Search results for: rotating cylindrical shell
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1087

Search results for: rotating cylindrical shell

487 Design of the Fiber Lay-Up for the Composite Wind Turbine Blade in VARTM

Authors: Tzai-Shiung Li, Wen-Bin Young

Abstract:

The wind turbine blade sustains various kinds of loadings during the operating and parking state. Due to the increasing size of the wind turbine blade, it is important to arrange the composite materials in a sufficient way to reach the optimal utilization of the material strength. In the fabrication process of the vacuum assisted resin transfer molding, the fiber content of the turbine blade depends on the vacuum pressure. In this study, a design of the fiber layup for the vacuum assisted resin transfer molding is conducted to achieve the efficient utilization the material strength. This design is for the wind turbine blade consisting of shell skins with or without the spar structure.

Keywords: resin film infiltration, vacuum assisted resin transfer molding process, wind turbine blade, composite materials

Procedia PDF Downloads 382
486 Effect of Al Contents on Magnetic Domains of {100} Grains in Electrical Steels

Authors: Hyunseo Choi, Jaewan Hong, Seil Lee, Yang Mo Koo

Abstract:

Non-oriented (NO) electrical steel is one of the most important soft magnetic materials for rotating machines. Si has usually been added to electrical steels to reduce eddy current loss by increasing the electrical resistivity. Si content more than 3.5 wt% causes cracks during cold rolling due to increase of brittleness. Al also increases the electrical resistivity of the materials as much as Si. In addition, cold workability of Fe-Al is better than Fe-Si, so that Al can be added up to 6.0 wt%. However, the effect of Al contents on magnetic properties of electrical steels has not been studied in detail. Magnetic domains of {100} grains in electrical steels, ranging from 1.85 to 6.54 wt% Al, were observed by magneto-optic Kerr microscopy. Furthermore, the correlation of magnetic domains with magnetic properties was investigated. As Al contents increased, the magnetic domain size of {100} grains decreased due to lowered domain wall energy. Reorganization of magnetic domain structure became more complex as domain size decreased. Therefore, the addition of Al to electrical steel caused hysteresis loss to increase. Anomalous loss decreased and saturated after 4.68% Al.

Keywords: electrical steel, magnetic domain structure, Al addition, core loss, rearrangement of domains

Procedia PDF Downloads 243
485 Surface Hole Defect Detection of Rolled Sheets Based on Pixel Classification Approach

Authors: Samira Taleb, Sakina Aoun, Slimane Ziani, Zoheir Mentouri, Adel Boudiaf

Abstract:

Rolling is a pressure treatment technique that modifies the shape of steel ingots or billets between rotating rollers. During this process, defects may form on the surface of the rolled sheets and are likely to affect the performance and quality of the finished product. In our study, we developed a method for detecting surface hole defects using a pixel classification approach. This work includes several steps. First, we performed image preprocessing to delimit areas with and without hole defects on the sheet image. Then, we developed the histograms of each area to generate the gray level membership intervals of the pixels that characterize each area. As we noticed an intersection between the characteristics of the gray level intervals of the images of the two areas, we finally performed a learning step based on a series of detection tests to refine the membership intervals of each area, and to choose the defect detection criterion in order to optimize the recognition of the surface hole.

Keywords: classification, defect, surface, detection, hole

Procedia PDF Downloads 15
484 Reduced General Dispersion Model in Cylindrical Coordinates and Isotope Transient Kinetic Analysis in Laminar Flow

Authors: Masood Otarod, Ronald M. Supkowski

Abstract:

This abstract discusses a method that reduces the general dispersion model in cylindrical coordinates to a second order linear ordinary differential equation with constant coefficients so that it can be utilized to conduct kinetic studies in packed bed tubular catalytic reactors at a broad range of Reynolds numbers. The model was tested by 13CO isotope transient tracing of the CO adsorption of Boudouard reaction in a differential reactor at an average Reynolds number of 0.2 over Pd-Al2O3 catalyst. Detailed experimental results have provided evidence for the validity of the theoretical framing of the model and the estimated parameters are consistent with the literature. The solution of the general dispersion model requires the knowledge of the radial distribution of axial velocity. This is not always known. Hence, up until now, the implementation of the dispersion model has been largely restricted to the plug-flow regime. But, ideal plug-flow is impossible to achieve and flow regimes approximating plug-flow leave much room for debate as to the validity of the results. The reduction of the general dispersion model transpires as a result of the application of a factorization theorem. Factorization theorem is derived from the observation that a cross section of a catalytic bed consists of a solid phase across which the reaction takes place and a void or porous phase across which no significant measure of reaction occurs. The disparity in flow and the heterogeneity of the catalytic bed cause the concentration of reacting compounds to fluctuate radially. These variabilities signify the existence of radial positions at which the radial gradient of concentration is zero. Succinctly, factorization theorem states that a concentration function of axial and radial coordinates in a catalytic bed is factorable as the product of the mean radial cup-mixing function and a contingent dimensionless function. The concentration of adsorbed compounds are also factorable since they are piecewise continuous functions and suffer the same variability but in the reverse order of the concentration of mobile phase compounds. Factorability is a property of packed beds which transforms the general dispersion model to an equation in terms of the measurable mean radial cup-mixing concentration of the mobile phase compounds and mean cross-sectional concentration of adsorbed species. The reduced model does not require the knowledge of the radial distribution of the axial velocity. Instead, it is characterized by new transport parameters so denoted by Ωc, Ωa, Ωc, and which are respectively denominated convection coefficient cofactor, axial dispersion coefficient cofactor, and radial dispersion coefficient cofactor. These cofactors adjust the dispersion equation as compensation for the unavailability of the radial distribution of the axial velocity. Together with the rest of the kinetic parameters they can be determined from experimental data via an optimization procedure. Our data showed that the estimated parameters Ωc, Ωa Ωr, are monotonically correlated with the Reynolds number. This is expected to be the case based on the theoretical construct of the model. Computer generated simulations of methanation reaction on nickel provide additional support for the utility of the newly conceptualized dispersion model.

