Search results for: Modified Taylor-Couette Flow
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7027

Search results for: Modified Taylor-Couette Flow

667 The Derivation of a Four-Strain Optimized Mohr's Circle for Use in Experimental Reinforced Concrete Research

Authors: Edvard P. G. Bruun

Abstract:

One of the best ways of improving our understanding of reinforced concrete is through large-scale experimental testing. The gathered information is critical in making inferences about structural mechanics and deriving the mathematical models that are the basis for finite element analysis programs and design codes. An effective way of measuring the strains across a region of a specimen is by using a system of surface mounted Linear Variable Differential Transformers (LVDTs). While a single LVDT can only measure the linear strain in one direction, by combining several measurements at known angles a Mohr’s circle of strain can be derived for the whole region under investigation. This paper presents a method that can be used by researchers, which improves the accuracy and removes experimental bias in the calculation of the Mohr’s circle, using four rather than three independent strain measurements. Obtaining high quality strain data is essential, since knowing the angular deviation (shear strain) and the angle of principal strain in the region are important properties in characterizing the governing structural mechanics. For example, the Modified Compression Field Theory (MCFT) developed at the University of Toronto, is a rotating crack model that requires knowing the direction of the principal stress and strain, and then calculates the average secant stiffness in this direction. But since LVDTs can only measure average strains across a plane (i.e., between discrete points), localized cracking and spalling that typically occur in reinforced concrete, can lead to unrealistic results. To build in redundancy and improve the quality of the data gathered, the typical experimental setup for a large-scale shell specimen has four independent directions (X, Y, H, and V) that are instrumented. The question now becomes, which three should be used? The most common approach is to simply discard one of the measurements. The problem is that this can produce drastically different answers, depending on the three strain values that are chosen. To overcome this experimental bias, and to avoid simply discarding valuable data, a more rigorous approach would be to somehow make use of all four measurements. This paper presents the derivation of a method to draw what is effectively a Mohr’s circle of 'best-fit', which optimizes the circle by using all four independent strain values. The four-strain optimized Mohr’s circle approach has been utilized to process data from recent large-scale shell tests at the University of Toronto (Ruggiero, Proestos, and Bruun), where analysis of the test data has shown that the traditional three-strain method can lead to widely different results. This paper presents the derivation of the method and shows its application in the context of two reinforced concrete shells tested in pure torsion. In general, the constitutive models and relationships that characterize reinforced concrete are only as good as the experimental data that is gathered – ensuring that a rigorous and unbiased approach exists for calculating the Mohr’s circle of strain during an experiment, is of utmost importance to the structural research community.

Keywords: reinforced concrete, shell tests, Mohr’s circle, experimental research

Procedia PDF Downloads 239
666 Genetic Diversity of Wild Population of Heterobranchus Spp. Based on Mitochondria DNA Cytochrome C Oxidase Subunit I Gene Analysis

Authors: M. Y. Abubakar, Ipinjolu J. K., Yuzine B. Esa, Magawata I., Hassan W. A., Turaki A. A.

Abstract:

Catfish (Heterobranchus spp.) is a major freshwater fish that are widely distributed in Nigeria waters and are gaining rapid aquaculture expansion. However, indiscriminate artificial crossbreeding of the species with others poses a threat to their biodiversity. There is a paucity of information about the genetic variability, hence this insight on the genetic variability is badly needed, not only for the species conservation but for aquaculture expansion. In this study, we tested the level of Genetic diversity, population differentiation and phylogenetic relationship analysis on 35 individuals of two populations of Heterobranchus bidorsalis and 29 individuals of three populations of Heterobranchus longifilis using the mitochondrial cytochrome c oxidase subunit I (mtDNA COI) gene sequence. Nucleotide sequences of 650 bp fragment of the COI gene of the two species were compared. In the whole 4 and 5 haplotypes were distinguished in the populations of H. bidorsalis & H. longifilis with accession numbers (MG334168 - MG334171 & MG334172 to MG334176) respectively. Haplotypes diversity indices revealed a range of 0.59 ± 0.08 to 0.57 ± 0.09 in H. bidorsalis and 0.000 to 0.001051 ± 0.000945 in H. longifilis population, respectively. Analysis of molecular variance (AMOVA) revealed no significant variation among H. bidorsalis population of the Niger & Benue Rivers, detected significant genetic variation was between the Rivers of Niger, Kaduna and Benue population of H. longifilis. Two main clades were recovered, showing a clear separation between H. bidorsalis and H. longifilis in the phylogenetic tree. The mtDNA COI genes studied revealed high gene flow between populations with no distinct genetic differentiation between the populations as measured by the fixation index (FST) statistic. However, a proportion of population-specific haplotypes was observed in the two species studied, suggesting a substantial degree of genetic distinctiveness for each of the population investigated. These findings present the description of the species character and accessions of the fish’s genetic resources, through gene sequence submitted in Genetic database. The data will help to protect their valuable wild resource and contribute to their recovery and selective breeding in Nigeria.

Keywords: AMOVA, genetic diversity, Heterobranchus spp., mtDNA COI, phylogenetic tree

Procedia PDF Downloads 145
665 Therapeutic Effects of Guar Gum Nanoparticles in Oxazolone-Induced Atopic Dermatitis

Authors: Nandita Ghosh, Shinjini Mitra, Ena Ray Banerjee

Abstract:

Atopic dermatitis (AD) is a chronic disease of the skin, involving itchy, reddish, and scaly lesions. It mainly affects children and has a high prevalence in developing countries. The AD may occur due to environmental or genetic factors. There is no permanent cure for the AD. Currently, all therapeutic strategies involve methods to simply alleviate the symptoms, and include lotions and corticosteroids, which have adverse effects. Use of phytochemicals and natural products has not yet been exploited fully. The particle used in this study is derived from Cyamopsis tetragonoloba, an edible polysaccharide with a galactomannan component. The mannose component mainly increases its specificity towards cellular uptake by mannose receptors, highly expressed by the macrophage. The aim of this study was to determine the therapeutic effect of guar gum nanoparticles (GN) in vitro and in vivo in the AD. To assess the wound healing capacity of the guar gum nanoparticle (GN), we first treated adherent NIH3T3 cells, with a scratch injury, with GN. GN successfully healed the wound caused by the scratch. In the in vivo experiment, Balb/c mice ear were topically treated with oxazolone (oxa) to induce AD and then were topically treated with GN. The ear thickness was increased significantly till day 28 on the treatment of Oxa. The GN application showed a significant decrease in the thickness as assessed on day 28. The total cell count of skin cells showed fold increase when treated with oxa, was again decreased on topical application of GN on the affected skin. The eosinophil count, as assessed by Giemsa staining was also increased when treated with oxa, GN application led to a significant decrease. The IgE level was assessed in the serum samples which showed that GN helped in restoring the alleviated IgE level. The T helper cells and the macrophage population showed increased percentage when treated with oxa, the GN application. This was examined by flow cytometry. The H&E staining of the ear tissue showed epidermal thickness in the oxa treated mice, GN application showed reduced cellular filtration followed by epidermal thickness. Thus our assays showed that GN was successful in alleviating the disease caused by Oxa when administered topically.

Keywords: allergen, inflammation, nanodrug, wound

Procedia PDF Downloads 243
664 Research of Stalled Operational Modes of Axial-Flow Compressor for Diagnostics of Pre-Surge State

Authors: F. Mohammadsadeghi

Abstract:

Relevance of research: Axial compressors are used in both aircraft engine construction and ground-based gas turbine engines. The compressor is considered to be one of the main gas turbine engine units, which define absolute and relative indicators of engine in general. Failure of compressor often leads to drastic consequences. Therefore, safe (stable) operation must be maintained when using axial compressor. Currently, we can observe a tendency of increase of power unit, productivity, circumferential velocity and compression ratio of axial compressors in gas turbine engines of aircraft and ground-based application whereas metal consumption of their structure tends to fall. This causes the increase of dynamic loads as well as danger of damage of high load compressor or engine structure elements in general due to transient processes. In operating practices of aeronautical engineering and ground units with gas turbine drive the operational stability failure of gas turbine engines is one of relatively often failure causes what can lead to emergency situations. Surge occurrence is considered to be an absolute buckling failure. This is one of the most dangerous and often occurring types of instability. However detailed were the researches of this phenomenon the development of measures for surge before-the-fact prevention is still relevant. This is why the research of transient processes for axial compressors is necessary in order to provide efficient, stable and secure operation. The paper addresses the problem of automatic control system improvement by integrating the anti-surge algorithms for axial compressor of aircraft gas turbine engine. Paper considers dynamic exhaustion of gas dynamic stability of compressor stage, results of numerical simulation of airflow flowing through the airfoil at design and stalling modes, experimental researches to form the criteria that identify the compressor state at pre-surge mode detection. Authors formulated basic ways for developing surge preventing systems, i.e. forming the algorithms that allow detecting the surge origination and the systems that implement the proposed algorithms.

