Search results for: environmental safety
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9604

Search results for: environmental safety

3334 Optimization of Biodiesel Production from Palm Oil over Mg-Al Modified K-10 Clay Catalyst

Authors: Muhammad Ayoub, Abrar Inayat, Bhajan Lal, Sintayehu Mekuria Hailegiorgis

Abstract:

Biodiesel which comes from pure renewable resources provide an alternative fuel option for future because of limited fossil fuel resources as well as environmental concerns. The transesterification of vegetable oils for biodiesel production is a promising process to overcome this future crises of energy. The use of heterogeneous catalysts greatly simplifies the technological process by facilitating the separation of the post-reaction mixture. The purpose of the present work was to examine a heterogeneous catalyst, in particular, Mg-Al modified K-10 clay, to produce methyl esters of palm oil. The prepared catalyst was well characterized by different latest techniques. In this study, the transesterification of palm oil with methanol was studied in a heterogeneous system in the presence of Mg-Al modified K-10 clay as solid base catalyst and then optimized these results with the help of Design of Experiments software. The results showed that methanol is the best alcohol for this reaction condition. The best results was achieved for optimization of biodiesel process. The maximum conversion of triglyceride (88%) was noted after 8 h of reaction at 60 ̊C, with a 6:1 molar ratio of methanol to palm oil and 3 wt % of prepared catalyst.

Keywords: palm oil, transestrefication, clay, biodiesel, mesoporous clay, K-10

Procedia PDF Downloads 390
3333 Numerical Investigation of a Slightly Oblique Round Jet Flowing into a Uniform Counterflow Stream

Authors: Amani Amamou, Sabra Habli, Nejla Mahjoub Saïd, Philippe Bournot, Georges Le Palec

Abstract:

A counterflowing jet is a particular configuration of turbulent jets issuing into a moving ambient which has not carried much attention in literature compared with jet in a coflow or in a crossflow. This is due to the marked instability of the jet in a counterflow coupled with experimental and theoretical difficulties related to the flow inversion phenomenon. Nevertheless, jets in a counterflow are encountered in many engineering applications which required enhanced mixing as combustion, process and environmental engineering. In this work, we propose to investigate a round turbulent jet flowing into a uniform counterflow stream through a numerical approach. A hydrodynamic and thermal study of a slightly oblique round jets issuing into a uniform counterflow stream is carried out for different jet-to-counterflow velocity ratios ranging between 3.1 and 15. It is found that even a slight inclination of the jet in the vertical direction of the flow affects the structure and the velocity field of the counterflowing jet. In addition, the evolution of passive scalar temperature and pertinent length scales are presented at various velocity ratios, confirming that the flow is sensitive to directional perturbations.

Keywords: jet, counterflow, velocity, temperature, jet inclination

Procedia PDF Downloads 265
3332 Hydraulic Resources Management under Imperfect Competition with Thermal Plants in the Wholesale Electricity Market

Authors: Abdessalem Abbassi, Ahlem Dakhlaoui, Lota D. Tamini

Abstract:

In this paper, we analyze infinite discrete-time games between hydraulic and thermal power operators in the wholesale electricity market under Cournot competition. We consider a deregulated electrical industry where certain demand is satisfied by hydraulic and thermal technologies. The hydraulic operator decides the production in each season of each period that maximizes the sum of expected profits from power generation with respect to the stochastic dynamic constraint on the water stored in the dam, the environmental constraint and the non-negative output constraint. In contrast, the thermal plant is operated with quadratic cost function, with respect to the capacity production constraint and the non-negativity output constraint. We show that under imperfect competition, the hydraulic operator has a strategic storage of water in the peak season. Then, we quantify the strategic inter-annual and intra-annual water transfer and compare the numerical results. Finally, we show that the thermal operator can restrict the hydraulic output without compensation.

Keywords: asymmetric risk aversion, electricity wholesale market, hydropower dams, imperfect competition

Procedia PDF Downloads 354
3331 An Improved Particle Swarm Optimization Technique for Combined Economic and Environmental Power Dispatch Including Valve Point Loading Effects

Authors: Badr M. Alshammari, T. Guesmi

Abstract:

In recent years, the combined economic and emission power dispatch is one of the main problems of electrical power system. It aims to schedule the power generation of generators in order to minimize cost production and emission of harmful gases caused by fossil-fueled thermal units such as CO, CO2, NOx, and SO2. To solve this complicated multi-objective problem, an improved version of the particle swarm optimization technique that includes non-dominated sorting concept has been proposed. Valve point loading effects and system losses have been considered. The three-unit and ten-unit benchmark systems have been used to show the effectiveness of the suggested optimization technique for solving this kind of nonconvex problem. The simulation results have been compared with those obtained using genetic algorithm based method. Comparison results show that the proposed approach can provide a higher quality solution with better performance.

Keywords: power dispatch, valve point loading effects, multiobjective optimization, Pareto solutions

Procedia PDF Downloads 268
3330 Benefits of Environmental Aids to Chronobiology Management and Its Impact on Depressive Mood in an Operational Setting

Authors: M. Trousselard, D. Steiler, C. Drogou, P. van-Beers, G. Lamour, S. N. Crosnier, O. Bouilland, P. Dubost, M. Chennaoui, D. Léger

Abstract:

According to published data, undersea navigation for long periods (nuclear-powered ballistic missile submarine, SSBN) constitutes an extreme environment in which crews are subjected to multiple stresses, including the absence of natural light, illuminance below 1,000 lux, and watch schedules that do not respect natural chronobiological rhythms, for a period of 60-80 days. These stresses seem clearly detrimental to the submariners’ sleep, with consequences for their affective (seasonal affective disorder-like) and cognitive functioning. In the long term, there are abundant publications regarding the consequences of sleep disruption for the occurrence of organic cardiovascular, metabolic, immunological or malignant diseases. It seems essential to propose countermeasures for the duration of the patrol in order to reduce the negative physiological effects on the sleep and mood of submariners. Light therapy, the preferred treatment for dysfunctions of the internal biological clock and the resulting seasonal depression, cannot be used without data to assist knowledge of submariners’ chronobiology (melatonin secretion curve) during patrols, given the unusual characteristics of their working environment. These data are not available in the literature. The aim of this project was to assess, in the course of two studies, the benefits of two environmental techniques for managing chronobiological stress: techniques for optimizing potential (TOP; study 1)3, an existing programme to help in the psychophysiological regulation of stress and sleep in the armed forces, and dawn and dusk simulators (DDS, study 2). For each experiment, psychological, physiological (sleep) or biological (melatonin secretion) data were collected on D20 and D50 of patrol. In the first experiment, we studied sleep and depressive distress in 19 submariners in an operational setting on board an SSBM during a first patrol, and assessed the impact of TOP on the quality of sleep and depressive distress in these same submariners over the course of a second patrol. The submariners were trained in TOP between the two patrols for a 2-month period, at a rate of 1 h of training per week, and assigned daily informal exercises. Results show moderate disruptions in sleep pattern and duration associated with the intensity of depressive distress. The use of TOP during the following patrol improved sleep and depressive mood only in submariners who regularly practiced the techniques. In light of these limited benefits, we assessed, in a second experiment, the benefits of DDS on chronobiology (daily secretion of melatonin) and depressive distress. Ninety submariners were randomly allocated to two groups, group 1 using DDS daily, and group 2 constituting the control group. Although the placebo effect was not controlled, results showed a beneficial effect on chronobiology and depressive mood for submariners with a morning chronotype. Conclusions: These findings demonstrate the difficulty of practicing the tools of psychophysiological management in real life. They raise the question of the subjects’ autonomy with respect to using aids that involve regular practice. It seems important to study autonomy in future studies, as a cognitive resource resulting from the interaction between internal positive resources and “coping” resources, to gain a better understanding of compliance problems.