Keywords: factorization, general dispersion model, isotope transient kinetic, partial differential equations

Procedia PDF Downloads 269
483 Cordyceps and Related Fungi from Nigeria

Authors: Sami Michael Ayodele

Abstract:

Cordyceps are members of the fungi family Cordycepitaceae which are formally in Clavicipitaceae. They parasitize the larvae and adults of different susceptible arthropods. They are highly priced and have been reported to be highly medicinal. Cordyceps have been used for centuries in traditional medicine in China and other Asian countries. Survey studies were carried out to determine the presence of Cordyceps and another entomopathogenic fungal floral in North Central Nigeria for two consecutive years. Thirty samples were collected, twenty-eight were identified, and two were unidentified. Most identified species belong to Ophiocordyceps species (20samples), Cordyceps species (4samples) and Isaria species (4samples). The species identified were: Cordyceps pseudomilitaris, Cordyceps tuberculata, Cordyceps cylindrical, Ophiocordyceps nutans, O. criminals, O. oxycephala, O. kniphofioides and Isaria sinclairii. The morphological and microscopic features of the collected and identified species were similar to those reported in other countries. This is the first official report on the presence of Cordyceps species in Nigeria. Further collections from different ecological regions of Nigeria will show the richness of the floral diversity of these entomopathogenic and medicinal mushrooms in Nigeria.

Keywords: cordyceps, entomopathogenic, medicinal, North Central, Nigeria

Procedia PDF Downloads 105
482 Preparation of Activated Carbon From Waste Feedstock: Activation Variables Optimization and Influence

Authors: Oluwagbemi Victor Aladeokin

Abstract:

In the last decade, the global peanut cultivation has seen increased demand, which is attributed to their health benefits, rising to ~ 41.4 MMT in 2019/2020. Peanut and other nutshells are considered as waste in various parts of the world and are usually used for their fuel value. However, this agricultural by-product can be converted to a higher value product such as activated carbon. For many years, due to the highly porous structure of activated carbon, it has been widely and effectively used as an adsorbent in the purification and separation of gases and liquids. Those used for commercial purposes are primarily made from a range of precursors such as wood, coconut shell, coal, bones, etc. However, due to difficulty in regeneration and high cost, various agricultural residues such as rice husk, corn stalks, apricot stones, almond shells, coffee beans, etc, have been explored to produce activated carbons. In the present study, the potential of peanut shells as precursors in the production of activated carbon and their adsorption capacity is investigated. Usually, precursors used to produce activated carbon have carbon content above 45 %. A typical raw peanut shell has 42 wt.% carbon content. To increase the yield, this study has employed chemical activation method using zinc chloride. Zinc chloride is well known for its effectiveness in increasing porosity of porous carbonaceous materials. In chemical activation, activation temperature and impregnation ratio are parameters commonly reported to be the most significant, however, this study has also studied the influence of activation time on the development of activated carbon from peanut shells. Activated carbons are applied for different purposes, however, as the application of activated carbon becomes more specific, an understanding of the influence of activation variables to have a better control of the quality of the final product becomes paramount. A traditional approach to experimentally investigate the influence of the activation parameters, involves varying each parameter at a time. However, a more efficient way to reduce the number of experimental runs is to apply design of experiment. One of the objectives of this study is to optimize the activation variables. Thus, this work has employed response surface methodology of design of experiment to study the interactions between the activation parameters and consequently optimize the activation parameters (temperature, impregnation ratio, and activation time). The optimum activation conditions found were 485 °C, 15 min and 1.7, temperature, activation time, and impregnation ratio respectively. The optimum conditions resulted in an activated carbon with relatively high surface area ca. 1700 m2/g, 47 % yield, relatively high density, low ash, and high fixed carbon content. Impregnation ratio and temperature were found to mostly influence the final characteristics of the produced activated carbon from peanut shells. The results of this study, using response surface methodology technique, have revealed the potential and the most significant parameters that influence the chemical activation process, of peanut shells to produce activated carbon which can find its use in both liquid and gas phase adsorption applications.