Keywords: axial compressor, rotation stall, Surg, unstable operation of gas turbine engine

Procedia PDF Downloads 413
663 Exploration of Copper Fabric in Non-Asbestos Organic Brake-Pads for Thermal Conductivity Enhancement

Authors: Vishal Mahale, Jayashree Bijwe, Sujeet K. Sinha

Abstract:

Range of thermal conductivity (TC) of Friction Materials (FMs) is a critical issue since lower TC leads to accumulation of frictional heat on the working surface, which results in excessive fade while higher TC leads to excessive heat flow towards back-plate resulting in boiling of brake-fluid leading to ‘spongy brakes’. This phenomenon prohibits braking action, which is most undesirable. Therefore, TC of the FMs across the brake pads should not be high while along the brake pad, it should be high. To enhance TC, metals in the forms of powder and fibers are used in the FMs. Apart from TC improvement, metals provide strength and structural integrity to the composites. Due to higher TC Copper (Cu) powder/fiber is a most preferred metallic ingredient in FM industry. However, Cu powders/fibers are responsible for metallic wear debris generation, which has harmful effects on aquatic organisms. Hence to get rid of a problem of metallic wear debris generation and to keep the positive effect of TC improvement, incorporation of Cu fabric in NAO brake-pads can be an innovative solution. Keeping this in view, two realistic multi-ingredient FM composites with identical formulations were developed in the form of brake-pads. Out of which one composite series consisted of a single layer of Cu fabric in the body of brake-pad and designated as C1 while double layer of Cu fabric was incorporated in another brake-pad series with designation of C2. Distance of Cu fabric layer from the back-plate was kept constant for C1 and C2. One more composite (C0) was developed without Cu fabric for the sake of comparison. Developed composites were characterized for physical properties. Tribological performance was evaluated on full scale inertia dynamometer by following JASO C 406 testing standard. It was concluded that Cu fabric successfully improved fade resistance by increasing conductivity of the composite and also showed slight improvement in wear resistance. Worn surfaces of pads and disc were analyzed by SEM and EDAX to study wear mechanism.

Keywords: brake inertia dynamometer, copper fabric, non-asbestos organic (NAO) friction materials, thermal conductivity enhancement

Procedia PDF Downloads 133
662 Characterization of Potato Starch/Guar Gum Composite Film Modified by Ecofriendly Cross-Linkers

Authors: Sujosh Nandi, Proshanta Guha

Abstract:

Synthetic plastics are preferred for food packaging due to high strength, stretch-ability, good water vapor and gas barrier properties, transparency and low cost. However, environmental pollution generated by these synthetic plastics is a major concern of modern human civilization. Therefore, use of biodegradable polymers as a substitute for synthetic non-biodegradable polymers are encouraged to be used even after considering drawbacks related to mechanical and barrier properties of the films. Starch is considered one of the potential raw material for the biodegradable polymer, encounters poor water barrier property and mechanical properties due to its hydrophilic nature. That apart, recrystallization of starch molecules occurs during aging which decreases flexibility and increases elastic modulus of the film. The recrystallization process can be minimized by blending of other hydrocolloids having similar structural compatibility, into the starch matrix. Therefore, incorporation of guar gum having a similar structural backbone, into the starch matrix can introduce a potential film into the realm of biodegradable polymer. However, hydrophilic nature of both starch and guar gum, water barrier property of the film is low. One of the prospective solution to enhance this could be modification of the potato starch/guar gum (PSGG) composite film using cross-linker. Over the years, several cross-linking agents such as phosphorus oxychloride, sodium trimetaphosphate, etc. have been used to improve water vapor permeability (WVP) of the films. However, these chemical cross-linking agents are toxic, expensive and take longer time to degrade. Therefore, naturally available carboxylic acid (tartaric acid, malonic acid, succinic acid, etc.) had been used as a cross-linker and found that water barrier property enhanced substantially. As per our knowledge, no works have been reported with tartaric acid and succinic acid as a cross-linking agent blended with the PSGG films. Therefore, the objective of the present study was to examine the changes in water vapor barrier property and mechanical properties of the PSGG films after cross-linked with tartaric acid (TA) and succinic acid (SA). The cross-linkers were blended with PSGG film-forming solution at four different concentrations (4, 8, 12 & 16%) and cast on teflon plate at 37°C for 20 h. From the fourier-transform infrared spectroscopy (FTIR) study of the developed films, a band at 1720cm-1 was observed which is attributed to the formation of ester group in the developed films. On the other hand, it was observed that tensile strength (TS) of the cross-linked film decreased compared to non-cross linked films, whereas strain at break increased by several folds. Moreover, the results depicted that tensile strength diminished with increasing the concentration of TA or SA and lowest TS (1.62 MPa) was observed for 16% SA. That apart, maximum strain at break was also observed for TA at 16% and the reason behind this could be a lesser degree of crystallinity of the TA cross-linked films compared to SA. However, water vapor permeability of succinic acid cross-linked film was reduced significantly, but it was enhanced significantly by addition of tartaric acid.

Keywords: cross linking agent, guar gum, organic acids, potato starch

Procedia PDF Downloads 118
661 Third Places for Social Sustainability: A Planning Framework Based on Local and International Comparisons

Authors: Z. Goosen, E. J. Cilliers

Abstract:

Social sustainability, as an independent perspective of sustainable development, has gained some acknowledgement, becoming an important aspect in sustainable urban planning internationally. However, limited research aiming at promoting social sustainability within urban areas exists within the South African context. This is mainly due to the different perspectives of sustainable development (e.g., Environmental, Economic, and Social) not being equally prioritized by policy makers and supported by implementation strategies, guidelines, and planning frameworks. The enhancement of social sustainability within urban areas relies on urban dweller satisfaction and the quality of urban life. Inclusive cities with high-quality public spaces are proposed within this research through implementing the third place theory. Third places are introduced as any place other than our homes (first place) and work (second place) and have become an integrated part of sustainable urban planning. As Third Places consist of every place 'in between', the approach has taken on a large role of the everyday life of city residents, and the importance of planning for such places can only be measured through identifying and highlighting the social sustainability benefits thereof. The aim of this research paper is to introduce third place planning within the urban area to ultimately enhance social sustainability. Selected background planning approaches influencing the planning of third places will briefly be touched on, as the focus will be placed on the social sustainability benefits provided through third place planning within an urban setting. The study will commence by defining and introducing the concept of third places within urban areas as well as a discussion on social sustainability, acting as one of the three perspectives of sustainable development. This will gain the researcher an improved understanding on social sustainability in order for the study to flow into an integrated discussion of the benefits Third places provide in terms of social sustainability and the impact it has on improved quality of life within urban areas. Finally, a visual case study comparison of local and international examples of third places identified will be illustrated. These international case studies will contribute towards the conclusion of this study where a local gap analysis will be formulated, based on local third place evidence and international best practices in order to formulate a strategic planning framework on improving social sustainability through third place planning within the local South African context.

Keywords: planning benefits, social sustainability, third places, urban area

Procedia PDF Downloads 278
660 Proprotein Convertase Subtilisin/Kexin Type 9 Enhances Arterial Medial Calcification in a Uremic Rat Model of Chronic Kidney Disease

Authors: Maria Giovanna Lupo, Marina Camera, Marcello Rattazzi, Nicola Ferri

Abstract:

A complex interplay among chronic kidney disease, lipid metabolism and aortic calcification has been recognized starting from results of many clinical and experimental studies. Here we investigated the influence of kidney function on PCSK9 levels, both in uremic rats and in clinical observation study, and its potential direct action on cultured smooth muscle cells (SMCs) calcification. In a cohort of 594 subjects enrolled in a single centre, observational, cross-sectional and longitudinal study, a negative association between GFR and plasma PCSK9 was found. Atherosclerotic cardiovascular disease (ASCVD), as co-morbidity, further increased PCSK9 plasma levels. Diet-induced uremic condition in rats, induced aortic calcification and increased total cholesterol and PCSK9 levels in plasma, livers and kidneys. Immunohistochemical analysis confirmed PCSK9 expression in aortic SMCs. SMCs overexpressing PCSK9 (SMCsPCSK9), cultured for 7-days in a pro-calcification environment (2.0mM or 2.4mM inorganic phosphate, Pi) showed a significantly higher extracellular calcium (Ca2+) deposition compared to mocked SMCs. Under the same experimental conditions, the addition of exogenous recombinant PCSK9 did not increase the extracellular calcification of SMCs. By flow cytometry analysis we showed that SMCsPCSK9, in response to 2.4mM Pi, released higher number of extracellular vesicles (EVs) positive for three tetraspanin molecules, such as CD63, CD9, and CD81. EVs derived from SMCsPCSK9 tended to be more enriched in calcium and alkaline phosphatase (ALPL), compared to EVs from mocks SMCs. In conclusion, our study reveals a direct role of PCSK9 on vascular calcification induced by higher inorganic phosphate levels associated to CKD condition. This effect appears to be mediated by a positive effect of endogenous PCSK9 on the release of EVs containing Ca2+ and ALP, which facilitate the deposition inorganic calcium phosphate crystals.