Keywords: chronobiology, light therapy, seasonal affective disorder, sleep, stress, stress management, submarine

Procedia PDF Downloads 453
3329 Identify and Prioritize the Sustainable Development of Sports Venues Using New and Degradable Energies with a Hierarchical Analysis Approach

Authors: Mahsaossadat Pourrahmati Khelejan

Abstract:

The purpose of this research was to identify and prioritize the sustainable development of sports venues using new and degradable energies with using the AHP Hierarchical Analysis approach. The research method is a descriptive strategy with regard to the direction of implementation and is a hierarchical research with a practical purpose. In this study, 30 experts (physical education faculty members, geography professors, accredited sports venues managers, and renewable energy engineers) were selected using purposeful sampling method as the research population. The research tool was a researcher-made questionnaire on the factors affecting the sustainable development of sports venues by using new technologies and degradable energy. Finally, the research questionnaire was designed with four components and 21 items. All steps were performed by using Expert Choice software. The importance of indicators that influence the sustainable development of sports venues is highlighted by the use of clean and degradable energy, for example: 1. Economic factor, weighing 0.420 2. Environmental index, weighing 0. 320 3. Physical index, weighing 0.148 4. Social index, weighing 0.122.

Keywords: Sports Venues, Sustainable Development, Degradable Energies, Prioritize

Procedia PDF Downloads 130
3328 An Evaluation of Edible Plants for Remediation of Contaminated Soil- Can Edible Plants Be Used to Remove Heavy Metals on Soil?

Authors: Celia Marilia Martins, Sonia I. V. Guilundo, Iris M. Victorino, Antonio O. Quilambo

Abstract:

In Mozambique rapid industrialization (mining, aluminium and cement activities) and urbanization processes has led to the incorporation of heavy metals on soil, thus degrading not only the quality of the environment, but also affecting plants, animals and human healthy. Several methods have been used to remediate contaminated soils, but most of them are costly and difficult to get optimum results. Currently, phytoremediation is an effective and affordable technological solution used to extract or remove inactive metals from contaminated soil. Phytoremediation is the use of plants to clean up a contamination from soils, sediments, and water. This technology is environmental friendly and potentially cost effective. The present investigation summarised the potential of edible vegetable to grow under the high level of heavy metals such as lead and zinc. The plants used in these studies include Tomatoes, lettuce and Soya beans. The studies have shown that edible plants can be grown under the high level of heavy metals on the soil. Further investigations are identifying mechanisms used by plants to ensure a safe and sustainable use for remediation of contaminated soils by heavy metals.

Keywords: contaminated soil, edible plants, heavy metals, phytoremediation

Procedia PDF Downloads 371
3327 The Use of Social Media Sarcasm as a Response to Media-Coverage of Iran’s Unprecedented Attack on Israel

Authors: Afif J. Arabi

Abstract:

On April 15, 2024, Iran announced its unprecedented military attack by sending waves of more than 300 drones and ballistic missiles toward Israel. The Attack lasted approximately five hours and was a widely covered, distributed, and followed media event. Iran’s military action against Israel was a long-awaited action across the Middle East since the early days of the October 7th war on Gaza and after a long history of verbal threats. While people in many Arab countries stayed up past midnight in anticipation of watching the disastrous results of this unprecedented attack, voices on traditional and social media alike started to question the timed public announcement of the attack, which gave Israel at least a two-hour notice to prepare its defenses. When live news coverage started showing that nearly all the drones and missiles were intercepted by Israel – with help from the U.S. and other countries – and no deaths were reported, the social media response to this media event turned toward sarcasm, mockery, irony, and humor. Social media users posted sarcastic pictures, jokes, and comments mocking the Iranian offensive. This research examines this unique media event and the sarcastic response it generated on social media. The study aims to investigate the causes leading to media sarcasm in militarized political conflict, the social function of such generated sarcasm, and the role of social media as a platform for consuming frustration, dissatisfaction, and outrage passively through various media products. The study compares the serious traditional media coverage of the event with the humorous social media response among Arab countries. The research uses an eclectic theoretical approach using framing theory as a paradigm for understanding and investigating communication social functionalism theory in media studies to examine sarcasm. Social functionalism theory is a sociological perspective that views society as a complex system whose parts work together to promote solidarity and stability. In the context of media and sarcasm, this theory would suggest that sarcasm serves specific functions within society, such as reinforcing social norms, providing a means for social critique, or functioning as a safety valve for expressing social tension.; and a qualitative analysis of specific examples including responses of SM commentators to such manifestations of political criticism. The preliminary findings of this study point to a heightened dramatization of the televised event and a widespread belief that this attack was a staged show incongruent with Iran’s official enmity and death threats toward Israel. The social media sarcasm reinforces Arab’s view of Iran and Israel as mutual threats. This belief stems from the complex dynamics, historical context, and regional conflict surrounding these three nations: Iran, Israel, and Arabs.

