Search results for: random solution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7646

Search results for: random solution

7046 Effect of Reynolds Number and Concentration of Biopolymer (Gum Arabic) on Drag Reduction of Turbulent Flow in Circular Pipe

Authors: Kamaljit Singh Sokhal, Gangacharyulu Dasoraju, Vijaya Kumar Bulasara

Abstract:

Biopolymers are popular in many areas, like petrochemicals, food industry and agriculture due to their favorable properties like environment-friendly, availability, and cost. In this study, a biopolymer gum Arabic was used to find its effect on the pressure drop at various concentrations (100 ppm – 300 ppm) with various Reynolds numbers (10000 – 45000). A rheological study was also done by using the same concentrations to find the effect of the shear rate on the shear viscosity. Experiments were performed to find the effect of injection of gum Arabic directly near the boundary layer and to investigate its effect on the maximum possible drag reduction. Experiments were performed on a test section having i.d of 19.50 mm and length of 3045 mm. The polymer solution was injected from the top of the test section by using a peristaltic pump. The concentration of the polymer solution and the Reynolds number were used as parameters to get maximum possible drag reduction. Water was circulated through a centrifugal pump having a maximum 3000 rpm and the flow rate was measured by using rotameter. Results were validated by using Virk's maximum drag reduction asymptote. A maximum drag reduction of 62.15% was observed with the maximum concentration of gum Arabic, 300 ppm. The solution was circulated in the closed loop to find the effect of degradation of polymers with a number of cycles on the drag reduction percentage. It was observed that the injection of the polymer solution in the boundary layer was showing better results than premixed solutions.

Keywords: drag reduction, shear viscosity, gum arabic, injection point

Procedia PDF Downloads 136
7045 Feeling Ambivalence Towards Values

Authors: Aysheh Maslemani, Ruth Mayo, Greg Maio, Ariel Knafo-Noam

Abstract:

Values are abstract ideals that serve as guiding principles in one's life. As inherently positive and desirable concepts, values are seen as motivators for actions and behaviors. However, research has largely ignored the possibility that values may elicit negative feelings despite being explicitly important to us. In the current study, we aim to examine this possibility. Four hundred participants over 18 years(M=41.6, SD=13.7, Female=178) from the UK completed a questionnaire in which they were asked to indicate their level of positive/negative feelings towards a comprehensive list of values and then report the importance of these values to them. The results support our argument by showing that people can have negative feelings towards their values and that people can feel both positive and negative emotions towards their values simultaneously, which means feeling ambivalence. We ran a mixed-effect model with ambivalence, value type, and their interaction as fixed effects, with by subject random intercept and by subject random slope for ambivalence. The results reveal that values that elicit less ambivalence predicted higher ratings for value importance. This research contributes to the field of values on multiple levels. Theoretically, it will uncover new insights about values, such as the existence of negative emotions towards them and the presence of ambivalence towards values. These findings may inspire future studies to explore the effects of ambivalence on people's well-being, behaviors, cognition, and their affect. We discuss the findings and consider their implications for understanding the social psychological mechanisms underpinning value ambivalence.

Keywords: emotion, social cognition, values., ambivalence

Procedia PDF Downloads 65
7044 Feeling Ambivalence Towards Yours Values

Authors: Aysheh Maslemani, Ruth Mayo, Greg Maio, Ariel Knafo-Noam

Abstract:

Values are abstract ideals that serve as guiding principles in one's life. As inherently positive and desirable concepts, values are seen as motivators for actions and behaviors. However, research has largely ignored the possibility that values may elicit negative feelings despite being explicitly important to us. In the current study we aim to examine this possibility. Four hundred participants over 18 years(M=41.6,SD=13.7,Female=178) from the UK completed a questionnaire in which they were asked to indicate their level of positive/negative feelings towards a comprehensive list of values and then report the importance of these values to them. The results support our argument by showing that people can have negative feelings towards their values and that people can feel both positive and negative emotions towards their values simultaneously, which means feeling ambivalence. We ran a mixed-effect model with ambivalence, value type, and their interaction as fixed effects, with by subject random intercept, and by subject random slope for ambivalence. The results reveal that values that elicit less ambivalence predicted higher ratings for value importance. This research contributes to the field of values on multiple levels. Theoretically, it will uncover new insights about values, such as the existence of negative emotions towards them, the presence of ambivalence towards values. These findings may inspire future studies to explore the effects of ambivalence on people's well-being, behaviors, cognition, and their affect. We discuss the findings and consider their implications for understanding the social psychological mechanisms underpinning value ambivalence.

