Search results for: tuning parameter selection
3983 The Acquisition of Case in Biological Domain Based on Text Mining
Authors: Shen Jian, Hu Jie, Qi Jin, Liu Wei Jie, Chen Ji Yi, Peng Ying Hong
Abstract:
In order to settle the problem of acquiring case in biological related to design problems, a biometrics instance acquisition method based on text mining is presented. Through the construction of corpus text vector space and knowledge mining, the feature selection, similarity measure and case retrieval method of text in the field of biology are studied. First, we establish a vector space model of the corpus in the biological field and complete the preprocessing steps. Then, the corpus is retrieved by using the vector space model combined with the functional keywords to obtain the biological domain examples related to the design problems. Finally, we verify the validity of this method by taking the example of text.Keywords: text mining, vector space model, feature selection, biologically inspired design
Procedia PDF Downloads 2613982 Form-Finding of Tensioned Fabric Structure in Mathematical Monkey Saddle Model
Authors: Yee Hooi Min, Abdul Hadi, M. N., A. G. Kay Dora
Abstract:
Form-finding has to be carried out for tensioned fabric structure in order to determine the initial equilibrium shape under prescribed support condition and pre-stress pattern. Tensioned fabric structures are normally designed to be in the form of equal tensioned surface. Tensioned fabric structure is highly suited to be used for realizing surfaces of complex or new forms. However, research study on a new form as a tensioned fabric structure has not attracted much attention. Another source of inspiration minimal surface which could be adopted as form for tensioned fabric structure is very crucial. The aim of this study is to propose initial equilibrium shape of tensioned fabric structures in the form of Monkey Saddle. Computational form-finding is frequently used to determine the possible form of uniformly stressed surfaces. A tensioned fabric structure must curve equally in opposite directions to give the resulting surface a three dimensional stability. In an anticlastic doubly curved surface, the sum of all positive and all negative curvatures is zero. This study provides an alternative choice for structural designer to consider the Monkey Saddle applied in tensioned fabric structures. The results on factors affecting initial equilibrium shape can serve as a reference for proper selection of surface parameter for achieving a structurally viable surface. Such in-sight will lead to improvement of rural basic infrastructure, economic gains, sustainability of built environment and green technology initiative.Keywords: anticlastic, curvatures, form-finding, initial equilibrium shape, minimal surface, tensioned fabric structure
Procedia PDF Downloads 5373981 A Stepwise Approach to Automate the Search for Optimal Parameters in Seasonal ARIMA Models
Authors: Manisha Mukherjee, Diptarka Saha
Abstract:
Reliable forecasts of univariate time series data are often necessary for several contexts. ARIMA models are quite popular among practitioners in this regard. Hence, choosing correct parameter values for ARIMA is a challenging yet imperative task. Thus, a stepwise algorithm is introduced to provide automatic and robust estimates for parameters (p; d; q)(P; D; Q) used in seasonal ARIMA models. This process is focused on improvising the overall quality of the estimates, and it alleviates the problems induced due to the unidimensional nature of the methods that are currently used such as auto.arima. The fast and automated search of parameter space also ensures reliable estimates of the parameters that possess several desirable qualities, consequently, resulting in higher test accuracy especially in the cases of noisy data. After vigorous testing on real as well as simulated data, the algorithm doesn’t only perform better than current state-of-the-art methods, it also completely obviates the need for human intervention due to its automated nature.Keywords: time series, ARIMA, auto.arima, ARIMA parameters, forecast, R function
Procedia PDF Downloads 1653980 Exploring the Importance of Different Product Cues on the Selection for Chocolate from the Consumer Perspective
Authors: Ezeni Brzovska, Durdana Ozretic-Dosen
Abstract:
The purpose of this paper is to deepen the understanding of the product cues that influence purchase decision for a specific product category – chocolate, and to identify demographic differences in the buying behavior. ANOVA was employed for analyzing the significance level for nine product cues, and the survey showed statistically significant differences among different age and gender groups, and between respondents with different levels of education. From the theoretical perspective, the study adds to the existing knowledge by contributing with the research results from the new environment (Southeast Europe, Macedonia), which has been neglected so far. Establishing the level of significance for the product cues that affect buying behavior in the chocolate consumption context might help managers to improve marketing decision-making, and better meet consumer needs through identifying opportunities for packaging innovations and/or personalization toward different target groups.Keywords: chocolate consumption context, chocolate selection, demographic characteristics, product cues
Procedia PDF Downloads 2523979 Supply Chain Risk Management (SCRM): A Simplified Alternative for Implementing SCRM for Small and Medium Enterprises
Authors: Paul W. Murray, Marco Barajas
Abstract:
Recent changes in supply chains, especially globalization and collaboration, have created new risks for enterprises of all sizes. A variety of complex frameworks, often based on enterprise risk management strategies have been presented under the heading of Supply Chain Risk Management (SCRM). The literature on promotes the benefits of a robust SCRM strategy; however, implementing SCRM is difficult and resource demanding for Large Enterprises (LEs), and essentially out of reach for Small and Medium Enterprises (SMEs). This research debunks the idea that SCRM is necessary for all enterprises and instead proposes a simple and effective Vendor Selection Template (VST). Empirical testing and a survey of supply chain practitioners provide a measure of validation to the VST. The resulting VSTis a valuable contribution because is easy to use, provides practical results, and is sufficiently flexible to be universally applied to SMEs.Keywords: multiple regression analysis, supply chain management, risk assessment, vendor selection
Procedia PDF Downloads 4653978 Optical Variability of Faint Quasars
Authors: Kassa Endalamaw Rewnu
Abstract:
The variability properties of a quasar sample, spectroscopically complete to magnitude J = 22.0, are investigated on a time baseline of 2 years using three different photometric bands (U, J and F). The original sample was obtained using a combination of different selection criteria: colors, slitless spectroscopy and variability, based on a time baseline of 1 yr. The main goals of this work are two-fold: first, to derive the percentage of variable quasars on a relatively short time baseline; secondly, to search for new quasar candidates missed by the other selection criteria; and, thus, to estimate the completeness of the spectroscopic sample. In order to achieve these goals, we have extracted all the candidate variable objects from a sample of about 1800 stellar or quasi-stellar objects with limiting magnitude J = 22.50 over an area of about 0.50 deg2. We find that > 65% of all the objects selected as possible variables are either confirmed quasars or quasar candidates on the basis of their colors. This percentage increases even further if we exclude from our lists of variable candidates a number of objects equal to that expected on the basis of `contamination' induced by our photometric errors. The percentage of variable quasars in the spectroscopic sample is also high, reaching about 50%. On the basis of these results, we can estimate that the incompleteness of the original spectroscopic sample is < 12%. We conclude that variability analysis of data with small photometric errors can be successfully used as an efficient and independent (or at least auxiliary) selection method in quasar surveys, even when the time baseline is relatively short. Finally, when corrected for the different intrinsic time lags corresponding to a fixed observed time baseline, our data do not show a statistically significant correlation between variability and either absolute luminosity or redshift.Keywords: nuclear activity, galaxies, active quasars, variability
Procedia PDF Downloads 803977 Artificial Intelligence for Generative Modelling
Authors: Shryas Bhurat, Aryan Vashistha, Sampreet Dinakar Nayak, Ayush Gupta
Abstract:
As the technology is advancing more towards high computational resources, there is a paradigm shift in the usage of these resources to optimize the design process. This paper discusses the usage of ‘Generative Design using Artificial Intelligence’ to build better models that adapt the operations like selection, mutation, and crossover to generate results. The human mind thinks of the simplest approach while designing an object, but the intelligence learns from the past & designs the complex optimized CAD Models. Generative Design takes the boundary conditions and comes up with multiple solutions with iterations to come up with a sturdy design with the most optimal parameter that is given, saving huge amounts of time & resources. The new production techniques that are at our disposal allow us to use additive manufacturing, 3D printing, and other innovative manufacturing techniques to save resources and design artistically engineered CAD Models. Also, this paper discusses the Genetic Algorithm, the Non-Domination technique to choose the right results using biomimicry that has evolved for current habitation for millions of years. The computer uses parametric models to generate newer models using an iterative approach & uses cloud computing to store these iterative designs. The later part of the paper compares the topology optimization technology with Generative Design that is previously being used to generate CAD Models. Finally, this paper shows the performance of algorithms and how these algorithms help in designing resource-efficient models.Keywords: genetic algorithm, bio mimicry, generative modeling, non-dominant techniques
Procedia PDF Downloads 1493976 Characterization of Articular Cartilage Based on the Response of Cartilage Surface to Loading/Unloading
Authors: Z. Arabshahi, I. Afara, A. Oloyede, H. Moody, J. Kashani, T. Klein
Abstract:
Articular cartilage is a fluid-swollen tissue of synovial joints that functions by providing a lubricated surface for articulation and to facilitate the load transmission. The biomechanical function of this tissue is highly dependent on the integrity of its ultrastructural matrix. Any alteration of articular cartilage matrix, either by injury or degenerative conditions such as osteoarthritis (OA), compromises its functional behaviour. Therefore, the assessment of articular cartilage is important in early stages of degenerative process to prevent or reduce further joint damage with associated socio-economic impact. Therefore, there has been increasing research interest into the functional assessment of articular cartilage. This study developed a characterization parameter for articular cartilage assessment based on the response of cartilage surface to loading/unloading. This is because the response of articular cartilage to compressive loading is significantly depth-dependent, where the superficial zone and underlying matrix respond differently to deformation. In addition, the alteration of cartilage matrix in the early stages of degeneration is often characterized by PG loss in the superficial layer. In this study, it is hypothesized that the response of superficial layer is different in normal and proteoglycan depleted tissue. To establish the viability