Search results for: service level JEL classification: C53
16754 Value Co-Creation in Used-Car Auctions: A Service Scientific Perspective
Authors: Safdar Muhammad Usman, Youji Kohda, Katsuhiro Umemoto
Abstract:
Electronic market place plays an important intermediary role for connecting dealers and retail customers. The main aim of this paper is to design a value co-creation model in used-car auctions. More specifically, the study has been designed in order to describe the process of value co-creation in used-car auctions, to explore the co-created values in used-car auctions, and finally conclude the paper indicating the future research directions. Our analysis shows that economic values as well as non-economic values are co-created in used-car auctions. In addition, this paper contributes to the academic society broadening the view of value co-creation in service science.Keywords: value co-creation, used-car auctions, non-financial values, service science
Procedia PDF Downloads 35916753 Determinants of Customer Satisfaction: The case of Abyssinia Bank Customers in Addis Ababa Ethiopia
Authors: Yosef Ferede Bogale
Abstract:
The purpose of this study was to evaluate the degree of customer satisfaction and the variables influencing it in the instance of the Bank of Abyssinia branches in the districts of Arada and Bole in Addis Ababa. The study was carried out utilizing a mixed research approach and a descriptive and explanatory research design in Addis Ababa, the capital city of Ethiopia. Both primary and secondary data were employed in this investigation. The study's target population consisted of 1000 of the bank's most prestigious clients. With a 93% response rate, 265 respondents from both genders in the active age group had higher levels of education and work experience and were in the active age group. Customers of the case bank under consideration comprised the study's target audience. The respondents, who belonged to both gender groups, were in the active age bracket with superior levels of education and work experience. As a result, this investigation discovered that the degree of client satisfaction was assigned a medium rating. Additionally given a middling rating were the company's image practices, employee competency, technology, and service quality. Further, the results also demonstrate that corporate image, employees’ competency, technology, and service quality all positively and significantly affect customer happiness. This study found that, to varying degrees, company image, technology, competence, and high-quality financial services will all improve consumer happiness. According to this report, banks should monitor customer satisfaction and service quality at least twice a year. This is because there is a growing movement among bank service providers for accountability, and measuring these factors is crucial. This study also recommends that banks make every effort to satisfy consumers' expectations to the highest level.Keywords: customer satisfaction, corporate image, quality service risk, banks
Procedia PDF Downloads 12016752 Service Business Model Canvas: A Boundary Object Operating as a Business Development Tool
Authors: Taru Hakanen, Mervi Murtonen
Abstract:
This study aims to increase understanding of the transition of business models in servitization. The significance of service in all business has increased dramatically during the past decades. Service-dominant logic (SDL) describes this change in the economy and questions the goods-dominant logic on which business has primarily been based in the past. A business model canvas is one of the most cited and used tools in defining end developing business models. The starting point of this paper lies in the notion that the traditional business model canvas is inherently goods-oriented and best suits for product-based business. However, the basic differences between goods and services necessitate changes in business model representations when proceeding in servitization. Therefore, new knowledge is needed on how the conception of business model and the business model canvas as its representation should be altered in servitized firms in order to better serve business developers and inter-firm co-creation. That is to say, compared to products, services are intangible and they are co-produced between the supplier and the customer. Value is always co-created in interaction between a supplier and a customer, and customer experience primarily depends on how well the interaction succeeds between the actors. The role of service experience is even stronger in service business compared to product business, as services are co-produced with the customer. This paper provides business model developers with a service business model canvas, which takes into account the intangible, interactive, and relational nature of service. The study employs a design science approach that contributes to theory development via design artifacts. This study utilizes qualitative data gathered in workshops with ten companies from various industries. In particular, key differences between Goods-dominant logic (GDL) and SDL-based business models are identified when an industrial firm proceeds in servitization. As the result of the study, an updated version of the business model canvas is provided based on service-dominant logic. The service business model canvas ensures a stronger customer focus and includes aspects salient for services, such as interaction between companies, service co-production, and customer experience. It can be used for the analysis and development of a current service business model of a company or for designing a new business model. It facilitates customer-focused new service design and service development. It aids in the identification of development needs, and facilitates the creation of a common view of the business model. Therefore, the service business model canvas can be regarded as a boundary object, which facilitates the creation of a common understanding of the business model between several actors involved. The study contributes to the business model and service business development disciplines by providing a managerial tool for practitioners in service development. It also provides research insight into how servitization challenges companies’ business models.Keywords: boundary object, business model canvas, managerial tool, service-dominant logic
Procedia PDF Downloads 36616751 Evaluation of Age-Friendly Nursing Service System: KKU (AFNS:KKU) Model for the Excellence
Authors: Roongtiwa Chobchuen, Siriporn Mongkholthawornchai, Boonsong Hatawaikarn, Uriwan Chaichangreet, Kobkaew Thongtid, Pusda Pukdeekumjorn, Panita Limpawattana