Keywords: social functionalism, social media sarcasm, Television news framing, live militarized conflict coverage, iran, israel, communication theory

Procedia PDF Downloads 35
3326 A Case Study at Lara's Landfill: Solid Waste Management and Energy Recovery

Authors: Kelly Danielly Da Silva Alcantara, Daniel Fernando Molina Junqueira, Graziella Colato Antonio

Abstract:

The Law No. 12,305/10, established by the National Solid Waste Policy (PNRS), provides major changes in the management and managing scenario of solid waste in Brazil. The PNRS established since changes from population behavior as environmental and the consciousness and commitment of the companies with the waste produced. The objective of this project is to conduct a benchmarking study of the management models of Waste Management Municipal Solid (MSW) in national and international levels emphasizing especially in the European Union (Portugal, France and Germany), which are reference countries in energy development, sustainability and consequently recovery of waste generated. The management that encompasses all stages that are included in this sector will be analyzed by benchmarking, as the collection, transportation, processing/treatment and final disposal of waste. Considering the needs to produce clean energy in Brazil, this study will allow the determination to the best treatment of the waste in order to reduce the amount of waste and increase the lifetime of the landfill. Finally, it intends to identify the energy recovery potential through a study analysis of economic viability, energy and sustainable based on a holistic approach.

Keywords: benchmarking, energy recovery, landfill, municipal solid waste

Procedia PDF Downloads 421
3325 Near-Peer Mentoring/Curriculum and Community Enterprise for Environmental Restoration Science

Authors: Lauren B. Birney

Abstract:

The BOP-CCERS (Billion Oyster Project- Curriculum and Community Enterprise for Restoration Science) Near-Peer Mentoring Program provides the long-term (five-year) support network to motivate and guide students toward restoration science-based CTE pathways. Students are selected from middle schools with actively participating BOP-CCERS teachers. Teachers will nominate students from grades 6-8 to join cohorts of between 10 and 15 students each. Cohorts are comprised primarily of students from the same school in order to facilitate mentors' travel logistics as well as to sustain connections with students and their families. Each cohort is matched with an exceptional undergraduate or graduate student, either a BOP research associate or STEM mentor recruited from collaborating City University of New York (CUNY) partner programs. In rare cases, an exceptional high school junior or senior may be matched with a cohort in addition to a research associate or graduate student. In no case is a high school student or minor be placed individually with a cohort. Mentors meet with students at least once per month and provide at least one offsite field visit per month, either to a local STEM Hub or research lab. Keeping with its five-year trajectory, the near-peer mentoring program will seek to retain students in the same cohort with the same mentor for the full duration of middle school and for at least two additional years of high school. Upon reaching the final quarter of 8th grade, the mentor will develop a meeting plan for each individual mentee. The mentee and the mentor will be required to meet individually or in small groups once per month. Once per quarter, individual meetings will be substituted for full cohort professional outings. The mentor will organize the entire cohort on a field visit or educational workshop with a museum or aquarium partner. In addition to the mentor-mentee relationship, each participating student will also be asked to conduct and present his or her own BOP field research. This research is ideally carried out with the support of the students’ regular high school STEM subject teacher; however, in cases where the teacher or school does not permit independent study, the student will be asked to conduct the research on an extracurricular basis. Near-peer mentoring affects students’ social identities and helps them to connect to role models from similar groups, ultimately giving them a sense of belonging. Qualitative and quantitative analytics were performed throughout the study. Interviews and focus groups also ensued. Additionally, an external evaluator was utilized to ensure project efficacy, efficiency, and effectiveness throughout the entire project. The BOP-CCERS Near Peer Mentoring program is a peer support network in which high school students with interest or experience in BOP (Billion Oyster Project) topics and activities (such as classroom oyster tanks, STEM Hubs, or digital platform research) provide mentorship and support for middle school or high school freshmen mentees. Peer mentoring not only empowers those students being taught but also increases the content knowledge and engagement of mentors. This support provides the necessary resources, structure, and tools to assist students in finding success.

Keywords: STEM education, environmental science, citizen science, near peer mentoring

Procedia PDF Downloads 89
3324 Equity And Inclusivity In Sustainable Urban Planning: Addressing Social Disparities In Eco-City Development

Authors: Olayeye Olubunmi Shola

Abstract:

Amidst increasing global environmental concerns, sustainable urban planning has emerged as a vital strategy in counteracting the negative impacts of urbanization on the environment. However, the emphasis on sustainability often disregards crucial elements of fairness and equal participation within urban settings. This abstract presents a comprehensive overview of the challenges, objectives, significance, and methodologies for addressing social inequalities in the development of eco-cities, with a specific focus on Abuja, Nigeria. Sustainable urban planning, particularly in the context of developing eco-cities, aims to construct cities prioritizing environmental sustainability and resilience. Nonetheless, a significant gap exists in addressing the enduring social disparities within these initiatives. Equitable distribution of resources, access to services, and social inclusivity are essential components that must be integrated into urban planning frameworks for cities that are genuinely sustainable and habitable. Abuja, the capital city of Nigeria, provides a distinctive case for examining the intersection of sustainability and social justice in urban planning. Despite the urban development, Abuja grapples with challenges such as socio-economic disparities, unequal access to essential services, and inadequate housing among its residents. Recognizing and redressing these disparities within the framework of eco-city development is critical for nurturing an inclusive and sustainable urban environment. The primary aim of this study is to scrutinize and pinpoint the social discrepancies within Abuja's initiatives for eco-city development. Specific objectives include: Evaluating the current socio-economic landscape of Abuja to identify disparities in resource, service, and infrastructure access. Comprehending the existing sustainable urban planning initiatives and their influence on social fairness. Suggesting strategies and recommendations to improve fairness and inclusivity within Abuja's plans for eco-city development. This research holds substantial importance for urban planning practices and policy formulation, not only in Abuja but also on a global scale. By highlighting the crucial role of social equity and inclusivity in the development of eco-cities, this study aims to provide insights that can steer more comprehensive, people-centered urban planning practices. Addressing social disparities within sustainability initiatives is crucial for achieving genuinely sustainable and fair urban spaces. The study will employ qualitative and quantitative methodologies. Data collection will involve surveys, interviews, and observations to capture the diverse experiences and perspectives of various social groups within Abuja. Furthermore, quantitative data on infrastructure, service access, and socio-economic indicators will be collated from government reports, academic sources, and non-governmental organizations. Analytical tools such as Geographic Information Systems (GIS) will be utilized to map and visualize spatial disparities in resource allocation and service access. Comparative analyses and case studies of successful interventions in other cities will be conducted to derive applicable strategies for Abuja's context. In conclusion, this study aims to contribute to the discourse on sustainable urban planning by advocating for equity and inclusivity in the development of eco-cities. By centering on Abuja as a case study, it aims to provide practical insights and solutions for the creation of more fair and sustainable urban environments.