of this hypothesis, samples of visually intact and artificially proteoglycan-depleted bovine cartilage were subjected to compression at a constant rate to 30 percent strain using a ring-shaped indenter with an integrated ultrasound probe and then unloaded. The response of articular surface which was indirectly loaded was monitored using ultrasound during the time of loading/unloading (deformation/recovery). It was observed that the rate of cartilage surface response to loading/unloading was different for normal and PG-depleted cartilage samples. Principal Component Analysis was performed to identify the capability of the cartilage surface response to loading/unloading, to distinguish between normal and artificially degenerated cartilage samples. The classification analysis of this parameter showed an overlap between normal and degenerated samples during loading. While there was a clear distinction between normal and degenerated samples during unloading. This study showed that the cartilage surface response to loading/unloading has the potential to be used as a parameter for cartilage assessment.Keywords: cartilage integrity parameter, cartilage deformation/recovery, cartilage functional assessment, ultrasound
Procedia PDF Downloads 1923975 Optimization of Machining Parametric Study on Electrical Discharge Machining
Authors: Rakesh Prajapati, Purvik Patel, Hardik Patel
Abstract:
Productivity and quality are two important aspects that have become great concerns in today’s competitive global market. Every production/manufacturing unit mainly focuses on these areas in relation to the process, as well as the product developed. The electrical discharge machining (EDM) process, even now it is an experience process, wherein the selected parameters are still often far from the maximum, and at the same time selecting optimization parameters is costly and time consuming. Material Removal Rate (MRR) during the process has been considered as a productivity estimate with the aim to maximize it, with an intention of minimizing surface roughness taken as most important output parameter. These two opposites in nature requirements have been simultaneously satisfied by selecting an optimal process environment (optimal parameter setting). Objective function is obtained by Regression Analysis and Analysis of Variance. Then objective function is optimized using Genetic Algorithm technique. The model is shown to be effective; MRR and Surface Roughness improved using optimized machining parameters.Keywords: MMR, TWR, OC, DOE, ANOVA, minitab
Procedia PDF Downloads 3253974 A Framework for Evaluating the QoS and Cost of Web Services Based on Its Functional Performance
Authors: M. Mohemmed Sha, T. Manesh, A. Ahmed Mohamed Mustaq
Abstract:
In this corporate world, the technology of Web services has grown rapidly and its significance for the development of web based applications gradually rises over time. The success of Business to Business integration rely on finding novel partners and their services in a global business environment. But the selection of the most suitable Web service from the list of services with the identical functionality is more vital. The satisfaction level of the customer and the provider’s reputation of the Web service are primarily depending on the range it reaches the customer’s requirements. In most cases the customer of the Web service feels that he is spending for the service which is undelivered. This is because the customer always thinks that the real functionality of the web service is not reached. This will lead to change of the service frequently. In this paper, a framework is proposed to evaluate the Quality of Service (QoS) and its cost that makes the optimal correlation between each other. Also this research work proposes some management decision against the functional deviancy of the web service that are guaranteed at time of selection.Keywords: web service, service level agreement, quality of a service, cost of a service, QoS, CoS, SOA, WSLA, WsRF
Procedia PDF Downloads 4193973 A Spatial Hypergraph Based Semi-Supervised Band Selection Method for Hyperspectral Imagery Semantic Interpretation
Authors: Akrem Sellami, Imed Riadh Farah
Abstract:
Hyperspectral imagery (HSI) typically provides a wealth of information captured in a wide range of the electromagnetic spectrum for each pixel in the image. Hence, a pixel in HSI is a high-dimensional vector of intensities with a large spectral range and a high spectral resolution. Therefore, the semantic interpretation is a challenging task of HSI analysis. We focused in this paper on object classification as HSI semantic interpretation. However, HSI classification still faces some issues, among which are the following: The spatial variability of spectral signatures, the high number of spectral bands, and the high cost of true sample labeling. Therefore, the high number of spectral bands and the low number of training samples pose the problem of the curse of dimensionality. In order to resolve this problem, we propose to introduce the process of dimensionality reduction trying to improve the classification of HSI. The presented approach is a semi-supervised band selection method based on spatial hypergraph embedding model to represent higher order relationships with different weights of the spatial neighbors corresponding to the centroid of pixel. This semi-supervised band selection has been developed to select useful bands for object classification. The presented approach is evaluated on AVIRIS and ROSIS HSIs and compared to other dimensionality reduction methods. The experimental results demonstrate the efficacy of our approach compared to many existing dimensionality reduction methods for HSI classification.Keywords: dimensionality reduction, hyperspectral image, semantic interpretation, spatial hypergraph
Procedia PDF Downloads 3063972 Crossing Multi-Source Climate Data to Estimate the Effects of Climate Change on Evapotranspiration Data: Application to the French Central Region
Authors: Bensaid A., Mostephaoui T., Nedjai R.