Abstract:
Background: Age-friendly nursing service system in Srinagarind Hospital has been developed continuously based on the value and cultural background of Thailand which corporates with the modified WHO’s Age friendly Primary Care Service System. It consists of 3 issues; 1) development of staff training, 2) age-friendly service and 3) appropriate physical environment. Objective: To evaluate the efficacy of Age-friendly Nursing Service System: KKU (AFNS:KKU) model and to evaluate factors associated with nursing perception with AFN:KKU. Study design: Descriptive study Setting: 31 wards that served older patients in Srinagarind Hospital Populations: Nursing staff from 11 departments (31 wards) Instrument: Age-friendly nursing care scale as perceived by hospitalized older person Procedure and statistical analysis: All participants were asked questions using age-friendly nursing care scale as perceived by hospitalized older person questionnaires. Descriptive statistics and multiple logistic regression analyses were used to analyse the outcomes. Results: There were 337 participants recruited in this study. The majority of them were women (92%) with the mean ages of 29 years and 77.45% were nurse practitioners. They had average nursing experiences of 5 years. The average scores of age-friendly nursing care scale were high and highest in the area of attitude and communication. Age, sex, educational level, duration of work among, and having experience in aging training were not associated with nursing perception where type of department was an independent factor. Nurses from department of Surgery and Orthopedic, Eye and ENT, special ward and Obstetrics and Gynecological had significant greater perception than nurses from Internal Medicine Department (p < 0.05). Conclusion: Nurses had high scores in all dimensions of age-friendly concept. The result indicates that nurses have good attitude to aging care which can lead to improve quality of care. Organization should support other domains of ageing care to achieve greater effectiveness in geriatric care.Keywords: age-friendly, nursing service system, excellence model, geriatric care
Procedia PDF Downloads 34316750 An AK-Chart for the Non-Normal Data
Authors: Chia-Hau Liu, Tai-Yue Wang
Abstract:
Traditional multivariate control charts assume that measurement from manufacturing processes follows a multivariate normal distribution. However, this assumption may not hold or may be difficult to verify because not all the measurement from manufacturing processes are normal distributed in practice. This study develops a new multivariate control chart for monitoring the processes with non-normal data. We propose a mechanism based on integrating the one-class classification method and the adaptive technique. The adaptive technique is used to improve the sensitivity to small shift on one-class classification in statistical process control. In addition, this design provides an easy way to allocate the value of type I error so it is easier to be implemented. Finally, the simulation study and the real data from industry are used to demonstrate the effectiveness of the propose control charts.Keywords: multivariate control chart, statistical process control, one-class classification method, non-normal data
Procedia PDF Downloads 42116749 Analysis of Patent Protection of Bone Tissue Engineering Scaffold Technology
Authors: Yunwei Zhang, Na Li, Yuhong Niu
Abstract:
Bone tissue engineering scaffold was regarded as an important clinical technology of curing bony defect. The patent protection of bone tissue engineering scaffold had been paid more attention and strengthened all over the world. This study analyzed the future development trends of international technologies in the field of bone tissue engineering scaffold and its patent protection. This study used the methods of data classification and classification indexing to analyze 2718 patents retrieved in the patent database. Results showed that the patents coming from United States had a competitive advantage over other countiries in the field of bone tissue engineering scaffold. The number of patent applications by a single company in U.S. was a quarter of that of the world. However, the capability of R&D in China was obviously weaker than global level, patents mainly coming from universities and scientific research institutions. Moreover, it would be predicted that synthetic organic materials as new materials would be gradually replaced by composite materials. The patent technology protections of composite materials would be more strengthened in the future.Keywords: bone tissue engineering, patent analysis, Scaffold material, patent protection
Procedia PDF Downloads 13216748 Electroencephalogram Based Alzheimer Disease Classification using Machine and Deep Learning Methods
Authors: Carlos Roncero-Parra, Alfonso Parreño-Torres, Jorge Mateo Sotos, Alejandro L. Borja
Abstract:
In this research, different methods based on machine/deep learning algorithms are presented for the classification and diagnosis of patients with mental disorders such as alzheimer. For this purpose, the signals obtained from 32 unipolar electrodes identified by non-invasive EEG were examined, and their basic properties were obtained. More specifically, different well-known machine learning based classifiers have been used, i.e., support vector machine (SVM), Bayesian linear discriminant analysis (BLDA), decision tree (DT), Gaussian Naïve Bayes (GNB), K-nearest neighbor (KNN) and Convolutional Neural Network (CNN). A total of 668 patients from five different hospitals have been studied in the period from 2011 to 2021. The best accuracy is obtained was around 93 % in both ADM and ADA classifications. It can be concluded that such a classification will enable the training of algorithms that can be used to identify and classify different mental disorders with high accuracy.Keywords: alzheimer, machine learning, deep learning, EEG
Procedia PDF Downloads 12516747 Constraining the Potential Nickel Laterite Area Using Geographic Information System-Based Multi-Criteria Rating in Surigao Del Sur
Authors: Reiner-Ace P. Mateo, Vince Paolo F. Obille
Abstract:
The traditional method of classifying the potential mineral resources requires a significant amount of time and money. In this paper, an alternative way to classify potential mineral resources with GIS application in Surigao del Sur. The three (3) analog map data inputs integrated to GIS are geologic map, topographic map, and land cover/vegetation map. The indicators used in the classification of potential nickel laterite integrated from the analog map data inputs are a geologic indicator, which is the presence of ultramafic rock from the geologic map; slope indicator and the presence of plateau edges from the topographic map; areas of forest land, grassland, and shrublands from the land cover/vegetation map. The potential mineral of the area was classified from low up to very high potential. The produced mineral potential classification map of Surigao del Sur has an estimated 4.63% low nickel laterite potential, 42.15% medium nickel laterite potential, 43.34% high nickel laterite potential, and 9.88% very high nickel laterite from its ultramafic terrains. For the validation of the produced map, it was compared with known occurrences of nickel laterite in the area using a nickel mining tenement map from the area with the application of remote sensing. Three (3) prominent nickel mining companies were delineated in the study area. The generated potential classification map of nickel-laterite in Surigao Del Sur may be of aid to the mining companies which are currently in the exploration phase in the study area. Also, the currently operating nickel mines in the study area can help to validate the reliability of the mineral classification map produced.Keywords: mineral potential classification, nickel laterites, GIS, remote sensing, Surigao del Sur
Procedia PDF Downloads 12116746 GIS Based Public Transport Accessibility of Lahore using PTALs Model
Authors: Naveed Chughtai, Salman Atif, Azhar Ali Taj, Murtaza Asghar Bukhari
Abstract:
Accessible transport systems play a crucial role in infrastructure management and ease of access to destinations. Thus, the necessity of knowledge of service coverage and service deprived areas is a prerequisite for devising policies. Integration of PTALs model with GIS network analysis models (Service Area Analysis, Closest Facility Analysis) facilitates the analysis of deprived areas. In this research, models presented determine the accessibility. The empirical evidence suggests that current bus network system caters only 18.5% of whole population. Using network analysis results as inputs for PTALs, it is seen that excellent accessibility indexed bands cover a limited areas, while 78.8% of area is totally deprived of any service. To cater the unserved catchment, new route alignments are proposed while keeping in focus the Socio-economic characteristics, land-use type and net population density of the deprived area. Change in accessibility with proposed routes show a 10% increment in service delivery and enhancement in terms of served population is up to 20.4%. PTALs result shows a decrement of 60 Km2 in unserved band. The result of this study can be used for planning, transport infrastructure management, allocation of new route alignments in combination with future land-use development and for adequate spatial distribution of service access points.Keywords: GIS, public transport accessibility, PTALs, accessibility index, service area analysis, closest facility analysis
Procedia PDF Downloads 43716745 Comparative Outlook of Teacher Education in Nigeria and India
Authors: Muhammad Badamasi Abdullahi
Abstract:
Teacher education, both pre- and in-service programs, is offered in many countries of the world by different teacher education institutions as declared in the Policies on Education of the countries. However, differences exist from one country to another as a result of some factors peculiar to them. Notwithstanding, there also exist similarities among them in regard to teacher education. This paper is expected to dig into teacher education programs in Nigeria and India so that areas of similarities and differences would be highlighted as well as provide a venue for possible recommendation of both countries to learn from one another. All this is directed towards providing a no -border approach in enhancing effective teaching and learning.Keywords: teacher education, teaching and learning, pre-service, in-service
Procedia PDF Downloads 38316744 Multisignature Schemes for Reinforcing Trust in Cloud Software-As-A-Service Services
Authors: Mustapha Hedabou, Ali Azougaghe, Ahmed Bentajer, Hicham Boukhris, Mourad Eddiwani, Zakaria Igarramen
Abstract:
Software-as-a-service (SaaS) is emerging as a dominant approach to delivering software. It encompasses a range of business, technical opportunities, issue, and challenges. Trustiness in the cloud services regarding the security and the privacy of the delivered data is the most critical issue with the SaaS model. In this paper, we survey the security concerns related to the SaaS model, and we propose the design of a trusted SaaS model that gives users more confidence into SaaS services by leveraging a trust in a neutral source code certifying authority. The proposed design is based on the use of the multisignature mechanism for signing the source code of the application service. In our model, the cloud provider acts as a root of trust by ensuring the integrity of the application service when it was running on its platform. The proposed design prevents insider attacks from tampering with application service before and after it was launched in a cloud provider platform.Keywords: cloud computing, SaaS Platform, TPM, trustiness, code source certification, multi-signature schemes
Procedia PDF Downloads 27316743 Performance Enrichment of Deep Feed Forward Neural Network and Deep Belief Neural Networks for Fault Detection of Automobile Gearbox Using Vibration Signal
Authors: T. Praveenkumar, Kulpreet Singh, Divy Bhanpuriya, M. Saimurugan
Abstract:
This study analysed the classification accuracy for gearbox faults using Machine Learning Techniques. Gearboxes are widely used for mechanical power transmission in rotating machines. Its rotating components such as bearings, gears, and shafts tend to wear due to prolonged usage, causing fluctuating vibrations. Increasing the dependability of mechanical components like a gearbox is hampered by their sealed design, which makes visual inspection difficult. One way of detecting impending failure is to detect a change in the vibration signature. The current study proposes various machine learning algorithms, with aid of these vibration signals for obtaining the fault classification accuracy of an automotive 4-Speed synchromesh gearbox. Experimental data in the form of vibration signals were acquired from a 4-Speed synchromesh gearbox using Data Acquisition System (DAQs). Statistical features were extracted from the acquired vibration signal under various operating conditions. Then the extracted features were given as input to the algorithms for fault classification. Supervised Machine Learning algorithms such as Support Vector Machines (SVM) and unsupervised algorithms such as Deep Feed Forward Neural Network (DFFNN), Deep Belief Networks (DBN) algorithms are used for fault classification. The fusion of DBN & DFFNN classifiers were architected to further enhance the classification accuracy and to reduce the computational complexity. The fault classification accuracy for each algorithm was thoroughly studied, tabulated, and graphically analysed for fused and individual algorithms. In conclusion, the fusion of DBN and DFFNN algorithm yielded the better classification accuracy and was selected for fault detection due to its faster computational processing and greater efficiency.Keywords: deep belief networks, DBN, deep feed forward neural network, DFFNN, fault diagnosis, fusion of algorithm, vibration signal