Keywords: fairness, sustainability, geographical information system, equity

Procedia PDF Downloads 76
3323 Cooperative Sensing for Wireless Sensor Networks

Authors: Julien Romieux, Fabio Verdicchio

Abstract:

Wireless Sensor Networks (WSNs), which sense environmental data with battery-powered nodes, require multi-hop communication. This power-demanding task adds an extra workload that is unfairly distributed across the network. As a result, nodes run out of battery at different times: this requires an impractical individual node maintenance scheme. Therefore we investigate a new Cooperative Sensing approach that extends the WSN operational life and allows a more practical network maintenance scheme (where all nodes deplete their batteries almost at the same time). We propose a novel cooperative algorithm that derives a piecewise representation of the sensed signal while controlling approximation accuracy. Simulations show that our algorithm increases WSN operational life and spreads communication workload evenly. Results convey a counterintuitive conclusion: distributing workload fairly amongst nodes may not decrease the network power consumption and yet extend the WSN operational life. This is achieved as our cooperative approach decreases the workload of the most burdened cluster in the network.

Keywords: cooperative signal processing, signal representation and approximation, power management, wireless sensor networks

Procedia PDF Downloads 387
3322 Influence of Urban Design on Pain and Disability in Women with Chronic Low Back Pain in Urban Cairo

Authors: Maha E. Ibrahim, Mona Abdel Aziz

Abstract:

Background: Chronic low back pain (CLBP) in urban communities represents a challenge to healthcare systems worldwide. The traditional biomedical approach to back pain has been particularly inadequate. Failure of the biomedical model to explain the poor correlation between pain and disability on the one hand, and biological and physical factors that explain those symptoms on the other has led to the adoption of the biopsychosocial model, to recognize the reciprocal influence of physical, social and psychological factors implicated in CLBP, a condition that shows higher prevalence among women residing in urban areas. Urban design of the built community has been shown to exert a significant influence on physical and psychological health. However, little research has investigated the relationship between elements of the built environment, and the level of pain and disability of women with CLBP. As Egypt embarks on building a new capital city, and new settlements proliferate, better understanding of this relationship could greatly reduce the economic and human costs of this widespread medical problem for women. Methods: This study was designed as an exploratory mixed qualitative and quantitative study. Twenty-Six women with CLBP living in two neighborhoods in Cairo, different in their urban structure, but adjacent in their locations (Old Maadi and New Maadi) were interviewed using semi-structured interviews (8 from Old Maadi and 18 from New Maadi). Located in the South of Cairo, New Maadi is a neighborhood with the characteristic modern urban style (narrow streets and tall, adjacent buildings), while Old Maadi is known for being greener, quieter and more relaxed than the usual urban districts of Cairo. The interviews examined their perceptions of the built environment, including building shapes and colors and street light, as well as their sense of safety and comfort, and how it affects their physical and psychological health in general, and their back condition in particular. In addition, they were asked to rate their level of pain and to fill the Oswestry Disability Index (ODI), and the General Health Questionnaire (GHQ-12) to rate their level of disability and psychological status, respectively. Results: Women in both districts had moderate to severe pain and moderate disability with no significant differences between the two districts. However, those living in New Maadi had significantly worse scores on the GHQ-12 than those living in Old Maadi. Most women did not feel that specific elements of the built environment affected their back pain, however, they expressed distress of the elements that were ugly, distorted or damaged, especially where there were no ways of avoiding or fixing them. Furthermore, most women affirmed that the unsightly and uncomfortable elements of their neighborhoods affected their mood states and were a constant source of stress. Conclusion: This exploratory study concludes that elements of the urban built environment do not exert a direct effect on CLBP. However, the perception of women regarding these elements does affect their mood states, and their levels of stress, making them a possible indirect cause of increased suffering in these women.

Keywords: built environment, chronic back pain, disability, urban Cairo

Procedia PDF Downloads 145
3321 Performance Evaluation of Various Displaced Left Turn Intersection Designs

Authors: Hatem Abou-Senna, Essam Radwan

Abstract:

With increasing traffic and limited resources, accommodating left-turning traffic has been a challenge for traffic engineers as they seek balance between intersection capacity and safety; these are two conflicting goals in the operation of a signalized intersection that are mitigated through signal phasing techniques. Hence, to increase the left-turn capacity and reduce the delay at the intersections, the Florida Department of Transportation (FDOT) moves forward with a vision of optimizing intersection control using innovative intersection designs through the Transportation Systems Management & Operations (TSM&O) program. These alternative designs successfully eliminate the left-turn phase, which otherwise reduces the conventional intersection’s (CI) efficiency considerably, and divide the intersection into smaller networks that would operate in a one-way fashion. This study focused on the Crossover Displaced Left-turn intersections (XDL), also known as Continuous Flow Intersections (CFI). The XDL concept is best suited for intersections with moderate to high overall traffic volumes, especially those with very high or unbalanced left turn volumes. There is little guidance on determining whether partial XDL intersections are adequate to mitigate the overall intersection condition or full XDL is always required. The primary objective of this paper was to evaluate the overall intersection performance in the case of different partial XDL designs compared to a full XDL. The XDL alternative was investigated for 4 different scenarios; partial XDL on the east-west approaches, partial XDL on the north-south approaches, partial XDL on the north and east approaches and full XDL on all 4 approaches. Also, the impact of increasing volume on the intersection performance was considered by modeling the unbalanced volumes with 10% increment resulting in 5 different traffic scenarios. The study intersection, located in Orlando Florida, is experiencing recurring congestion in the PM peak hour and is operating near capacity with volume to a capacity ratio closer to 1.00 due to the presence of two heavy conflicting movements; southbound and westbound. The results showed that a partial EN XDL alternative proved to be effective and compared favorably to a full XDL alternative followed by the partial EW XDL alternative. The analysis also showed that Full, EW and EN XDL alternatives outperformed the NS XDL and the CI alternatives with respect to the throughput, delay and queue lengths. Significant throughput improvements were remarkable at the higher volume level with percent increase in capacity of 25%. The percent reduction in delay for the critical movements in the XDL scenarios compared to the CI scenario ranged from 30-45%. Similarly, queue lengths showed percent reduction in the XDL scenarios ranging from 25-40%. The analysis revealed how partial XDL design can improve the overall intersection performance at various demands, reduce the costs associated with full XDL and proved to outperform the conventional intersection. However, partial XDL serving low volumes or only one of the critical movements while other critical movements are operating near or above capacity do not provide significant benefits when compared to the conventional intersection.

