Search results for: score prediction
3551 Assessing Urban Health Disparities in South Asia: A Comparative Study Using the Urban Health Index
Authors: Fiza Azam, Sahar Zia, Fatima Nazir Ali, Aysha Hanif
Abstract:
Health is a fundamental human right, and a healthy population is essential for the prosperity and sustainable development of any country. This research is aligned with United Nations' Goal 3: Good Health and Well-being. It aims to assess and rank key health indicators across selected South Asian countries. The study focuses on urban areas in these nations, drawing on data from the World Bank’s primary collection of relevant indicators and specific health determinants outlined by the World Health Organization (WHO). These determinants include the physical environment, income and social status, education, social support networks, and personal behavior. To evaluate disparities in urban health across the region, the Urban Health Index (UHI) developed by Georgia State University, USA, is employed, followed by a mapping technique including visualization through a choropleth map to identify the pattern of spatial variations in our key variables, such as socioeconomic indicators across the region. This index serves as a comparative tool to rank health outcomes, where higher UHI values indicate better health conditions. The findings reveal notable disparities across South Asia. Afghanistan, with the lowest UHI score of 0.0423, ranks first, indicating the least favorable urban health conditions. Pakistan follows with a UHI score of 0.1190. Bangladesh and India rank third and fourth with UHI scores of 0.3099 and 0.3250, respectively. The Maldives and Sri Lanka rank fifth and sixth, with UHI scores of 0.3432 and 0.3495. Bhutan is ranked seventh with a score of 0.4750. Nepal, with a UHI score of 0.5012, ranks eighth, indicating the best urban health conditions among the countries studied. The findings of this research are crucial for addressing health disparities, improving living conditions, and enhancing social well-being in the region. These insights can inform policy measures aimed at reducing inequalities and promoting sustainable urban health in South Asia.Keywords: urban health index, health disparities, sustainable development, South Asia, World Health Organization, United Nations, living conditions, public health
Procedia PDF Downloads 133550 Prediction of Cutting Tool Life in Drilling of Reinforced Aluminum Alloy Composite Using a Fuzzy Method
Authors: Mohammed T. Hayajneh
Abstract:
Machining of Metal Matrix Composites (MMCs) is very significant process and has been a main problem that draws many researchers to investigate the characteristics of MMCs during different machining process. The poor machining properties of hard particles reinforced MMCs make drilling process a rather interesting task. Unlike drilling of conventional materials, many problems can be seriously encountered during drilling of MMCs, such as tool wear and cutting forces. Cutting tool wear is a very significant concern in industries. Cutting tool wear not only influences the quality of the drilled hole, but also affects the cutting tool life. Prediction the cutting tool life during drilling is essential for optimizing the cutting conditions. However, the relationship between tool life and cutting conditions, tool geometrical factors and workpiece material properties has not yet been established by any machining theory. In this research work, fuzzy subtractive clustering system has been used to model the cutting tool life in drilling of Al2O3 particle reinforced aluminum alloy composite to investigate of the effect of cutting conditions on cutting tool life. This investigation can help in controlling and optimizing of cutting conditions when the process parameters are adjusted. The built model for prediction the tool life is identified by using drill diameter, cutting speed, and cutting feed rate as input data. The validity of the model was confirmed by the examinations under various cutting conditions. Experimental results have shown the efficiency of the model to predict cutting tool life.Keywords: composite, fuzzy, tool life, wear
Procedia PDF Downloads 2973549 Developing a Machine Learning-based Cost Prediction Model for Construction Projects using Particle Swarm Optimization
Authors: Soheila Sadeghi
Abstract:
Accurate cost prediction is essential for effective project management and decision-making in the construction industry. This study aims to develop a cost prediction model for construction projects using Machine Learning techniques and Particle Swarm Optimization (PSO). The research utilizes a comprehensive dataset containing project cost estimates, actual costs, resource details, and project performance metrics from a road reconstruction project. The methodology involves data preprocessing, feature selection, and the development of an Artificial Neural Network (ANN) model optimized using PSO. The study investigates the impact of various input features, including cost estimates, resource allocation, and project progress, on the accuracy of cost predictions. The performance of the optimized ANN model is evaluated using metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared. The results demonstrate the effectiveness of the proposed approach in predicting project costs, outperforming traditional benchmark models. The feature selection process identifies the most influential variables contributing to cost variations, providing valuable insights for project managers. However, this study has several limitations. Firstly, the model's performance may be influenced by the quality and quantity of the dataset used. A larger and more diverse dataset covering different types of construction projects would enhance the model's generalizability. Secondly, the study focuses on a specific optimization technique (PSO) and a single Machine Learning algorithm (ANN). Exploring other optimization methods and comparing the performance of various ML algorithms could provide a more comprehensive understanding of the cost prediction problem. Future research should focus on several key areas. Firstly, expanding the dataset to include a wider range of construction projects, such as residential buildings, commercial complexes, and infrastructure projects, would improve the model's applicability. Secondly, investigating the integration of additional data sources, such as economic indicators, weather data, and supplier information, could enhance the predictive power of the model. Thirdly, exploring the potential of ensemble learning techniques, which combine multiple ML algorithms, may further improve cost prediction accuracy. Additionally, developing user-friendly interfaces and tools to facilitate the adoption of the proposed cost prediction model in real-world construction projects would be a valuable contribution to the industry. The findings of this study have significant implications for construction project management, enabling proactive cost estimation, resource allocation, budget planning, and risk assessment, ultimately leading to improved project performance and cost control. This research contributes to the advancement of cost prediction techniques in the construction industry and highlights the potential of Machine Learning and PSO in addressing this critical challenge. However, further research is needed to address the limitations and explore the identified future research directions to fully realize the potential of ML-based cost prediction models in the construction domain.Keywords: cost prediction, construction projects, machine learning, artificial neural networks, particle swarm optimization, project management, feature selection, road reconstruction
