Search results for: carbon content and stock
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9421

Search results for: carbon content and stock

3151 Optimizing Energy Efficiency: Leveraging Big Data Analytics and AWS Services for Buildings and Industries

Authors: Gaurav Kumar Sinha

Abstract:

In an era marked by increasing concerns about energy sustainability, this research endeavors to address the pressing challenge of energy consumption in buildings and industries. This study delves into the transformative potential of AWS services in optimizing energy efficiency. The research is founded on the recognition that effective management of energy consumption is imperative for both environmental conservation and economic viability. Buildings and industries account for a substantial portion of global energy use, making it crucial to develop advanced techniques for analysis and reduction. This study sets out to explore the integration of AWS services with big data analytics to provide innovative solutions for energy consumption analysis. Leveraging AWS's cloud computing capabilities, scalable infrastructure, and data analytics tools, the research aims to develop efficient methods for collecting, processing, and analyzing energy data from diverse sources. The core focus is on creating predictive models and real-time monitoring systems that enable proactive energy management. By harnessing AWS's machine learning and data analytics capabilities, the research seeks to identify patterns, anomalies, and optimization opportunities within energy consumption data. Furthermore, this study aims to propose actionable recommendations for reducing energy consumption in buildings and industries. By combining AWS services with metrics-driven insights, the research strives to facilitate the implementation of energy-efficient practices, ultimately leading to reduced carbon emissions and cost savings. The integration of AWS services not only enhances the analytical capabilities but also offers scalable solutions that can be customized for different building and industrial contexts. The research also recognizes the potential for AWS-powered solutions to promote sustainable practices and support environmental stewardship.

Keywords: energy consumption analysis, big data analytics, AWS services, energy efficiency

Procedia PDF Downloads 59
3150 Effect of Al Particles on Corrosion Resistance of Electrodeposited Ni-Al Composite Coatings

Authors: M. Adabi, A. Amadeh

Abstract:

Electrodeposition is known as a relatively economical and simple technique commonly used for preparation of metallic and composite coatings. Electrodeposited composite coatings produced by dispersion of particles into the metal matrix show better properties than pure metallic coatings. In recent years, many researches were carried out on Ni matrix coatings reinforced by ceramic particles such as Ni-SiC, Ni-Al2O3, Ni-WC, Ni-CeO2, Ni-ZrO2, Ni-TiO2 to improve their corrosion and wear resistance. However, little effort has been made on incorporation of metal particles into Ni matrix. Therefore, the aim of this work was to produce Ni–Al composite coating on 6061 aluminum alloy by pulse plating and to investigate the effects of electrodeposition parameters, e.g. concentration Al particles in the electrolyte and current density, on composition and corrosion resistance of the composite coatings. The morphology and corrosion behavior of the coated 6061 Al alloys were studied by means of scanning electron microscope (SEM) equipped with energy dispersive X-ray spectrometer (EDS) and potentiodynamic polarization method, respectively. The results indicated that the addition of Al particles up to 50 g L-1 increased the amount of co-deposited Al particles in nickel matrix. It is also observed that the incorporation of Al particles decreased with increasing current density. Meanwhile, the corrosion resistance of the coatings shows an increment by increasing the content of Al particles into nickel matrix.

Keywords: Ni-Al composite coating, current density, corrosion resistance

Procedia PDF Downloads 480
3149 The Internal View of the Mu'min: Natural Law Theories in Islam

Authors: Gianni Izzo

Abstract:

The relation of Islam to its legal precepts, reflected in the various jurisprudential 'schools of thought' (madhahib), is one expressed in a version of 'positivism' (fiqh) providing the primary theory for deducing Qurʾan rulings and those from the narrations (hadith) of the Prophet Muhammad. Scholars of Islam, including Patricia Crone (2004) and others chronicled by Anver Emon (2005), deny the influence of natural law theories as extra-scriptural indices of revelation’s content. This paper seeks to dispute these claims by reference to historical and canonical examples within Shiʿa legal thought that emphasize the salient roles of ‘aql (reason), fitrah (primordial human nature), and lutf (divine grace). These three holistic features, congenital to every human, and theophanically reflected in nature make up a mode of moral intelligibility antecedent to prophetic revelation. The debate between the 'traditionalist' Akhbaris and 'rationalist' Usulis over the nature of deriving legal edicts in Islam is well-covered academic ground. Instead, an attempt is made to define and detail the built-in assumptions of natural law revealed in the jurisprudential summa of Imami Shiʿism, whether of either dominant school, that undergird its legal prescriptions and methods of deduction.

Keywords: Islam, fiqh, natural law, legal positivism, aql

Procedia PDF Downloads 137
3148 Experimental Study on Improving the Engineering Properties of Sand Dunes Using Random Fibers-Geogrid Reinforcement

Authors: Adel M. Belal, Sameh Abu El-Soud, Mariam Farid

Abstract:

This study presents the effect of reinforcement inclusions (fibers-geogrids) on fine sand bearing capacity under strip footings. Experimental model tests were carried out using a rectangular plates [(10cm x 38 cm), (7.5 cm x 38 cm), and (12.5 cm x 38 cm)] with a geogrids and randomly reinforced fibers. The width and depth of the geogrid were varied to determine their effects on the engineering properties of treated poorly graded fine sand. Laboratory model test results for the ultimate stresses and the settlement of a rigid strip foundation supported by single and multi-layered fiber-geogrid-reinforced sand are presented. The number of layers of geogrid was varied between 1 to 4. The effect of the first geogrid reinforcement depth, the spacing between the reinforcement and its length on the bearing capacity is investigated by experimental program. Results show that the use of flexible random fibers with a content of 0.125% by weight of the treated sand dunes, with 3 geogrid reinforcement layers, u/B= 0.25 and L/B=7.5, has a significant increase in the bearing capacity of the proposed system.