Keywords: continuous flow intersections, crossover displaced left-turn, microscopic traffic simulation, transportation system management and operations, VISSIM simulation model

Procedia PDF Downloads 308
3320 The Use of Rice Husk Ash as a Stabilizing Agent in Lateritic Clay Soil

Authors: J. O. Akinyele, R. W. Salim, K. O. Oikelome, O. T. Olateju

Abstract:

Rice Husk (RH) is the major byproduct in the processing of paddy rice. The management of this waste has become a big challenge to some of the rice producers, some of these wastes are left in open dumps while some are burn in the open space, and these two actions have been contributing to environmental pollution. This study evaluates an alternative waste management of this agricultural product for use as a civil engineering material. The RH was burn in a controlled environment to form Rice Husk Ash (RHA). The RHA was mix with lateritic clay at 0, 2, 4, 6, 8, and 10% proportion by weight. Chemical test was conducted on the open burn and controlled burn RHA with the lateritic clay. Physical test such as particle size distribution, Atterberg limits test, and density test were carried out on the mix material. The chemical composition obtained for the RHA showed that the total percentage compositions of Fe2O3, SiO2 and Al2O3 were found to be above 70% (class “F” pozzolan) which qualifies it as a very good pozzolan. The coefficient of uniformity (Cu) was 8 and coefficient of curvature (Cc) was 2 for the soil sample. The Plasticity Index (PI) for the 0, 2, 4, 6, 8. 10% was 21.0, 18.8, 16.7, 14.4, 12.4 and 10.7 respectively. The work concluded that RHA can be effectively used in hydraulic barriers and as a stabilizing agent in soil stabilization.

Keywords: rice husk ash, pozzolans, paddy rice, lateritic clay

Procedia PDF Downloads 321
3319 Nanotechnology: A New Revolution to Increase Agricultural Production

Authors: Reshu Chaudhary, R. S. Sengar

Abstract:

To increase the agricultural production Indian farmer needs to aware of the latest technology i.e. precision farming to maximize the crop yield and minimize the input (fertilizer, pesticide etc.) through monitoring the environmental factors. Biotechnology and information technology have provided lots of opportunities for the development of agriculture. But, still we have to do much more for increasing our agricultural production in order to achieve the target growth of agriculture to secure food, to eliminate poverty and improve living style, to enhance agricultural exports and national income and to improve quality of agricultural products. Nanotechnology can be a great element to satisfy these requirements and to boost the multi-dimensional development of agriculture in order to fulfill the dream of Indian farmers. Nanotechnology is the most rapidly growing area of science and technology with its application in physical science, chemical science, life science, material science and earth science. Nanotechnology is a part of any nation’s future. Research in nanotechnology has extremely high potential to benefit society through application in agricultural sciences. Nanotechnology has greater potential to bring revolution in the agricultural sector.

Keywords: agriculture, biotechnology, crop yield, nanotechnology

Procedia PDF Downloads 354
3318 Xanthotoxin: A Plant Derived Furanocoumarin with Antipathogenic and Cytotoxic Activities

Authors: Seyed Mehdi Razavi Khosroshahi

Abstract:

In recent years a great deal of efforts has been made to find natural derivative compounds to replace it's with synthetic drugs, herbicides or pesticides for management of human health and agroecosystem programs. This process can lead to a reduction in environmental harmful effects of synthetic chemicals. Xanthotoxin, as a furanocoumarin compound, found in some genera of the Apiaceae family of plants. The current work focuses on some xanthotoxin cytotoxicity and antipathogenic activities. The results indicated that xanthotoxin showed strong cytotoxic effects against LNCaP cell line with the IC₅₀ value of 0.207 mg/ml in a dose-dependent manner. After treatments of the cell line with 0.1 mg/ml of the compound, the viability of the cells was reached to zero. The current study revealed that xanthotoxin displayed strong antifungal activity against human or plant pathogen fungi, Aspergillus fumigatus, Aspegillusn flavus and Fusarum graminearum with minimum inhibitory concentration values of 52-68 µg/ml. The compound exhibited antibacterial effects on some Erwinia and Xanthomonas species of bacteria, as well

Keywords: Xanthomonas, cytotoxic, antipathogen, LNCaP, Aspergillus fumigatus, spegillusn flavus

Procedia PDF Downloads 141
3317 Design of Ultra-Light and Ultra-Stiff Lattice Structure for Performance Improvement of Robotic Knee Exoskeleton

Authors: Bing Chen, Xiang Ni, Eric Li

Abstract:

With the population ageing, the number of patients suffering from chronic diseases is increasing, among which stroke is a high incidence for the elderly. In addition, there is a gradual increase in the number of patients with orthopedic or neurological conditions such as spinal cord injuries, nerve injuries, and other knee injuries. These diseases are chronic, with high recurrence and complications, and normal walking is difficult for such patients. Nowadays, robotic knee exoskeletons have been developed for individuals with knee impairments. However, the currently available robotic knee exoskeletons are generally developed with heavyweight, which makes the patients uncomfortable to wear, prone to wearing fatigue, shortening the wearing time, and reducing the efficiency of exoskeletons. Some lightweight materials, such as carbon fiber and titanium alloy, have been used for the development of robotic knee exoskeletons. However, this increases the cost of the exoskeletons. This paper illustrates the design of a new ultra-light and ultra-stiff truss type of lattice structure. The lattice structures are arranged in a fan shape, which can fit well with circular arc surfaces such as circular holes, and it can be utilized in the design of rods, brackets, and other parts of a robotic knee exoskeleton to reduce the weight. The metamaterial is formed by continuous arrangement and combination of small truss structure unit cells, which changes the diameter of the pillar section, geometrical size, and relative density of each unit cell. It can be made quickly through additive manufacturing techniques such as metal 3D printing. The unit cell of the truss structure is small, and the machined parts of the robotic knee exoskeleton, such as connectors, rods, and bearing brackets, can be filled and replaced by gradient arrangement and non-uniform distribution. Under the condition of satisfying the mechanical properties of the robotic knee exoskeleton, the weight of the exoskeleton is reduced, and hence, the patient’s wearing fatigue is relaxed, and the wearing time of the exoskeleton is increased. Thus, the efficiency and wearing comfort, and safety of the exoskeleton can be improved. In this paper, a brief description of the hardware design of the prototype of the robotic knee exoskeleton is first presented. Next, the design of the ultra-light and ultra-stiff truss type of lattice structures is proposed, and the mechanical analysis of the single-cell unit is performed by establishing the theoretical model. Additionally, simulations are performed to evaluate the maximum stress-bearing capacity and compressive performance of the uniform arrangement and gradient arrangement of the cells. Finally, the static analysis is performed for the cell-filled rod and the unmodified rod, respectively, and the simulation results demonstrate the effectiveness and feasibility of the designed ultra-light and ultra-stiff truss type of lattice structures. In future studies, experiments will be conducted to further evaluate the performance of the designed lattice structures.