Procedia PDF Downloads 613548 Real Time Detection, Prediction and Reconstitution of Rain Drops
Authors: R. Burahee, B. Chassinat, T. de Laclos, A. Dépée, A. Sastim
Abstract:
The purpose of this paper is to propose a solution to detect, predict and reconstitute rain drops in real time – during the night – using an embedded material with an infrared camera. To prevent the system from needing too high hardware resources, simple models are considered in a powerful image treatment algorithm reducing considerably calculation time in OpenCV software. Using a smart model – drops will be matched thanks to a process running through two consecutive pictures for implementing a sophisticated tracking system. With this system drops computed trajectory gives information for predicting their future location. Thanks to this technique, treatment part can be reduced. The hardware system composed by a Raspberry Pi is optimized to host efficiently this code for real time execution.Keywords: reconstitution, prediction, detection, rain drop, real time, raspberry, infrared
Procedia PDF Downloads 4203547 Performance Analysis of Artificial Neural Network with Decision Tree in Prediction of Diabetes Mellitus
Authors: J. K. Alhassan, B. Attah, S. Misra
Abstract:
Human beings have the ability to make logical decisions. Although human decision - making is often optimal, it is insufficient when huge amount of data is to be classified. medical dataset is a vital ingredient used in predicting patients health condition. In other to have the best prediction, there calls for most suitable machine learning algorithms. This work compared the performance of Artificial Neural Network (ANN) and Decision Tree Algorithms (DTA) as regards to some performance metrics using diabetes data. The evaluations was done using weka software and found out that DTA performed better than ANN. Multilayer Perceptron (MLP) and Radial Basis Function (RBF) were the two algorithms used for ANN, while RegTree and LADTree algorithms were the DTA models used. The Root Mean Squared Error (RMSE) of MLP is 0.3913,that of RBF is 0.3625, that of RepTree is 0.3174 and that of LADTree is 0.3206 respectively.Keywords: artificial neural network, classification, decision tree algorithms, diabetes mellitus
Procedia PDF Downloads 4103546 Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market
Authors: Ioannis P. Panapakidis, Marios N. Moschakis
Abstract:
The Greek Energy Market is structured as a mandatory pool where the producers make their bid offers in day-ahead basis. The System Operator solves an optimization routine aiming at the minimization of the cost of produced electricity. The solution of the optimization problem leads to the calculation of the System Marginal Price (SMP). Accurate forecasts of the SMP can lead to increased profits and more efficient portfolio management from the producer`s perspective. Aim of this study is to provide a comparative analysis of various machine learning models such as artificial neural networks and neuro-fuzzy models for the prediction of the SMP of the Greek market. Machine learning algorithms are favored in predictions problems since they can capture and simulate the volatilities of complex time series.Keywords: deregulated energy market, forecasting, machine learning, system marginal price
Procedia PDF Downloads 2163545 Improve Student Performance Prediction Using Majority Vote Ensemble Model for Higher Education
Authors: Wade Ghribi, Abdelmoty M. Ahmed, Ahmed Said Badawy, Belgacem Bouallegue
Abstract:
In higher education institutions, the most pressing priority is to improve student performance and retention. Large volumes of student data are used in Educational Data Mining techniques to find new hidden information from students' learning behavior, particularly to uncover the early symptom of at-risk pupils. On the other hand, data with noise, outliers, and irrelevant information may provide incorrect conclusions. By identifying features of students' data that have the potential to improve performance prediction results, comparing and identifying the most appropriate ensemble learning technique after preprocessing the data, and optimizing the hyperparameters, this paper aims to develop a reliable students' performance prediction model for Higher Education Institutions. Data was gathered from two different systems: a student information system and an e-learning system for undergraduate students in the College of Computer Science of a Saudi Arabian State University. The cases of 4413 students were used in this article. The process includes data collection, data integration, data preprocessing (such as cleaning, normalization, and transformation), feature selection, pattern extraction, and, finally, model optimization and assessment. Random Forest, Bagging, Stacking, Majority Vote, and two types of Boosting techniques, AdaBoost and XGBoost, are ensemble learning approaches, whereas Decision Tree, Support Vector Machine, and Artificial Neural Network are supervised learning techniques. Hyperparameters for ensemble learning systems will be fine-tuned to provide enhanced performance and optimal output. The findings imply that combining features of students' behavior from e-learning and students' information systems using Majority Vote produced better outcomes than the other ensemble techniques.Keywords: educational data mining, student performance prediction, e-learning, classification, ensemble learning, higher education
Procedia PDF Downloads 1093544 National Assessment for Schools in Saudi Arabia: Score Reliability and Plausible Values
Authors: Dimiter M. Dimitrov, Abdullah Sadaawi
Abstract:
The National Assessment for Schools (NAFS) in Saudi Arabia consists of standardized tests in Mathematics, Reading, and Science for school grade levels 3, 6, and 9. One main goal is to classify students into four categories of NAFS performance (minimal, basic, proficient, and advanced) by schools and the entire national sample. The NAFS scoring and equating is performed on a bounded scale (D-scale: ranging from 0 to 1) in the framework of the recently developed “D-scoring method of measurement.” The specificity of the NAFS measurement framework and data complexity presented both challenges and opportunities to (a) the estimation of score reliability for schools, (b) setting cut-scores for the classification of students into categories of performance, and (c) generating plausible values for distributions of student performance on the D-scale. The estimation of score reliability at the school level was performed in the framework of generalizability theory (GT), with students “nested” within schools and test items “nested” within test forms. The GT design was executed via a multilevel modeling syntax code in R. Cut-scores (on the D-scale) for the classification of students into performance categories was derived via a recently developed method of standard setting, referred to as “Response Vector for Mastery” (RVM) method. For each school, the classification of students into categories of NAFS performance was based on distributions of plausible values for the students’ scores on NAFS tests by grade level (3, 6, and 9) and subject (Mathematics, Reading, and Science). Plausible values (on the D-scale) for each individual student were generated via random selection from a statistical logit-normal distribution with parameters derived from the student’s D-score and its conditional standard error, SE(D). All procedures related to D-scoring, equating, generating plausible values, and classification of students into performance levels were executed via a computer program in R developed for the purpose of NAFS data analysis.Keywords: large-scale assessment, reliability, generalizability theory, plausible values