Keywords: PCSK9, calcification, extracellular vesicles, chronic kidney disease

Procedia PDF Downloads 116
659 Current Drainage Attack Correction via Adjusting the Attacking Saw-Function Asymmetry

Authors: Yuri Boiko, Iluju Kiringa, Tet Yeap

Abstract:

Current drainage attack suggested previously is further studied in regular settings of closed-loop controlled Brushless DC (BLDC) motor with Kalman filter in the feedback loop. Modeling and simulation experiments are conducted in a Matlab environment, implementing the closed-loop control model of BLDC motor operation in position sensorless mode under Kalman filter drive. The current increase in the motor windings is caused by the controller (p-controller in our case) affected by false data injection of substitution of the angular velocity estimates with distorted values. Operation of multiplication to distortion coefficient, values of which are taken from the distortion function synchronized in its periodicity with the rotor’s position change. A saw function with a triangular tooth shape is studied herewith for the purpose of carrying out the bias injection with current drainage consequences. The specific focus here is on how the asymmetry of the tooth in the saw function affects the flow of current drainage. The purpose is two-fold: (i) to produce and collect the signature of an asymmetric saw in the attack for further pattern recognition process, and (ii) to determine conditions of improving stealthiness of such attack via regulating asymmetry in saw function used. It is found that modification of the symmetry in the saw tooth affects the periodicity of current drainage modulation. Specifically, the modulation frequency of the drained current for a fully asymmetric tooth shape coincides with the saw function modulation frequency itself. Increasing the symmetry parameter for the triangle tooth shape leads to an increase in the modulation frequency for the drained current. Moreover, such frequency reaches the switching frequency of the motor windings for fully symmetric triangular shapes, thus becoming undetectable and improving the stealthiness of the attack. Therefore, the collected signatures of the attack can serve for attack parameter identification via the pattern recognition route.

Keywords: bias injection attack, Kalman filter, BLDC motor, control system, closed loop, P-controller, PID-controller, current drainage, saw-function, asymmetry

Procedia PDF Downloads 84
658 Art History as Inspiration for Chefs. An Autoethnographic Research About Art History Education in a Restaurant

Authors: Marta Merkl

Abstract:

The ongoing project what the paper will present is about how the author introduces chefs to the history of art through a selected piece of art. The author is originally an art historian, but since 2019 she has been working on her PhD research topic related to designing dining experiences in the restaurant context, including the role of sensory experiences and storytelling. Due to a scholarship, she can participate in the re-design of a fine dining restaurant called Onyx in Budapest, which was awarded two Michelin stars before the pandemic caused by COVID-19. The management of the restaurant wants to broaden the chefs' horizons and develop their creativity by introducing them to each chapter of the visual arts. There is a kind of polyphony in the mass of information about what should a chef, a food designer, or anybody who make food in everyday basis use as a source of inspiration for inventing and preparing new dishes: nostalgia, raw material, cookbooks, etc. In today's world of fine dining, nature is the main inspiration for outstanding achievements, as exemplified by the Slovenian restaurant Hiša Franko** and its chef Ana Roš. The starting point for the project and the research was the idea of using art history as an inspiration for gastronomy. The research relies on data collection via interviews, ethnography, and autoethnography. In this case, the reflective introspection of the researcher is also relevant because the researcher is an important part of the process (GOULD, 1995). The paper overviews the findings of the autoethnography literature relevant to our topic. In the literature review, it will be also pointed out that sustainability, eating as an experience, and the world of art can be linked. As ERDMANN and co-authors (1999) argues that the health dimension of sustainability has a component called 'joy of eating,' which implies strong ties to the experiential nature of eating. Therefore, it is worth to compare with PINE and GILMORE's (1998) theory of experience economy and with CSÍKSZENTMIHÁLYI's (1999) concept of flow, which give examples of gastronomy and art. The aim of the research is to map experiences of the pilot project, the discourse between the art world and the gastronomy actors. Another noteworthy aspect is whether the chefs are willing to use art history as an inspiration.

Keywords: art history, autoethnography, chef, education, experience, food preparation, inspiration, sustainability

Procedia PDF Downloads 148
657 Development of a Mechanical Ventilator Using A Manual Artificial Respiration Unit

Authors: Isomar Lima da Silva, Alcilene Batalha Pontes, Aristeu Jonatas Leite de Oliveira, Roberto Maia Augusto

Abstract:

Context: Mechanical ventilators are medical devices that help provide oxygen and ventilation to patients with respiratory difficulties. This equipment consists of a manual breathing unit that can be operated by a doctor or nurse and a mechanical ventilator that controls the airflow and pressure in the patient's respiratory system. This type of ventilator is commonly used in emergencies and intensive care units where it is necessary to provide breathing support to critically ill or injured patients. Objective: In this context, this work aims to develop a reliable and low-cost mechanical ventilator to meet the demand of hospitals in treating people affected by Covid-19 and other severe respiratory diseases, offering a chance of treatment as an alternative to mechanical ventilators currently available in the market. Method: The project presents the development of a low-cost auxiliary ventilator with a controlled ventilatory system assisted by integrated hardware and firmware for respiratory cycle control in non-invasive mechanical ventilation treatments using a manual artificial respiration unit. The hardware includes pressure sensors capable of identifying positive expiratory pressure, peak inspiratory flow, and injected air volume. The embedded system controls the data sent by the sensors. It ensures efficient patient breathing through the operation of the sensors, microcontroller, and actuator, providing patient data information to the healthcare professional (system operator) through the graphical interface and enabling clinical parameter adjustments as needed. Results: The test data of the developed mechanical ventilator presented satisfactory results in terms of performance and reliability, showing that the equipment developed can be a viable alternative to commercial mechanical ventilators currently available, offering a low-cost solution to meet the increasing demand for respiratory support equipment.

Keywords: mechanical fans, breathing, medical equipment, COVID-19, intensive care units

Procedia PDF Downloads 74
656 Numerical Investigation of Embankments for Protecting Rock Fall

Authors: Gökhan Altay, Cafer Kayadelen

Abstract:

Rock fall is a movement of huge rock blocks from dip slopes due to physical effects. It generally occurs where loose tuffs lying under basalt flow or stringcourse is being constituted by limestone layers which stand on clay. By corrosion of some parts, big cracks occur on layers and these cracks continue to grow with the effect of freezing-thawing. In this way, the breaking rocks fall down from these dip slopes. Earthquakes which can induce lots of rock movements is another reason for rock fall events. In Turkey, we have a large number of regions prone to the earthquake as in the World so this increases the possibility of rock fall events. A great number of rock fall events take place in Turkey as in the World every year. The rock fall events occurring in urban areas cause serious damages in houses, roads and workplaces. Sometimes it also hinders transportation and furthermore it maybe kills people. In Turkey, rock fall events happen mostly in Spring and Winter because of freezing- thawing of water in rock cracks frequently. In mountain and inclined areas, rock fall is risky for engineering construction and environment. Some countries can invest significant money for these risky areas. For instance, in Switzerland, approximately 6.7 million dollars is spent annually for a distance of 4 km, to the systems to prevent rock fall events. In Turkey, we have lots of urban areas and engineering structure that have the rock fall risk. The embankments are preferable for rock fall events because of its low maintenance and repair costs. Also, embankments are able to absorb much more energy according to other protection systems. The current design method of embankments is only depended on field tests results so there are inadequate studies about this design method. In this paper, the field test modeled in three dimensions and analysis are carried out with the help of ANSYS programme. By the help of field test from literature the numerical model validated. After the validity of numerical models additional parametric studies performed. Changes in deformation of embankments are investigated by the changes in, geometry, velocity and impact height of falling rocks.