Keywords: additive manufacturing, lattice structures, metamaterial, robotic knee exoskeleton

Procedia PDF Downloads 102
3316 Sectoral Energy Consumption in South Africa and Its Implication for Economic Growth

Authors: Kehinde Damilola Ilesanmi, Dev Datt Tewari

Abstract:

South Africa is in its post-industrial era moving from the primary and secondary sector to the tertiary sector. The study investigated the impact of the disaggregated energy consumption (coal, oil, and electricity) on the primary, secondary and tertiary sectors of the economy between 1980 and 2012 in South Africa. Using vector error correction model, it was established that South Africa is an energy dependent economy, and that energy (especially electricity and oil) is a limiting factor of growth. This implies that implementation of energy conservation policies may hamper economic growth. Output growth is significantly outpacing energy supply, which has necessitated load shedding. To meet up the excess energy demand, there is a need to increase the generating capacity which will necessitate increased investment in the electricity sector as well as strategic steps to increase oil production. There is also need to explore more renewable energy sources, in order to meet the growing energy demand without compromising growth and environmental sustainability. Policy makers should also pursue energy efficiency policies especially at sectoral level of the economy.

Keywords: causality, economic growth, energy consumption, hypothesis, sectoral output

Procedia PDF Downloads 467
3315 A Geographical Framework for Studying the Territorial Sustainability Based on Land Use Change

Authors: Miguel Ramirez, Ivan Lizarazo

Abstract:

The emergence of various interpretations of sustainability, including weak and strong paradigms, can be traced back to the definition of sustainable development provided in the 1987 Brundtland report and the subsequent evolution of the sustainability concept. However, there has been limited scholarly attention given to clarifying the concept of sustainability within the theoretical and conceptual framework of geography. The discipline has predominantly been focused on understanding the diverse conceptions of sustainability within its epistemological boundaries, resulting in tensions between sustainability paradigms and their associated dimensions, including the incorporation of political perspectives, with particular emphasis on environmental geography's epistemology. In response to this gap, a conceptual framework for sustainability is proposed, effectively integrating spatial and territorial concepts. This framework aims to enhance geography's role in contributing to sustainability by utilizing the land system theory, which is based on the dynamics of land use change. Such an integrated conceptual framework enables incorporating methodological tools such as remote sensing, encompassing various earth observations and fusion methods, and supervised classification techniques. Additionally, it looks for better integration of socioecological information, thereby capturing essential population-related features.

Keywords: geography, sustainability, land change science, territorial sustainability

Procedia PDF Downloads 74
3314 Effect of Silicon in Mitigating Cadmium Toxicity in Maize

Authors: Ghulam Hasan Abbasi, Moazzam Jamil, M. Anwar-Ul-Haq

Abstract:

Heavy metals are significant pollutants in environment and their toxicity is a problem for survival of living things while Silicon (Si) is one of the most ubiquitous macroelements, performing an essential function in healing plants in response to environmental stresses. A hydroponic experiment was conducted to investigate the role of exogenous application of silicon under cadmium stress in six different maize hybrids with five treatments comprising of control, 7.5 µM Cd + 5 mM Si, 7.5 µM Cd + 10 mM Si, 15 µM Cd + 5 mM Si and 15 µM Cd + 10 mM Si. Results revealed that treatments of plants with 10mM Si application under both 7.5µM Cd and 15 µM Cd stress resulted in maximum improvement in plant morphological attributes (root and shoot length, root and shoot fresh and dry weight, leaf area and relative water contents) and antioxidant enzymes (POD and CAT) relative to 5 mM Si application in all maize hybrids. Results regarding Cd concentrations showed that Cd was more retained in roots followed by shoots and then leaves and maximum reduction in Cd uptake was observed at 10mM Si application. Maize hybrid 6525 showed maximum growth and least concentration of Cd whereas maize hybrid 1543 showed the minimum growth and maximum Cd concentration among all maize hybrids.

Keywords: antioxidant, cadmium, maize, silicon

Procedia PDF Downloads 514
3313 New Perspectives on Musician’s Focal Dystonia Causes and Therapy

Authors: Douglas Shabe

Abstract:

The world of the performing musician is one of high pressure that comes from the expected high standards they have to live up to and that they expect from themselves. The pressure that musicians put themselves under can manifest itself in physical problems such as focal dystonia. Knowledge of the contributing factors and potential rehabilitation strategies cannot only give players hope for recovery but also the information to prevent it from happening in the first place. This dissertation presents a multiple case study of two performing brass musicians who developed focal dystonia of the embouchure, also known as embouchure dystonia, combined with an autoethnography of the author’s experience of battling embouchure dystonia and our attempts at recovery. Extensive research into the current state of focal dystonia research was done to establish a base of knowledge. That knowledge was used to develop interview questions for the two participants and interpret the findings of the qualitative data collected. The research knowledge, as well as the qualitative data from the case studies, was also used to interpret the author’s experience. The author determined that behavioral, environmental, and psychological factors were of prime importance in the subjects’ development of focal dystonia and that modifications of those factors are essential for the best chance at recovery.

Keywords: focal dystonia, embouchure dystonia, music teaching and learning, music education

Procedia PDF Downloads 80
3312 Self-Regulation in Composition Writing: The Case of Variation of Self-Regulation Dispositions in Opinion Essay and Technical Writing

Authors: Dave Kenneth Tayao Cayado, Carlo P. Magno, Venice Cristine Dangaran

Abstract:

The present study determines whether there will be differences in the self-regulation dispositions that learners utilize when writing different types of composition. There were 7 self-regulation factors that were used to develop a scale in this study such as memory strategy, goal setting, self-evaluation, seeking assistance, learning responsibility, environmental structuring, and organizing. The scale was made specific for writing a composition. The researcher-made scale was administered to 150 participants who all came from a university in the Philippines. The participants were asked to write two compositions namely opinion essay and research introduction/review of related literature. The zero-order correlation revealed that all the factors of self-regulation are correlated with one another. However, only seeking assistance and self-evaluation are correlated with opinion essay and technical writing is not correlated to any of the self-regulation factors. However, when path analysis was used, it was shown that seeking assistance can predict opinion essay scores whereas memory strategy, self-evaluation, and organizing can predict technical writing scores.