Procedia PDF Downloads 213543 Combining the Deep Neural Network with the K-Means for Traffic Accident Prediction
Authors: Celso L. Fernando, Toshio Yoshii, Takahiro Tsubota
Abstract:
Understanding the causes of a road accident and predicting their occurrence is key to preventing deaths and serious injuries from road accident events. Traditional statistical methods such as the Poisson and the Logistics regressions have been used to find the association of the traffic environmental factors with the accident occurred; recently, an artificial neural network, ANN, a computational technique that learns from historical data to make a more accurate prediction, has emerged. Although the ability to make accurate predictions, the ANN has difficulty dealing with highly unbalanced attribute patterns distribution in the training dataset; in such circumstances, the ANN treats the minority group as noise. However, in the real world data, the minority group is often the group of interest; e.g., in the road traffic accident data, the events of the accident are the group of interest. This study proposes a combination of the k-means with the ANN to improve the predictive ability of the neural network model by alleviating the effect of the unbalanced distribution of the attribute patterns in the training dataset. The results show that the proposed method improves the ability of the neural network to make a prediction on a highly unbalanced distributed attribute patterns dataset; however, on an even distributed attribute patterns dataset, the proposed method performs almost like a standard neural network.Keywords: accident risks estimation, artificial neural network, deep learning, k-mean, road safety
Procedia PDF Downloads 1643542 Applying Artificial Neural Networks to Predict Speed Skater Impact Concussion Risk
Authors: Yilin Liao, Hewen Li, Paula McConvey
Abstract:
Speed skaters often face a risk of concussion when they fall on the ice floor and impact crash mats during practices and competitive races. Several variables, including those related to the skater, the crash mat, and the impact position (body side/head/feet impact), are believed to influence the severity of the skater's concussion. While computer simulation modeling can be employed to analyze these accidents, the simulation process is time-consuming and does not provide rapid information for coaches and teams to assess the skater's injury risk in competitive events. This research paper promotes the exploration of the feasibility of using AI techniques for evaluating skater’s potential concussion severity, and to develop a fast concussion prediction tool using artificial neural networks to reduce the risk of treatment delays for injured skaters. The primary data is collected through virtual tests and physical experiments designed to simulate skater-mat impact. It is then analyzed to identify patterns and correlations; finally, it is used to train and fine-tune the artificial neural networks for accurate prediction. The development of the prediction tool by employing machine learning strategies contributes to the application of AI methods in sports science and has theoretical involvements for using AI techniques in predicting and preventing sports-related injuries.Keywords: artificial neural networks, concussion, machine learning, impact, speed skater
Procedia PDF Downloads 1103541 An Evaluation of Cognitive Function Level, Depression, and Quality of Life of Elderly People Living in a Nursing Home
Authors: Ayse Inel Manav, Saliha Bozdogan Yesilot, Pinar Yesil Demirci, Gursel Oztunc
Abstract:
Introduction: This study was conducted with a view to evaluating cognitive function level, depression, and quality of life of elderly people living in a nursing home. Methods: This study, which is cross-sectional and descriptive in nature, was conducted in the Nursing and Rehabilitation Center for the Elderly in Adana/Turkey between 1st of May and 1st of August, 2016. The participants included 118 elderly people who were chosen using simple random sampling method. The data were collected using the Personal Information Form, the Standardized Mini Mental State Exam (SMMSE), the Geriatric Depression Scale (GDS), and the World Health Organization Quality of Life-OLD (WHOQOL-OLD) module. The data were analyzed using IBM SPSS Statistics 22 (IBM, SPSS, Turkey) program. Results: Of all the participants, 36,4% (n=43) were female, 63,6% (n=75) were male, and average age was 74,08 ± 8,23 years. The participants’ SMMSE mean score was found 20,37 ± 7,08, GDS mean score was 14,92 ± 4,29, and WHOQOL-OLD module mean score was 69,76 ± 11,54. There was a negative, significant relationship between SMMSE and GDS scores, a positive relationship between WHOQOL-OLD module total scores and a negative, significant relationship between GDS scores and WHOQOL-OLD module total scores. Discussıon and Conclusion: Results showed that more than half of the elderly people living in the nursing home experienced cognitive deterioration and depression; and cognitive state, depression, and quality of life were found to be significantly related to each other.Keywords: depression, cognitive function level, quality of life
Procedia PDF Downloads 2913540 Wildland Fire in Terai Arc Landscape of Lesser Himalayas Threatning the Tiger Habitat
Authors: Amit Kumar Verma
Abstract:
The present study deals with fire prediction model in Terai Arc Landscape, one of the most dramatic ecosystems in Asia where large, wide-ranging species such as tiger, rhinos, and elephant will thrive while bringing economic benefits to the local people. Forest fires cause huge economic and ecological losses and release considerable quantities of carbon into the air and is an important factor inflating the global burden of carbon emissions. Forest fire is an important factor of behavioral cum ecological habit of tiger in wild. Post fire changes i.e. micro and macro habitat directly affect the tiger habitat or land. Vulnerability of fire depicts the changes in microhabitat (humus, soil profile, litter, vegetation, grassland ecosystem). Microorganism like spider, annelids, arthropods and other favorable microorganism directly affect by the forest fire and indirectly these entire microorganisms are responsible for the development of tiger (Panthera tigris) habitat. On the other hand, fire brings depletion in prey species and negative movement of tiger from wild to human- dominated areas, which may leads the conflict i.e. dangerous for both tiger & human beings. Early forest fire prediction through mapping the risk zones can help minimize the fire frequency and manage forest fires thereby minimizing losses. Satellite data plays a vital role in identifying and mapping forest fire and recording the frequency with which different vegetation types are affected. Thematic hazard maps have been generated by using IDW technique. A prediction model for fire occurrence is developed for TAL. The fire occurrence records were collected from state forest department from 2000 to 2014. Disciminant function models was used for developing a prediction model for forest fires in TAL, random points for non-occurrence of fire have been generated. Based on the attributes of points of occurrence and non-occurrence, the model developed predicts the fire occurrence. The map of predicted probabilities classified the study area into five classes very high (12.94%), high (23.63%), moderate (25.87%), low(27.46%) and no fire (10.1%) based upon the intensity of hazard. model is able to classify 78.73 percent of points correctly and hence can be used for the purpose with confidence. Overall, also the model works correctly with almost 69% of points. This study exemplifies the usefulness of prediction model of forest fire and offers a more effective way for management of forest fire. Overall, this study depicts the model for conservation of tiger’s natural habitat and forest conservation which is beneficial for the wild and human beings for future prospective.Keywords: fire prediction model, forest fire hazard, GIS, landsat, MODIS, TAL