Keywords: earth reinforcement, geogrid, random fiber, reinforced soil

Procedia PDF Downloads 309
3147 Willingness to Adopt "Green Steel" Products: A Case Study from the Automotive Sector

Authors: Hasan Muslemani, Jeffrey Wilson, Xi Liang, Francisco Ascui, Katharina Kaesehage

Abstract:

This paper aims to examine consumer behaviour towards, and the willingness to adopt, green steel use in the automotive sector, in order to identify potential barriers and opportunities for its widespread adoption. Semi-structured interviews were held with experts from global, regional and country-specific industry associations and automakers. The analysis shows there is a new shift towards lifecycle thinking in the sector, although these efforts have been voluntary and driven by customer and employee pressures rather than regulation. The paper further appraises possible demand for green steel within different vehicle types (based on size and powertrain), and shows that manufacturers of electric heavy-duty vehicles are most likely to adopt green steel in the first instance, given the amount of incorporated steel in the vehicles and the fact that lifecycle emissions lie predominantly in their manufacturing phase. A case for green advanced higher-strength steels (AHSS) can also be made in light-duty passenger vehicles, which may mitigate competition from light-weight alternative materials in terms of cost and greenness (depending on source and utilisation zones). This work builds on a wide sustainability-related literature in the automotive sector and highlights areas in need of urgent action if the sector as a whole were to meet its Paris Agreement climate targets, in particular a need to revisit current CO2 performance regulations to include Scope 1 and Scope 2 emissions, engage in educational green marketing campaigns, and explore innovative market-based mechanisms to bridge the gap between relatively-low carbon abatement costs of steelmaking and high abatement costs of vehicle manufacturing.

Keywords: Green steel, Consumer behaviour, Automotive industry, Environmental sustainability

Procedia PDF Downloads 160
3146 Evaluation of Sugarcane (Saccharum officinarum L.) Genotypes, in modern method of Agriculture, using correlation and path coefficient Analyses

Authors: T. S. Bubuche, L. Abubakar, N.D. Ibrahim, A. A. Aliero, H. M. Sama, B. S. Haliru

Abstract:

A two-year study was conducted at the Fadama farm of Usmanu Danfodiyo University Sokoto, Nigeria. Correlations and path coefficients analysis were used to determine the interrelationship and importance of various characters as components of yield in sugarcane during 20011-012 and 2012-013 growing seasons. Fourteen sugarcane hybrids and a local check were evaluated. The experiment was laid out in a randomized complete block design (RCBD) and replicated three times. Significant and positive correlation were recorded between total cane weight/ha and single stalk weight, between single stalk weight and final brix and between stalk girth and stalk length while final brix and number of milliable cane/ha recorded no significant correlation. Traits that had high direct contribution to the final yield were number of stalk/stool, number of milliable cane/ha, single stalk weight and brix content while high indirect positive contributions were observed in growth habit, number of internode per stalk and stalk length..

Keywords: correlation, path analysis, sugarcane, yield components

Procedia PDF Downloads 247
3145 Wireless Sensor Network to Help Low Incomes Farmers to Face Drought Impacts

Authors: Fantazi Walid, Ezzedine Tahar, Bargaoui Zoubeida

Abstract:

This research presents the main ideas to implement an intelligent system composed by communicating wireless sensors measuring environmental data linked to drought indicators (such as air temperature, soil moisture , etc...). On the other hand, the setting up of a spatio temporal database communicating with a Web mapping application for a monitoring in real time in activity 24:00 /day, 7 days/week is proposed to allow the screening of the drought parameters time evolution and their extraction. Thus this system helps detecting surfaces touched by the phenomenon of drought. Spatio-temporal conceptual models seek to answer the users who need to manage soil water content for irrigating or fertilizing or other activities pursuing crop yield augmentation. Effectively, spatio-temporal conceptual models enable users to obtain a diagram of readable and easy data to apprehend. Based on socio-economic information, it helps identifying people impacted by the phenomena with the corresponding severity especially that this information is accessible by farmers and stakeholders themselves. The study will be applied in Siliana watershed Northern Tunisia.

Keywords: WSN, database spatio-temporal, GIS, web mapping, indicator of drought

Procedia PDF Downloads 491
3144 Site Selection in Adaptive Reuse Architecture for Social Housing in Johannesburg, South Africa

Authors: Setapo Moloi, Jun-Ichiro Giorgos Tsutsumi

Abstract:

South Africa’s need for the provision of housing within its major city centres, specifically Gauteng Province (GP), is a major concern. Initiatives for converting misused/ unused buildings to suitable housing for residents who work in the city as well as prospective citizens are currently underway, one aspect that is needed currently, is the re-possession of these buildings repurposing, into housing communities for quality low cost mixed density housing and for this process to have minimal strain on existing infrastructure like energy, emission reduction etc. Unfortunately, there are instances in Johannesburg, the country’s economic capital, with 2017 estimates claiming that 700 buildings lay unused or misused due to issues that will be discussed in this paper, these then become hubs for illegal activity and are an unacceptable form of shelter. It can be argued that the provision of inner-city social housing is lacking, but not due to the unavailability of funding or usable land and buildings, but that these assets are not being used appropriately nor to their full potential. Currently the GP government has mandated the re-purposing of all buildings that meet their criteria (structural stability, feasibility, adaptability, etc.) with the intention of inviting interested parties to propose conversions of the buildings into densified social housing. Going forward, the proposed focus is creation of social housing communities within existing buildings which may be retrofitted with sustainable technologies, green design strategies and principles, aiming for the finished buildings to achieve ‘Net-Zero/Positive’ status. A Net-Zero building, according to The Green Building Council of South Africa (GBCSA) is a building which manages to produce resources it needs to function, and reduces wastage, emissions and demand of these resources during its lifespan. The categories which GBCSA includes are carbon, water, waste and ecology, this may include material selection, construction methods, etc.