Keywords: ANSYS, embankment, impact height, numerical analysis, rock fall

Procedia PDF Downloads 511
655 Assessing of Social Comfort of the Russian Population with Big Data

Authors: Marina Shakleina, Konstantin Shaklein, Stanislav Yakiro

Abstract:

The digitalization of modern human life over the last decade has facilitated the acquisition, storage, and processing of data, which are used to detect changes in consumer preferences and to improve the internal efficiency of the production process. This emerging trend has attracted academic interest in the use of big data in research. The study focuses on modeling the social comfort of the Russian population for the period 2010-2021 using big data. Big data provides enormous opportunities for understanding human interactions at the scale of society with plenty of space and time dynamics. One of the most popular big data sources is Google Trends. The methodology for assessing social comfort using big data involves several steps: 1. 574 words were selected based on the Harvard IV-4 Dictionary adjusted to fit the reality of everyday Russian life. The set of keywords was further cleansed by excluding queries consisting of verbs and words with several lexical meanings. 2. Search queries were processed to ensure comparability of results: the transformation of data to a 10-point scale, elimination of popularity peaks, detrending, and deseasoning. The proposed methodology for keyword search and Google Trends processing was implemented in the form of a script in the Python programming language. 3. Block and summary integral indicators of social comfort were constructed using the first modified principal component resulting in weighting coefficients values of block components. According to the study, social comfort is described by 12 blocks: ‘health’, ‘education’, ‘social support’, ‘financial situation’, ‘employment’, ‘housing’, ‘ethical norms’, ‘security’, ‘political stability’, ‘leisure’, ‘environment’, ‘infrastructure’. According to the model, the summary integral indicator increased by 54% and was 4.631 points; the average annual rate was 3.6%, which is higher than the rate of economic growth by 2.7 p.p. The value of the indicator describing social comfort in Russia is determined by 26% by ‘social support’, 24% by ‘education’, 12% by ‘infrastructure’, 10% by ‘leisure’, and the remaining 28% by others. Among 25% of the most popular searches, 85% are of negative nature and are mainly related to the blocks ‘security’, ‘political stability’, ‘health’, for example, ‘crime rate’, ‘vulnerability’. Among the 25% most unpopular queries, 99% of the queries were positive and mostly related to the blocks ‘ethical norms’, ‘education’, ‘employment’, for example, ‘social package’, ‘recycling’. In conclusion, the introduction of the latent category ‘social comfort’ into the scientific vocabulary deepens the theory of the quality of life of the population in terms of the study of the involvement of an individual in the society and expanding the subjective aspect of the measurements of various indicators. Integral assessment of social comfort demonstrates the overall picture of the development of the phenomenon over time and space and quantitatively evaluates ongoing socio-economic policy. The application of big data in the assessment of latent categories gives stable results, which opens up possibilities for their practical implementation.

Keywords: big data, Google trends, integral indicator, social comfort

Procedia PDF Downloads 207
654 Thermodynamics of Aqueous Solutions of Organic Molecule and Electrolyte: Use Cloud Point to Obtain Better Estimates of Thermodynamic Parameters

Authors: Jyoti Sahu, Vinay A. Juvekar

Abstract:

Electrolytes are often used to bring about salting-in and salting-out of organic molecules and polymers (e.g. polyethylene glycols/proteins) from the aqueous solutions. For quantification of these phenomena, a thermodynamic model which can accurately predict activity coefficient of electrolyte as a function of temperature is needed. The thermodynamics models available in the literature contain a large number of empirical parameters. These parameters are estimated using lower/upper critical solution temperature of the solution in the electrolyte/organic molecule at different temperatures. Since the number of parameters is large, inaccuracy can bethe creep in during their estimation, which can affect the reliability of prediction beyond the range in which these parameters are estimated. Cloud point of solution is related to its free energy through temperature and composition derivative. Hence, the Cloud point measurement can be used for accurate estimation of the temperature and composition dependence of parameters in the model for free energy. Hence, if we use a two pronged procedure in which we first use cloud point of solution to estimate some of the parameters of the thermodynamic model and determine the rest using osmotic coefficient data, we gain on two counts. First, since the parameters, estimated in each of the two steps, are fewer, we achieve higher accuracy of estimation. The second and more important gain is that the resulting model parameters are more sensitive to temperature. This is crucial when we wish to use the model outside temperatures window within which the parameter estimation is sought. The focus of the present work is to prove this proposition. We have used electrolyte (NaCl/Na2CO3)-water-organic molecule (Iso-propanol/ethanol) as the model system. The model of Robinson-Stokes-Glukauf is modified by incorporating the temperature dependent Flory-Huggins interaction parameters. The Helmholtz free energy expression contains, in addition to electrostatic and translational entropic contributions, three Flory-Huggins pairwise interaction contributions viz., and (w-water, p-polymer, s-salt). These parameters depend both on temperature and concentrations. The concentration dependence is expressed in the form of a quadratic expression involving the volume fractions of the interacting species. The temperature dependence is expressed in the form .To obtain the temperature-dependent interaction parameters for organic molecule-water and electrolyte-water systems, Critical solution temperature of electrolyte -water-organic molecules is measured using cloud point measuring apparatus The temperature and composition dependent interaction parameters for electrolyte-water-organic molecule are estimated through measurement of cloud point of solution. The model is used to estimate critical solution temperature (CST) of electrolyte water-organic molecules solution. We have experimentally determined the critical solution temperature of different compositions of electrolyte-water-organic molecule solution and compared the results with the estimates based on our model. The two sets of values show good agreement. On the other hand when only osmotic coefficients are used for estimation of the free energy model, CST predicted using the resulting model show poor agreement with the experiments. Thus, the importance of the CST data in the estimation of parameters of the thermodynamic model is confirmed through this work.

Keywords: concentrated electrolytes, Debye-Hückel theory, interaction parameters, Robinson-Stokes-Glueckauf model, Flory-Huggins model, critical solution temperature

Procedia PDF Downloads 396
653 Role of Geohydrology in Groundwater Management-Case Study of Pachod Village, Maharashtra, India

Authors: Ashok Tejankar, Rohan K. Pathrikar

Abstract:

Maharashtra is covered by heterogeneous flows of Deccan basaltic terrains of upper cretaceous to lower Eocene age. It consist mainly different types of basalt flow, having heterogeneous Geohydrological characters. The study area Aurangabad dist. lies in the central part of Maharashtra. The study area is typically covered by Deccan traps formation mainly basalt type of igneous volcanic rock. The area is located in the survey of India toposheet No. 47M and laying between 19° to 20° north latitudes and 74° to 76° east longitudes. Groundwater is the primary source for fresh water in the study area. There has been a growing demand for fresh water in domestic & agriculture sectors. Due to over exploitation and rainfall failure has been created an irrecoverable stress on groundwater in study area. In an effort to maintain the water table condition in balance, artificial recharge is being implemented. The selection of site for artificial recharge is a very important task in recharge basalt. The present study aims at sitting artificial recharge structure at village Pachod in basaltic terrain of the Godavari-Purna river basin in Aurangabad district of Maharashtra, India. where the average annual rainfall is 650mm. In this investigation, integrated remote sensing and GIS techniques were used and various parameters like lithology, structure, etc. aspect of drainage basins, landforms and other parameters were extracted from visual interpretation of IRS P6 Satellite data and Survey of India (SIO) topographical sheets, aided by field checks by carrying well inventory survey. The depth of weathered material, water table conditions, and rainfall data were been considered. All the thematic information layers were digitized and analyzed in Arc-GIS environment and the composite maps produced show suitable site, depth of bed rock flows for successful artificial recharge in village Pachod to increase groundwater potential of low laying area.