Abstract:
Climatic factors are the subject of considerable research, both methodologically and instrumentally. Under the effect of climate change, the approach to climate parameters with precision remains one of the main objectives of the scientific community. This is from the perspective of assessing climate change and its repercussions on humans and the environment. However, many regions of the world suffer from a severe lack of reliable instruments that can make up for this deficit. Alternatively, the use of empirical methods becomes the only way to assess certain parameters that can act as climate indicators. Several scientific methods are used for the evaluation of evapotranspiration which leads to its evaluation either directly at the level of the climatic stations or by empirical methods. All these methods make a point approach and, in no case, allow the spatial variation of this parameter. We, therefore, propose in this paper the use of three sources of information (network of weather stations of Meteo France, World Databases, and Moodis satellite images) to evaluate spatial evapotranspiration (ETP) using the Turc method. This first step will reflect the degree of relevance of the indirect (satellite) methods and their generalization to sites without stations. The spatial variation representation of this parameter using the geographical information system (GIS) accounts for the heterogeneity of the behaviour of this parameter. This heterogeneity is due to the influence of site morphological factors and will make it possible to appreciate the role of certain topographic and hydrological parameters. A phase of predicting the evolution over the medium and long term of evapotranspiration under the effect of climate change by the application of the Intergovernmental Panel on Climate Change (IPCC) scenarios gives a realistic overview as to the contribution of aquatic systems to the scale of the region.Keywords: climate change, ETP, MODIS, GIEC scenarios
Procedia PDF Downloads 1003971 A Stable Method for Determination of the Number of Independent Components
Authors: Yuyan Yi, Jingyi Zheng, Nedret Billor
Abstract:
Independent component analysis (ICA) is one of the most commonly used blind source separation (BSS) techniques for signal pre-processing, such as noise reduction and feature extraction. The main parameter in the ICA method is the number of independent components (IC). Although there have been several methods for the determination of the number of ICs, it has not been given sufficient attentionto this important parameter. In this study, wereview the mostused methods fordetermining the number of ICs and providetheir advantages and disadvantages. Further, wepropose an improved version of column-wise ICAByBlock method for the determination of the number of ICs.To assess the performance of the proposed method, we compare the column-wise ICAbyBlock with several existing methods through different ICA methods by using simulated and real signal data. Results show that the proposed column-wise ICAbyBlock is an effective and stable method for determining the optimal number of components in ICA. This method is simple, and results can be demonstrated intuitively with good visualizations.Keywords: independent component analysis, optimal number, column-wise, correlation coefficient, cross-validation, ICAByblock
Procedia PDF Downloads 993970 Multi-Objective Discrete Optimization of External Thermal Insulation Composite Systems in Terms of Thermal and Embodied Energy Performance
Authors: Berfin Yildiz
Abstract:
These days, increasing global warming effects, limited amount of energy resources, etc., necessitates the awareness that must be present in every profession group. The architecture and construction sectors are responsible for both the embodied and operational energy of the materials. This responsibility has led designers to seek alternative solutions for energy-efficient material selection. The choice of energy-efficient material requires consideration of the entire life cycle, including the building's production, use, and disposal energy. The aim of this study is to investigate the method of material selection of external thermal insulation composite systems (ETICS). Embodied and in-use energy values of material alternatives were used for the evaluation in this study. The operational energy is calculated according to the u-value calculation method defined in the TS 825 (Thermal Insulation Requirements) standard for Turkey, and the embodied energy is calculated based on the manufacturer's Energy Performance Declaration (EPD). ETICS consists of a wall, adhesive, insulation, lining, mechanical, mesh, and exterior finishing materials. In this study, lining, mechanical, and mesh materials were ignored because EPD documents could not be obtained. The material selection problem is designed as a hypothetical volume area (5x5x3m) and defined as a multi-objective discrete optimization problem for external thermal insulation composite systems. Defining the problem as a discrete optimization problem is important in order to choose between materials of various thicknesses and sizes. Since production and use energy values, which are determined as optimization objectives in the study, are often conflicting values, material selection is defined as a multi-objective optimization problem, and it is aimed to obtain many solution alternatives by using Hypervolume (HypE) algorithm. The enrollment process started with 100 individuals and continued for 50 generations. According to the obtained results, it was observed that autoclaved aerated concrete and Ponce block as wall material, glass wool, as insulation material gave better results.Keywords: embodied energy, multi-objective discrete optimization, performative design, thermal insulation
Procedia PDF Downloads 1413969 Evaluation of the Fire Propagation Characteristics of Thermoplastics
Authors: Ji-Hun Choi, Kyoung-Suk Cho, Seung-Un Chae
Abstract:
Consisting of organic compounds, plastic ignites easily and burns fast. In addition, a large amount of toxic gas is produced while it is burning. When plastic is heated, its volume decreases because its surface is melted. The decomposition of its molecular bond generates combustible liquid of low viscosity, which accelerates plastic combustion and spreads the flames. Radiant heat produced in the process propagates the fire to increase the risk of human and property damages. Accordingly, the purpose of this study was to identify chemical, thermal and combustion characteristics of thermoplastic plastics using the fire propagation apparatus based on experimental criteria of ISO 12136 and ASTM E 2058. By the experiment result, as the ignition time increased, the thermal response parameter (TRP) decreased and as the TRP increased, the slope decreased. In other words, the large the TRP was, the longer the time taken for heating and ignition of the material was. It was identified that the fire propagation speed dropped accordingly.Keywords: fire propagation apparatus (FPA), ISO 12136, thermal response parameter (TRP), fire propagation index (FPI)
Procedia PDF Downloads 2023968 Seismic Assessment of Passive Control Steel Structure with Modified Parameter of Oil Damper
Authors: Ahmad Naqi
Abstract:
Today, the passively controlled buildings are extensively becoming popular due to its excellent lateral load resistance circumstance. Typically, these buildings are enhanced with a damping device that has high market demand. Some manufacturer falsified the damping device parameter during the production to achieve the market demand. Therefore, this paper evaluates the seismic performance of buildings equipped with damping devices, which their parameter modified to simulate the falsified devices, intentionally. For this purpose, three benchmark buildings of 4-, 10-, and 20-story were selected from JSSI (Japan Society of Seismic Isolation) manual. The buildings are special moment resisting steel frame with oil damper in the longitudinal direction only. For each benchmark buildings, two types of structural elements are designed to resist the lateral load with and without damping devices (hereafter, known as Trimmed & Conventional Building). The target building was modeled using STERA-3D, a finite element based software coded for study purpose. Practicing the software one can develop either three-dimensional Model (3DM) or Lumped Mass model (LMM). Firstly, the seismic performance of 3DM and LMM models was evaluated and found excellent coincide for the target buildings. The simplified model of LMM used in this study to produce 66 cases for both of the buildings. Then, the device parameters were modified by ± 40% and ±20% to predict many possible conditions of falsification. It is verified that the building which is design to sustain the lateral load with support of damping device (Trimmed Building) are much more under threat as a result of device falsification than those building strengthen by damping device (Conventional Building).Keywords: passive control system, oil damper, seismic assessment, lumped mass model
Procedia PDF Downloads 1143967 Ion-Acoustic Double Layers in a Non-Thermal Electronegative Magnetized Plasma
Authors: J. K. Chawla, S. K. Jain, M. K. Mishra
Abstract:
Ion-acoustic double layers have been studied in magnetized plasma. The modified Korteweg-de Vries (m-KdV) equation using reductive perturbation method is derived. It is found that for the selected set of parameters, the system supports rarefactive double layers depending upon the value of nonthermal parameters. It is also found that the magnetization affects only the width of the double layer. For a given set of parameter values, increases in the magnetization and the obliqueness angle (θ) between wave vector and magnetic field, affect the width of the double layers, however the amplitude of the double layers have no effect. An increase in the values of nonthermal parameter decreases the amplitude of the rarefactive double layer. The effect of the ion temperature ratio on the amplitude and width of the double layers are also discussed in detail.Keywords: ion-acoustic double layers, magnetized electronegative plasma, reductive perturbation method, the modified Korteweg-de Vries (KdV) equation
Procedia PDF Downloads 6103966 Diffusion Adaptation Strategies for Distributed Estimation Based on the Family of Affine Projection Algorithms
Authors: Mohammad Shams Esfand Abadi, Mohammad Ranjbar, Reza Ebrahimpour
Abstract:
This work presents the distributed processing solution problem in a diffusion network based on the adapt then combine (ATC) and combine then adapt (CTA)selective partial update normalized least mean squares (SPU-NLMS) algorithms. Also, we extend this approach to dynamic selection affine projection algorithm (DS-APA) and ATC-DS-APA and CTA-DS-APA are established. The purpose of ATC-SPU-NLMS and CTA-SPU-NLMS algorithm is to reduce the computational complexity by updating the selected blocks of weight coefficients at every iteration. In CTA-DS-APA and ATC-DS-APA, the number of the input vectors is selected dynamically. Diffusion cooperation strategies have been shown to provide good performance based on these algorithms. The good performance of introduced algorithm is illustrated with various experimental results.Keywords: selective partial update, affine projection, dynamic selection, diffusion, adaptive distributed networks
Procedia PDF Downloads 7073965 Parametric Appraisal of Robotic Arc Welding of Mild Steel Material by Principal Component Analysis-Fuzzy with Taguchi Technique
Authors: Amruta Rout, Golak Bihari Mahanta, Gunji Bala Murali, Bibhuti Bhusan Biswal, B. B. V. L. Deepak
Abstract:
The use of industrial robots for performing welding operation is one of the chief sign of contemporary welding in these days. The weld joint parameter and weld process parameter modeling is one of the most crucial aspects of robotic welding. As weld process parameters affect the weld joint parameters differently, a multi-objective optimization technique has to be utilized to obtain optimal setting of weld process parameter. In this paper, a hybrid optimization technique, i.e., Principal Component Analysis (PCA) combined with fuzzy logic has been proposed to get optimal setting of weld process parameters like wire feed rate, welding current. Gas flow rate, welding speed and nozzle tip to plate distance. The weld joint parameters considered for optimization are the depth of penetration, yield strength, and ultimate strength. PCA is a very efficient multi-objective technique for converting the correlated and dependent parameters into uncorrelated and independent variables like the weld joint parameters. Also in this approach, no need for checking the correlation among responses as no individual weight has been assigned to responses. Fuzzy Inference Engine can efficiently consider these aspects into an internal hierarchy of it thereby overcoming various limitations of existing optimization approaches. At last Taguchi method is used to get the optimal setting of weld process parameters. Therefore, it has been concluded the hybrid technique has its own advantages which can be used for quality improvement in industrial applications.Keywords: robotic arc welding, weld process parameters, weld joint parameters, principal component analysis, fuzzy logic, Taguchi method