Keywords: ambivalence, emotion, social cognition, values

Procedia PDF Downloads 64
7043 On the Design of a Secure Two-Party Authentication Scheme for Internet of Things Using Cancelable Biometrics and Physically Unclonable Functions

Authors: Behnam Zahednejad, Saeed Kosari

Abstract:

Widespread deployment of Internet of Things (IoT) has raised security and privacy issues in this environment. Designing a secure two-factor authentication scheme between the user and server is still a challenging task. In this paper, we focus on Cancelable Biometric (CB) as an authentication factor in IoT. We show that previous CB-based scheme fail to provide real two-factor security, Perfect Forward Secrecy (PFS) and suffer database attacks and traceability of the user. Then we propose our improved scheme based on CB and Physically Unclonable Functions (PUF), which can provide real two-factor security, PFS, user’s unlinkability, and resistance to database attack. In addition, Key Compromise Impersonation (KCI) resilience is achieved in our scheme. We also prove the security of our proposed scheme formally using both Real-Or-Random (RoR) model and the ProVerif analysis tool. For the usability of our scheme, we conducted a performance analysis and showed that our scheme has the least communication cost compared to the previous CB-based scheme. The computational cost of our scheme is also acceptable for the IoT environment.

Keywords: IoT, two-factor security, cancelable biometric, key compromise impersonation resilience, perfect forward secrecy, database attack, real-or-random model, ProVerif

Procedia PDF Downloads 100
7042 Building a Scalable Telemetry Based Multiclass Predictive Maintenance Model in R

Authors: Jaya Mathew

Abstract:

Many organizations are faced with the challenge of how to analyze and build Machine Learning models using their sensitive telemetry data. In this paper, we discuss how users can leverage the power of R without having to move their big data around as well as a cloud based solution for organizations willing to host their data in the cloud. By using ScaleR technology to benefit from parallelization and remote computing or R Services on premise or in the cloud, users can leverage the power of R at scale without having to move their data around.

Keywords: predictive maintenance, machine learning, big data, cloud based, on premise solution, R

Procedia PDF Downloads 376
7041 Calculation of the Thermal Stresses in an Elastoplastic Plate Heated by Local Heat Source

Authors: M. Khaing, A. V. Tkacheva

Abstract:

The work is devoted to solving the problem of temperature stresses, caused by the heating point of the round plate. The plate is made of elastoplastic material, so the Prandtl-Reis model is used. A piecewise-linear condition of the Ishlinsky-Ivlev flow is taken as the loading surface, in which the yield stress depends on the temperature. Piecewise-linear conditions (Treska or Ishlinsky-Ivlev), in contrast to the Mises condition, make it possible to obtain solutions of the equilibrium equation in an analytical form. In the problem under consideration, using the conditions of Tresca, it is impossible to obtain a solution. This is due to the fact that the equation of equilibrium ceases to be satisfied when the two Tresca conditions are fulfilled at once. Using the conditions of plastic flow Ishlinsky-Ivlev allows one to solve the problem. At the same time, there are also no solutions on the edge of the Ishlinsky-Ivlev hexagon in the plane-stressed state. Therefore, the authors of the article propose to jump from the edge to the edge of the mine edge, which gives an opportunity to obtain an analytical solution. At the same time, there is also no solution on the edge of the Ishlinsky-Ivlev hexagon in a plane stressed state; therefore, in this paper, the authors of the article propose to jump from the side to the side of the mine edge, which gives an opportunity to receive an analytical solution. The paper compares solutions of the problem of plate thermal deformation. One of the solutions was obtained under the condition that the elastic moduli (Young's modulus, Poisson's ratio) which depend on temperature. The yield point is assumed to be parabolically temperature dependent. The main results of the comparisons are that the region of irreversible deformation is larger in the calculations obtained for solving the problem with constant elastic moduli. There is no repeated plastic flow in the solution of the problem with elastic moduli depending on temperature. The absolute value of the irreversible deformations is higher for the solution of the problem in which the elastic moduli are constant; there are also insignificant differences in the distribution of the residual stresses.