Keywords: chemical activation, fixed carbon, impregnation ratio, optimum, surface area

Procedia PDF Downloads 145
481 Preventive Maintenance of Rotating Machinery Based on Vibration Diagnosis of Rolling Bearing

Authors: T. Bensana, S. Mekhilef

Abstract:

The methodology of vibration based condition monitoring technology has been developing at a rapid stage in the recent years suiting to the maintenance of sophisticated and complicated machines. The ability of wavelet analysis to efficiently detect non-stationary, non-periodic, transient features of the vibration signal makes it a demanding tool for condition monitoring. This paper presents a methodology for fault diagnosis of rolling element bearings based on wavelet envelope power spectrum technique is analysed in both the time and frequency domains. In the time domain the auto-correlation of the wavelet de-noised signal is applied to evaluate the period of the fault pulses. However, in the frequency domain the wavelet envelope power spectrum has been used to identify the fault frequencies with the single sided complex Laplace wavelet as the mother wavelet function. Results show the superiority of the proposed method and its effectiveness in extracting fault features from the raw vibration signal.

Keywords: preventive maintenance, fault diagnostics, rolling element bearings, wavelet de-noising

Procedia PDF Downloads 379
480 Response of Solar Updraft Power Plants Incorporating Material Nonlinearity

Authors: Areeg Shermaddo

Abstract:

Solar updraft power plants (SUPP) provide a great potential for green and environmentally friendly renewable power generation. An up to 1000 m high chimney represents one of the major parts of each SUPP, which consist of the main shell structure and the stiffening rings. Including the nonlinear material behavior in a simulation of the chimney is computationally a demanding task. However, allowing the formation of cracking in concrete leads to a more economical design of the structure. In this work, an FE model of a SUPP is presented incorporating the nonlinear material behavior. The effect of wind loading intensity on the structural response is explored. Furthermore, the influence of the stiffness of the ring beams on the global behavior is as well investigated. The obtained results indicate that the minimum reinforcement is capable of carrying the tensile stresses provided that the ring beams are rather stiff.

Keywords: ABAQUS, nonlinear analysis, ring beams, SUPP

Procedia PDF Downloads 216
479 Experimental Study on Aerodynamic Noise of Radiator Cooling Fan with Different Diameter in Hemi-Anechoic Chamber

Authors: Malinda Sabrina, F. Andree Yohanes, Khoerul Anwar

Abstract:

There are many sources that cause noise in a car, one of them is noise from radiator cooling fan. This part is used to control engine temperature by ensuring adequate airflow through radiator. Radiator cooling fan noise is a very important matter especially for vehicle manufacturers. This can affect brand image of the car and their customer satisfaction. Therefore, some experiments to measure noise level of the fan are required. Sound pressure level measurements for two axial fans with different diameter have been investigated in a hemi-anechoic chamber based on standard JIS-B8346, focusing on aerodynamic noise. Both fans have the same profile and shape with diameter respectively 43 cm and 49 cm. The measurement was performed in hemi-anechoic chamber in order to obtain a background noise at measuring point as low as possible. Noise characterizations of these radiator cooling fans were measured in five different rotating speed and the results were compared. The measurement result shows that the sound pressure level increases with increasing rotational speed of the fan. In comparison with a smaller diameter, it is shown that fan with larger diameter produces higher noise level at the same rotational speed.

Keywords: aerodynamics noise, hemi-anechoic chamber, radiator cooling fan, sound pressure level

Procedia PDF Downloads 332
478 Calculation of Detection Efficiency of Horizontal Large Volume Source Using Exvol Code

Authors: M. Y. Kang, Euntaek Yoon, H. D. Choi

Abstract:

To calculate the full energy (FE) absorption peak efficiency for arbitrary volume sample, we developed and verified the EXVol (Efficiency calculator for EXtended Voluminous source) code which is based on effective solid angle method. EXVol is possible to describe the source area as a non-uniform three-dimensional (x, y, z) source. And decompose and set it into several sets of volume units. Users can equally divide (x, y, z) coordinate system to calculate the detection efficiency at a specific position of a cylindrical volume source. By determining the detection efficiency for differential volume units, the total radiative absolute distribution and the correction factor of the detection efficiency can be obtained from the nondestructive measurement of the source. In order to check the performance of the EXVol code, Si ingot of 20 cm in diameter and 50 cm in height were used as a source. The detector was moved at the collimation geometry to calculate the detection efficiency at a specific position and compared with the experimental values. In this study, the performance of the EXVol code was extended to obtain the detection efficiency distribution at a specific position in a large volume source.

Keywords: attenuation, EXVol, detection efficiency, volume source

Procedia PDF Downloads 185
477 Influence of Inertial Forces of Large Bearings Utilized in Wind Energy Assemblies

Authors: S. Barabas, F. Sarbu, B. Barabas, A. Fota

Abstract:

Main objective of this paper is to establish a link between inertial forces of the bearings used in construction of wind power plant and its behavior. Using bearings with lower inertial forces has the immediate effect of decreasing inertia rotor system, with significant results in increased energy efficiency, due to decreased friction forces between rollers and raceways. The FEM analysis shows the appearance of uniform contact stress at the ends of the rollers, demonstrated the necessity of production of low mass bearings. Favorable results are expected in the economic field, by reducing material consumption and by increasing the durability of bearings. Using low mass bearings with hollow rollers instead of solid rollers has an impact on working temperature, on vibrations and noise which decrease. Implementation of types of hollow rollers of cylindrical tubular type, instead of expensive rollers with logarithmic profile, will bring significant inertial forces decrease with large benefits in behavior of wind power plant.