Keywords: hard rock, artificial recharge, remote sensing, GIS

Procedia PDF Downloads 294
652 Antiproliferative and Apoptotic Effects of an Enantiomerically Pure β-Dipeptide Derivative through PI3K/Akt-Dependent and -Independent Pathways in Human Hormone-Refractory Prostate Cancer Cells

Authors: Mei-Ling Chan, Jin-Ming Wu, Konstantin V. Kudryavtsev, Jih-Hwa Guh

Abstract:

Prostate cancer is one of the most common malignant disease in men. KUD983 is an enantiomerically pure β-dipeptide derivative, which may have anti-cancer effects. In the present study, KUD983 exhibits powerful activity against hormone-refractory prostate cancer (HRPC) PC-3 and DU145 cells. The IC50 values of KUD983 in PC-3 and DU145 cells are 0.56±0.07M and 0.50±0.04 M respectively. KUD983 induced G1 arrest of the cell cycle and subsequent apoptosis associated with the down-regulation of several related proteins including cyclin D1, cyclin E and Cdk4, and the de-phosphorylation of RB. The protein expressions of nuclear and total c-Myc protein, which was able to regulate the expression of both cyclin D1 and cyclin E, were significantly suppressed by KUD983. Phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) is an important signaling pathway that influences the energy metabolism, cell cycle, proliferation, survival and apoptosis of cells, and is associated with numerous other signaling pathways. The Western Blot data revealed that KUD983 inhibited PI3K/Akt and mTOR/p70S6K/4E-BP1 pathways. The transient transfection of constitutively active myristylated Akt (myr-Akt) cDNA significantly reversed KUD983-induced caspase activation but did not abolish the suppression of mTOR/p70S6K/4E-BP1 signaling cascade indicating the presence of both Akt-dependent and -independent pathways. Moreover, KUD983-induced effect was collaborated with the down-regulation of anti-apoptotic Bcl-2 members (e.g., Bcl-2, and Mcl-1) and IAP family members (e.g., survivin). Furthermore, KUD983 induced autophagic cell death using confocal microscopic examination, investigating the level of conversion of LC3-I to LC3-II and flow cytometric detection of AVO-positive cells. Taken together, the data suggest that KUD983 is an anticancer β-dipeptide against HRPCs through the inhibition of cell proliferation and induction of apoptotic and autophagic cell death. The suppression of signaling pathways mediated by c-Myc, PI3K/Akt and mTOR/p70S6K/4E-BP1 and the collaboration with down-regulation of Mcl-1 and survivin may indicate the mechanism of KUD983 against HRPC.

Keywords: β-dipeptide, hormone-refractory prostate cancer, mTOR, PI3K/Akt

Procedia PDF Downloads 285
651 Investigation of Heat Conduction through Particulate Filled Polymer Composite

Authors: Alok Agrawal, Alok Satapathy

Abstract:

In this paper, an attempt to determine the effective thermal conductivity (keff) of particulate filled polymer composites using finite element method (FEM) a powerful computational technique is made. A commercially available finite element package ANSYS is used for this numerical analysis. Three-dimensional spheres-in-cube lattice array models are constructed to simulate the microstructures of micro-sized particulate filled polymer composites with filler content ranging from 2.35 to 26.8 vol %. Based on the temperature profiles across the composite body, the keff of each composition is estimated theoretically by FEM. Composites with similar filler contents are than fabricated using compression molding technique by reinforcing micro-sized aluminium oxide (Al2O3) in polypropylene (PP) resin. Thermal conductivities of these composite samples are measured according to the ASTM standard E-1530 by using the Unitherm™ Model 2022 tester, which operates on the double guarded heat flow principle. The experimentally measured conductivity values are compared with the numerical values and also with those obtained from existing empirical models. This comparison reveals that the FEM simulated values are found to be in reasonable good agreement with the experimental data. Values obtained from the theoretical model proposed by the authors are also found to be in even closer approximation with the measured values within percolation limit. Further, this study shows that there is gradual enhancement in the conductivity of PP resin with increase in filler percentage and thereby its heat conduction capability is improved. It is noticed that with addition of 26.8 vol % of filler, the keff of composite increases to around 6.3 times that of neat PP. This study validates the proposed model for PP-Al2O3 composite system and proves that finite element analysis can be an excellent methodology for such investigations. With such improved heat conduction ability, these composites can find potential applications in micro-electronics, printed circuit boards, encapsulations etc.

Keywords: analytical modelling, effective thermal conductivity, finite element method, polymer matrix composite

Procedia PDF Downloads 324
650 Impacts on Marine Ecosystems Using a Multilayer Network Approach

Authors: Nelson F. F. Ebecken, Gilberto C. Pereira, Lucio P. de Andrade

Abstract:

Bays, estuaries and coastal ecosystems are some of the most used and threatened natural systems globally. Its deterioration is due to intense and increasing human activities. This paper aims to monitor the socio-ecological in Brazil, model and simulate it through a multilayer network representing a DPSIR structure (Drivers, Pressures, States-Impacts-Responses) considering the concept of Management based on Ecosystems to support decision-making under the National/State/Municipal Coastal Management policy. This approach considers several interferences and can represent a significant advance in several scientific aspects. The main objective of this paper is the coupling of three different types of complex networks, the first being an ecological network, the second a social network, and the third a network of economic activities, in order to model the marine ecosystem. Multilayer networks comprise two or more "layers", which may represent different types of interactions, different communities, different points in time, and so on. The dependency between layers results from processes that affect the various layers. For example, the dispersion of individuals between two patches affects the network structure of both samples. A multilayer network consists of (i) a set of physical nodes representing entities (e.g., species, people, companies); (ii) a set of layers, which may include multiple layering aspects (e.g., time dependency and multiple types of relationships); (iii) a set of state nodes, each of which corresponds to the manifestation of a given physical node in a layer-specific; and (iv) a set of edges (weighted or not) to connect the state nodes among themselves. The edge set includes the intralayer edges familiar and interlayer ones, which connect state nodes between layers. The applied methodology in an existent case uses the Flow cytometry process and the modeling of ecological relationships (trophic and non-trophic) following fuzzy theory concepts and graph visualization. The identification of subnetworks in the fuzzy graphs is carried out using a specific computational method. This methodology allows considering the influence of different factors and helps their contributions to the decision-making process.

Keywords: marine ecosystems, complex systems, multilayer network, ecosystems management

Procedia PDF Downloads 118
649 Contamination of the Groundwater by the Flow of the Discharge in Khouribga City (Morocco) and the Danger It Presents to the Health of the Surrounding Population.

Authors: Najih Amina

Abstract:

Our study focuses on monitoring the spatial evolution of a number of physico-chemical parameters of wells waters located at different distances from the discharge of the city of Khouribga (S0 upstream station, S1, S2 et S3 are respectively located at 5.5, 7.5, 11 Km away from solid waste discharge of the city). The absence of a source of drinking water in this region involves the population to feeding on its groundwater wells. Through the results, we note that most of the analyzed parameters exceed the potable water standards from S1. At this source of water, we find that the conductivity (1290 μmScm-1; Standard 1000 μmScm-1), Total Hardness TH (67.2°F/ Standard 50° F), Ca2 + (146 mg l-1 standard 60 mg l-1), Cl- (369 mg l-1 standard 150 mg l-1), NaCl (609 mgl-1), Methyl orange alakanity “M. alk” (280 mg l-1) greatly exceed the drinking water standards. By following these parameters, it is obvious that some values have decreased in the downstream stations, while others become important. We find that the conductivity is always higher than 950 μmScm-1; the TH registers 72°F in S3; Ca 2+ is in the range of 153 mg l-1 in S3, Cl- and NaCl- reached 426 mg l-1 and 702 mg l-1 respectively in S2, M alk becomes higher and reaches 430 to 350 in S3. At the wells S2, we found that the nitrites are well beyond the standard 1.05 mg l-1. Whereas, at the control station S0, the values are lower or at the limit of drinking water standards: conductivity (452 μmScm-1), TH (34 F°), Ca2+ (68 mg l-1), Cl- (157 mg l-1), NaCl- (258 mg l-1), M alk (220 mg l-1). Thus, the diagnosis reveals the presence of a high pollution caused by the leachates of the household waste discharge and by the effluents of the sewage waste water plant (SWWP). The phenomenon of the water hardness could, also, be generated by the processes of erosion, leaching and soil infiltration in the region (phosphate layers, intercalated layers of marl and limestone), phenomenons also caused by the acidity due to this surrounding pollution. The source S1 is the nearest surrounding site of the discharge and the most affected by the phenomenon of pollution, especially, it is near to a superficial water source S’1 polluted by the effluents coming from the sewage waste water plant of the city. In the light of these data, we can deduce that the consumption of this water from S1 does not conform the standards of drinking waters, and could affect the human health.

Keywords: physico-chemical parameters, ground water wells, infiltration, leaching, pollution, leachate discharge effluent SWWP, human health.