Procedia PDF Downloads 1793964 Stagnation-Point Flow towards a Stretching/Shrinking Sheet in a Nanofluid: A Stability Analysis
Authors: Anuar Ishak
Abstract:
The characteristics of stagnation point flow of a nanofluid towards a stretching/shrinking sheet are investigated. The governing partial differential equations are transformed into a set of ordinary differential equations, which are then solved numerically using MATLAB routine boundary value problem solver bvp4c. The numerical results show that dual (upper and lower branch) solutions exist for the shrinking case, while for the stretching case, the solution is unique. A stability analysis is performed to determine the stability of the dual solutions. It is found that the skin friction decreases when the sheet is stretched, but increases when the suction effect is increased. It is also found that increasing the thermophoresis parameter reduces the heat transfer rate at the surface, while increasing the Brownian motion parameter increases the mass transfer rate at the surface.Keywords: dual solutions, heat transfer, forced convection, nanofluid, stability analysis
Procedia PDF Downloads 4173963 Method for Selecting and Prioritising Smart Services in Manufacturing Companies
Authors: Till Gramberg, Max Kellner, Erwin Gross
Abstract:
This paper presents a comprehensive investigation into the topic of smart services and IIoT-Platforms, focusing on their selection and prioritization in manufacturing organizations. First, a literature review is conducted to provide a basic understanding of the current state of research in the area of smart services. Based on discussed and established definitions, a definition approach for this paper is developed. In addition, value propositions for smart services are identified based on the literature and expert interviews. Furthermore, the general requirements for the provision of smart services are presented. Subsequently, existing approaches for the selection and development of smart services are identified and described. In order to determine the requirements for the selection of smart services, expert opinions from successful companies that have already implemented smart services are collected through semi-structured interviews. Based on the results, criteria for the evaluation of existing methods are derived. The existing methods are then evaluated according to the identified criteria. Furthermore, a novel method for the selection of smart services in manufacturing companies is developed, taking into account the identified criteria and the existing approaches. The developed concept for the method is verified in expert interviews. The method includes a collection of relevant smart services identified in the literature. The actual relevance of the use cases in the industrial environment was validated in an online survey. The required data and sensors are assigned to the smart service use cases. The value proposition of the use cases is evaluated in an expert workshop using different indicators. Based on this, a comparison is made between the identified value proposition and the required data, leading to a prioritization process. The prioritization process follows an established procedure for evaluating technical decision-making processes. In addition to the technical requirements, the prioritization process includes other evaluation criteria such as the economic benefit, the conformity of the new service offering with the company strategy, or the customer retention enabled by the smart service. Finally, the method is applied and validated in an industrial environment. The results of these experiments are critically reflected upon and an outlook on future developments in the area of smart services is given. This research contributes to a deeper understanding of the selection and prioritization process as well as the technical considerations associated with smart service implementation in manufacturing organizations. The proposed method serves as a valuable guide for decision makers, helping them to effectively select the most appropriate smart services for their specific organizational needs.Keywords: smart services, IIoT, industrie 4.0, IIoT-platform, big data
Procedia PDF Downloads 883962 Design of Identification Based Adaptive Control for Fermentation Process in Bioreactor
Authors: J. Ritonja
Abstract:
The biochemical technology has been developing extremely fast since the middle of the last century. The main reason for such development represents a requirement for large production of high-quality biologically manufactured products such as pharmaceuticals, foods, and beverages. The impact of the biochemical industry on the world economy is enormous. The great importance of this industry also results in intensive development in scientific disciplines relevant to the development of biochemical technology. In addition to developments in the fields of biology and chemistry, which enable to understand complex biochemical processes, development in the field of control theory and applications is also very important. In the paper, the control for the biochemical reactor for the milk fermentation was studied. During the fermentation process, the biophysical quantities must be precisely controlled to obtain the high-quality product. To control these quantities, the bioreactor’s stirring drive and/or heating system can be used. Available commercial biochemical reactors are equipped with open loop or conventional linear closed loop control system. Due to the outstanding parameters variations and the partial nonlinearity of the biochemical process, the results obtained with these control systems are not satisfactory. To improve the fermentation process, the self-tuning adaptive control system was proposed. The use of the self-tuning adaptive control is suggested because the parameters’ variations of the studied biochemical process are very slow in most cases. To determine the linearized mathematical model of the fermentation process, the recursive least square identification method was used. Based on the obtained mathematical model the linear quadratic regulator was tuned. The parameters’ identification and the controller’s synthesis are executed on-line and adapt the controller’s parameters to the fermentation process’ dynamics during the operation. The use of the proposed combination represents the original solution for the control of the milk fermentation process. The purpose of the paper is to contribute to the progress of the control systems for the biochemical reactors. The proposed adaptive control system was tested thoroughly. From the obtained results it is obvious that the proposed adaptive control system assures much better following of the reference signal as a conventional linear control system with fixed control parameters.Keywords: adaptive control, biochemical reactor, linear quadratic regulator, recursive least square identification