Keywords: inertial forces, Von Mises stress, hollow rollers, wind turbine

Procedia PDF Downloads 354
476 Vibration Mitigation in Partially Liquid-Filled Vessel Using Passive Energy Absorbers

Authors: Maor Farid, Oleg Gendelman

Abstract:

The following study deals with fluid vibration of a liquid in a partially filled vessel under periodic ground excitation. This external excitation might lead to hidraulic impact applied on the vessel inner walls. In order to model these sloshing dynamic regimes, several equivalent mechanical models were suggested in the literature, such as series of pendula or mass-spring systems that are able to impact the inner tank walls. In the following study, we use the latter methodology, use parameter values documented in literature corresponding to cylindrical tanks and consider structural elasticity of the tank. The hydraulic impulses are modeled by the high-exponent potential function. Additional system parameters are found with the help of Finite-Element (FE) analysis. Model-driven stress assessment method is developed. Finally, vibration mitigation performances of both tuned mass damper (TMD) and nonlinear energy sink (NES) are examined.

Keywords: nonlinear energy sink (NES), reduced-order modelling, liquid sloshing, vibration mitigation, vibro-impact dynamics

Procedia PDF Downloads 197
475 Monocoque Systems: The Reuniting of Divergent Agencies for Wood Construction

Authors: Bruce Wrightsman

Abstract:

Construction and design are inexorably linked. Traditional building methodologies, including those using wood, comprise a series of material layers differentiated and separated from each other. This results in the separation of two agencies of building envelope (skin) separate from the structure. However, from a material performance position reliant on additional materials, this is not an efficient strategy for the building. The merits of traditional platform framing are well known. However, its enormous effectiveness within wood-framed construction has seldom led to serious questioning and challenges in defining what it means to build. There are several downsides of using this method, which is less widely discussed. The first and perhaps biggest downside is waste. Second, its reliance on wood assemblies forming walls, floors and roofs conventionally nailed together through simple plate surfaces is structurally inefficient. It requires additional material through plates, blocking, nailers, etc., for stability that only adds to the material waste. In contrast, when we look back at the history of wood construction in airplane and boat manufacturing industries, we will see a significant transformation in the relationship of structure with skin. The history of boat construction transformed from indigenous wood practices of birch bark canoes to copper sheathing over wood to improve performance in the late 18th century and the evolution of merged assemblies that drives the industry today. In 1911, Swiss engineer Emile Ruchonnet designed the first wood monocoque structure for an airplane called the Cigare. The wing and tail assemblies consisted of thin, lightweight, and often fabric skin stretched tightly over a wood frame. This stressed skin has evolved into semi-monocoque construction, in which the skin merges with structural fins that take additional forces. It provides even greater strength with less material. The monocoque, which translates to ‘mono or single shell,’ is a structural system that supports loads and transfers them through an external enclosure system. They have largely existed outside the domain of architecture. However, this uniting of divergent systems has been demonstrated to be lighter, utilizing less material than traditional wood building practices. This paper will examine the role monocoque systems have played in the history of wood construction through lineage of boat and airplane building industries and its design potential for wood building systems in architecture through a case-study examination of a unique wood construction approach. The innovative approach uses a wood monocoque system comprised of interlocking small wood members to create thin shell assemblies for the walls, roof and floor, increasing structural efficiency and wasting less than 2% of the wood. The goal of the analysis is to expand the work of practice and the academy in order to foster deeper, more honest discourse regarding the limitations and impact of traditional wood framing.

Keywords: wood building systems, material histories, monocoque systems, construction waste

Procedia PDF Downloads 78
474 Unpowered Knee Exoskeleton with Compliant Joints for Stair Descent Assistance

Authors: Pengfan Wu, Xiaoan Chen, Ye He, Tianchi Chen

Abstract:

This paper introduces the design of an unpowered knee exoskeleton to assist human walking by redistributing the moment of the knee joint during stair descent (SD). Considering the knee moment varying with the knee joint angle and the work of the knee joint is all negative, the custom-built spring was used to convert negative work into the potential energy of the spring during flexion, and the obtained energy work as assistance during extension to reduce the consumption of lower limb muscles. The human-machine adaptability problem was left by traditional rigid wearable due to the knee involves sliding and rotating without a fixed-axis rotation, and this paper designed the two-direction grooves to follow the human-knee kinematics, and the wire spring provides a certain resistance to the pin in the groove to prevent extra degrees of freedom. The experiment was performed on a normal stair by healthy young wearing the device on both legs with the surface electromyography recorded. The results show that the quadriceps (knee extensor) were reduced significantly.