Procedia PDF Downloads 410
648 A Simple Olfactometer for Odour and Lateralization Thresholds of Chemical Vapours

Authors: Lena Ernstgård, Aishwarya M. Dwivedi, Johan Lundström, Gunnar Johanson

Abstract:

A simple inexpensive olfactometer was constructed to enable valid measures of detection threshold of low concentrations of vapours of chemicals. The delivery system consists of seven syringe pumps, each connected to a Tedlar bag containing a predefined concentration of the test chemical in the air. The seven pumps are connected to a 8-way mixing valve which in turn connects to a birhinal nose piece. Chemical vapor of known concentration is generated by injection of an appropriate amount of the test chemical into a Tedlar bag with a known volume of clean air. Complete vaporization is assured by gentle heating of the bag from the outside with a heat flow. The six test concentrations are obtained by adding different volumes from the starting bag to six new Tedlar bags with known volumes of clean air. One bag contains clean air only. Thus, six different test concentrations and clean air can easily be tested in series by shifting the valve to new positions. Initial in-line measurement with a photoionization detector showed that the delivery system quickly responded to a shift in valve position. Thus 90% of the desired concentration was reached within 15 seconds. The concentrations in the bags are verified daily by gas chromatography. The stability of the system in terms of chemical concentration is monitored in real time by means of a photo-ionization detector. To determine lateralization thresholds, an additional pump supplying clean air is added to the delivery system in a way so that the nostrils can be separately and interchangeably be exposed to clean air and test chemical. Odor and lateralization thresholds were determined for three aldehydes; acrolein, crotonaldehyde, and hexanal in 20 healthy naïve individuals. Aldehydes generally have a strong odour, and the selected aldehydes are also considered to be irritating to mucous membranes. The median odor thresholds of the three aldehydes were 0.017, 0.0008, and 0.097 ppm, respectively. No lateralization threshold could be identified for acrolein, whereas the medians for crotonaldehyde and hexanal were 0.003 and 0.39 ppm, respectively. In conclusion, we constructed a simple, inexpensive olfactometer that allows for stable and easily measurable concentrations of vapors of the test chemical. Our test with aldehydes demonstrates that the system produces valid detection among volunteers in terms of odour and lateralization thresholds.

Keywords: irritation, odour delivery, olfactometer, smell

Procedia PDF Downloads 223
647 IL-23, an Inflammatory Cytokine, Decreased by Shark Cartilage and Vitamin A Oral Treatment in Patient with Gastric Cancer

Authors: Razieh Zarei, Hassan zm, Abolghasem Ajami, Darush Moslemi, Narges Afsary, Amrollah Mostafa-zade

Abstract:

Introduction: IL-23 is responsible for the differentiation and expansion of Th17/ThIL-17 cells from naive CD4+ T cells. Therefore, may be IL-23/IL17 axis involve in a variety of allergic and autoimmune diseases, such as RA, MS, inflammatory bowel disease (IBD), and asthma. TGF-β is also share for the differentiation Th17 producing IL-17 and CD4+CD25+Foxp3hiT regulatory cells from naïve CD4+ T cells which are involved in the regulation of immune response, maintaining immunological self-tolerance and immune homeostasis ,and the control of autoimmunity and cancer surveillance. Therefore, T regulatory cells play a key role in autoimmunity, allergy, cancer, infectious disease, and the induction of transplantation tolerance. Vitamin A and it's derivatives (retinoids) inhibit or reverse the carcinogenic process in some types of cancers in oral cavity,head and neck, breast, skin, liver, and blood cells. Shark is a murine organism and its cartilage has antitumor peptides to prevent angiogenesis, in vitro. Our purpose is whether simultaneous oral treatment vitamin A and shark cartilage can modulate IL-23/IL-17 and CD4CD25Foxp3 T regulatory cell/TGF-β pathways and Th1/Th2 immunity in patients with gastric cancer. Materials and Methods: First investigated an imbalanced supernatant of cytokines exist in patients with gastric cancer by ELISA. Associated with cytokines measuring such as IL-23,IL-17,TGF-β,IL-4 and γ-IFN, then flow cytometry was employed to determine whether the peripheral blood mononuclear cells such as CD4+CD25+Foxp3highT regulatory cells in patients with gastric cancer were changed correspondingly. Results: An imbalance between IL-17 secretion and TGF-β/Foxp3 t regulatory cell pathway and so, Th1 immunity (γ-IFN production) and TH2 immunity (IL-4 secretion) was not seen in patients with gastric cancer treated by vitamin A and shark cartilage. But, the simultaneously presented down-regulation of IL-23 indicated, at least cytokine level. Conclusion: Il-23, as a pro-angiogenesis cytokine, probably, help to tumor growth. Hence, suggested that down-regulation of IL-23, at least cytokine level, is useful for anti-tumor immune responses in patients with gastric cancer.

Keywords: IL-23/IL17 axis, TGF-β/CD4CD25Foxp3 T regulatory pathway, γ-IFN, IL-4, shark cartilage and gastric cancer

Procedia PDF Downloads 399
646 Instrumental Characterization of Cyanobacteria as Polyhydroxybutyrate Producer

Authors: Eva Slaninova, Diana Cernayova, Zuzana Sedrlova, Katerina Mrazova, Petr Sedlacek, Jana Nebesarova, Stanislav Obruca

Abstract:

Cyanobacteria are gram-negative prokaryotes belonging to a group of photosynthetic bacteria. In comparison with heterotrophic microorganisms, cyanobacteria utilize atmospheric nitrogen and carbon dioxide without any additional substrates. This ability of these microorganisms could be employed in biotechnology for the production of bioplastics, concretely polyhydroxyalkanoates (PHAs) which are primarily accumulated as a storage material in cells in the form of intracellular granules. In this study, there two cyanobacterial cultures from genera Synechocystis were used, namely Synechocystic sp. PCC 6803 and Synechocystis salina CCALA 192. There were optimized and used several various approaches, including microscopic techniques such as cryo-scanning electron microscopy (Cryo-SEM) and transmission electron microscopy (TEM), and fluorescence lifetime imaging microscopy using Nile red as a fluorescent probe (FLIM). Due to these instrumental techniques, the morphology of intracellular space and surface of cells were characterized. The next group of methods which were employed was spectroscopic techniques such as UV-Vis spectroscopy measured in two modes (turbidimetry and integration sphere) and Fourier transform infrared spectroscopy (FTIR). All these diverse techniques were used for the detection and characterization of pigments (chlorophylls, carotenoids, phycocyanin, etc.) and PHAs, in our case poly (3-hydroxybutyrate) (P3HB). To verify results, gas chromatography (GC) was employed concretely for the determination of the amount of P3HB in biomass. Cyanobacteria were also characterized as polyhydroxybutyrate producers by flow cytometer, which could count cells and at the same time distinguish cells including P3HB and without due to fluorescent probe called BODIPY and live/dead fluorescent probe SYTO Blue. Based on results, P3HB content in cyanobacteria cells was determined, as also the overall fitness of the cells. Acknowledgment: Funding: This study was partly funded by the projectGA19-29651L of the Czech Science Foundation (GACR) and partly funded by the Austrian Science Fund (FWF), project I 4082-B25.

Keywords: cyanobacteria, fluorescent probe, microscopic techniques, poly(3hydroxybutyrate), spectroscopy, chromatography

Procedia PDF Downloads 233
645 Effect of Varying Zener-Hollomon Parameter (Temperature and Flow Stress) and Stress Relaxation on Creep Response of Hot Deformed AA3104 Can Body Stock

Authors: Oyindamola Kayode, Sarah George, Roberto Borrageiro, Mike Shirran

Abstract:

A phenomenon identified by our industrial partner has experienced sag on AA3104 can body stock (CBS) transfer bar during transportation of the slab from the breakdown mill to the finishing mill. Excessive sag results in bottom scuffing of the slab onto the roller table, resulting in surface defects on the final product. It has been found that increasing the strain rate on the breakdown mill final pass results in a slab resistant to sag. The creep response for materials hot deformed at different Zener–Holloman parameter values needs to be evaluated experimentally to gain better understanding of the operating mechanism. This study investigates this identified phenomenon through laboratory simulation of the breakdown mill conditions for various strain rates by utilizing the Gleeble at UCT Centre for Materials Engineering. The experiment will determine the creep response for a range of conditions as well as quantifying the associated material microstructure (sub-grain size, grain structure etc). The experimental matrices were determined based on experimental conditions approximate to industrial hot breakdown rolling and carried out on the Gleeble 3800 at the Centre for Materials Engineering, University of Cape Town. Plane strain compression samples were used for this series of tests at an applied load that allow for better contact and exaggerated creep displacement. A tantalum barrier layer was used for increased conductivity and decreased risk of anvil welding. One set of tests with no in-situ hold time was performed, where the samples were quenched after deformation. The samples were retained for microstructure analysis of the micrographs from the light microscopy (LM), quantitative data and images from scanning electron microscopy (SEM) and energy dispersive X-ray (EDX), sub-grain size and grain structure from electron back scattered diffraction (EBSD).