Procedia PDF Downloads 11016742 Investigation of Topic Modeling-Based Semi-Supervised Interpretable Document Classifier
Authors: Dasom Kim, William Xiu Shun Wong, Yoonjin Hyun, Donghoon Lee, Minji Paek, Sungho Byun, Namgyu Kim
Abstract:
There have been many researches on document classification for classifying voluminous documents automatically. Through document classification, we can assign a specific category to each unlabeled document on the basis of various machine learning algorithms. However, providing labeled documents manually requires considerable time and effort. To overcome the limitations, the semi-supervised learning which uses unlabeled document as well as labeled documents has been invented. However, traditional document classifiers, regardless of supervised or semi-supervised ones, cannot sufficiently explain the reason or the process of the classification. Thus, in this paper, we proposed a methodology to visualize major topics and class components of each document. We believe that our methodology for visualizing topics and classes of each document can enhance the reliability and explanatory power of document classifiers.Keywords: data mining, document classifier, text mining, topic modeling
Procedia PDF Downloads 40116741 Automatic Classification for the Degree of Disc Narrowing from X-Ray Images Using CNN
Authors: Kwangmin Joo
Abstract:
Automatic detection of lumbar vertebrae and classification method is proposed for evaluating the degree of disc narrowing. Prior to classification, deep learning based segmentation is applied to detect individual lumbar vertebra. M-net is applied to segment five lumbar vertebrae and fine-tuning segmentation is employed to improve the accuracy of segmentation. Using the features extracted from previous step, clustering technique, k-means clustering, is applied to estimate the degree of disc space narrowing under four grade scoring system. As preliminary study, techniques proposed in this research could help building an automatic scoring system to diagnose the severity of disc narrowing from X-ray images.Keywords: Disc space narrowing, Degenerative disc disorders, Deep learning based segmentation, Clustering technique
Procedia PDF Downloads 12416740 Interaction with Earth’s Surface in Remote Sensing
Authors: Spoorthi Sripad
Abstract:
Remote sensing is a powerful tool for acquiring information about the Earth's surface without direct contact, relying on the interaction of electromagnetic radiation with various materials and features. This paper explores the fundamental principle of "Interaction with Earth's Surface" in remote sensing, shedding light on the intricate processes that occur when electromagnetic waves encounter different surfaces. The absorption, reflection, and transmission of radiation generate distinct spectral signatures, allowing for the identification and classification of surface materials. The paper delves into the significance of the visible, infrared, and thermal infrared regions of the electromagnetic spectrum, highlighting how their unique interactions contribute to a wealth of applications, from land cover classification to environmental monitoring. The discussion encompasses the types of sensors and platforms used to capture these interactions, including multispectral and hyperspectral imaging systems. By examining real-world applications, such as land cover classification and environmental monitoring, the paper underscores the critical role of understanding the interaction with the Earth's surface for accurate and meaningful interpretation of remote sensing data.Keywords: remote sensing, earth's surface interaction, electromagnetic radiation, spectral signatures, land cover classification, archeology and cultural heritage preservation
Procedia PDF Downloads 5616739 Analysis of Matching Pursuit Features of EEG Signal for Mental Tasks Classification
Authors: Zin Mar Lwin
Abstract:
Brain Computer Interface (BCI) Systems have developed for people who suffer from severe motor disabilities and challenging to communicate with their environment. BCI allows them for communication by a non-muscular way. For communication between human and computer, BCI uses a type of signal called Electroencephalogram (EEG) signal which is recorded from the human„s brain by means of an electrode. The electroencephalogram (EEG) signal is an important information source for knowing brain processes for the non-invasive BCI. Translating human‟s thought, it needs to classify acquired EEG signal accurately. This paper proposed a typical EEG signal classification system which experiments the Dataset from “Purdue University.” Independent Component Analysis (ICA) method via EEGLab Tools for removing artifacts which are caused by eye blinks. For features extraction, the Time and Frequency features of non-stationary EEG signals are extracted by Matching Pursuit (MP) algorithm. The classification of one of five mental tasks is performed by Multi_Class Support Vector Machine (SVM). For SVMs, the comparisons have been carried out for both 1-against-1 and 1-against-all methods. Procedia PDF Downloads 27616738 An Inventory Management Model to Manage the Stock Level for Irregular Demand Items
Authors: Riccardo Patriarca, Giulio Di Gravio, Francesco Costantino, Massimo Tronci
Abstract:
An accurate inventory management policy acquires a crucial role in the several high-availability sectors. In these sectors, due to the high-cost of spares and backorders, an (S-1, S) replenishment policy is necessary for high-availability items. The policy enables the shipment of a substitute efficient item anytime the inventory size decreases by one. This policy can be modelled following the Multi-Echelon Technique for Recoverable Item Control (METRIC). The METRIC is a system-based technique that allows defining the optimum stock level in a multi-echelon network, adopting measures in line with the decision-maker’s perspective. The METRIC defines an availability-cost function with inventory costs and required service levels, using as inputs data about the demand trend, the supplying and maintenance characteristics of the network and the budget/availability constraints. The traditional METRIC relies on the hypothesis that a Poisson distribution well represents the demand distribution in case of items with a low failure rate. However, in this research, we will explore the effects of using a Poisson distribution to model the demand of low failure rate items characterized by an irregular demand trend. This characteristic of a demand is not included in the traditional METRIC formulation leading to the need of revising its traditional formulation. Using the CV (Coefficient of Variation) and ADI (Average inter-Demand Interval) classification, we will define the inherent flaws of Poisson-based METRIC for irregular demand items, defining an innovative ad hoc distribution which can better fit the irregular demands. This distribution will allow defining proper stock levels to reduce stocking and backorder costs due to the high irregularities in the demand trend. A case study in the aviation domain will clarify the benefits of this innovative METRIC approach.Keywords: METRIC, inventory management, irregular demand, spare parts
Procedia PDF Downloads 34616737 The Impact of Quality Management System Establishment over the Performance of Public Administration Services in Kosovo
Authors: Ilir Rexhepi, Naim Ismajli
Abstract:
Quality and quality management are key factors of success nowadays. Public sector and quality management in this sector contains many challenges and difficulties, most notably in a new country like Kosovo. This study analyses the process of implementation of quality management system in public administration institutions in this country. The main objective is to show how to set up a quality management system and how does the quality management system setup affect the overall public administration services in Kosovo. This study shows how the efficiency and effectiveness of public institution services/performance is rapidly improving through the establishment and functionalization of Quality Management System. The specific impact of established QMC within the organization has resulted with the identification of mission related processes within the entire system including input identification, the person in charge and the way of conversion to the output of each activity though the interference with other service processes within the system. By giving detailed analyses of all steps of implementation of the Quality Management System, its effect and consequences towards the overall public institution service performance, we try to go one step further, by showing it as a very good example or tool of other public institutions for improving their service performance. Interviews with employees, middle and high level managers including the quality manager and general secretaries are also part of analyses in this paper.Keywords: quality, quality management system, efficiency, public administration institutions
Procedia PDF Downloads 28216736 Service Blueprint for Improving Clinical Guideline Adherence via Mobile Health Technology
Authors: Y. O’Connor, C. Heavin, S. O’ Connor, J. Gallagher, J. Wu, J. O’Donoghue
Abstract:
Background: To improve the delivery of paediatric healthcare in resource-poor settings, Community Health Workers (CHW) have been provided with a paper-based set of protocols known as Community Case Management (CCM). Yet research has shown that CHW adherence to CCM guidelines is poor, ultimately impacting health service delivery. Digitising the CCM guidelines via mobile technology is argued in extant literature to improve CHW adherence. However, little research exist which outlines how (a) this process can be digitised and (b) adherence could be improved as a result. Aim: To explore how an electronic mobile version of CCM (eCCM) can overcome issues associated with the paper-based CCM protocol (poor adherence to guidelines) vis-à-vis service blueprinting. This service blueprint will outline how (a) the CCM process can be digitised using mobile Clinical Decision Support Systems software to support clinical decision-making and (b) adherence can be improved as a result. Method: Development of a single service blueprint for a standalone application which visually depicts the service processes (eCCM) when supporting the CHWs, using an application known as Supporting LIFE (Low cost Intervention For disEase control) as an exemplar. Results: A service blueprint is developed which illustrates how the eCCM solution can be utilised by CHWs to assist with the delivery of healthcare services to children. Leveraging smartphone technologies can (a) provide CHWs with just-in-time data to assist with their decision making at the point-of-care and (b) improve CHW adherence to CCM guidelines. Conclusions: The development of the eCCM opens up opportunities for the CHWs to leverage the inherent benefit of mobile devices to assist them with health service delivery in rural settings. To ensure that benefits are achieved, it is imperative to comprehend the functionality and form of the eCCM service process. By creating such a service blueprint for an eCCM approach, CHWs are provided with a clear picture regarding the role of the eCCM solution, often resulting in buy-in from the end-users.Keywords: adherence, community health workers, developing countries, mobile clinical decision support systems, CDSS, service blueprint
Procedia PDF Downloads 41416735 Heart Failure Identification and Progression by Classifying Cardiac Patients
Authors: Muhammad Saqlain, Nazar Abbas Saqib, Muazzam A. Khan
Abstract:
Heart Failure (HF) has become the major health problem in our society. The prevalence of HF has increased as the patient’s ages and it is the major cause of the high mortality rate in adults. A successful identification and progression of HF can be helpful to reduce the individual and social burden from this syndrome. In this study, we use a real data set of cardiac patients to propose a classification model for the identification and progression of HF. The data set has divided into three age groups, namely young, adult, and old and then each age group have further classified into four classes according to patient’s current physical condition. Contemporary Data Mining classification algorithms have been applied to each individual class of every age group to identify the HF. Decision Tree (DT) gives the highest accuracy of 90% and outperform all other algorithms. Our model accurately diagnoses different stages of HF for each age group and it can be very useful for the early prediction of HF.Keywords: decision tree, heart failure, data mining, classification model