Keywords: unpowered exoskeleton, stair descent, knee compliant joint, energy redistribution

Procedia PDF Downloads 125
473 Determination of Yield and Yield Components of Fodder Beet (Beta vulgaris L. var. rapacea Koch.) Cultivars under the Konya Region Conditions

Authors: A. Ozkose

Abstract:

This study was conducted to determination of yield and yield components of some fodder beet types (Amarilla Barres, Feldherr, Kyros, Magnum, and Rota) under the Konya region conditions. Fodder beet was obtained from the Selcuk University, Faculty of Agriculture, at 2006-2007 season and the experiment was established in a randomized complete block design with three replicates. Differences among the averages of the fodder beet cultivars are statistically important in terms of all the characteristics investigated. Leaf attitude value was 1.2–2.2 (1=erect; 5= prostrate), root shape scale value was (1=spheroidal – 9=cylindrical), root diameter 11.0–12.2 cm, remaining part of root on the ground was 6.3–13.7 cm, root length was 21.4 – 29.6 cm, leaf yield 1592 – 1917 kg/da, root yield was 10083–12258 kg/da, root dry matter content was %8.2– 18.6 and root dry matter yield was 889–1887 kg/da. As a result of the study, it was determined that fodder beet cultivars are different conditions in terms of yield and yield components. Therefore, determination of appropriate cultivars for each region affect crop yield importantly.

Keywords: fedder beet, root yield, yield components, Konya, agriculture

Procedia PDF Downloads 484
472 Effect of Electromagnetic Field on Capacitive Deionization Performance

Authors: Alibi Kilybay, Emad Alhseinat, Ibrahim Mustafa, Abdulfahim Arangadi, Pei Shui, Faisal Almarzooqi

Abstract:

In this work, the electromagnetic field has been used for improving the performance of the capacitive deionization process. The effect of electromagnetic fields on the efficiency of the capacitive deionization (CDI) process was investigated experimentally. The results showed that treating the feed stream of the CDI process using an electromagnetic field can enhance the electrosorption capacity from 20% up to 70%. The effect of the degree of time of exposure, concentration, and type of ions have been examined. The electromagnetic field enhanced the salt adsorption capacity (SAC) of the Ca²⁺ ions by 70%, while the SAC enhanced 20% to the Na⁺ ions. It is hypnotized that the electrometric field affects the hydration shell around the ions and thus reduces their effective size and enhances the mass transfer. This reduction in ion effective size and increase in mass transfer enhanced the electrosorption capacity and kinetics of the CDI process.

Keywords: capacitive deionization, desalination, electromagnetic treatment, water treatment

Procedia PDF Downloads 264
471 CFD Simulation of the Inlet Pressure Effects on the Cooling Capacity Enhancement for Vortex Tube with Couple Vortex Chambers

Authors: Nader Pourmahmoud, Amir Hassanzadeh

Abstract:

This article investigates the effects of inlet pressure in a newly introduced vortex tube which has been equipped with an additional vortex chamber. A 3-D compressible turbulent flow computation has been carried out toward analysis of complex flow field in this apparatus. Numerical results of flows are derived by utilizing the standard k-ε turbulence model for analyzing high rotating complex flow field. The present research has focused on cooling effect and given a characteristics curve for minimum cool temperature. In addition, the effect of inlet pressure for both chambers has been studied in details. To be presented numerical results show that the effect of inlet pressure in second chamber has more important role in improving the performance of the vortex tube than first one. By increasing the pressure in the second chamber, cold outlet temperature reaches a higher decrease. When both chambers are fed with high pressure fluid, best operation condition of vortex tube occurs. However, it is not possible to feed both chambers with high pressure due to the conditions of working environment.

Keywords: energy separation, inlet pressure, numerical simulation, vortex chamber, vortex tube

Procedia PDF Downloads 371
470 Design, Control and Autonomous Trajectory Tracking of an Octorotor Rotorcraft

Authors: Seyed Jamal Haddadi, M. Reza Mehranpour, Roya Sadat Mortazavi, Zahra Sadat Mortazavi

Abstract:

Principal aim of this research is trajectory tracking, attitude and position control scheme in real flight mode by an Octorotor helicopter. For more stability, in this Unmanned Aerial Vehicle (UAV), number of motors is increased to eight motors which end of each arm installed two coaxial counter rotating motors. Dynamic model of this Octorotor includes of motion equation for translation and rotation. Utilized controller is proportional-integral-derivative (PID) control loop. The proposed controller is designed such that to be able to attenuate an effect of external wind disturbance and guarantee stability in this condition. The trajectory is determined by a Global Positioning System (GPS). Also an ARM CortexM4 is used as microprocessor. Electronic board of this UAV designed as able to records all of the sensors data, similar to an aircraft black box in external memory. Finally after auto landing of Octorotor, flight data is shown in MATLAB software and Experimental results of the proposed controller show the effectiveness of our approach on the Autonomous Quadrotor in real conditions.