Keywords: temperature stresses, elasticity, plasticity, Ishlinsky-Ivlev condition, plate, annular heating, elastic moduli

Procedia PDF Downloads 139
7040 Inverse Polynomial Numerical Scheme for the Solution of Initial Value Problems in Ordinary Differential Equations

Authors: Ogunrinde Roseline Bosede

Abstract:

This paper presents the development, analysis and implementation of an inverse polynomial numerical method which is well suitable for solving initial value problems in first order ordinary differential equations with applications to sample problems. We also present some basic concepts and fundamental theories which are vital to the analysis of the scheme. We analyzed the consistency, convergence, and stability properties of the scheme. Numerical experiments were carried out and the results compared with the theoretical or exact solution and the algorithm was later coded using MATLAB programming language.

Keywords: differential equations, numerical, polynomial, initial value problem, differential equation

Procedia PDF Downloads 445
7039 Effect of Addition of Surfactant to the Surface Hydrophilicity and Photocatalytic Activity of Immobilized Nano TiO2 Thin Films

Authors: Eden G. Mariquit, Winarto Kurniawan, Masahiro Miyauchi, Hirofumi Hinode

Abstract:

This research studied the effect of adding surfactant to the titanium dioxide (TiO2) sol-gel solution that was used to immobilize TiO2 on glass substrates by dip coating technique using TiO2 sol-gel solution mixed with different types of surfactants. After dipping into the TiO2 sol, the films were calcined and produced pure anatase crystal phase. The thickness of the thin film was varied by repeating the dip and calcine cycle. The prepared films were characterized using FE-SEM, TG-DTA, and XRD, and its photocatalytic performances were tested on degradation of an organic dye, methylene blue. Aside from its phocatalytic performance, the photo-induced hydrophilicity of thin TiO2 films surface was also studied. Characterization results showed that the addition of surfactant gave rise to characteristic patterns on the surface of the TiO2 thin film which also affects the photocatalytic activity. The addition of CTAB to the TiO2 dipping solution had a negative effect because the calcination temperature was not high enough to burn all the surfactants off. As for the surface wettability, the addition of surfactant also affected the induced surface hydrophilicity of the TiO2 films when irradiated under UV light.

Keywords: photocatalysis, surface hydrophilicity, TiO2 thin films, surfactant

Procedia PDF Downloads 415
7038 A Data-Mining Model for Protection of FACTS-Based Transmission Line

Authors: Ashok Kalagura

Abstract:

This paper presents a data-mining model for fault-zone identification of flexible AC transmission systems (FACTS)-based transmission line including a thyristor-controlled series compensator (TCSC) and unified power-flow controller (UPFC), using ensemble decision trees. Given the randomness in the ensemble of decision trees stacked inside the random forests model, it provides an effective decision on the fault-zone identification. Half-cycle post-fault current and voltage samples from the fault inception are used as an input vector against target output ‘1’ for the fault after TCSC/UPFC and ‘1’ for the fault before TCSC/UPFC for fault-zone identification. The algorithm is tested on simulated fault data with wide variations in operating parameters of the power system network, including noisy environment providing a reliability measure of 99% with faster response time (3/4th cycle from fault inception). The results of the presented approach using the RF model indicate the reliable identification of the fault zone in FACTS-based transmission lines.

Keywords: distance relaying, fault-zone identification, random forests, RFs, support vector machine, SVM, thyristor-controlled series compensator, TCSC, unified power-flow controller, UPFC

Procedia PDF Downloads 421
7037 Experimental Investigation Of Membrane Performance

Authors: Ali Serhat Ersoyoğlu, Kevser Dincer, Salih Yayla, Derya Saygılı

Abstract:

In this study, performance of membrane was experimentally investigated. A solution having 1,5 gr Yttria-Stabilized Zirconia (YSZ)+ 10 mL methanol was prepared. This solution was taken out and filled into a spinning syringe. 6 grill-shaped wires having the sizes of 2x2 cm2’were cladded with YSZ + methanol solution by using the spinning method. After coating, the grill-shaped wires were left to dry. The dry wires were then weighed on a precision scale to determine the amount of coating imposed. The grill-shaped wires were mounted on the anode side of the PEM fuel cell membrane. Effects of the coating on the wires on current, power and resistance performances in the PEM fuel cells were determined experimentally and compared for every case. The highest current occurred at the 1st second on current #1, while the lowest current occurred at the 1171th second on current #6. The highest resistance was recorded at the 1171th second on resistance # 6, the lowest occurred at the 1st second on resistance # 1, whereas the highest power took place at the 1st second on power #1, the lowest power appeared at the 1171th second on power #5.