Keywords: aluminium alloy, can-body stock, hot rolling, creep response, Zener-Hollomon parameter

Procedia PDF Downloads 89
644 Biosocial Determinants of Maternal and Child Health in Northeast India: A Case Study

Authors: Benrithung Murry

Abstract:

This paper highlights the biosocial determinants of health-seeking behavior in tribal population groups of northeast India, focusing on maternal and child health. The northeastern region of India is a conglomeration of several ethnic groups, most of which are scheduled as tribal groups. A total of 750 ever-married women in reproductive ages (15-49 years) were interviewed from three tribal groups of Nagaland, India using pre-tested and modified maternal health schedule. Data pertaining to reproductive performance of the mothers and their children health status were collected from 12 villages of Dimapur district, Nagaland, India. The sample for study comprises 212 Angami women, 267 Ao women, and 271 Sumi women, all of which belonging to tribal populations of Northeast India. Sex ratios of 15-49 years in these three populations are 1018.18, 1086.69, and 1106.92, respectively. 90% of the populations in the study are nuclear families, with about 10% of households falling below the poverty line as per the cutoffs for India. Female literacy level in these population groups is higher than the national average of 65.46%; however, about 30% of all married women are not engaged in any sort of earnings. Total fertility rates of these populations are alarming (Total Fertility Rate ≥ 6) and far from replacement fertility level, while infant mortality rates are found to be much lower than the national average of 34 per 1000. The perception and practice of maternal health in this region is unimpressive despite the availability of medical amenities. Only 3 % of mothers in the study have reported 4 times antenatal checkups during last two pregnancies. Other mothers have reported 1 to 3 times of antenatal checkups, but about 25% of them never visited a doctor during the entire pregnancy period. About 15% of mothers never took tetanus injection, while 40% of mothers never took iron folic supplements during pregnancy. Almost half of all women and their husbands do not use birth control measures even for the spacing of children, which has an immense impact on prenatal mortality mainly due to deliberate abortions: the percentage of prenatal mortality among Angami, Ao and Sumi populations is 44.88, 31.88 and 54.98, respectively per 1000 live births. The steep decline in fertility levels in most countries is a consequence of the increasing use of modern methods of contraception. However, among users of birth control measures in these populations, it is seen that most couples use it only after they have the desired number of children, thus its use having no substantial influence in reducing fertility. It is also seen that the majority of the children were only partially vaccinated. With many child deliveries being done at home, many newborns are not administered with polio at birth. Two-third of all children do not have complete basic immunization against polio, diphtheria, tetanus, pertussis, bacillus, and hepatitis besides others. Certain adherence to traditional beliefs and customs apart from the socio-economic factors is believed to have been operating in these populations, which determines their health-seeking behavior. While a more in-depth study combining biological, socio-cultural, economic, and genetic factors is suggested, there is an urgent need for intervention in these populations to combat with the poor maternal and child health status.

Keywords: case study, health behavior, mother and child, northeast india

Procedia PDF Downloads 132
643 Controlled Nano Texturing in Silicon Wafer for Excellent Optical and Photovoltaic Properties

Authors: Deb Kumar Shah, M. Shaheer Akhtar, Ha Ryeon Lee, O-Bong Yang, Chong Yeal Kim

Abstract:

The crystalline silicon (Si) solar cells are highly renowned photovoltaic technology and well-established as the commercial solar technology. Most of the solar panels are globally installed with the crystalline Si solar modules. At the present scenario, the major photovoltaic (PV) market is shared by c-Si solar cells, but the cost of c-Si panels are still very high as compared with the other PV technology. In order to reduce the cost of Si solar panels, few necessary steps such as low-cost Si manufacturing, cheap antireflection coating materials, inexpensive solar panel manufacturing are to be considered. It is known that the antireflection (AR) layer in c-Si solar cell is an important component to reduce Fresnel reflection for improving the overall conversion efficiency. Generally, Si wafer exhibits the 30% reflection because it normally poses the two major intrinsic drawbacks such as; the spectral mismatch loss and the high Fresnel reflection loss due to the high contrast of refractive indices between air and silicon wafer. In recent years, researchers and scientists are highly devoted to a lot of researches in the field of searching effective and low-cost AR materials. Silicon nitride (SiNx) is well-known AR materials in commercial c-Si solar cells due to its good deposition and interaction with passivated Si surfaces. However, the deposition of SiNx AR is usually performed by expensive plasma enhanced chemical vapor deposition (PECVD) process which could have several demerits like difficult handling and damaging the Si substrate by plasma when secondary electrons collide with the wafer surface for AR coating. It is very important to explore new, low cost and effective AR deposition process to cut the manufacturing cost of c-Si solar cells. One can also be realized that a nano-texturing process like the growth of nanowires, nanorods, nanopyramids, nanopillars, etc. on Si wafer can provide a low reflection on the surface of Si wafer based solar cells. The above nanostructures might be enhanced the antireflection property which provides the larger surface area and effective light trapping. In this work, we report on the development of crystalline Si solar cells without using the AR layer. The Silicon wafer was modified by growing nanowires like Si nanostructures using the wet controlled etching method and directly used for the fabrication of Si solar cell without AR. The nanostructures over Si wafer were optimized in terms of sizes, lengths, and densities by changing the etching conditions. Well-defined and aligned wires like structures were achieved when the etching time is 20 to 30 min. The prepared Si nanostructured displayed the minimum reflectance ~1.64% at 850 nm with the average reflectance of ~2.25% in the wavelength range from 400-1000 nm. The nanostructured Si wafer based solar cells achieved the comparable power conversion efficiency in comparison with c-Si solar cells with SiNx AR layer. From this study, it is confirmed that the reported method (controlled wet etching) is an easy, facile method for preparation of nanostructured like wires on Si wafer with low reflectance in the whole visible region, which has greater prospects in developing c-Si solar cells without AR layer at low cost.

Keywords: chemical etching, conversion efficiency, silicon nanostructures, silicon solar cells, surface modification

Procedia PDF Downloads 129
642 Real-Time Radiological Monitoring of the Atmosphere Using an Autonomous Aerosol Sampler

Authors: Miroslav Hyza, Petr Rulik, Vojtech Bednar, Jan Sury

Abstract:

An early and reliable detection of an increased radioactivity level in the atmosphere is one of the key aspects of atmospheric radiological monitoring. Although the standard laboratory procedures provide detection limits as low as few µBq/m³, their major drawback is the delayed result reporting: typically a few days. This issue is the main objective of the HAMRAD project, which gave rise to a prototype of an autonomous monitoring device. It is based on the idea of sequential aerosol sampling using a carrousel sample changer combined with a gamma-ray spectrometer. In our hardware configuration, the air is drawn through a filter positioned on the carrousel so that it could be rotated into the measuring position after a preset sampling interval. Filter analysis is performed via a 50% HPGe detector inside an 8.5cm lead shielding. The spectrometer output signal is then analyzed using DSP electronics and Gamwin software with preset nuclide libraries and other analysis parameters. After the counting, the filter is placed into a storage bin with a capacity of 250 filters so that the device can run autonomously for several months depending on the preset sampling frequency. The device is connected to a central server via GPRS/GSM where the user can view monitoring data including raw spectra and technological data describing the state of the device. All operating parameters can be remotely adjusted through a simple GUI. The flow rate is continuously adjustable up to 10 m³/h. The main challenge in spectrum analysis is the natural background subtraction. As detection limits are heavily influenced by the deposited activity of radon decay products and the measurement time is fixed, there must exist an optimal sample decay time (delayed spectrum acquisition). To solve this problem, we adopted a simple procedure based on sequential spectrum acquisition and optimal partial spectral sum with respect to the detection limits for a particular radionuclide. The prototyped device proved to be able to detect atmospheric contamination at the level of mBq/m³ per an 8h sampling.