Procedia PDF Downloads 1243961 Relay Node Selection Algorithm for Cooperative Communications in Wireless Networks
Authors: Sunmyeng Kim
Abstract:
IEEE 802.11a/b/g standards support multiple transmission rates. Even though the use of multiple transmission rates increase the WLAN capacity, this feature leads to the performance anomaly problem. Cooperative communication was introduced to relieve the performance anomaly problem. Data packets are delivered to the destination much faster through a relay node with high rate than through direct transmission to the destination at low rate. In the legacy cooperative protocols, a source node chooses a relay node only based on the transmission rate. Therefore, they are not so feasible in multi-flow environments since they do not consider the effect of other flows. To alleviate the effect, we propose a new relay node selection algorithm based on the transmission rate and channel contention level. Performance evaluation is conducted using simulation, and shows that the proposed protocol significantly outperforms the previous protocol in terms of throughput and delay.Keywords: cooperative communications, MAC protocol, relay node, WLAN
Procedia PDF Downloads 3313960 Generalized Hyperbolic Functions: Exponential-Type Quantum Interactions
Authors: Jose Juan Peña, J. Morales, J. García-Ravelo
Abstract:
In the search of potential models applied in the theoretical treatment of diatomic molecules, some of them have been constructed by using standard hyperbolic functions as well as from the so-called q-deformed hyperbolic functions (sc q-dhf) for displacing and modifying the shape of the potential under study. In order to transcend the scope of hyperbolic functions, in this work, a kind of generalized q-deformed hyperbolic functions (g q-dhf) is presented. By a suitable transformation, through the q deformation parameter, it is shown that these g q-dhf can be expressed in terms of their corresponding standard ones besides they can be reduced to the sc q-dhf. As a useful application of the proposed approach, and considering a class of exactly solvable multi-parameter exponential-type potentials, some new q-deformed quantum interactions models that can be used as interesting alternative in quantum physics and quantum states are presented. Furthermore, due that quantum potential models are conditioned on the q-dependence of the parameters that characterize to the exponential-type potentials, it is shown that many specific cases of q-deformed potentials are obtained as particular cases from the proposal.Keywords: diatomic molecules, exponential-type potentials, hyperbolic functions, q-deformed potentials
Procedia PDF Downloads 1843959 Direct Torque Control of Induction Motor Employing Differential Evolution Algorithm
Authors: T. Vamsee Kiran, A. Gopi
Abstract:
The undesired torque and flux ripple may occur in conventional direct torque control (DTC) induction motor drive. DTC can improve the system performance at low speeds by continuously tuning the regulator by adjusting the Kp, Ki values. In this differential evolution (DE) is proposed to adjust the parameters (Kp, Ki) of the speed controller in order to minimize torque ripple, flux ripple, and stator current distortion.The DE based PI controller has resulted is maintaining a constant speed of the motor irrespective of the load torque fluctuations.Keywords: differential evolution, direct torque control, PI controller
Procedia PDF Downloads 4313958 Stepping in Sustainability: Walkability an Upcoming Design Parameter for Transit Based Communities in Lahore, Pakistan
Authors: Sadaf Saeed
Abstract:
The consideration of walkability as an urban design parameter in conjunction with transit-oriented development is an established trend in the developed countries but an upcoming trend in developing countries. In Pakistan, the first Bus Rapid Transit (locally called as Metro Bus) has been introduced in the city of Lahore in 2013 where around 40 percent of the riders access to transit stations by walking. To what extent the aspect of walkability has been considered in the local scenario? To address this question, this paper presents an account of urban design parameters regarding pedestrian provisions and quality of walking environment between Metro Bus stations and users’ destination in the transit neighbourhoods (areas up to 500-meter radius). The primary and secondary data for objective and subjective walkability measurements has been used for neighbourhoods of five selected transit stations ranked against the predefined critical assessed factors (CAF). The multi-criteria approach including visual and geospatially-based parameters at street level, along with walkability index score at selected sites linked with CAF evaluation were the selected methods for this study. The acceptability of walkability as an urban design parameter for transit planning in terms of connectivity and social implications of the concept has also been analysed in the local context. The paper highlights that the aspect of walkability in Lahore is being derelict owing to the focus of government on other initiatives such as park and ride and feeder bus services for mobility of passengers. However, the pedestrian-friendly design parameters as a part of future transit planning can enhance social, liveable and interactive walking environment within transit neighbourhoods.Keywords: walkability, sustainability, transit neighborhoods, social communities
Procedia PDF Downloads 2453957 MIMO PID Controller of a Power Plant Boiler–Turbine Unit