Procedia PDF Downloads 39916734 Methods for Enhancing Ensemble Learning or Improving Classifiers of This Technique in the Analysis and Classification of Brain Signals
Authors: Seyed Mehdi Ghezi, Hesam Hasanpoor
Abstract:
This scientific article explores enhancement methods for ensemble learning with the aim of improving the performance of classifiers in the analysis and classification of brain signals. The research approach in this field consists of two main parts, each with its own strengths and weaknesses. The choice of approach depends on the specific research question and available resources. By combining these approaches and leveraging their respective strengths, researchers can enhance the accuracy and reliability of classification results, consequently advancing our understanding of the brain and its functions. The first approach focuses on utilizing machine learning methods to identify the best features among the vast array of features present in brain signals. The selection of features varies depending on the research objective, and different techniques have been employed for this purpose. For instance, the genetic algorithm has been used in some studies to identify the best features, while optimization methods have been utilized in others to identify the most influential features. Additionally, machine learning techniques have been applied to determine the influential electrodes in classification. Ensemble learning plays a crucial role in identifying the best features that contribute to learning, thereby improving the overall results. The second approach concentrates on designing and implementing methods for selecting the best classifier or utilizing meta-classifiers to enhance the final results in ensemble learning. In a different section of the research, a single classifier is used instead of multiple classifiers, employing different sets of features to improve the results. The article provides an in-depth examination of each technique, highlighting their advantages and limitations. By integrating these techniques, researchers can enhance the performance of classifiers in the analysis and classification of brain signals. This advancement in ensemble learning methodologies contributes to a better understanding of the brain and its functions, ultimately leading to improved accuracy and reliability in brain signal analysis and classification.Keywords: ensemble learning, brain signals, classification, feature selection, machine learning, genetic algorithm, optimization methods, influential features, influential electrodes, meta-classifiers
Procedia PDF Downloads 7416733 Patients’ Trust in Health Care Systems
Authors: Dilara Usta, Fatos Korkmaz
Abstract:
Background: Individuals who utilise health services maintain relationships with health professionals, insurers and institutions. The nature of these relationships requires service receivers to have trust in the service providers because maintaining health services without reciprocal trust is very difficult. Therefore, individual evaluations of trust within the scope of health services have become increasingly important. Objective: To investigate patients’ trust in the health-care system and their relevant socio-demographical characteristics. Methods: This research was conducted using a descriptive design which included 493 literate patients aged 18-65 years who were hospitalised for a minimum of two days at public university and training&research hospitals in Ankara, Turkey. Patients’ trust in health-care professionals, insurers, and institutions were investigated. Data were collected using a demographic questionnaire and the Multidimensional Trust in Health-Care Systems Scale between September 2015 and April 2016. Results: The participants’ mean age was 47.7±13.1; 70% had a moderate income and 69% had a prior hospitalisation and 63.5% of the patients were satisfied with the health-care services. The mean Multidimensional Trust in Health-Care Systems Scale score for the sample was 61.5±8.3; the provider subscale had a mean of 38.1±5, the insurers subscale had a mean of 12.9±3.7, and institutions subscale had a mean of 10.6±1.9. Conclusion: Patients’ level of trust in the health-care system was above average and the trust level of the patients with higher educational and socio-economic levels was lower compared to the other patients. Health-care professionals should raise awareness about the significance of trust in the health-care system.Keywords: delivery of health care, health care system, nursing, patients, trust
Procedia PDF Downloads 36816732 The Relationship between Incidental Emotions, Risk Perceptions and Type of Army Service
Authors: Sharon Garyn-Tal, Shoshana Shahrabani
Abstract:
Military service in general, and in combat units in particular, can be physically and psychologically stressful. Therefore, type of service may have significant implications for soldiers during and after their military service including emotions, judgments and risk perceptions. Previous studies have focused on risk propensity and risky behavior among soldiers, however there is still lack of knowledge on the impact of type of army service on risk perceptions. The current study examines the effect of type of army service (combat versus non-combat service) and negative incidental emotions on risk perceptions. In 2014 a survey was conducted among 153 combat and non-combat Israeli soldiers. The survey was distributed in train stations and central bus stations in various places in Israel among soldiers waiting for the train/bus. Participants answered questions related to the levels of incidental negative emotions they felt, to their risk perceptions (chances to be hurt by terror attack, by violent crime and by car accident), and personal details including type of army service. The data in this research is unique because military service in Israel is compulsory, so that the Israeli population serving in the army is wide and diversified. The results indicate that currently serving combat participants were more pessimistic in their risk perceptions (for all type of risks) compared to the currently serving non-combat participants. Since combat participants probably experienced severe and distressing situations during their service, they became more pessimistic regarding their probabilities of being hurt in different situations in