Keywords: aerosols, atmosphere, atmospheric radioactivity monitoring, autonomous sampler

Procedia PDF Downloads 154
641 Gammarus: Asellus Ratio as an Index of Organic Pollution: A Case Study in Markeaton, Kedleston Hall, and Allestree Park Lakes Derby, UK

Authors: Usman Bawa

Abstract:

Macro-invertebrates have been used to monitor organic pollution in rivers and streams. Several biotic indices based on macro-invertebrates have been developed over the years including the Biological Monitoring Working Party (BMWP). A new biotic index, the Gammarus:Asellus ratio has been recently proposed as an index of organic pollution. This study tested the validity of the Gammarus:Asellus ratio as an index of organic pollution, by examining the relationship between the Gammarus:Asellus ratio and physical-chemical parameters, and other biotic indices such as BMWP and, Average Score Per Taxon (ASPT) from lakes and streams at Markeaton Park, Allestree Park, and Kedleston Hall, Derbyshire. Macro invertebrates were sampled using the standard five-minute kick sampling techniques physical and chemical environmental variables were obtained based on standard sampling techniques. Eighteen sites were sampled, six sites from Markeaton Park (three sites across the stream and three sites across the lake). Six sites each were also sampled from Allestree Park and Kedleston Hall lakes. The Gammarus:Asellus ratio showed an opposite significant positive correlations with parameters indicative of organic pollution such as the level of nitrates, phosphates, and calcium and also revealed a negatively significant correlations with other biotic indices (BMWP/ASPT). The BMWP score correlated positively significantly with some water quality parameters such as dissolved oxygen and flow rate, but revealed no correlations with other chemical environmental variables. The BMWP score was significantly higher in the stream than the lake in Markeaton Park, also The ASPT scores appear to be significantly higher in the upper Lakes than the middle and lower lakes. This study has further strengthened the use of BMWP/ASPT score as an index of organic pollution. But, additional application is required to validate the use of Gammarus:Asellus as a rapid bio monitoring tool.

Keywords: Asellus, biotic index, Gammarus, macro invertebrates, organic pollution

Procedia PDF Downloads 350
640 Computed Tomography Myocardial Perfusion on a Patient with Hypertrophic Cardiomyopathy

Authors: Jitendra Pratap, Daphne Prybyszcuk, Luke Elliott, Arnold Ng

Abstract:

Introduction: Coronary CT angiography is a non-invasive imaging technique for the assessment of coronary artery disease and has high sensitivity and negative predictive value. However, the correlation between the degree of CT coronary stenosis and the significance of hemodynamic obstruction is poor. The assessment of myocardial perfusion has mostly been undertaken by Nuclear Medicine (SPECT), but it is now possible to perform stress myocardial CT perfusion (CTP) scans quickly and effectively using CT scanners with high temporal resolution. Myocardial CTP is in many ways similar to neuro perfusion imaging technique, where radiopaque iodinated contrast is injected intravenously, transits the pulmonary and cardiac structures, and then perfuses through the coronary arteries into the myocardium. On the Siemens Force CT scanner, a myocardial perfusion scan is performed using a dynamic axial acquisition, where the scanner shuffles in and out every 1-3 seconds (heart rate dependent) to be able to cover the heart in the z plane. This is usually performed over 38 seconds. Report: A CT myocardial perfusion scan can be utilised to complement the findings of a CT Coronary Angiogram. Implementing a CT Myocardial Perfusion study as part of a routine CT Coronary Angiogram procedure provides a ‘One Stop Shop’ for diagnosis of coronary artery disease. This case study demonstrates that although the CT Coronary Angiogram was within normal limits, the perfusion scan provided additional, clinically significant information in regards to the haemodynamics within the myocardium of a patient with Hypertrophic Obstructive Cardio Myopathy (HOCM). This negated the need for further diagnostics studies such as cardiac ECHO or Nuclear Medicine Stress tests. Conclusion: CT coronary angiography with adenosine stress myocardial CTP was utilised in this case to specifically exclude coronary artery disease in conjunction with accessing perfusion within the hypertrophic myocardium. Adenosine stress myocardial CTP demonstrated the reduced myocardial blood flow within the hypertrophic myocardium, but the coronary arteries did not show any obstructive disease. A CT coronary angiogram scan protocol that incorporates myocardial perfusion can provide diagnostic information on the haemodynamic significance of any coronary artery stenosis and has the potential to be a “One Stop Shop” for cardiac imaging.

Keywords: CT, cardiac, myocardium, perfusion

Procedia PDF Downloads 136
639 Covariate-Adjusted Response-Adaptive Designs for Semi-Parametric Survival Responses

Authors: Ayon Mukherjee

Abstract:

Covariate-adjusted response-adaptive (CARA) designs use the available responses to skew the treatment allocation in a clinical trial in towards treatment found at an interim stage to be best for a given patient's covariate profile. Extensive research has been done on various aspects of CARA designs with the patient responses assumed to follow a parametric model. However, ranges of application for such designs are limited in real-life clinical trials where the responses infrequently fit a certain parametric form. On the other hand, robust estimates for the covariate-adjusted treatment effects are obtained from the parametric assumption. To balance these two requirements, designs are developed which are free from distributional assumptions about the survival responses, relying only on the assumption of proportional hazards for the two treatment arms. The proposed designs are developed by deriving two types of optimum allocation designs, and also by using a distribution function to link the past allocation, covariate and response histories to the present allocation. The optimal designs are based on biased coin procedures, with a bias towards the better treatment arm. These are the doubly-adaptive biased coin design (DBCD) and the efficient randomized adaptive design (ERADE). The treatment allocation proportions for these designs converge to the expected target values, which are functions of the Cox regression coefficients that are estimated sequentially. These expected target values are derived based on constrained optimization problems and are updated as information accrues with sequential arrival of patients. The design based on the link function is derived using the distribution function of a probit model whose parameters are adjusted based on the covariate profile of the incoming patient. To apply such designs, the treatment allocation probabilities are sequentially modified based on the treatment allocation history, response history, previous patients’ covariates and also the covariates of the incoming patient. Given these information, an expression is obtained for the conditional probability of a patient allocation to a treatment arm. Based on simulation studies, it is found that the ERADE is preferable to the DBCD when the main aim is to minimize the variance of the observed allocation proportion and to maximize the power of the Wald test for a treatment difference. However, the former procedure being discrete tends to be slower in converging towards the expected target allocation proportion. The link function based design achieves the highest skewness of patient allocation to the best treatment arm and thus ethically is the best design. Other comparative merits of the proposed designs have been highlighted and their preferred areas of application are discussed. It is concluded that the proposed CARA designs can be considered as suitable alternatives to the traditional balanced randomization designs in survival trials in terms of the power of the Wald test, provided that response data are available during the recruitment phase of the trial to enable adaptations to the designs. Moreover, the proposed designs enable more patients to get treated with the better treatment during the trial thus making the designs more ethically attractive to the patients. An existing clinical trial has been redesigned using these methods.

Keywords: censored response, Cox regression, efficiency, ethics, optimal allocation, power, variability

Procedia PDF Downloads 167
638 Lung Function, Urinary Heavy Metals And ITS Other Influencing Factors Among Community In Klang Valley

Authors: Ammar Amsyar Abdul Haddi, Mohd Hasni Jaafar

Abstract:

Heavy metals are elements naturally presented in the environment that can cause adverse effect to health. But not much literature was found on effects toward lung function, where impairment of lung function may lead to various lung diseases. The objective of the study is to explore the lung function impairment, urinary heavy metal level, and its associated factors among the community in Klang valley, Malaysia. Sampling was done in Kuala Lumpur suburb public and housing areas during community events throughout March 2019 till October 2019. respondents who gave the consent were given a questionnaire to answer and was proceeded with a lung function test. Urine samples were obtained at the end of the session and sent for Inductively coupled plasma mass spectrometry (ICP-MS) analysis for heavy metal cadmium (Cd) and lead (Pb) concentration. A total of 200 samples were analysed, and of all, 52% of respondents were male, Age ranging from 18 years old to 74 years old with a mean age of 38.44. Urinary samples show that 12% of the respondent (n=22) has Cd level above than average, and 1.5 % of the respondent (n=3) has urinary Pb at an above normal level. Bivariate analysis show that there was a positive correlation between urinary Cd and urinary Pb (r= 0.309; p<0.001). Furthermore, there was a negative correlation between urinary Cd level and full vital capacity (FVC) (r=-0.202, p=0.004), Force expiratory volume at 1 second (FEV1) (r = -0.225, p=0.001), and also with Force expiratory flow between 25-75% FVC (FEF25%-75%) (r= -0.187, p=0.008). however, urinary Pb did not show any association with FVC, FEV1, FEV1/FVC, or FEF25%-75%. Multiple linear regression analysis shows that urinary Cd remained significant and negatively affect FVC% (p=0.025) and FEV1% (p=0.004) achieved from the predicted value. On top of that, other factors such as education level (p=0.013) and duration of smoking(p=0.003) may influencing both urinary Cd and performance in lung function as well, suggesting Cd as a potential mediating factor between smoking and impairment of lung function. however, there was no interaction detected between heavy metal or other influencing factor in this study. In short, there is a negative linear relationship detected between urinary Cd and lung function, and urinary Cd is likely to affects lung function in a restrictive pattern. Since smoking is also an influencing factor for urinary Cd and lung function impairment, it is highly suggested that smokers should be screened for lung function and urinary Cd level in the future for early disease prevention.

Keywords: lung function, heavy metals, community

Procedia PDF Downloads 161