Keywords: adaptive reuse, conversion, net-zero, social housing, sustainable communities

Procedia PDF Downloads 130
3143 Fundamentals of Performance Management in the World of Public Service Organizations

Authors: Daniella Kucsma

Abstract:

The examination of the Privat Service Organization’s performance evaluation includes several steps that help Public organizations to develop a more efficient system. Public sector organizations have different characteristics than the competitive sector, so it can be stated that other/new elements become more important in their performance processes. The literature in this area is diverse, so highlighting an indicator system can be useful for introducing a system, but it is also worthwhile to measure the specific elements of the organization. In the case of a public service organization, due to the service obligation, it is usually possible to talk about a high number of users, so compliance is more difficult. For the organization, it is an important target to place great emphasis on the increase of service standards and the development of related processes. In this research, the health sector is given a prominent role, as it is a sensitive area where both organizational and individual performance is important for all participants. As a primary step, the content of the strategy is decisive, as this is important for the efficient structure of the process. When designing any system, it is important to review the expectations of the stakeholders, as this is primary when considering the design. The goal of this paper is to build the foundations of a performance management and indexing framework that can help a hospital to provide effective feedback and a direction that is important in assessing and developing a service and can become a management philosophy.

Keywords: health sector, public sector, performance management, strategy

Procedia PDF Downloads 189
3142 Characterization of Structural Elements Concrete Metal Fibre

Authors: Benaouda Hemza

Abstract:

This work on the characterization of structural elements in metal fiber concrete is devoted to the study of recyclability, as reinforcement for concrete, of chips resulting from the machining of steel parts. We are interested in this study to the rheological behavior of fresh chips reinforced concrete and its mechanical behavior at a young age. The evaluation of the workability with the LCL workabilimeter shows that optimal sand gravel ratios (S/G) are S/G=0.8, and S/G=1. The study of the content chips (W%) influence on the workability of the concrete shows that the flow time and the S/G optimum increase with W%. For S/G=1.4, the flow time is practically insensitive to the variation of W%, the concrete behavior is similar to that of self-compacting concrete. Mechanical characterization tests (direct tension, compression, bending, and splitting) show that the mechanical properties of chips concrete are comparable to those of the two selected reference concretes (concrete reinforced with conventional fibers: EUROSTEEL fibers corrugated and DRAMIX fibers). Chips provide a significant increase in strength and some ductility in the post-failure behavior of the concrete. Recycling chips as reinforcement for concrete can be favorably considered.

Keywords: fiber concrete, chips, workability, direct tensile test, compression test, bending test, splitting test

Procedia PDF Downloads 445
3141 Classical Physics against New Physics in Teaching Science

Authors: Patricio Alberto Cullen

Abstract:

Teaching Science in high school has been decreasing its quality for several years, and it is an obvious theme of discussion over more than 30 years. As a teacher of Secondary Education and a Professor of Technological University was necessary to work with some projects that attempt to articulate the different methodologies and concepts between both levels. Teaching Physics in Engineering Career is running between two waters. Disciplinary content and inconsistent training students got in high school. In the heady times facing humanity, teaching Science has become a race against time, and this is where it is worth stopping. Professor of Physics has outdated teaching tools against the relentless growth of knowledge in the Academic World. So we have raised from a pedagogical point of view the following question: Laboratory practices must continue to focus on traditional physics or should develop alternatives between old practices and new physics methodologies. Faced with this paradox, we stopped to try to answer from our experience, and our teaching and learning practice. These are one of the greatest difficulties presented in the Engineering work. The physics team will try to find new methodologies that are appealing to the population of students in the 21st century. Currently, the methodology used is question students about their personal interests. Once discovered mentioned interests, will be held some lines of action to facilitate achieving the goals.

Keywords: high school and university, level, students, physics, teaching physics

Procedia PDF Downloads 309
3140 Electrospun NaMnPO₄/CNF as High-Performance Cathode Material for Sodium Ion Batteries

Authors: Concetta Busacca, Leone Frusteri, Orazio Di Blasi, Alessandra Di Blasi

Abstract:

The large-scale extension of renewable energy led, recently, to the development of efficient and low-cost electrochemical energy storage (EES) systems such as batteries. Although lithium-ion battery (LIB) technology is relatively mature, several issues regarding safety, cyclability, and high costs must be overcome. Thanks to the availability and low cost of sodium, sodium-ion batteries (NIB) have the potential to meet the energy storage needs of the large-scale grid, becoming a valid alternative to LIB in some energy sectors, such as the stationary one. However, important challenges such as low specific energy and short cyclic life due to the large radius of Na+ must be faced to introduce this technology into the market. As an important component of SIBs, cathode materials have a significant effect on the electrochemical performance of SIBs. Recently, sodium layer transition metal oxides, phosphates, and organic compounds have been investigated as cathode materials for SIBs. In particular, phosphate-based compounds such as NaₓMPO₄ (M= Fe, Co, Mn) have been extensively studied as cathodic polyanion materials due to their long cycle stability and appropriate operating voltage. Among these, an interesting cathode material is the NaMnPO₄ based one, thanks to the stability and the high redox potential of the Mn²⁺/Mn³⁺ ion pair (3÷4 V vs. Na+/Na), which allows reaching a high energy density. This work concerns with the synthesis of a composite material based on NaMnPO₄ and carbon nanofibers (NaMnPO₄-CNF) characterized by a mixed crystalline structure between the maricite and olivine phases and a self-standing manufacture obtained by electrospinning technique. The material was tested in a Na-ion battery coin cell in half cell configuration, and showed outstanding electrocatalytic performances with a specific discharge capacity of 125 mAhg⁻¹ and 101 mAhg⁻¹ at 0.3C and 0.6C, respectively, and a retention capacity of about 80% a 0.6C after 100 cycles.

Keywords: electrospinning, self standing materials, Na ion battery, cathode materials

Procedia PDF Downloads 60
3139 Influence of Thermal Damage on the Mechanical Strength of Trimmed CFRP

Authors: Guillaume Mullier, Jean François Chatelain

Abstract:

Carbon Fiber Reinforced Plastics (CFRPs) are widely used for advanced applications, in particular in aerospace, automotive and wind energy industries. Once cured to near net shape, CFRP parts need several finishing operations such as trimming, milling or drilling in order to accommodate fastening hardware and meeting the final dimensions. The present research aims to study the effect of the cutting temperature in trimming on the mechanical strength of high performance CFRP laminates used for aeronautics applications. The cutting temperature is of great importance when dealing with trimming of CFRP. Temperatures higher than the glass-transition temperature (Tg) of the resin matrix are highly undesirable: they cause degradation of the matrix in the trimmed edges area, which can severely affect the mechanical performance of the entire component. In this study, a 9.50 mm diameter CVD diamond coated carbide tool with six flutes was used to trim 24-plies CFRP laminates. A 300 m/min cutting speed and 1140 mm/min feed rate were used in the experiments. The tool was heated prior to trimming using a blowtorch, for temperatures ranging from 20°C to 300°C. The temperature at the cutting edge was measured using embedded K-Type thermocouples. Samples trimmed for different cutting temperatures, below and above Tg, were mechanically tested using three-points bending short-beam loading configurations. New cutting tools as well as worn cutting tools were utilized for the experiments. The experiments with the new tools could not prove any correlation between the length of cut, the cutting temperature and the mechanical performance. Thus mechanical strength was constant, regardless of the cutting temperature. However, for worn tools, producing a cutting temperature rising up to 450°C, thermal damage of the resin was observed. The mechanical tests showed a reduced mean resistance in short beam configuration, while the resistance in three point bending decreases with increase of the cutting temperature.

Keywords: composites, trimming, thermal damage, surface quality

Procedia PDF Downloads 319
3138 Evaluation of Corrosion in Steel Reinforced Concrete with Brick Waste

Authors: Julieta Daniela Chelaru, Maria Gorea

Abstract:

The massive demolition of old buildings in recent years has generated tons of waste, especially brick waste. Thus, a concern of recent research is the use of this waste for the production of environmentally friendly concrete. At the same time, corrosion in classical concrete is a current problem. In this context, in the present paper a study was carried out on the corrosion of metal reinforcement in cement mortars with brick waste. The corrosion process was analyzed on four compositions of mortars without and with 15 %, 25 % and 35 % bricks waste replacing the sand. The brick waste has a majority content in SiO2, Al₂O₃, FeO₃ and CaO. The grain size distribution of brick waste was close to that of the sand (dₘₐₓ = 3 mm). The preparation method of the samples was similar to ordinary mortars. The corrosion properties of concrete, at different waste bricks concentrations, on rebar, were investigated by electrochemical measurements (Tafel curves and EIS) at 1 and 6 months. The results obtained at 6 months revealed that the addition of the bricks waste in mortar are improved the anticorrosion properties, in the case of all samples compared with the sample with 0% bricks waste. The best results were obtained in the case of the sample with 15% bricks waste (the efficiency was ≈ 90 %). The corrosion intermediary layer formed on the rebar surface was determined by SEM-EDX.

Keywords: EIS, steel corrosion, steel reinforced concrete, waste materials

Procedia PDF Downloads 329
3137 New Strategy for Breeding of Artemisia annua L. for a Sustainable Production of the Antimalarial Drug Artemisinin

Authors: Nadali Babaeian Jelodar, Chan Lai Keng, Arvind Bhatt, Laleh Bordbar, Leow E Shuen, Kamaruzaman Mohamed

Abstract:

Recently artemisinin (the endoperoxide sesquiterpene lactone) has received considerable attention because of its antimalarial activity. It is isolated from the aerial part of the Artemisia annua L. Artemisinin is very difficult to synthesise also its production by mean of cell, tissue or organ cultures is very low. Presently, only its extraction from A. annua L. plants remains the only source of the drug. The reported yield of artemisinin from leaves of A. annua L. is very low and unstable, with yields typically less than 1% of leaf dry weight. To increase the percentage of artemisinin, researchers have been engaged in developing new varieties. A review concerning the breeding of A. annua L. is presented. The aim of this review is to bring together most of the available scientific research papers about the breeding conducted on the genus A. annua L., which is currently scattered across various publications. Through this review the authors hope to attract the attention of breeders throughout the world to focus on the unexplored potential of A. annua L. species. Also the future scope of this plant has been emphasized with a view of the importance of breeding of A. annua L. for increasing of artemisinin content. By releasing of new cultivar of A. annua L. and cultivation of this plant offers the opportunity to optimize yield and achieve a uniform, high quality product.