Keywords: opinion essay, self-regulation, technical writing, writing skills

Procedia PDF Downloads 174
3311 Optimization and Retrofitting for an Egyptian Refinery Water Network

Authors: Mohamed Mousa

Abstract:

Sacristies in the supply of freshwater, strict regulations on discharging wastewater and the support to encourage sustainable development by water minimization techniques leads to raise the interest of water reusing, regeneration, and recycling. Water is considered a vital element in chemical industries. In this study, an optimization model will be developed to determine the optimal design of refinery’s water network system via source interceptor sink that involves several network alternatives, then a Mixed-Integer Non-Linear programming (MINLP) was used to obtain the optimal network superstructure based on flowrates, the concentration of contaminants, etc. The main objective of the model is to reduce the fixed cost of piping installation interconnections, reducing the operating cots of all streams within the refiner’s water network, and minimize the concentration of pollutants to comply with the environmental regulations. A real case study for one of the Egyptian refineries was studied by GAMS / BARON global optimization platform, and the water network had been retrofitted and optimized, leading to saving around 195 m³/ hr. of freshwater with a total reduction reaches to 26 %.

Keywords: freshwater minimization, modelling, GAMS, BARON, water network design, wastewater reudction

Procedia PDF Downloads 227
3310 Safety of Mesenchymal Stem Cells Therapy: Potential Risk of Spontaneous Transformations

Authors: Katarzyna Drela, Miroslaw Wielgos, Mikolaj Wrobel, Barbara Lukomska

Abstract:

Mesenchymal stem cells (MSCs) have a great potential in regenerative medicine. Since the initial number of isolated MSCs is limited, in vitro propagation is often required to reach sufficient numbers of cells for therapeutic applications. During long-term culture MSCs may undergo genetic or epigenetic alterations that subsequently increase the probability of spontaneous malignant transformation. Thus, factors that influence genomic stability of MSCs following long-term expansions need to be clarified before cultured MSCs are employed for clinical application. The aim of our study was to investigate the potential for spontaneous transformation of human neonatal cord blood (HUCB-MSCs) and adult bone marrow (BM-MSCs) derived MSCs. Materials and Methods: HUCB-MSCs and BM-MSCs were isolated by standard Ficoll gradient centrifugations method. Isolated cells were initially plated in high density 106 cells per cm2. After 48 h medium were changed and non-adherent cells were removed. The malignant transformation of MSCs in vitro was evaluated by morphological changes, proliferation rate, ability to enter cell senescence, the telomerase expression and chromosomal abnormality. Proliferation of MSCs was analyzed with WST-1 reduction method and population doubling time (PDT) was calculated at different culture stages. Then the expression pattern of genes characteristic for mesenchymal or epithelial cells, as well as transcriptions factors were examined by RT-PCR. Concomitantly, immunocytochemical analysis of gene-related proteins was employed. Results: Our studies showed that MSCs from all bone marrow isolations ultimately entered senescence and did not undergo spontaneous malignant transformation. However, HUCB-MSCs from one of the 15 donors displayed an increased proliferation rate, failed to enter senescence, and exhibited an altered cell morphology. In this sample we observed two different cell phenotypes: one mesenchymal-like exhibited spindle shaped morphology and express specific mesenchymal surface markers (CD73, CD90, CD105, CD166) with low proliferation rate, and the second one with round, densely package epithelial-like cells with significantly increased proliferation rate. The PDT of epithelial-like populations was around 1day and 100% of cells were positive for proliferation marker Ki-67. Moreover, HUCB-MSCs showed a positive expression of human telomerase reverse transcriptase (hTERT), cMYC and exhibit increased number of CFU during the long-term culture in vitro. Furthermore, karyotype analysis revealed chromosomal abnormalities including duplications. Conclusions: Our studies demonstrate that HUCB-MSCs are susceptible to spontaneous malignant transformation during long-term culture. Spontaneous malignant transformation process following in vitro culture has enormous effect on the biosafety issues of future cell-based therapies and regenerative medicine regimens.

Keywords: mesenchymal stem cells, spontaneous, transformation, long-term culture

Procedia PDF Downloads 261
3309 Broad Host Range Bacteriophage Cocktail for Reduction of Staphylococcus aureus as Potential Therapy for Atopic Dermatitis

Authors: Tamar Lin, Nufar Buchshtab, Yifat Elharar, Julian Nicenboim, Rotem Edgar, Iddo Weiner, Lior Zelcbuch, Ariel Cohen, Sharon Kredo-Russo, Inbar Gahali-Sass, Naomi Zak, Sailaja Puttagunta, Merav Bassan

Abstract:

Background: Atopic dermatitis (AD) is a chronic, relapsing inflammatory skin disorder that is characterized by dry skin and flares of eczematous lesions and intense pruritus. Multiple lines of evidence suggest that AD is associated with increased colonization by Staphylococcus aureus, which contributes to disease pathogenesis through the release of virulence factors that affect both keratinocytes and immune cells, leading to disruption of the skin barrier and immune cell dysfunction. The aim of the current study is to develop a bacteriophage-based product that specifically targets S. aureus. Methods: For the discovery of phage, environmental samples were screened on 118 S. aureus strains isolated from skin samples, followed by multiple enrichment steps. Natural phages were isolated, subjected to Next-generation Sequencing (NGS), and analyzed using proprietary bioinformatics tools for undesirable genes (toxins, antibiotic resistance genes, lysogeny potential), taxonomic classification, and purity. Phage host range was determined by an efficiency of plating (EOP) value above 0.1 and the ability of the cocktail to completely lyse liquid bacterial culture under different growth conditions (e.g., temperature, bacterial stage). Results: Sequencing analysis demonstrated that the 118 S. aureus clinical strains were distributed across the phylogenetic tree of all available Refseq S. aureus (~10,750 strains). Screening environmental samples on the S. aureus isolates resulted in the isolation of 50 lytic phages from different genera, including Silviavirus, Kayvirus, Podoviridae, and a novel unidentified phage. NGS sequencing confirmed the absence of toxic elements in the phages’ genomes. The host range of the individual phages, as measured by the efficiency of plating (EOP), ranged between 41% (48/118) to 79% (93/118). Host range studies in liquid culture revealed that a subset of the phages can infect a broad range of S. aureus strains in different metabolic states, including stationary state. Combining the single-phage EOP results of selected phages resulted in a broad host range cocktail which infected 92% (109/118) of the strains. When tested in vitro in a liquid infection assay, clearance was achieved in 87% (103/118) of the strains, with no evidence of phage resistance throughout the study (24 hours). A S. aureus host was identified that can be used for the production of all the phages in the cocktail at high titers suitable for large-scale manufacturing. This host was validated for the absence of contaminating prophages using advanced NGS methods combined with multiple production cycles. The phages are produced under optimized scale-up conditions and are being used for the development of a topical formulation (BX005) that may be administered to subjects with atopic dermatitis. Conclusions: A cocktail of natural phages targeting S. aureus was effective in reducing bacterial burden across multiple assays. Phage products may offer safe and effective steroid-sparing options for atopic dermatitis.