Procedia PDF Downloads 3523539 A Randomized Control Trial Intervention to Combat Childhood Obesity in Negeri Sembilan: The Hebat! Program
Authors: Siti Sabariah Buhari, Ruzita Abdul Talib, Poh Bee Koon
Abstract:
This study aims to develop and evaluate an intervention to improve eating habits, active lifestyle and weight status of overweight and obese children in Negeri Sembilan. The H.E.B.A.T! Program involved children, parents, and school and focused on behaviour and environment modification to achieve its goal. The intervention consists of H.E.B.A.T! Camp, parent’s workshop and school-based activities. A total of 21 children from intervention school and 22 children from control school who had BMI for age Z-score ≥ +1SD participated in the study. Mean age of subjects was 10.8 ± 0.3 years old. Four phases were included in the development of the intervention. Evaluation of intervention was conducted through process, impact and outcome evaluation. Process evaluation found that intervention program was implemented successfully with minimal modification and without having any technical problems. Impact and outcome evaluation was assessed based on dietary intake, average step counts, BMI for age z-score, body fat percentage and waist circumference at pre-intervention (T0), post-intervention 1 (T1) and post-intervention 2 (T2). There was significant reduction in energy (14.8%) and fat (21.9%) intakes (at p < 0.05) at post-intervention 1 (T1) in intervention group. By controlling for sex as covariate, there was significant intervention effect for average step counts, BMI for age z-score and waist circumference (p < 0.05). In conclusion, the intervention made an impact on positive behavioural intentions and improves weight status of the children. It is expected that the HEBAT! Program could be adopted and implemented by the government and private sector as well as policy-makers in formulating childhood obesity intervention.Keywords: childhood obesity, diet, obesity intervention, physical activity
Procedia PDF Downloads 2923538 Gammarus: Asellus Ratio as an Index of Organic Pollution: A Case Study in Markeaton, Kedleston Hall, and Allestree Park Lakes Derby, UK
Authors: Usman Bawa
Abstract:
Macro-invertebrates have been used to monitor organic pollution in rivers and streams. Several biotic indices based on macro-invertebrates have been developed over the years including the Biological Monitoring Working Party (BMWP). A new biotic index, the Gammarus:Asellus ratio has been recently proposed as an index of organic pollution. This study tested the validity of the Gammarus:Asellus ratio as an index of organic pollution, by examining the relationship between the Gammarus:Asellus ratio and physical-chemical parameters, and other biotic indices such as BMWP and, Average Score Per Taxon (ASPT) from lakes and streams at Markeaton Park, Allestree Park, and Kedleston Hall, Derbyshire. Macro invertebrates were sampled using the standard five-minute kick sampling techniques physical and chemical environmental variables were obtained based on standard sampling techniques. Eighteen sites were sampled, six sites from Markeaton Park (three sites across the stream and three sites across the lake). Six sites each were also sampled from Allestree Park and Kedleston Hall lakes. The Gammarus:Asellus ratio showed an opposite significant positive correlations with parameters indicative of organic pollution such as the level of nitrates, phosphates, and calcium and also revealed a negatively significant correlations with other biotic indices (BMWP/ASPT). The BMWP score correlated positively significantly with some water quality parameters such as dissolved oxygen and flow rate, but revealed no correlations with other chemical environmental variables. The BMWP score was significantly higher in the stream than the lake in Markeaton Park, also The ASPT scores appear to be significantly higher in the upper Lakes than the middle and lower lakes. This study has further strengthened the use of BMWP/ASPT score as an index of organic pollution. But, additional application is required to validate the use of Gammarus:Asellus as a rapid bio monitoring tool.Keywords: Asellus, biotic index, Gammarus, macro invertebrates, organic pollution
Procedia PDF Downloads 3473537 Allometric Models for Biomass Estimation in Savanna Woodland Area, Niger State, Nigeria
Authors: Abdullahi Jibrin, Aishetu Abdulkadir
Abstract:
The development of allometric models is crucial to accurate forest biomass/carbon stock assessment. The aim of this study was to develop a set of biomass prediction models that will enable the determination of total tree aboveground biomass for savannah woodland area in Niger State, Nigeria. Based on the data collected through biometric measurements of 1816 trees and destructive sampling of 36 trees, five species specific and one site specific models were developed. The sample size was distributed equally between the five most dominant species in the study site (Vitellaria paradoxa, Irvingia gabonensis, Parkia biglobosa, Anogeissus leiocarpus, Pterocarpus erinaceous). Firstly, the equations were developed for five individual species. Secondly these five species were mixed and were used to develop an allometric equation of mixed species. Overall, there was a strong positive relationship between total tree biomass and the stem diameter. The coefficient of determination (R2 values) ranging from 0.93 to 0.99 P < 0.001 were realised for the models; with considerable low standard error of the estimates (SEE) which confirms that the total tree above ground biomass has a significant relationship with the dbh. The F-test value for the biomass prediction models were also significant at p < 0.001 which indicates that the biomass prediction models are valid. This study recommends that for improved biomass estimates in the study site, the site specific biomass models should preferably be used instead of using generic models.Keywords: allometriy, biomass, carbon stock , model, regression equation, woodland, inventory
Procedia PDF Downloads 4483536 Analysis of Financial Performance Measurement and Financial Distress Assessment of Highway Companies Listed on Indonesia Stock Exchange before and during COVID-19 Pandemic
Authors: Ari Prasetyo, Taufik Faturohman
Abstract:
The COVID-19 pandemic in Indonesia is part of the ongoing worldwide pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It was confirmed to have spread to Indonesia on 2 March 2020. Moreover, the government of Indonesia has been conducting a local lockdown to limit people's movement from one city to another city. Therefore, this situation has impact on business operation, especially on highway companies listed on the Indonesia stock exchange. This study evaluates and measures three companies’ financial performance and health conditions before and during the COVID-19 pandemic from 2016 – 2020. The measurement is conducted by using financial ratio analysis and the Altman Z-score method. The ratio used to measure the financial ratio analysis is taken from the decree of the Ministry of SOE’s KEP-100/MBU/2002 about the company’s health level condition. From the decree, there are eight financial ratios used such as return on equity (ROE), return on investment (ROI), current ratio, cash ratio, collection period, inventory turnover, total asset turnover, and total equity to total asset. Altman Z-score is used to calculate the financial distress condition. The result shows that the highway companies for the period 2016 – 2020 are as follows: PT Jasa Marga (Persero) Tbk (AA, BB, BB, BB, C), PT Citra Marga Nusaphala Persada Tbk (BB, AA, BB, BBB, C), and PT Nusantara Infrastructure Tbk (BB, BB, AA, BBB, C). In addition, the Altman Z-score assessment performed in 2016-2020 shows that PT Jasa Marga (Persero) Tbk was in the grey zone area for 2015-2018 and in the distress zone for 2019-2020. PT Citra Marga Nusaphala Persada Tbk was in the grey zone area for 2015-2019 and in the distress zone for 2020. PT Nusantara Infrastructure Tbk was in the grey zone area for 2015-2018 and in the distress zone for 2019-2020.Keywords: financial performance, financial ratio, Altman Z-score, financial distress, highway company
Procedia PDF Downloads 1913535 Influence of HIV Testing on Knowledge of HIV/AIDS Prevention Practices and Transmission among Undergraduate Youths in North-West University, Mafikeng
Authors: Paul Bigala, Samuel Oladipo, Steven Adebowale
Abstract:
This study examines factors influencing knowledge of HIV/AIDS Prevention Practices and Transmission (KHAPPT) among young undergraduate students (15-24 years). Knowledge composite index was computed for 820 randomly selected students. Chi-square, ANOVA, and multinomial logistic regression were used for the analyses (α=.05). The overall mean knowledge score was 16.5±3.4 out of a possible score of 28. About 83% of the students have undergone HIV test, 21.0% have high KHAPPT, 18% said there is cure for the disease, 23% believed that asking for condom is embarrassing and 11.7% said it is safe to share unsterilized sharp objects with friends or family members. The likelihood of high KHAPPT was higher among students who have had HIV test (OR=3.314; C.I=1.787-6.145, p<0.001) even when other variables were used as control. The identified predictors of high KHAPPT were; ever had HIV test, faculty, and ever used any HIV/AIDS prevention services. North-West University Mafikeng should intensify efforts on the HIV/AIDS awareness program on the campus.Keywords: HIV/AIDS knowledge, undergraduate students, HIV testing, Mafikeng
Procedia PDF Downloads 4443534 Rocket Launch Simulation for a Multi-Mode Failure Prediction Analysis
Authors: Mennatallah M. Hussein, Olivier de Weck
Abstract:
The advancement of space exploration demands a robust space launch services program capable of reliably propelling payloads into orbit. Despite rigorous testing and quality assurance, launch failures still occur, leading to significant financial losses and jeopardizing mission objectives. Traditional failure prediction methods often lack the sophistication to account for multi-mode failure scenarios, as well as the predictive capability in complex dynamic systems. Traditional approaches also rely on expert judgment, leading to variability in risk prioritization and mitigation strategies. Hence, there is a pressing need for robust approaches that enhance launch vehicle reliability from lift-off until it reaches its parking orbit through comprehensive simulation techniques. In this study, the developed model proposes a multi-mode launch vehicle simulation framework for predicting failure scenarios when incorporating new technologies, such as new propulsion systems or advanced staging separation mechanisms in the launch system. To this end, the model combined a 6-DOF system dynamics with comprehensive data analysis to simulate multiple failure modes impacting launch performance. The simulator utilizes high-fidelity physics-based simulations to capture the complex interactions between different subsystems and environmental conditions.Keywords: launch vehicle, failure prediction, propulsion anomalies, rocket launch simulation, rocket dynamics
Procedia PDF Downloads 343533 Predictors of Glycaemic Variability and Its Association with Mortality in Critically Ill Patients with or without Diabetes
Authors: Haoming Ma, Guo Yu, Peiru Zhou
Abstract:
Background: Previous studies show that dysglycemia, mostly hyperglycemia, hypoglycemia and glycemic variability(GV), are associated with excess mortality in critically ill patients, especially those without diabetes. Glycemic variability is an increasingly important measure of glucose control in the intensive care unit (ICU) due to this association. However, there is limited data pertaining to the relationship between different clinical factors and glycemic variability and clinical outcomes categorized by their DM status. This retrospective study of 958 intensive care unit(ICU) patients was conducted to investigate the relationship between GV and outcome in critically ill patients and further to determine the significant factors that contribute to the glycemic variability. Aim: We hypothesize that the factors contributing to mortality and the glycemic variability are different from critically ill patients with or without diabetes. And the primary aim of this study was to determine which dysglycemia (hyperglycemia\hypoglycemia\glycemic variability) is independently associated with an increase in mortality among critically ill patients in different groups (DM/Non-DM). Secondary objectives were to further investigate any factors affecting the glycemic variability in two groups. Method: A total of 958 diabetic and non-diabetic patients with severe diseases in the ICU were selected for this retrospective analysis. The glycemic variability was defined as the coefficient of variation (CV) of blood glucose. The main outcome was death during hospitalization. The secondary outcome was GV. The logistic regression model was used to identify factors associated with mortality. The relationships between GV and other variables were investigated using linear regression analysis. Results: Information on age, APACHE II score, GV, gender, in-ICU treatment and nutrition was available for 958 subjects. Predictors remaining in the final logistic regression model for mortality were significantly different in DM/Non-DM groups. Glycemic variability was associated with an increase in mortality in both DM(odds ratio 1.05; 95%CI:1.03-1.08,p<0.001) or Non-DM group(odds ratio 1.07; 95%CI:1.03-1.11,p=0.002). For critically ill patients without diabetes, factors associated with glycemic variability included APACHE II score(regression coefficient, 95%CI:0.29,0.22-0.36,p<0.001), Mean BG(0.73,0.46-1.01,p<0.001), total parenteral nutrition(2.87,1.57-4.17,p<0.001), serum albumin(-0.18,-0.271 to -0.082,p<0.001), insulin treatment(2.18,0.81-3.55,p=0.002) and duration of ventilation(0.006,0.002-1.010,p=0.003).However, for diabetes patients, APACHE II score(0.203,0.096-0.310,p<0.001), mean BG(0.503,0.138-0.869,p=0.007) and duration of diabetes(0.167,0.033-0.301,p=0.015) remained as independent risk factors of GV. Conclusion: We found that the relation between dysglycemia and mortality is different in the diabetes and non-diabetes groups. And we confirm that GV was associated with excess mortality in DM or Non-DM patients. Furthermore, APACHE II score, Mean BG, total parenteral nutrition, serum albumin, insulin treatment and duration of ventilation were significantly associated with an increase in GV in Non-DM patients. While APACHE II score, mean BG and duration of diabetes (years) remained as independent risk factors of increased GV in DM patients. These findings provide important context for further prospective trials investigating the effect of different clinical factors in critically ill patients with or without diabetes.Keywords: diabetes, glycemic variability, predictors, severe disease