Keywords: Artemisia annua L., breeding, artemisinin, cultivation, medicinal plant

Procedia PDF Downloads 259
3136 Monitoring and Management of Aquatic Macroinvertebrates for Determining the Level of Water Pollution Catchment Basin of Debed River, Armenia

Authors: Inga Badasyan

Abstract:

Every year we do monitoring of water pollution of catchment basin of Debed River. Next, the Ministry of Nature Protection does modeling programme. Finely, we are managing the impact of water pollution in Debed river. Ecosystem technologies efficiency performance were estimated based on the physical, chemical, and macrobiological analyses of water on regular base between 2012 to 2015. Algae community composition was determined to assess the ecological status of Debed river, while vegetation was determined to assess biodiversity. Last time, experts werespeaking about global warming, which is having bad impact on the surface water, freshwater, etc. As, we know that global warming is caused by the current high levels of carbon dioxide in the water. Geochemical modelling is increasingly playing an important role in various areas of hydro sciences and earth sciences. Geochemical modelling of highly concentrated aqueous solutions represents an important topic in the study of many environments such as evaporation ponds, groundwater and soils in arid and semi-arid zones, costal aquifers, etc. The sampling time is important for benthic macroinvertebrates, for that reason we have chosen in the spring (abundant flow of the river, the beginning of the vegetation season) and autumn (the flow of river is scarce). The macroinvertebrates are good indicator for a chromic pollution and aquatic ecosystems. Results of our earlier investigations in the Debed river reservoirs clearly show that management problem of ecosystem reservoirs is topical. Research results can be applied to studies of monitoring water quality in the rivers and allow for rate changes and to predict possible future changes in the nature of the lake.

Keywords: ecohydrological monitoring, flood risk management, global warming, aquatic macroinvertebrates

Procedia PDF Downloads 281
3135 Effect of Physicochemical Treatments on the Characteristics of Activated Sludge

Authors: Hammadi Larbi

Abstract:

The treatment of wastewater in sewage plants usually results in the formation of a large amount of sludge. These appear at the outlet of the treatment plant as a viscous fluid loaded with a high concentration of dry matter. This sludge production presents environmental, ecological, and economic risks. That is why it is necessary to find many solutions for minimizing these risks. In the present article, the effect of hydrogen peroxide, thermal treatment, and quicklime on the characteristics of the activated sludge produced in urban wastewater plant were evaluated in order to avoid any risk in the plants. The study shows increasing of the dose of H2O2 from 0 to 0.4 g causes an increase in the solubilization rate of COD from 12% to 45% and a reduction in the organic matter content of sludge (VM/SM) from 74% to 36% . The results also show that the optimum efficiency of the heat treatment corresponds to a temperature of 80 ° C for a treatment time of 40 min is 47% and 51.82% for a temperature equal to 100 ° C and 76.30 % for a temperature of 120 ° C, and 79.38% for a temperature of 140 ° C. The treatment of sludge by quicklime gives the optimum efficiency of 70.62 %. It was shown the increasing of the temperature from 80°C to 140°C, the pH of sludge was increased from 7.12 to 9.59. The obtained results showed that with increasing the dose of quicklime from 0 g/l to 1g/l in activated sludge led to an increase of their pH from 7.12 to 12.06. The study shows the increasing the dose of quicklime from 0 g/l to 1g/l causes also an increase in the solubilization of COD from 0% to 70.62 %

Keywords: activated sludge, hydrogen peroxide, thermal treatment, quicklime

Procedia PDF Downloads 98
3134 The Mediatization of Political Communication in Sub-Saharan Africa: The Cases of Cameroon and Ghana in a Comparative Perspective

Authors: Christian Nounkeu Tatchou

Abstract:

The concept of mediatization of politics describes changes with regards to media and politics, as the political sphere is increasingly shaped by the media and conforms to its logic. The mediatization of politics in established democracies of the West has been the object of several researches. However, there is an overwhelming paucity of literature on this reconfiguration of the political life around the media in the emerging democracies of the Sub-Saharan Africa. A majority of Sub-Saharan countries have been progressively experiencing the modernization of their societies and significant developments with respect to political communication since the early 1990s. This has been facilitated by factors such as the adoption of democratic reforms, the development of mass media, the advent of social media and the rapid spread of new information and communication technologies. Thus, this paper investigates the extent to which political communication in Sub-Saharan Africa is mediatized, especially with regards to the social media. Through in-depths interviews with twenty political leaders and political observers in Cameroon and Ghana, this article argues that the social media has become the main arena of voters’ mobilization and political participation in Sub-Saharan Africa. However, a greater extent of freedom for political activism on social media is observed in the new democracy of Ghana, unlike in the enduring authoritarian political system of Cameroon where the government attempts to control the use and content of political discourse on social media.