Keywords: membrane, electro-spinning method, Yttria-Stabilized Zirconia, fuel cells

Procedia PDF Downloads 366
7036 Transmission Performance Analysis for Live Broadcasting over IPTV Service in Telemedicine Applications

Authors: Jenny K. Ubaque, Edward P. Guillen, Juan S. Solórzano, Leonardo J. Ramírez

Abstract:

The health care must be a right for people around the world, but in order to guarantee the access to all, it is necessary to overcome geographical barriers. Telemedicine take advantage of Information Communication Technologies to deploy health care services around the world. To achieve those goals, it is necessary to use existing last mile solution to create access for home users, which is why is necessary to establish the channel characteristics for those kinds of services. This paper presents an analysis of network performance of last mile solution for the use of IPTV broadcasting with the application of streaming for telemedicine apps.

Keywords: telemedicine, IPTV, GPON, ADSL2+, coaxial, jumbogram

Procedia PDF Downloads 365
7035 Analysis of a Generalized Sharma-Tasso-Olver Equation with Variable Coefficients

Authors: Fadi Awawdeh, O. Alsayyed, S. Al-Shará

Abstract:

Considering the inhomogeneities of media, the variable-coefficient Sharma-Tasso-Olver (STO) equation is hereby investigated with the aid of symbolic computation. A newly developed simplified bilinear method is described for the solution of considered equation. Without any constraints on the coefficient functions, multiple kink solutions are obtained. Parametric analysis is carried out in order to analyze the effects of the coefficient functions on the stabilities and propagation characteristics of the solitonic waves.

Keywords: Hirota bilinear method, multiple kink solution, Sharma-Tasso-Olver equation, inhomogeneity of media

Procedia PDF Downloads 515
7034 Multilevel Modelling of Modern Contraceptive Use in Nigeria: Analysis of the 2013 NDHS

Authors: Akiode Ayobami, Akiode Akinsewa, Odeku Mojisola, Salako Busola, Odutolu Omobola, Nuhu Khadija

Abstract:

Purpose: Evidence exists that family planning use can contribute to reduction in infant and maternal mortality in any country. Despite these benefits, contraceptive use in Nigeria still remains very low, only 10% among married women. Understanding factors that predict contraceptive use is very important in order to improve the situation. In this paper, we analysed data from the 2013 Nigerian Demographic and Health Survey (NDHS) to better understand predictors of contraceptive use in Nigeria. The use of logistics regression and other traditional models in this type of situation is not appropriate as they do not account for social structure influence brought about by the hierarchical nature of the data on response variable. We therefore used multilevel modelling to explore the determinants of contraceptive use in order to account for the significant variation in modern contraceptive use by socio-demographic, and other proximate variables across the different Nigerian states. Method: This data has a two-level hierarchical structure. We considered the data of 26, 403 married women of reproductive age at level 1 and nested them within the 36 states and the Federal Capital Territory, Abuja at level 2. We modelled use of modern contraceptive against demographic variables, being told about FP at health facility, heard of FP on TV, Magazine or radio, husband desire for more children nested within the state. Results: Our results showed that the independent variables in the model were significant predictors of modern contraceptive use. The estimated variance component for the null model, random intercept, and random slope models were significant (p=0.00), indicating that the variation in contraceptive use across the Nigerian states is significant, and needs to be accounted for in order to accurately determine the predictors of contraceptive use, hence the data is best fitted by the multilevel model. Only being told about family planning at the health facility and religion have a significant random effect, implying that their predictability of contraceptive use varies across the states. Conclusion and Recommendation: Results showed that providing FP information at the health facility and religion needs to be considered when programming to improve contraceptive use at the state levels.

Keywords: multilevel modelling, family planning, predictors, Nigeria

Procedia PDF Downloads 417
7033 Thermal Buckling Response of Cylindrical Panels with Higher Order Shear Deformation Theory—a Case Study with Angle-Ply Laminations

Authors: Humayun R. H. Kabir

Abstract:

An analytical solution before used for static and free-vibration response has been extended for thermal buckling response on cylindrical panel with anti-symmetric laminations. The partial differential equations that govern kinematic behavior of shells produce five coupled differential equations. The basic displacement and rotational unknowns are similar to first order shear deformation theory---three displacement in spatial space, and two rotations about in-plane axes. No drilling degree of freedom is considered. Boundary conditions are considered as complete hinge in all edges so that the panel respond on thermal inductions. Two sets of double Fourier series are considered in the analytical solution process. The sets are selected that satisfy mixed type of natural boundary conditions. Numerical results are presented for the first 10 eigenvalues, and first 10 mode shapes for Ux, Uy, and Uz components. The numerical results are compared with a finite element based solution.