Keywords: octorotor, design, PID controller, autonomous, trajectory tracking

Procedia PDF Downloads 304
469 Mechanistic Modelling to De-risk Process Scale-up

Authors: Edwin Cartledge, Jack Clark, Mazaher Molaei-Chalchooghi

Abstract:

The mixing in the crystallization step of active pharmaceutical ingredient manufacturers was studied via advanced modeling tools to enable a successful scale-up. A virtual representation of the vessel was created, and computational fluid dynamics were used to simulate multiphase flow and, thus, the mixing environment within this vessel. The study identified a significant dead zone in the vessel underneath the impeller and found that increasing the impeller speed and power did not improve the mixing. A series of sensitivity analyses found that to improve mixing, the vessel had to be redesigned, and found that optimal mixing could be obtained by adding two extra cylindrical baffles. The same two baffles from the simulated environment were then constructed and added to the process vessel. By identifying these potential issues before starting the manufacture and modifying the vessel to ensure good mixing, this study mitigated a failed crystallization and potential batch disposal, which could have resulted in a significant loss of high-value material.

Keywords: active pharmaceutical ingredient, baffles, computational fluid dynamics, mixing, modelling

Procedia PDF Downloads 97
468 Experimental Challenges and Solutions in Design and Operation of the Test Rig for Water Lubricated Journal Bearing

Authors: Ravindra Mallya, B. Satish Shenoy, B. Raghuvir Pai

Abstract:

The study deals with the challenges in developing a test rig to test the performance of water lubricated journal bearing. The test rig is designed to simulate the working conditions of the bearing in order to understand their performance before they are put in operation. The bearing that is studied is the commercially available water lubricated bearing which has a rubber liner bonded with a rigid metal shell. The lubricant enters the bearing axially through a pressurized inlet tank and exits to an outlet tank which is at sufficiently low pressure. The load on the bearing is applied through the dead weight system which acts both in upward and downward direction so that net load acts on the bearing. The issues in feeding the lubricant into the bearing from the inlet side and preventing the leakage of the lubricant is discussed. The application of the load on the test bearing while maintaining the bearing afloat is also discussed.

Keywords: axial groove, hydrodynamic pressure, journal bearing, test rig, water lubrication

Procedia PDF Downloads 502
467 Sugar-Induced Stabilization Effect of Protein Structure

Authors: Mitsuhiro Hirai, Satoshi Ajito, Nobutaka Shimizu, Noriyuki Igarashi, Hiroki Iwase, Shinichi Takata

Abstract:

Sugars and polyols are known to be bioprotectants preventing such as protein denaturation and enzyme deactivation and widely used as a nontoxic additive in various industrial and medical products. The mechanism of their protective actions has been explained by specific bindings between biological components and additives, changes in solvent viscosities, and surface tension and free energy changes upon transfer of those components into additive solutions. On the other hand, some organisms having tolerances against extreme environment produce stress proteins and/or accumulate sugars in cells, which is called cryptobiosis. In particular, trehalose has been drawing attention relevant to cryptobiosis under external stress such as high or low temperature, drying, osmotic pressure, and so on. The function of cryptobiosis by trehalose has been explained relevant to the restriction of the intra-and/or-inter-molecular movement by vitrification or from the replacement of water molecule by trehalose. Previous results suggest that the structure and interaction between sugar and water are a key determinant for understanding cryptobiosis. Recently, we have shown direct evidence that the protein hydration (solvation) and structural stability against chemical and thermal denaturation significantly depend on sugar species and glycerol. Sugar and glycerol molecules tend to be preferentially or weakly excluded from the protein surface and preserved the native protein hydration shell. Due to the protective action of the protein hydration shell by those molecules, the protein structure is stabilized against chemical (guanidinium chloride) and thermal denaturation. The protective action depends on sugar species. To understand the above trend and difference in detail, it is essentially important to clarify the characteristics of solutions containing those additives. In this study, by using wide-angle X-ray scattering technique covering a wide spatial region (~3-120 Å), we have clarified structures of sugar solutions with the concentration from 5% w/w to 65% w/w. The sugars measured in the present study were monosaccharides (glucose, fructose, mannose) and disaccharides (sucrose, trehalose, maltose). Due to observed scattering data with a wide spatial resolution, we have succeeded in obtaining information on the internal structure of individual sugar molecules and on the correlation between them. Every sugar gradually shortened the average inter-molecular distance as the concentration increased. The inter-molecular interaction between sugar molecules was essentially showed an exclusive tendency for every sugar, which appeared as the presence of a repulsive correlation hole. This trend was more weakly seen for trehalose compared to other sugars. The intermolecular distance and spread of individual molecule clearly showed the dependence of sugar species. We will discuss the relation between the characteristic of sugar solution and its protective action of biological materials.

Keywords: hydration, protein, sugar, X-ray scattering

Procedia PDF Downloads 156
466 Analyzing the Feasibility of Low-Cost Composite Wind Turbine Blades for Residential Energy Production

Authors: Aravindhan Nepolean, Chidamabaranathan Bibin, Rajesh K., Gopinath S., Ashok Kumar R., Arun Kumar S., Sadasivan N.