Procedia PDF Downloads 1893532 Reconstructability Analysis for Landslide Prediction
Authors: David Percy
Abstract:
Landslides are a geologic phenomenon that affects a large number of inhabited places and are constantly being monitored and studied for the prediction of future occurrences. Reconstructability analysis (RA) is a methodology for extracting informative models from large volumes of data that work exclusively with discrete data. While RA has been used in medical applications and social science extensively, we are introducing it to the spatial sciences through applications like landslide prediction. Since RA works exclusively with discrete data, such as soil classification or bedrock type, working with continuous data, such as porosity, requires that these data are binned for inclusion in the model. RA constructs models of the data which pick out the most informative elements, independent variables (IVs), from each layer that predict the dependent variable (DV), landslide occurrence. Each layer included in the model retains its classification data as a primary encoding of the data. Unlike other machine learning algorithms that force the data into one-hot encoding type of schemes, RA works directly with the data as it is encoded, with the exception of continuous data, which must be binned. The usual physical and derived layers are included in the model, and testing our results against other published methodologies, such as neural networks, yields accuracy that is similar but with the advantage of a completely transparent model. The results of an RA session with a data set are a report on every combination of variables and their probability of landslide events occurring. In this way, every combination of informative state combinations can be examined.Keywords: reconstructability analysis, machine learning, landslides, raster analysis
Procedia PDF Downloads 683531 Relationship and Associated Factors of Breastfeeding Self-efficacy among Postpartum Couples in Malawi: A Cross-sectional Study
Authors: Roselyn Chipojola, Shu-yu Kuo
Abstract:
Background: Breastfeeding self-efficacy in both mothers and fathers play a crucial role in improving exclusive breastfeeding rates. However, less is known on the relationship and predictors of paternal and maternal breastfeeding self-efficacy. This study aimed to examine the relationship and associated factors of breastfeeding self-efficacy (BSE) among mothers and fathers in Malawi. Methods: A cross-sectional study was conducted on 180 pairs of postpartum mothers and fathers at a tertiary maternity facility in central Malawi. BSE was measured using the Breastfeeding Self-Efficacy Scale Short-Form. Depressive symptoms were assessed by the Edinburgh Postnatal Depression Scale. A structured questionnaire was used to collect demographic and health variables. Data were analyzed using multivariable logistic regression and multinomial logistic regression. Results: A higher score of self-efficacy was found in mothers (mean=55.7, Standard Deviation (SD) =6.5) compared to fathers (mean=50.2, SD=11.9). A significant association between paternal and maternal breastfeeding self-efficacy was found (r= 0. 32). Age, employment status, mode of birth was significantly related to maternal and paternal BSE, respectively. Older age and caesarean section delivery were significant factors of combined BSE scores in couples. A higher BSE score in either the mother or her partner predicted higher exclusive breastfeeding rates. BSE scores were lower when couples’ depressive symptoms were high. Conclusion: BSE are highly correlated between Malawian mothers and fathers, with a relatively higher score in maternal BSE. Importantly, a high BSE in couples predicted higher odds of exclusive breastfeeding, which highlights the need to include both mothers and fathers in future breastfeeding promotion strategies.Keywords: paternal, maternal, exclusive breastfeeding, breastfeeding self‑efficacy, malawi
Procedia PDF Downloads 703530 The Effects of Parents’ Personality Traits and Family Variables on Aggressive Behavior in Children from the State of Kuwait
Authors: Eisa Al-Balhan
Abstract:
This study explores the effects of parents’ personality and family variables on aggressive behavior in children from the State of Kuwait. The sample of 117children aged between 6 and 10 years (M=7.79 years, SD =1.4 years),117 fathers, and 117mothers from Kuwait. The following tools were used: a) the Aggressive Behavior Scale for Children (ABSC), b) the Personality Scales Inventory (PSI), and c) the Family Climate Scale (FCS). The results show that there were significant differences between children with highly aggressive behavior and those with low aggressive behavior for most of the personality traits of the father and mother, as well as most of the family climate and its different dimensions according to the father’s knowledge and the mother’s knowledge. Furthermore, there was a significant difference between males and females in the total score of aggressive behavior, verbal aggression, physical aggression, self-aggression, and aggression toward others, with higher scores occurring among males. Most of the correlations of the children’s aggressive behavior were with the personality traits of the father. The personality traits of the mother, family climate, and most of its different dimensions according to the father's and mother's knowledge had significant negative correlations with the child's aggression. There was no effect of the mother's and father's education levels on their child’s aggressive behavior. There was a significant difference between normal families and separated families in the total score of aggressive behavior, verbal aggression, and self-aggression, with a higher score occurring among separated families, and there was no significant difference between the two groups in physical aggression and aggression towards others.Keywords: aggressive behavior, personality traits of parents, family variables, parents
Procedia PDF Downloads 1203529 Re-Evaluation of Functional Assessment of Anorexia/Cachexia Therapy (Appetite Scale) with Nutritional Intake of Cancer Patients
Authors: Amena Omer Syeda, Harita Shyam
Abstract:
Background: Anorexia a common symptom among patients with prolonged illness leading to anorexia-cachexia syndrome with a prevalence rate of 70%. In order to provide effective health care and better response to treatment, appetite should be assessed on admission and then periodically for earlier nutrition intervention. Functional Assessment of Anorexia/Cachexia Therapy (FAACT) appetite scale is 12 questions, patient-rated, symptom specific measure for appetite, and distress from anorexia. It assigns a score ranging from 0 (worst response) to 4 (best response). Therefore, proposing a total score of ≤24 may be sufficient to make a diagnosis of anorexia. Objectives: To assess the FAACT scale by co-relating the scores with the Nutritional intake and BMI of Cancer Patients. Methods: The FAACT scores of 100 cancer in-patients receiving chemotherapy or radiation as treatment, their 24-hour calorie and protein intake and BMI were recorded. The data was then statistically analyzed. Results: The calorie and protein intake and FAACT scores both showed a significant positive co-relation (p<0.001), inferring that the patients with a FAACT score of ≤24 where not meeting their calorie as well as protein requirements, hence rightly categorizing them as anorexic. The co-relation between BMI and FAACT scores showed a weak co-relation and was not statistically significant (p > 0.05).The FAACT scale thus is not sensitive to distinguish patients being under-weight, normal weight or obese. Conclusion: The FAACT scale helps in providing better palliative and nutritional care as it correctly assessed anorexia /cachexia in cancer patients and co-related significantly with their nutrient intake.Keywords: appetite, cachexia, cancer, malnutrition
Procedia PDF Downloads 2493528 Combined Effect of Heat Stimulation and Delay Addition of Superplasticizer with Slag on Fresh and Hardened Property of Mortar
Authors: Antoni Wibowo, Harry Pujianto, Dewi Retno Sari Saputro
Abstract:
The stock market can provide huge profits in a relatively short time in financial sector; however, it also has a high risk for investors and traders if they are not careful to look the factors that affect the stock market. Therefore, they should give attention to the dynamic fluctuations and movements of the stock market to optimize profits from their investment. In this paper, we present a nonlinear autoregressive exogenous model (NARX) to predict the movements of stock market; especially, the movements of the closing price index. As case study, we consider to predict the movement of the closing price in Indonesia composite index (IHSG) and choose the best structures of NARX for IHSG’s prediction.Keywords: NARX (Nonlinear Autoregressive Exogenous Model), prediction, stock market, time series
Procedia PDF Downloads 2443527 Correlative Study of Serum Interleukin-18 and Disease Activity, Functional Disability and Quality of Life in Rheumatoid Arthritis Patients
Authors: Hamdy Khamis Korayem, Manal Yehia Tayel, Abeer Shawky El Hadedy, Emmanuel Kamal Aziz Saba, Shimaa Badr Abdelnaby Badr
Abstract:
The aim of the current study was to demonstrate whether serum Interleukin-18 (IL-18) is increased in rheumatoid arthritis (RA) and its correlation with disease activity, functional disability and quality of life in RA patients. The study included 30 RA patients and 20 healthy normal control subjects. The RA patients were diagnosed according to the 2010 ACR/EULAR classification criteria for RA with the exclusion of those who had diabetes mellitus, endocrine disorders, associated rheumatologic diseases, viral hepatitis B or C and other diseases with increased serum IL-18 level. All patients were subjected to clinical evaluation of the musculoskeletal system. Disease activity was assessed by disease activity score 28 with 4 variables (DAS 28). Functional disability was assessed by health assessment questionnaire disability index (HAQ-DI). The quality of life was assessed by Short form-36 (SF-36) questionnaire. Radiological assessment of both hands and feet by Sharp/van der Heijde (SvH) scoring method. Laboratory parameters including erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), rheumatoid factor (RF) and anti-cyclic citrullinated peptide antibody (ACPA) were assessed in patients and serum level of IL-18 in both patients and control subjects. There was no statistically significant difference between patient and control group as regards age and sex. Among patients, 29 % were females and the age range was between 25 to 55 years. Extra-articular manifestations were presented in 56.7% of the patients. The mean of DAS 28 score was 5.73±1.46 and that of HAQ-DI was 1.22±0.72 while that of SF-36 was 40.03±13.96. The level of serum IL-18 was significantly higher in patients than in the control subjects (P= 0.030). Serum IL-18 was correlated with ACPA among the patient group. There were no statistically significant correlations between serum IL-18 and DAS28, HAQ-DI, SF-36, total SvH score and the other laboratory results. In conclusion, IL-18 is significantly higher in RA patient than in healthy control subjects and positively correlated with ACPA level. IL-18 is associated with extra-articular manifestations. However, it is not correlated with other laboratory parameters, disease activity, functional disability, quality of life nor radiological severity.Keywords: disease activity score, Interleukin-18, quality of life assessment, rheumatoid arthritis
Procedia PDF Downloads 3273526 User Experience Evaluation on the Usage of Commuter Line Train Ticket Vending Machine
Authors: Faishal Muhammad, Erlinda Muslim, Nadia Faradilla, Sayidul Fikri
Abstract:
To deal with the increase of mass transportation needs problem, PT. Kereta Commuter Jabodetabek (KCJ) implements Commuter Vending Machine (C-VIM) as the solution. For that background, C-VIM is implemented as a substitute to the conventional ticket windows with the purposes to make transaction process more efficient and to introduce self-service technology to the commuter line user. However, this implementation causing problems and long queues when the user is not accustomed to using the machine. The objective of this research is to evaluate user experience after using the commuter vending machine. The goal is to analyze the existing user experience problem and to achieve a better user experience design. The evaluation method is done by giving task scenario according to the features offered by the machine. The features are daily insured ticket sales, ticket refund, and multi-trip card top up. There 20 peoples that separated into two groups of respondents involved in this research, which consist of 5 males and 5 females each group. The experienced and inexperienced user to prove that there is a significant difference between both groups in the measurement. The user experience is measured by both quantitative and qualitative measurement. The quantitative measurement includes the user performance metrics such as task success, time on task, error, efficiency, and learnability. The qualitative measurement includes system usability scale questionnaire (SUS), questionnaire for user interface satisfaction (QUIS), and retrospective think aloud (RTA). Usability performance metrics shows that 4 out of 5 indicators are significantly different in both group. This shows that the inexperienced group is having a problem when using the C-VIM. Conventional ticket windows also show a better usability performance metrics compared to the C-VIM. From the data processing, the experienced group give the SUS score of 62 with the acceptability scale of 'marginal low', grade scale of “D”, and the adjective ratings of 'good' while the inexperienced group gives the SUS score of 51 with the acceptability scale of 'marginal low', grade scale of 'F', and the adjective ratings of 'ok'. This shows that both groups give a low score on the system usability scale. The QUIS score of the experienced group is 69,18 and the inexperienced group is 64,20. This shows the average QUIS score below 70 which indicate a problem with the user interface. RTA was done to obtain user experience issue when using C-VIM through interview protocols. The issue obtained then sorted using pareto concept and diagram. The solution of this research is interface redesign using activity relationship chart. This method resulted in a better interface with an average SUS score of 72,25, with the acceptable scale of 'acceptable', grade scale of 'B', and the adjective ratings of 'excellent'. From the time on task indicator of performance metrics also shows a significant better time by using the new interface design. Result in this study shows that C-VIM not yet have a good performance and user experience.Keywords: activity relationship chart, commuter line vending machine, system usability scale, usability performance metrics, user experience evaluation