Keywords: higher order shear deformation, composite, thermal buckling, angle-ply laminations

Procedia PDF Downloads 372
7032 Evaluation of the Inhibitive Effect of Novel Quinoline Schiff Base on Corrosion of Mild Steel in HCl Solution

Authors: Smita Jauhari, Bhupendra Mistry

Abstract:

Schiff base (E)-2-methyl-N-(tetrazolo[1,5-a]quinolin-4-ylmethylene)aniline (QMA) was synthesized, and its inhibitive effect for mild steel in 1M HCl solution was investigated by weight loss measurement and electrochemical tests.From the weight loss measurements and electrochemical tests, it was observed that the inhibition efficiency increases with the increase in the Schiff base concentration and reaches a maximum at the optimum concentration. This is further confirmed by the decrease in corrosion rate. It is found that the system follows Langmuir adsorption isotherm.

Keywords: Schiff base, acid corrosion, electrochemical impedance spectroscopy, polarization

Procedia PDF Downloads 365
7031 Ensemble Sampler For Infinite-Dimensional Inverse Problems

Authors: Jeremie Coullon, Robert J. Webber

Abstract:

We introduce a Markov chain Monte Carlo (MCMC) sam-pler for infinite-dimensional inverse problems. Our sam-pler is based on the affine invariant ensemble sampler, which uses interacting walkers to adapt to the covariance structure of the target distribution. We extend this ensem-ble sampler for the first time to infinite-dimensional func-tion spaces, yielding a highly efficient gradient-free MCMC algorithm. Because our ensemble sampler does not require gradients or posterior covariance estimates, it is simple to implement and broadly applicable. In many Bayes-ian inverse problems, Markov chain Monte Carlo (MCMC) meth-ods are needed to approximate distributions on infinite-dimensional function spaces, for example, in groundwater flow, medical imaging, and traffic flow. Yet designing efficient MCMC methods for function spaces has proved challenging. Recent gradi-ent-based MCMC methods preconditioned MCMC methods, and SMC methods have improved the computational efficiency of functional random walk. However, these samplers require gradi-ents or posterior covariance estimates that may be challenging to obtain. Calculating gradients is difficult or impossible in many high-dimensional inverse problems involving a numerical integra-tor with a black-box code base. Additionally, accurately estimating posterior covariances can require a lengthy pilot run or adaptation period. These concerns raise the question: is there a functional sampler that outperforms functional random walk without requir-ing gradients or posterior covariance estimates? To address this question, we consider a gradient-free sampler that avoids explicit covariance estimation yet adapts naturally to the covariance struc-ture of the sampled distribution. This sampler works by consider-ing an ensemble of walkers and interpolating and extrapolating between walkers to make a proposal. This is called the affine in-variant ensemble sampler (AIES), which is easy to tune, easy to parallelize, and efficient at sampling spaces of moderate dimen-sionality (less than 20). The main contribution of this work is to propose a functional ensemble sampler (FES) that combines func-tional random walk and AIES. To apply this sampler, we first cal-culate the Karhunen–Loeve (KL) expansion for the Bayesian prior distribution, assumed to be Gaussian and trace-class. Then, we use AIES to sample the posterior distribution on the low-wavenumber KL components and use the functional random walk to sample the posterior distribution on the high-wavenumber KL components. Alternating between AIES and functional random walk updates, we obtain our functional ensemble sampler that is efficient and easy to use without requiring detailed knowledge of the target dis-tribution. In past work, several authors have proposed splitting the Bayesian posterior into low-wavenumber and high-wavenumber components and then applying enhanced sampling to the low-wavenumber components. Yet compared to these other samplers, FES is unique in its simplicity and broad applicability. FES does not require any derivatives, and the need for derivative-free sam-plers has previously been emphasized. FES also eliminates the requirement for posterior covariance estimates. Lastly, FES is more efficient than other gradient-free samplers in our tests. In two nu-merical examples, we apply FES to challenging inverse problems that involve estimating a functional parameter and one or more scalar parameters. We compare the performance of functional random walk, FES, and an alternative derivative-free sampler that explicitly estimates the posterior covariance matrix. We conclude that FES is the fastest available gradient-free sampler for these challenging and multimodal test problems.