Abstract:

Wind turbine blades are an important parameter for surging renewable energy production. Optimizing blade profiles and developing new materials for wind turbine blades take a lot of time and effort. Even though many standards for wind turbine blades have been developed for large-scale applications, they are not more effective in small-scale applications. We used acrylonitrile-butadiene-styrene to make small-scale wind turbine blades in this study (ABS). We chose the material because it is inexpensive and easy to machine into the desired form. They also have outstanding chemical, stress, and creep resistance. The blade measures 332 mm in length and has a 664 mm rotor diameter. A modal study of blades is carried out, as well as a comparison with current e-glass fiber. They were able to balance the output with less vibration, according to the findings. Q blade software is used to simulate rotating output. The modal analysis testing and prototype validation of wind turbine blades were used for experimental validation.

Keywords: acrylonitrile-butadiene-styrene, e-glass fiber, modal, renewable energy, q-blade

Procedia PDF Downloads 161
465 Rotary Entrainment in Two Phase Stratified Gas-Liquid Layers: An Experimental Study

Authors: Yagya Sharma, Basanta K. Rana, Arup K. Das

Abstract:

Rotary entrainment is a phenomenon in which the interfaces of two immiscible fluids are subjected to external flux in the form of rotation. Present work reports the experimental study on rotary motion of a horizontal cylinder between the interface of air and water to observe the penetration of gas inside the liquid. Experiments have been performed to establish entrainment of air mass in water alongside the cylindrical surface. The movement of tracer and seeded particles have been tracked to calculate the speed and path of the entrained air inside water. Simplified particle image velocimetry technique has been used to trace the movement of particles/tracers at the moment they are injected inside the entrainment zone and suspended beads have been used to replicate the particle movement with respect to time in order to determine the flow dynamics of the fluid along the cylinder. Present paper establishes a thorough experimental analysis of the rotary entrainment phenomenon between air and water keeping in interest the extent to which we can intermix the two and also to study its entrainment trajectories.

Keywords: entrainment, gas-liquid flow, particle image velocimetry, stratified layer mixing

Procedia PDF Downloads 339
464 Two-Channels Thermal Energy Storage Tank: Experiments and Short-Cut Modelling

Authors: M. Capocelli, A. Caputo, M. De Falco, D. Mazzei, V. Piemonte

Abstract:

This paper presents the experimental results and the related modeling of a thermal energy storage (TES) facility, ideated and realized by ENEA and realizing the thermocline with an innovative geometry. Firstly, the thermal energy exchange model of an equivalent shell & tube heat exchanger is described and tested to reproduce the performance of the spiral exchanger installed in the TES. Through the regression of the experimental data, a first-order thermocline model was also validated to provide an analytical function of the thermocline, useful for the performance evaluation and the comparison with other systems and implementation in simulations of integrated systems (e.g. power plants). The experimental data obtained from the plant start-up and the short-cut modeling of the system can be useful for the process analysis, for the scale-up of the thermal storage system and to investigate the feasibility of its implementation in actual case-studies.

Keywords: CSP plants, thermal energy storage, thermocline, mathematical modelling, experimental data

Procedia PDF Downloads 329
463 Temperature Control and Thermal Management of Cylindrical Lithium Batteries Using Phase Change Materials (PCMs)

Authors: S. M. Sadrameli, Y. Azizi

Abstract:

Lithium-ion batteries (LIBs) have shown to be one of the most reliable energy storage systems for electric cars in the recent years. Ambient temperature has a significant impact on the performance, lifetime, safety and cost of such batteries. Increasing the temperature degrade the lithium batteries more quickly while working at low-temperature environment results reducing the power and energy capability of the system. A thermal management system has been designed and setup in laboratory scale for controlling the temperature at optimum conditions using PEG-1000 with the melting point in the range of 33-40 oC as a phase change material. Aluminum plates have been installed in the PCM to increase the thermal conductivity and increasing the heat transfer rate. Experimental tests have been run at different discharge rates and ambient temperatures to investigate the effects of temperature on the efficiency of the batteries. The comparison has been made between the system of 6 batteries with and without PCM and the results show that PCM with aluminum plates decrease the surface temperature of the batteries that would result better performance and longer lifetime of the batteries.

Keywords: lithium-ion batteries, phase change materials, thermal management, temperature control

Procedia PDF Downloads 341
462 Energization of the Ions by EMIC Waves using MMS Observation

Authors: Abid Ali Abid

Abstract:

Electromagnetic ion cyclotron waves have been playing a significant role in inner magnetosphere, and their proton band has been detected using the Magnetospheric-Multiscale (MMS) satellite observations in the inner magnetosphere. It has been examined that the intensity of EMIC waves gradually increases by decreasing the L shell. Thermal anisotropy of hot protons initiates the waves. The low-energy cold protons (ions) can be activated by the EMIC waves when the EMIC wave intensity is high. As a result, these formerly invisible protons are now visible. The EMIC waves, whose frequency ranges from 0.001 Hz to 5 Hz in the inner magnetosphere and received considerable attention for energy transport across the magnetosphere. Since these waves act as a mechanism for the loss of energetic electrons from the Van Allen radiation belt to the atmosphere, therefore, it is necessary to understand how and where they can be produced, as well as the direction of waves along the magnetic field lines. It is demonstrated that throughout the energy range of 1 eV to 100 eV, the number density and temperature anisotropy of the protons likewise rise as the intensity of the EMIC waves increases.