Keywords: mediatization, political communication, social media, sub-saharan africa

Procedia PDF Downloads 344
3133 Electrokinetics and Stability of Solder Powders in Aqueous Media

Authors: Terence Lucero F. Menor, Manolo G. Mena, Herman D. Mendoza

Abstract:

Solder pastes are widely used in creating mechanical, thermal and electrical connection between electronic components. Continued miniaturization of consumer electronics drives manufacturers to achieve smaller, lighter, and faster electronic packages at low cost. This faces them to the difficult challenge of dispensing solder pastes in extremely precise and repeatable manner. The most common problem in solder paste dispensing is the clogging of dispensers which results from agglomeration and settling of solder powders leading to increase on the effective particle size and uneven distribution of particles in the mixture. In this work, microelectrophoresis was employed to investigate the effect of pH and KNO₃ concentration on the electrokinetic behavior and stability of SAC305, PbSn5Ag2.5 and Sn powders in aqueous media. Results revealed that the electrokinetic behavior of the three types of solder powders are similar, which was attributed to high SnO₂ content on the surface of the particles. Electrokinetic measurements showed that the zeta potentials of the solder powders are highly dependent on pH and KNO₃ concentration with isoelectric points ranging from 3.5 to 5.5. Results were verified using stability tests.

Keywords: electrokinetic behavior, isoelectric point, solder powder, stability, surface analysis

Procedia PDF Downloads 227
3132 Influence of TEOS Concentration and Triton Additive on the Nanostructured Silica Sol-Gel Antireflective Coatings

Authors: Najme lari, Shahrokh Ahangarani, Ali Shanaghi

Abstract:

Nanostructure silica antireflective surfaces were fabricated on glasses by Sol-Gel technique. Various silica sols (varying in composition: tetraethyl orthosilicate (TEOS) concentration and Triton additive) were synthesized by the polymeric process and then subsequently coated on substrates. Silica thin films were investigated by using UV-Visible Spectroscopy; Fourier-Transformed Infrared Spectrophotometer and Filed Emission Scanning Electron Microscopy were used. Results indicated that dense silica layers, obtained from the polymeric method, permit a considerable reduction of these light reflections compared with uncoated glasses in all the cases studied, but the degree of reduction is different depending on the composition of the precursor solution. It was found that the transmittance increased from 0.915 for the bare slide up to 0.96 for the best made sample corresponding to the Triton-doped silica. The addition of Triton x-100 to the silica sols improved the optical property of thin film because of it helps to create nanoporous in the coating. Also the results showed SiO2 content is an effective parameter to prepare the antireflective films. Loss of SiO2 cause to rapid the reactions and Si-O-Si bonding form better under this condition.

Keywords: sol–gel, silica thin films, antireflective coatings, optical properties, triton

Procedia PDF Downloads 417
3131 Effect of Silt Presence on Shear Strength Parameters of Unsaturated Sandy Soils

Authors: R. Ziaie Moayed, E. Khavaninzadeh, M. Ghorbani Tochaee

Abstract:

Direct shear test is widely used in soil mechanics experiment to determine the shear strength parameters of granular soils. For analysis of soil stability problems such as bearing capacity, slope stability and lateral pressure on soil retaining structures, the shear strength parameters must be known well. In the present study, shear strength parameters are determined in silty-sand mixtures. Direct shear tests are performed on 161 Firoozkooh sand with different silt content at a relative density of 70% in three vertical stress of 100, 150, and 200 kPa. Wet tamping method is used for soil sample preparation, and the results include diagrams of shear stress versus shear deformation and sample height changes against shear deformation. Accordingly, in different silt percent, the shear strength parameters of the soil such as internal friction angle and dilation angle are calculated and compared. According to the results, when the sample contains up to 10% silt, peak shear strength and internal friction angle have an upward trend. However, if the sample contains 10% to 50% of silt a downward trend is seen in peak shear strength and internal friction angle.

Keywords: shear strength parameters, direct shear test, silty sand, shear stress, shear deformation

Procedia PDF Downloads 160
3130 Characterization of Structural Elements in Metal Fiber Concrete

Authors: Ammari Abdelhammid

Abstract:

This work on the characterization of structural elements in metal fiber concrete is devoted to the study of recyclability, as reinforcement for concrete, of chips resulting from the machining of steel parts. We're interested in this study to the Rheological behavior of fresh chips reinforced concrete and its mechanical behavior at a young age. The evaluation of the workability with the LCL workabilimeter shows that optimal sand gravel ratios ( S/G) are S/G = 0.8 and S/G = 1. The study of the content chips (W%) influence on the workability of the concrete shows that the flow time and the S/G optimum increase with W%. For S/G = 1.4, the flow time is practically insensitive to the variation of W%, the concrete behavior is similar to that of self-compacting concrete. Mechanical characterization tests (direct tension, compression, bending, and splitting) show that the mechanical properties of chips concrete are comparable to those of the two selected reference concretes (concrete reinforced with conventional fibers: Eurosteel fibers corrugated and Dramix fibers). Chips provide a significant increase in strength and some ductility in the post-failure behavior of the concrete. Recycling chips as reinforcement for concrete can be favorably considered.

Keywords: fiber concrete, chips, workability, direct tensile test, compression test, bending test, splitting test

Procedia PDF Downloads 435
3129 Comparison of Filamentous Fungus (Monascus purpureus)Growth in Submerged and Solid State Culture

Authors: Shafieeh Mansoori, Fatemeh Yazdian, Ashrafsadat Hatamian, Majid Azizi

Abstract:

Monascus purpureus, which has a special metabolite with many therapeutic and medicinal properties including antioxidant, antibiotic, anti-hypercholesterolemia, and immunosuppressive properties, is a traditional Chinese fermentation fungus and is used as a natural dietary supplement. Production of desired metabolites actually determined by optimized growth which is supported by some factors such as substrates and Monascus strains type, moisture content of the fermentation mixture, aeration, and control of contamination issues. In this experiment, M. purpureus PTCC5305 was cultured in both the liquid and solid culture medium. The former medium contain YMP (yeast extract, maltose and peptone), PGC (peptone, glucose complex), and GYP (glucose, yeast extract and peptone) medium. After 8 days, the best medium for the cell production was PGC agar medium on solid culture with 0.28 g dry weight of cell mass whereas the best liquid culture was GYP medium with 3.5 g/l dry weight of cell mass. The lowest cell production was on YMP agar with 0.1 g dry weight of cell mass and then YMP medium with 2.5 g/l dry cell weight.