Procedia PDF Downloads 2623525 Gaze Patterns of Skilled and Unskilled Sight Readers Focusing on the Cognitive Processes Involved in Reading Key and Time Signatures
Authors: J. F. Viljoen, Catherine Foxcroft
Abstract:
Expert sight readers rely on their ability to recognize patterns in scores, their inner hearing and prediction skills in order to perform complex sight reading exercises. They also have the ability to observe deviations from expected patterns in musical scores. This increases the “Eye-hand span” (reading ahead of the point of playing) in order to process the elements in the score. The study aims to investigate the gaze patterns of expert and non-expert sight readers focusing on key and time signatures. 20 musicians were tasked with playing 12 sight reading examples composed for one hand and five examples composed for two hands to be performed on a piano keyboard. These examples were composed in different keys and time signatures and included accidentals and changes of time signature to test this theory. Results showed that the experts fixate more and for longer on key and time signatures as well as deviations in examples for two hands than the non-expert group. The inverse was true for the examples for one hand, where expert sight readers showed fewer and shorter fixations on key and time signatures as well as deviations. This seems to suggest that experts focus more on the key and time signatures as well as deviations in complex scores to facilitate sight reading. The examples written for one appeared to be too easy for the expert sight readers, compromising gaze patterns.Keywords: cognition, eye tracking, musical notation, sight reading
Procedia PDF Downloads 1393524 Continuous Land Cover Change Detection in Subtropical Thicket Ecosystems
Authors: Craig Mahlasi
Abstract:
The Subtropical Thicket Biome has been in peril of transformation. Estimates indicate that as much as 63% of the Subtropical Thicket Biome is severely degraded. Agricultural expansion is the main driver of transformation. While several studies have sought to document and map the long term transformations, there is a lack of information on disturbance events that allow for timely intervention by authorities. Furthermore, tools that seek to perform continuous land cover change detection are often developed for forests and thus tend to perform poorly in thicket ecosystems. This study investigates the utility of Earth Observation data for continuous land cover change detection in Subtropical Thicket ecosystems. Temporal Neural Networks are implemented on a time series of Sentinel-2 observations. The model obtained 0.93 accuracy, a recall score of 0.93, and a precision score of 0.91 in detecting Thicket disturbances. The study demonstrates the potential of continuous land cover change in Subtropical Thicket ecosystems.Keywords: remote sensing, land cover change detection, subtropical thickets, near-real time
Procedia PDF Downloads 1643523 Systems Intelligence in Management (High Performing Organizations and People Score High in Systems Intelligence)
Authors: Raimo P. Hämäläinen, Juha Törmänen, Esa Saarinen
Abstract:
Systems thinking has been acknowledged as an important approach in the strategy and management literature ever since the seminal works of Ackhoff in the 1970´s and Senge in the 1990´s. The early literature was very much focused on structures and organizational dynamics. Understanding systems is important but making improvements also needs ways to understand human behavior in systems. Peter Senge´s book The Fifth Discipline gave the inspiration to the development of the concept of Systems Intelligence. The concept integrates the concepts of personal mastery and systems thinking. SI refers to intelligent behavior in the context of complex systems involving interaction and feedback. It is a competence related to the skills needed in strategy and the environment of modern industrial engineering and management where people skills and systems are in an increasingly important role. The eight factors of Systems Intelligence have been identified from extensive surveys and the factors relate to perceiving, attitude, thinking and acting. The personal self-evaluation test developed consists of 32 items which can also be applied in a peer evaluation mode. The concept and test extend to organizations too. One can talk about organizational systems intelligence. This paper reports the results of an extensive survey based on peer evaluation. The results show that systems intelligence correlates positively with professional performance. People in a managerial role score higher in SI than others. Age improves the SI score but there is no gender difference. Top organizations score higher in all SI factors than lower ranked ones. The SI-tests can also be used as leadership and management development tools helping self-reflection and learning. Finding ways of enhancing learning organizational development is important. Today gamification is a new promising approach. The items in the SI test have been used to develop an interactive card game following the Topaasia game approach. It is an easy way of engaging people in a process which both helps participants see and approach problems in their organization. It also helps individuals in identifying challenges in their own behavior and in improving in their SI.Keywords: gamification, management competence, organizational learning, systems thinking
Procedia PDF Downloads 983522 Prediction of the Behavior of 304L Stainless Steel under Uniaxial and Biaxial Cyclic Loading
Authors: Aboussalih Amira, Zarza Tahar, Fedaoui Kamel, Hammoudi Saleh
Abstract:
This work focuses on the simulation of the prediction of the behaviour of austenitic stainless steel (SS) 304L under complex loading in stress and imposed strain. The Chaboche model is a cable to describe the response of the material by the combination of two isotropic and nonlinear kinematic work hardening, the model is implemented in the ZébuLon computer code. First, we represent the evolution of the axial stress as a function of the plastic strain through hysteresis loops revealing a hardening behaviour caused by the increase in stress by stress in the direction of tension/compression. In a second step, the study of the ratcheting phenomenon takes a key place in this work by the appearance of the average stress. In addition to the solicitation of the material in the biaxial direction in traction / torsion.Keywords: damage, 304L, Ratcheting, plastic strain
Procedia PDF Downloads 94