Keywords: electromagnetic ion cyclotron waves, magnetospheric-multiscale (MMS) satellite, cold protons, inner magnetosphere

Procedia PDF Downloads 84
461 The Investigation of Cracking on the Shell of Dryers (tag No. 2DR-1745 and DR-1402) in Shahid Tondguyan Petrochemical Company (STPC)

Authors: Ali Haghiri

Abstract:

This research has been to investigate the cause of the stress corrosion cracking on dryer equipment (2DR-1745 and DR-1402) in Shahid Tondguyan Petrochemical Company (STPC). These dryers are as a drying powder Terphetalic acid in CTA2 and CTA1 unit. After passing through RVF equipment, wet cake moisture content of about 14% and temperature of 90C changed into a dry cake with a moisture content of less than 0.1% and the final temperature of about 140C and sent out Final Silo (FS-1820). After the declaration of the operation department concerning the observation of acid leakage under the primary insulation was decided that at the first opportunity, this issue must be investigated. So, after the shutdown of a unit at the date 2012/10/20 (2DR-1745) and 2021/11/24 (DR-1402) and after washing the dryer wall, insulation around the wall opened and it was found to crack and leakage from some points.

Keywords: stress corrosion cracking, residual stress, austenitic stainless steel, Br- ion

Procedia PDF Downloads 161
460 Numerical Study of Base Drag Reduction Using Locked Vortex Flow Management Technique for Lower Subsonic Regime

Authors: Kailas S. Jagtap, Karthik Sundarraj, Nirmal Kumar, S. Rajnarasimha, Prakash S. Kulkarni

Abstract:

The issue of turbulence base streams and the drag related to it have been of important attention for rockets, missiles, and aircraft. Different techniques are used for base drag reduction. This paper presents the numerical study of numerous drag reduction technique. The base drag or afterbody drag of bluff bodies can be reduced easily using locked vortex drag reduction technique. For bluff bodies having a cylindrical shape, the base drag is much larger compared to streamlined bodies. For such bodies using splitter plates, the vortex can be trapped between the base and the plate, which results in smooth flow. Splitter plate with round and curved corner shapes has influence in drag reduction. In this paper, the comparison is done between single splitter plate as different positions and with the bluff body. Base drag for the speed of 30m/s can be reduced about 20% to 30% by using single splitter plate as compared to the bluff body.

Keywords: base drag, bluff body, splitter plate, vortex flow, ANSYS, fluent

Procedia PDF Downloads 180
459 Theoretical and Numerical Investigation of a Tri-Stable Nonlinear Energy Harvesting System in Rotational Motion for Low Frequency Environment

Authors: Mei Xutao, Nakano Kimihiko

Abstract:

In order to enhance the energy harvesting efficiency, this paper presents a novel tri-stable energy harvesting system (TEHS), which is realized by the effect of magnetic force, in rotational motion to scavenge vibration energy. The device is meant to provide the power supply for wireless autonomous systems in low-frequency environment. The nonlinear TEHS is composed of the cantilever beam which is mounted on a rotating hub and partially covered by piezoelectric patch, a tip mass magnet in the end and two fixed magnets. A theoretical investigation using the Lagrangian formulation is derived to describe the motion of the energy harvesting system and the output voltage. Additionally, several numerical simulations were carried out to characterize the system under different external excitations and to validate its performance. The results demonstrated that TEHS owns a wide range of frequency of snap-through and high output voltage compared with the bi-stable energy harvesting system (BEHS). Moreover, some sets of experimental validations will be performed in the future work because the experimental setup is in the configuration now.

Keywords: piezoelectric beam, rotational motion, snap-through, tri-stable energy harvester

Procedia PDF Downloads 297
458 The Electrical Properties of Polyester Materials as Outdoor Insulators

Authors: R. M. EL-Sharkawy, L. S. Nasrat, K. B. Ewiss

Abstract:

This work presents a study of flashover voltage for outdoor polyester and composite insulators under dry, ultra-violet and contaminated conditions. Cylindrical of polyester composite samples (with different lengths) have been prepared after incorporated with different concentration of inorganic filler e.g. Magnesium Hydroxide [Mg(OH)2] to improve the electrical and thermal properties in addition to maximize surface flashover voltage and decrease tracking phenomena. Results showed that flashover voltage reaches to 46 kV for samples without filler and 52.6 kV for samples containing 40% of [Mg(OH)2] filler in dry condition. A comparison between different concentrations of filler under various environmental conditions (dry and contaminated conditions) showed higher flashover voltage values for samples containing filler with ratio 40% [Mg(OH)2] and length 3cm than that of samples containing filler [Mg(OH)2] with ratios 20%, 30% and lengths 0.5cm, 1cm, 2cm and 2.5cm. Flashover voltage decreases by adding [Mg(OH)2] filler for polyester samples under ultra-violet condition; as the ratio of filler increases, the value of flashover voltage decreases Also, in this study, the effect of thermal performance with respect to surface of the sample under test have been investigated in details.

Keywords: flashover voltage, filler, polymers, ultra-violet radiation

Procedia PDF Downloads 315