Keywords: Monascus purpureus, solid state fermentation, submerged culture, Chinese fermentation fungus

Procedia PDF Downloads 403
3128 Learning to Play in South Africa

Authors: Thelma Mort

Abstract:

Currently, in South African schools, under the fast-paced and content-heavy CAPS curriculum, the notion of play is being lost in the foundation phase. Even in Grade R, aimed at improving the quality of education, there is a focus on mathematical literacy, language, and life skills (DoE, 2001). This is largely due to the dichotomizing of play and learning. And although the play is meant to be the primary means of achieving these skills, it somehow loses its playfulness in the face of early academic pressure. Student teachers similarly have not been trained to use play in the early years of schooling. This action research study shares findings from the “Learn to Play” intervention in teacher training at one university in which student teachers were given substantial training in types of play, the ways they could use and promote play, and the changing roles of teachers in play-based learning. Using observation focus group interviews, reflections, student teacher engagement in learning communities, and Theories of Change, the study measures the changes made by the intervention in student teachers’ approaches and attitudes to play in the classroom. Key findings were that the student teachers learned new skills, had better relationships with pupils, and became more confident in their foundation phase settings.

Keywords: action research, foundation phase, South Africa, student teacher training

Procedia PDF Downloads 175
3127 Investigation of Extreme Gradient Boosting Model Prediction of Soil Strain-Shear Modulus

Authors: Ehsan Mehryaar, Reza Bushehri

Abstract:

One of the principal parameters defining the clay soil dynamic response is the strain-shear modulus relation. Predicting the strain and, subsequently, shear modulus reduction of the soil is essential for performance analysis of structures exposed to earthquake and dynamic loadings. Many soil properties affect soil’s dynamic behavior. In order to capture those effects, in this study, a database containing 1193 data points consists of maximum shear modulus, strain, moisture content, initial void ratio, plastic limit, liquid limit, initial confining pressure resulting from dynamic laboratory testing of 21 clays is collected for predicting the shear modulus vs. strain curve of soil. A model based on an extreme gradient boosting technique is proposed. A tree-structured parzan estimator hyper-parameter tuning algorithm is utilized simultaneously to find the best hyper-parameters for the model. The performance of the model is compared to the existing empirical equations using the coefficient of correlation and root mean square error.

Keywords: XGBoost, hyper-parameter tuning, soil shear modulus, dynamic response

Procedia PDF Downloads 197
3126 Research on Ultrafine Particles Classification Using Hydrocyclone with Annular Rinse Water

Authors: Tao Youjun, Zhao Younan

Abstract:

The separation effect of fine coal can be improved by the process of pre-desliming. It was significantly enhanced when the fine coal was processed using Falcon concentrator with the removal of -45um coal slime. Ultrafine classification tests using Krebs classification cyclone with annular rinse water showed that increasing feeding pressure can effectively avoid the phenomena of heavy particles passing into overflow and light particles slipping into underflow. The increase of rinse water pressure could reduce the content of fine-grained particles while increasing the classification size. The increase in feeding concentration had a negative effect on the efficiency of classification, meanwhile increased the classification size due to the enhanced hindered settling caused by high underflow concentration. As a result of optimization experiments with response indicator of classification efficiency which based on orthogonal design using Design-Expert software indicated that the optimal classification efficiency reached 91.32% with the feeding pressure of 0.03MPa, the rinse water pressure of 0.02MPa and the feeding concentration of 12.5%. Meanwhile, the classification size was 49.99 μm which had a good agreement with the predicted value.

Keywords: hydrocyclone, ultrafine classification, slime, classification efficiency, classification size

Procedia PDF Downloads 162
3125 Ion Beam Writing and Implantation in Graphene Oxide, Reduced Graphene Oxide and Polyimide Through Polymer Mask for Sensorics Applications

Authors: Jan Luxa, Vlastimil Mazanek, Petr Malinsky, Alexander Romanenko, Mariapompea Cutroneo, Vladimir Havranek, Josef Novak, Eva Stepanovska, Anna Mackova, Zdenek Sofer

Abstract:

Using accelerated energetic ions is an interesting method for the introduction of structural changes in various carbon-based materials. This way, the properties can be altered in two ways: a) the ions lead to the formation of conductive pathways in graphene oxide structures due to the elimination of oxygen functionalities and b) doping with selected ions to form metal nanoclusters, thus increasing the conductivity. In this work, energetic beams were employed in two ways to prepare capacitor structures in graphene oxide (GO), reduced graphene oxide (rGO) and polyimide (PI) on a micro-scale. The first method revolved around using ion beam writing with a focused ion beam, and the method involved ion implantation via a polymeric mask. To prepare the polymeric mask, a direct spin-coating of PMMA on top of the foils was used. Subsequently, proton beam writing and development in isopropyl alcohol were employed. Finally, the mask was removed using acetone solvent. All three materials were exposed to ion beams with an energy of 2.5-5 MeV and an ion fluence of 3.75x10¹⁴ cm-² (1800 nC.mm-²). Thus, prepared microstructures were thoroughly characterized by various analytical methods, including Scanning electron microscopy (SEM) with Energy-Dispersive X-ray spectroscopy (EDS), X-ray Photoelectron spectroscopy (XPS), micro-Raman spectroscopy, Rutherford Back-scattering Spectroscopy (RBS) and Elastic Recoil Detection Analysis (ERDA) spectroscopy. Finally, these materials were employed and tested as sensors for humidity using electrical conductivity measurements. The results clearly demonstrate that the type of ions, their energy and fluence all have a significant influence on the sensory properties of thus prepared sensors.