Keywords: atopic dermatitis, bacteriophage cocktail, host range, Staphylococcus aureus

Procedia PDF Downloads 149
3308 An Integration of Life Cycle Assessment and Techno-Economic Optimization in the Supply Chains

Authors: Yohanes Kristianto

Abstract:

The objective of this paper is to compose a sustainable supply chain that integrates product, process and networks design. An integrated life cycle assessment and techno-economic optimization is proposed that might deliver more economically feasible operations, minimizes environmental impacts and maximizes social contributions. Closed loop economy of the supply chain is achieved by reusing waste to be raw material of final products. Societal benefit is given by the supply chain by absorbing waste as source of raw material and opening new work opportunities. A case study of ethanol supply chain from rice straws is considered. The modeling results show that optimization within the scope of LCA is capable of minimizing both CO₂ emissions and energy and utility consumptions and thus enhancing raw materials utilization. Furthermore, the supply chain is capable of contributing to local economy through jobs creation. While the model is quite comprehensive, the future research recommendation on energy integration and global sustainability is proposed.

Keywords: life cycle assessment, techno-economic optimization, sustainable supply chains, closed loop economy

Procedia PDF Downloads 147
3307 MPPT Control with (P&O) and (FLC) Algorithms of Solar Electric Generator

Authors: Dib Djalel, Mordjaoui Mourad

Abstract:

The current trend towards the exploitation of various renewable energy resources has become indispensable, so it is important to improve the efficiency and reliability of the GPV photovoltaic systems. Maximum Power Point Tracking (MPPT) plays an important role in photovoltaic power systems because it maximize the power output from a PV system for a given set of conditions. This paper presents a new fuzzy logic control based MPPT algorithm for solar panel. The solar panel is modeled and analyzed in Matlab/Simulink. The Solar panel can produce maximum power at a particular operating point called Maximum Power Point(MPP). To produce maximum power and to get maximum efficiency, the entire photovoltaic panel must operate at this particular point. Maximum power point of PV panel keeps on changing with changing environmental conditions such as solar irradiance and cell temperature. Thus, to extract maximum available power from a PV module, MPPT algorithms are implemented and Perturb and Observe (P&O) MPPT and fuzzy logic control FLC, MPPT are developed and compared. Simulation results show the effectiveness of the fuzzy control technique to produce a more stable power.

Keywords: MPPT, photovoltaic panel, fuzzy logic control, modeling, solar power

Procedia PDF Downloads 477
3306 Environmentally Benign Synthesis of 2-Pyrazolines and Cyclohexenones Incorporating Naphthalene Moiety and Their Antimicrobial Evaluation

Authors: Al-Bogami Abdullah Saad

Abstract:

We reported the environmental benign synthesis of chalcones, 2-pyrazolines and cyclohexanones under microwave irradiation. Chalcones were obtained by the condensation of each of 2-hydroxyacetophenone derivatives with α-naphthaldehyde under microwave irradiation. The condensation reactions of each of synthesized chalcones with phenyl hydrazine under microwave irradiation in the presence of dry acetic acid as a cyclizing agent gave 2-pyrazolines. Also, the new cyclohexenone derivatives, valuable intermediates to synthesize fused heterocycles, have been prepared by the cyclocondensation of each of hydroxychalcones with ethyl acetoacetate. The structures of the synthesized compounds were elucidated by Infrared (IR) spectrometry, Nuclear Magnetic Resonance (NMR), Mass Spectrometry(MS) and elmental analysis. The results indicate that unlike classical heating, microwave irradiation results in higher yields with shorter and cleaner reactions. The synthesized compounds were screened for antimicrobial activity against Staphylococcus aureus, Escherichia coli, Candida Albicans and Aspergillus niger. We clarified the effects of different substituents in the tested compounds on the obtaind antibacterial activities and antifungal activities.

Keywords: microwave irradiation, 2-Hydroxyacetophenone, α-Naphthaldehyde, pyrazoline, cyclohexenone, antimicrobial activity

Procedia PDF Downloads 336
3305 An Integrated Water Resources Management Approach to Evaluate Effects of Transportation Projects in Urbanized Territories

Authors: Berna Çalışkan

Abstract:

The integrated water management is a colloborative approach to planning that brings together institutions that influence all elements of the water cycle, waterways, watershed characteristics, wetlands, ponds, lakes, floodplain areas, stream channel structure. It encourages collaboration where it will be beneficial and links between water planning and other planning processes that contribute to improving sustainable urban development and liveability. Hydraulic considerations can influence the selection of a highway corridor and the alternate routes within the corridor. widening a roadway, replacing a culvert, or repairing a bridge. Because of this, the type and amount of data needed for planning studies can vary widely depending on such elements as environmental considerations, class of the proposed highway, state of land use development, and individual site conditions. The extraction of drainage networks provide helpful preliminary drainage data from the digital elevation model (DEM). A case study was carried out using the Arc Hydro extension within ArcGIS in the study area. It provides the means for processing and presenting spatially-referenced Stream Model. Study area’s flow routing, stream levels, segmentation, drainage point processing can be obtained using DEM as the 'Input surface raster'. These processes integrate the fields of hydrologic, engineering research, and environmental modeling in a multi-disciplinary program designed to provide decision makers with a science-based understanding, and innovative tools for, the development of interdisciplinary and multi-level approach. This research helps to manage transport project planning and construction phases to analyze the surficial water flow, high-level streams, wetland sites for development of transportation infrastructure planning, implementing, maintenance, monitoring and long-term evaluations to better face the challenges and solutions associated with effective management and enhancement to deal with Low, Medium, High levels of impact. Transport projects are frequently perceived as critical to the ‘success’ of major urban, metropolitan, regional and/or national development because of their potential to affect significant socio-economic and territorial change. In this context, sustaining and development of economic and social activities depend on having sufficient Water Resources Management. The results of our research provides a workflow to build a stream network how can classify suitability map according to stream levels. Transportation projects establish, develop, incorporate and deliver effectively by selecting best location for reducing construction maintenance costs, cost-effective solutions for drainage, landslide, flood control. According to model findings, field study should be done for filling gaps and checking for errors. In future researches, this study can be extended for determining and preventing possible damage of Sensitive Areas and Vulnerable Zones supported with field investigations.

Keywords: water resources management, hydro tool, water protection, transportation

Procedia PDF Downloads 51