Authors: N. Ben-Mahmoud, M. Elfandi, A. Shallof
Abstract:
This paper presents a methodology to design multivariable PID controllers for multi-input and multi-output systems. The proposed control strategy, which is centralized, combines of PID controllers. The proportional gains in the P controllers act as tuning parameters of (SISO) in order to modify the behavior of the loops almost independently. The design procedure consists of three steps: first, an ideal decoupler including integral action is determined. Second, the decoupler is approximated with PID controllers. Third, the proportional gains are tuned to achieve the specified performance. The proposed method is applied to representative processes.Keywords: boiler turbine, MIMO, PID controller, control by decoupling, anti wind-up techniques
Procedia PDF Downloads 3263956 3D Classification Optimization of Low-Density Airborne Light Detection and Ranging Point Cloud by Parameters Selection
Authors: Baha Eddine Aissou, Aichouche Belhadj Aissa
Abstract:
Light detection and ranging (LiDAR) is an active remote sensing technology used for several applications. Airborne LiDAR is becoming an important technology for the acquisition of a highly accurate dense point cloud. A classification of airborne laser scanning (ALS) point cloud is a very important task that still remains a real challenge for many scientists. Support vector machine (SVM) is one of the most used statistical learning algorithms based on kernels. SVM is a non-parametric method, and it is recommended to be used in cases where the data distribution cannot be well modeled by a standard parametric probability density function. Using a kernel, it performs a robust non-linear classification of samples. Often, the data are rarely linearly separable. SVMs are able to map the data into a higher-dimensional space to become linearly separable, which allows performing all the computations in the original space. This is one of the main reasons that SVMs are well suited for high-dimensional classification problems. Only a few training samples, called support vectors, are required. SVM has also shown its potential to cope with uncertainty in data caused by noise and fluctuation, and it is computationally efficient as compared to several other methods. Such properties are particularly suited for remote sensing classification problems and explain their recent adoption. In this poster, the SVM classification of ALS LiDAR data is proposed. Firstly, connected component analysis is applied for clustering the point cloud. Secondly, the resulting clusters are incorporated in the SVM classifier. Radial basic function (RFB) kernel is used due to the few numbers of parameters (C and γ) that needs to be chosen, which decreases the computation time. In order to optimize the classification rates, the parameters selection is explored. It consists to find the parameters (C and γ) leading to the best overall accuracy using grid search and 5-fold cross-validation. The exploited LiDAR point cloud is provided by the German Society for Photogrammetry, Remote Sensing, and Geoinformation. The ALS data used is characterized by a low density (4-6 points/m²) and is covering an urban area located in residential parts of the city Vaihingen in southern Germany. The class ground and three other classes belonging to roof superstructures are considered, i.e., a total of 4 classes. The training and test sets are selected randomly several times. The obtained results demonstrated that a parameters selection can orient the selection in a restricted interval of (C and γ) that can be further explored but does not systematically lead to the optimal rates. The SVM classifier with hyper-parameters is compared with the most used classifiers in literature for LiDAR data, random forest, AdaBoost, and decision tree. The comparison showed the superiority of the SVM classifier using parameters selection for LiDAR data compared to other classifiers.Keywords: classification, airborne LiDAR, parameters selection, support vector machine
Procedia PDF Downloads 1473955 Segmentation of Piecewise Polynomial Regression Model by Using Reversible Jump MCMC Algorithm
Authors: Suparman
Abstract:
Piecewise polynomial regression model is very flexible model for modeling the data. If the piecewise polynomial regression model is matched against the data, its parameters are not generally known. This paper studies the parameter estimation problem of piecewise polynomial regression model. The method which is used to estimate the parameters of the piecewise polynomial regression model is Bayesian method. Unfortunately, the Bayes estimator cannot be found analytically. Reversible jump MCMC algorithm is proposed to solve this problem. Reversible jump MCMC algorithm generates the Markov chain that converges to the limit distribution of the posterior distribution of piecewise polynomial regression model parameter. The resulting Markov chain is used to calculate the Bayes estimator for the parameters of piecewise polynomial regression model.Keywords: piecewise regression, bayesian, reversible jump MCMC, segmentation
Procedia PDF Downloads 3733954 Seismic Response and Sensitivity Analysis of Circular Shallow Tunnels
Authors: Siti Khadijah Che Osmi, Mohammed Ahmad Syed
Abstract:
Underground tunnels are one of the most popular public facilities for various applications such as transportation, water transfer, network utilities and etc. Experience from the past earthquake reveals that the underground tunnels also become vulnerable components and may damage at certain percentage depending on the level of ground shaking and induced phenomena. In this paper a numerical analysis is conducted in evaluating the sensitivity of two types of circular shallow tunnel lining models to wide ranging changes in the geotechnical design parameter. Critical analysis has been presented about the current methods of analysis, structural typology, ground motion characteristics, effect of soil conditions and associated uncertainties on the tunnel integrity. The response of the tunnel is evaluated through 2D non-linear finite element analysis, which critically assesses the impact of increasing levels of seismic loads. The finding from this study offer significant information on improving methods to assess the vulnerability of underground structures.Keywords: geotechnical design parameter, seismic response, sensitivity analysis, shallow tunnel
Procedia PDF Downloads 441