Keywords: graphene, graphene oxide, polyimide, ion implantation, sensors

Procedia PDF Downloads 78
3124 An Atomistic Approach to Define Continuum Mechanical Quantities in One Dimensional Nanostructures at Finite Temperature

Authors: Smriti, Ajeet Kumar

Abstract:

We present a variant of the Irving-Kirkwood procedure to obtain the microscopic expressions of the cross-section averaged continuum fields such as internal force and moment in one-dimensional nanostructures in the non-equilibrium setting. In one-dimensional continuum theories for slender bodies, we deal with quantities such as mass, linear momentum, angular momentum, and strain energy densities, all defined per unit length. These quantities are obtained by integrating the corresponding pointwise (per unit volume) quantities over the cross-section of the slender body. However, no well-defined cross-section exists for these nanostructures at finite temperature. We thus define the cross-section of a nanorod to be an infinite plane which is fixed in space even when time progresses and defines the above continuum quantities by integrating the pointwise microscopic quantities over this infinite plane. The method yields explicit expressions of both the potential and kinetic parts of the above quantities. We further specialize in these expressions for helically repeating one-dimensional nanostructures in order to use them in molecular dynamics study of extension, torsion, and bending of such nanostructures. As, the Irving-Kirkwood procedure does not yield expressions of stiffnesses, we resort to a thermodynamic equilibrium approach to obtain the expressions of axial force, twisting moment, bending moment, and the associated stiffnesses by taking the first and second derivatives of the Helmholtz free energy with respect to conjugate strain measures. The equilibrium approach yields expressions independent of kinetic terms. We then establish the equivalence of the expressions obtained using the two approaches. The derived expressions are used to understand the extension, torsion, and bending of single-walled carbon nanotubes at non-zero temperatures.

Keywords: thermoelasticity, molecular dynamics, one dimensional nanostructures, nanotube buckling

Procedia PDF Downloads 120
3123 Corrosion Characterization of Al6061 Hybrid Metal Matrix Composites in Acid Medium

Authors: P. V. Krupakara

Abstract:

This paper deals with the high corrosion resistance developed by the hybrid metal matrix composites when compared with that of matrix alloy. Matrix selected is Al6061. Reinforcements selected are graphite and red mud particulates. The composites are prepared using liquid melt metallurgy technique using vortex method. Metal matrix composites containing 2 percent graphite and 2 percent red mud, 2 percent graphite and 4 percent red mud, 2 percent graphite and 6 percent of red mud are prepared. Bar castings are cut into cylindrical discs of 20mm diameter and 20mm thickness. Corrosion tests were conducted at room temperature (230 °C) using conventional weight loss method according to ASTM G69-80. The corrodents used for the test were hydrochloric acid solution of different concentrations. Specimens were tested for every 24 hours interval up to 96 hours. Four specimens for each condition and time were immersed in corrodent. In each case the corrosion rate decreases with increase in exposure time for matrix and metal matrix composites whatever may be the concentration of hydrochloric acid. This may be due to aluminium, which may induce passivation due to development of non-porous layer. As red mud content increases the composites become corrosion resistant due to insulating nature of ceramic material red mud and less exposure of matrix alloy in those metal matrix composites.

Keywords: Al6061, graphite, passivation, red mud, vortex

Procedia PDF Downloads 535
3122 Power Generation and Treatment potential of Microbial Fuel Cell (MFC) from Landfill Leachate

Authors: Beenish Saba, Ann D. Christy

Abstract:

Modern day municipal solid waste landfills are operated and controlled to protect the environment from contaminants during the biological stabilization and degradation of the solid waste. They are equipped with liners, caps, gas and leachate collection systems. Landfill gas is passively or actively collected and can be used as bio fuel after necessary purification, but leachate treatment is the more difficult challenge. Leachate, if not recirculated in a bioreactor landfill system, is typically transported to a local wastewater treatment plant for treatment. These plants are designed for sewage treatment, and often charge additional fees for higher strength wastewaters such as leachate if they accept them at all. Different biological, chemical, physical and integrated techniques can be used to treat the leachate. Treating that leachate with simultaneous power production using microbial fuel cells (MFC) technology has been a recent innovation, reported its application in its earliest starting phase. High chemical oxygen demand (COD), ionic strength and salt concentration are some of the characteristics which make leachate an excellent substrate for power production in MFCs. Different materials of electrodes, microbial communities, carbon co-substrates and temperature conditions are some factors that can be optimized to achieve simultaneous power production and treatment. The advantage of the MFC is its dual functionality but lower power production and high costs are the hurdles in its commercialization and more widespread application. The studies so far suggest that landfill leachate MFCs can produce 1.8 mW/m2 with 79% COD removal, while amendment with food leachate or domestic wastewater can increase performance up to 18W/m3 with 90% COD removal. The columbic efficiency is reported to vary between 2-60%. However efforts towards biofilm optimization, efficient electron transport system studies and use of genetic tools can increase the efficiency of the MFC and can determine its future potential in treating landfill leachate.

Keywords: microbial fuel cell, landfill leachate, power generation, MFC

Procedia PDF Downloads 309