–Wall–Ozawa (FWO) equations jointly with Master Plots confirmed that the activation energy was not constant along all the reaction for all the five plastic studied, showing that MPW decomposed through a complex mechanism and not by first-order kinetics. Master plots confirmed that MPW decomposed following a random scission mechanism at conversions above 40%. According to the random scission mechanism, different radicals are formed along the backbone producing the cleavage of bonds by chain scission into molecules of different lengths. The cleavage of bonds during random scission follows first-order kinetics and it is related with the conversion. When a bond is broken one part of the initial molecule becomes an unsaturated one and the other a terminal free radical. The latter can react with hydrogen from and adjacent carbon releasing another free radical and a saturated molecule or reacting with another free radical and forming an alkane. Not every time a bonds is broken a molecule is evaporated. At early stages of the reaction (conversion and temperature below 40% and 300°C), most products are not short enough to evaporate. Only at higher degrees of conversion most of cleavage of bonds releases molecules small enough to evaporate.

Keywords: kinetic, municipal plastic waste, pyrolysis, random scission

Procedia PDF Downloads 354
1768 Domestic Violence Against Iranian Deaf People

Authors: Laleh Golamrej Eliasi, Mahsa Tahzibi, Mohammad Torkashvand Moradabadi

Abstract:

TheIranian Ear, Throat, Nose, Head, and Neck Research Center has estimated that three to five percent of Iran’s population has moderate to profound hearing disorders. The prevalence of hearing loss in provincial centers is equal to 4.7 per thousand live births (362 cases). The deaf community has limited access to information and health services due to language and communication barriers. Communication and language limitations isolate and limit deaf people from social media, health services, and communication with caregivers and health providers.Limitedcommunicationwith the deaf has led to a lack of knowledge and information about domestic violence against the deaf (DVAD) in this target group in Iran. To fill this knowledge gap, deaf living in Iranwere selected as the target group to assess their views on DVAD. This study is implemented in the socio-ecological approach framework to assess the impacts of individual characteristics, interpersonal relationships, community, and society components on DVAD. Semi-structured interviews with the Iranian deaf and Content analysis are used to find the participants’ point of view on DVAD, its risk factors, and the reduction approach to DVAD. The main purpose is to obtain information about participants' views on the subject. The findings can be used to improve culturally safe social work knowledge and practices with a bottom-up approach to reduce DV and increase their well-being. Therefore, this research can have important effects on the sustainable development of services and supports the welfare and inclusion of the deaf.

Keywords: domestic violence, Iranian deaf, social work, content analysis

Procedia PDF Downloads 104
1767 Study on the Impact of Power Fluctuation, Hydrogen Utilization, and Fuel Cell Stack Orientation on the Performance Sensitivity of PEM Fuel Cell

Authors: Majid Ali, Xinfang Jin, Victor Eniola, Henning Hoene

Abstract:

The performance of proton exchange membrane (PEM) fuel cells is sensitive to several factors, including power fluctuations, hydrogen utilization, and the quality orientation of the fuel cell stack. In this study, we investigate the impact of these factors on the performance of a PEM fuel cell. We start by analyzing the power fluctuations that are typical in renewable energy systems and their effects on the 50 Watt fuel cell's performance. Next, we examine the hydrogen utilization rate (0-1000 mL/min) and its impact on the cell's efficiency and durability. Finally, we investigate the quality orientation (three different positions) of the fuel cell stack, which can significantly affect the cell's lifetime and overall performance. The basis of our analysis is the utilization of experimental results, which have been further validated by comparing them with simulations and manufacturer results. Our results indicate that power fluctuations can cause significant variations in the fuel cell's voltage and current, leading to a reduction in its performance. Moreover, we show that increasing the hydrogen utilization rate beyond a certain threshold can lead to a decrease in the fuel cell's efficiency. Finally, our analysis demonstrates that the orientation of the fuel cell stack can affect its performance and lifetime due to non-uniform distribution of reactants and products. In summary, our study highlights the importance of considering power fluctuations, hydrogen utilization, and quality orientation in designing and optimizing PEM fuel cell systems. The findings of this study can be useful for researchers and engineers working on the development of fuel cell systems for various applications, including transportation, stationary power generation, and portable devices.

Keywords: fuel cell, proton exchange membrane, renewable energy, power fluctuation, experimental

Procedia PDF Downloads 135
1766 Numerical Buckling of Composite Cylindrical Shells under Axial Compression Using Asymmetric Meshing Technique (AMT)

Authors: Zia R. Tahir, P. Mandal

Abstract:

This paper presents the details of a numerical study of buckling and post buckling behaviour of laminated carbon fiber reinforced plastic (CFRP) thin-walled cylindrical shell under axial compression using asymmetric meshing technique (AMT) by ABAQUS. AMT is considered to be a new perturbation method to introduce disturbance without changing geometry, boundary conditions or loading conditions. Asymmetric meshing affects both predicted buckling load and buckling mode shapes. Cylindrical shell having lay-up orientation [0°/+45°/-45°/0°] with radius to thickness ratio (R/t) equal to 265 and length to radius ratio (L/R) equal to 1.5 is analysed numerically. A series of numerical simulations (experiments) are carried out with symmetric and asymmetric meshing to study the effect of asymmetric meshing on predicted buckling behaviour. Asymmetric meshing technique is employed in both axial direction and circumferential direction separately using two different methods, first by changing the shell element size and varying the total number elements, and second by varying the shell element size and keeping total number of elements constant. The results of linear analysis (Eigenvalue analysis) and non-linear analysis (Riks analysis) using symmetric meshing agree well with analytical results. The results of numerical analysis are presented in form of non-dimensional load factor, which is the ratio of buckling load using asymmetric meshing technique to buckling load using symmetric meshing technique. Using AMT, load factor has about 2% variation for linear eigenvalue analysis and about 2% variation for non-linear Riks analysis. The behaviour of load end-shortening curve for pre-buckling is same for both symmetric and asymmetric meshing but for asymmetric meshing curve behaviour in post-buckling becomes extraordinarily complex. The major conclusions are: different methods of AMT have small influence on predicted buckling load and significant influence on load displacement curve behaviour in post buckling; AMT in axial direction and AMT in circumferential direction have different influence on buckling load and load displacement curve in post-buckling.

Keywords: CFRP composite cylindrical shell, asymmetric meshing technique, primary buckling, secondary buckling, linear eigenvalue analysis, non-linear riks analysis

Procedia PDF Downloads 353