life. This result supports the availability heuristic theory and the findings of previous studies indicating that those who directly experience distressing events tend to overestimate danger. The findings also indicate that soldiers who feel higher levels of incidental fear and anger have pessimistic risk perceptions. In addition, respondents who experienced combat army service also have pessimistic risk perceptions if they feel higher levels of fear. In addition, the findings suggest that higher levels of the incidental emotions of fear and anger are related to more pessimistic risk perceptions. These results can be explained by the compulsory army service in Israel that constitutes a focused threat to soldiers' safety during their period of service. Thus, in this stressful environment, negative incidental emotions even during routine times correlate with higher risk perceptions. In conclusion, the current study results suggest that combat army service shapes risk perceptions and the way young people control their negative incidental emotions in everyday life. Recognizing the factors affecting risk perceptions among soldiers is important for better understanding the impact of army service on young people.Keywords: army service, combat soldiers, incidental emotions, risk perceptions
Procedia PDF Downloads 23216731 Common Orthodontic Indices and Classification in the United Kingdom
Authors: Ashwini Mohan, Haris Batley
Abstract:
An orthodontic index is used to rate or categorise an individual’s occlusion using a numeric or alphanumeric score. Indexing of malocclusions and their correction is important in epidemiology, diagnosis, communication between clinicians as well as their patients and assessing treatment outcomes. Many useful indices have been put forward, but to the author’s best knowledge, no one method to this day appears to be equally suitable for the use of epidemiologists, public health program planners and clinicians. This article describes the common clinical orthodontic indices and classifications used in United Kingdom.Keywords: classification, indices, orthodontics, validity
Procedia PDF Downloads 15016730 Detection and Classification of Myocardial Infarction Using New Extracted Features from Standard 12-Lead ECG Signals
Authors: Naser Safdarian, Nader Jafarnia Dabanloo
Abstract:
In this paper we used four features i.e. Q-wave integral, QRS complex integral, T-wave integral and total integral as extracted feature from normal and patient ECG signals to detection and localization of myocardial infarction (MI) in left ventricle of heart. In our research we focused on detection and localization of MI in standard ECG. We use the Q-wave integral and T-wave integral because this feature is important impression in detection of MI. We used some pattern recognition method such as Artificial Neural Network (ANN) to detect and localize the MI. Because these methods have good accuracy for classification of normal and abnormal signals. We used one type of Radial Basis Function (RBF) that called Probabilistic Neural Network (PNN) because of its nonlinearity property, and used other classifier such as k-Nearest Neighbors (KNN), Multilayer Perceptron (MLP) and Naive Bayes Classification. We used PhysioNet database as our training and test data. We reached over 80% for accuracy in test data for localization and over 95% for detection of MI. Main advantages of our method are simplicity and its good accuracy. Also we can improve accuracy of classification by adding more features in this method. A simple method based on using only four features which extracted from standard ECG is presented which has good accuracy in MI localization.Keywords: ECG signal processing, myocardial infarction, features extraction, pattern recognition
Procedia PDF Downloads 45316729 Domain-Specific Deep Neural Network Model for Classification of Abnormalities on Chest Radiographs
Authors: Nkechinyere Joy Olawuyi, Babajide Samuel Afolabi, Bola Ibitoye
Abstract:
This study collected a preprocessed dataset of chest radiographs and formulated a deep neural network model for detecting abnormalities. It also evaluated the performance of the formulated model and implemented a prototype of the formulated model. This was with the view to developing a deep neural network model to automatically classify abnormalities in chest radiographs. In order to achieve the overall purpose of this research, a large set of chest x-ray images were sourced for and collected from the CheXpert dataset, which is an online repository of annotated chest radiographs compiled by the Machine Learning Research Group, Stanford University. The chest radiographs were preprocessed into a format that can be fed into a deep neural network. The preprocessing techniques used were standardization and normalization. The classification problem was formulated as a multi-label binary classification model, which used convolutional neural network architecture to make a decision on whether an abnormality was present or not in the chest radiographs. The classification model was evaluated using specificity, sensitivity, and Area Under Curve (AUC) score as the parameter. A prototype of the classification model was implemented using Keras Open source deep learning framework in Python Programming Language. The AUC ROC curve of the model was able to classify Atelestasis, Support devices, Pleural effusion, Pneumonia, A normal CXR (no finding), Pneumothorax, and Consolidation. However, Lung opacity and Cardiomegaly had a probability of less than 0.5 and thus were classified as absent. Precision, recall, and F1 score values were 0.78; this implies that the number of False Positive and False Negative is the same, revealing some measure of label imbalance in the dataset. The study concluded that the developed model is sufficient to classify abnormalities present in chest radiographs into present or absent.Keywords: transfer learning, convolutional neural network, radiograph, classification, multi-label
Procedia PDF Downloads 12516728 Proposed Framework based on Classification of Vertical Handover Decision Strategies in Heterogeneous Wireless Networks
Authors: Shidrokh Goudarzi, Wan Haslina Hassan
Abstract:
Heterogeneous wireless networks are converging towards an all-IP network as part of the so-called next-generation network. In this paradigm, different access technologies need to be interconnected; thus, vertical handovers or vertical handoffs are necessary for seamless mobility. In this paper, we conduct a review of existing vertical handover decision-making mechanisms that aim to provide ubiquitous connectivity to mobile users. To offer a systematic comparison, we categorize these vertical handover measurement and decision structures based on their respective methodology and parameters. Subsequently, we analyze several vertical handover approaches in the literature and compare them according to their advantages and weaknesses. The paper compares the algorithms based on the network selection methods, complexity of the technologies used and efficiency in order to introduce our vertical handover decision framework. We find that vertical handovers on heterogeneous wireless networks suffer from the lack of a standard and efficient method to satisfy both user and network quality of service requirements at different levels including architectural, decision-making and protocols. Also, the consolidation of network terminal, cross-layer information, multi packet casting and intelligent network selection algorithm appears to be an optimum solution for achieving seamless service continuity in order to facilitate seamless connectivity.Keywords: heterogeneous wireless networks, vertical handovers, vertical handover metric, decision-making algorithms
Procedia PDF Downloads 39216727 Effect of Prophylactic Oxytocin Therapy on Duration of Retained Fetal Membrane (RFM) in Periparturient Dairy Cows
Authors: Hamid Ghasemzadeh- Nava, Maziar Kaveh Baghbadorani, Amin Tamadon
Abstract:
Considering response of uterus to ecbolic effect of oxytocin near the time of parturition, this study was done for investigating the effect of prophylactic administration of this hormone on duration of fetal membrane retention, time interval to first detectable estrus, time interval to first service, and conception rate at first service in cases of both normal parturition and dystocia. For this reason cows with (n=18) and without (n=18) dystocia assigned randomly to treatment (n=12) or control (n=6) groups and received intramuscular injection of 100 IU of oxytocin or 10 mL of normal saline respectively. Further observations and investigations indicate that duration of fetal retention is significantly shorter in treatment group cows compared to control groups, regardless of having dystocia (P=0.002) or normal spontaneous calving (P=0.001). The same trend exists for conception rate at first service in which cows in treatment groups had significantly higher conception rate (CR) in comparison to cows in control groups with (P=0.0003) or without dystocia (P=0.017). The time interval to first detected heat and first service didn’t show any difference between groups.Keywords: conception rate, oxytocin, RFM, time to first service
Procedia PDF Downloads 43416726 The Service Appraisal of Soldiers of the Army of the Czech Republic in the Context of Personal Expenses
Authors: Tereza Dolečková
Abstract:
Following article provides the comparison of international norms and standards formulating personal expenses, and then it illustrates the national concept of personal expenses of the Ministry of Defence. Then a new salary system of soldiers and the importance of the service appraisal in the context of personal expenses of the Ministry of Defence are explained. The first part of the article includes formulation of the approach to the definition of personal expenses within the international norms and standards and also within the Ministry of Defence of the Czech Republic. The structure of employees of the Ministry of Defence of the Czech Republic in years 2012 – 2014 and the amount of military expenses and the share of salary expenses of the Ministry of total expenses of the Ministry are clarified there, also the comparison of the amount of military expenses in chosen member states of the North Atlantic Treaty Organization is done. The salary system of professional soldiers in connection with the amendment of the Act No. 221/1999 Coll. on Professional Soldiers is clarified in the second part of this article. The amendment significantly regulates the salary items of soldiers but changes are also in the service appraisal of soldiers which reflects one of seven salary items of soldiers – the performance bonus. The aim of this article is to clarify different approach to define personal expenses with emphasis on the Ministry of Defence of the Czech Republic which overlaps to the service appraisal of soldiers of the Army of the Czech Republic and their salary system in connection with personal expenses of the Ministry of Defence of the Czech Republic. The efficient and objective system of the service appraisal and the use of its results are connected to the principles of the career advancement; only the best soldiers can advance in the system of the service careers to higher positions. That is why it is necessary to improve the service appraisal so it would provide the maximum information about the performance of a soldier and it would also motivate the soldier in his development. The attention should be paid to the service appraisal of the soldiers of the Army of the Czech Republic to achieve as much objectivity as possible.Keywords: career, human resource management and development, personal expenses, salary system of soldiers, service appraisal of soldiers, the Army of the Czech Republic
Procedia PDF Downloads 24416725 Laying Performance of Itik Pinas (Anas platyrynchos Linnaeus) as Affected by Garlic (Allium sativum) Powder in Drinking Water
Authors: Gianne Bianca P. Manalo, Ernesto A. Martin, Vanessa V. Velasco
Abstract:
The laying performance, egg quality, egg classification, and income over feed cost of Improved Philippine Mallard duck (Itik Pinas) were examined as influenced by garlic powder in drinking water. A total of 48 ducks (42 females and 6 males) were used in the study. The ducks were allocated into two treatments - with garlic powder (GP) and without garlic powder (control) in drinking water. Each treatment had three replicates with eight ducks (7 females and 1 male) per replication. The results showed that there was a significant (P = 0.03) difference in average egg weight where higher values were attained by ducks with GP (77.67 g ± 0.64) than the control (75.64 g ± 0.43). The supplementation of garlic powder in drinking water, however, did not affect the egg production, feed intake, FCR, egg mass, livability, egg quality and egg classification. The Itik Pinas with GP in drinking water had numerically higher income over feed cost than those without. GP in drinking water can be considered in raising Itik Pinas. Further studies on increasing level of GP and long feeding duration also merit consideration to substantiate the findings.Keywords: phytogenic, garlic powder, Itik-Pinas, egg weight, egg production
Procedia PDF Downloads 80