Keywords: Bayesian inverse problems, Markov chain Monte Carlo, infinite-dimensional inverse problems, dimensionality reduction

Procedia PDF Downloads 152
7030 Synthesis of a Serie of Metallic Complexes Derived from bis(4-Amino-5-Mercapto-1,2,4-Triazol-3-yl)butane with First Raw Transition Metals

Authors: I. Belbachir, T. Benabdallah, N. Belhadj

Abstract:

The present research work describes the synthesis, through a multi-step strategy, as well as the structural characterization of a polydentate organic ligand, namely the bis(4-amino-5-mercapto-1,2,4-triazole-3-yl)butane (BAMT). The bis-triazolic ligand was characterized by different spectroscopic studies, in order to enlighten its coordination mode, in the neutral and deprotonated forms, towards cobalt(II), nickel(II) and copper(II) sulfates, in both solution and solid state. The stoichiometry of the complexes [neutral BAMT-metal] and [deprotonated BAMT-metal] was first established in a solution of DMF with each of the three metallic cations and their complexation constants calculated, allowing us to compare the stability of the various prepared complexes. The various complexes were finally isolated in the solid state and the coordination mode of neutral and deprotonated BAMT explored towards each of the three metallic sulfates. The establishment of some ligand field parameters (Dq, B, β…) by electronic spectroscopy finally allowed to compare the coordination modes of BAMT towards each of the three metals and to highlight the influence of the deprotonation on the complexing properties of the bis-triazolic ligand.

Keywords: 1, 2, 4-triazol, bis-1, 2, 4-triazol, metallic complexes, coordination in solution and solid state

Procedia PDF Downloads 179
7029 Fraud Detection in Credit Cards with Machine Learning

Authors: Anjali Chouksey, Riya Nimje, Jahanvi Saraf

Abstract:

Online transactions have increased dramatically in this new ‘social-distancing’ era. With online transactions, Fraud in online payments has also increased significantly. Frauds are a significant problem in various industries like insurance companies, baking, etc. These frauds include leaking sensitive information related to the credit card, which can be easily misused. Due to the government also pushing online transactions, E-commerce is on a boom. But due to increasing frauds in online payments, these E-commerce industries are suffering a great loss of trust from their customers. These companies are finding credit card fraud to be a big problem. People have started using online payment options and thus are becoming easy targets of credit card fraud. In this research paper, we will be discussing machine learning algorithms. We have used a decision tree, XGBOOST, k-nearest neighbour, logistic-regression, random forest, and SVM on a dataset in which there are transactions done online mode using credit cards. We will test all these algorithms for detecting fraud cases using the confusion matrix, F1 score, and calculating the accuracy score for each model to identify which algorithm can be used in detecting frauds.

Keywords: machine learning, fraud detection, artificial intelligence, decision tree, k nearest neighbour, random forest, XGBOOST, logistic regression, support vector machine

Procedia PDF Downloads 146
7028 A Study for Effective CO2 Sequestration of Hydrated Cement by Direct Aqueous Carbonation

Authors: Hyomin Lee, Jinhyun Lee, Jinyeon Hwang, Younghoon Choi, Byeongseo Son

Abstract:

Global warming is a world-wide issue. Various carbon capture and storage (CCS) technologies for reducing CO2 concentration in the atmosphere have been increasingly studied. Mineral carbonation is one of promising method for CO2 sequestration. Waste cement generating from aggregate recycling processes of waste concrete is potentially a good raw material containing reactive components for mineral carbonation. The major goal of our long-term project is to developed effective methods for CO2 sequestration using waste cement. In the present study, the carbonation characteristics of hydrated cement were examined by conducting two different direct aqueous carbonation experiments. We also evaluate the influence of NaCl and MgCl2 as additives to increase mineral carbonation efficiency of hydrated cement. Cement paste was made with W:C= 6:4 and stored for 28 days in water bath. The prepared cement paste was pulverized to the size less than 0.15 mm. 15 g of pulverized cement paste and 200 ml of solutions containing additives were reacted in ambient temperature and pressure conditions. 1M NaCl and 0.25 M MgCl2 was selected for additives after leaching test. Two different sources of CO2 was applied for direct aqueous carbonation experiment: 0.64 M NaHCO3 was used for CO2 donor in method 1 and pure CO2 gas (99.9%) was bubbling into reacting solution at the flow rate of 20 ml/min in method 2. The pH and Ca ion concentration were continuously measured with pH/ISE Multiparameter to observe carbonation behaviors. Material characterization of reacted solids was performed by TGA, XRD, SEM/EDS analyses. The carbonation characteristics of hydrated cement were significantly different with additives. Calcite was a dominant calcium carbonate mineral after the two carbonation experiments with no additive and NaCl additive. The significant amount of aragonite and vaterite as well as very fine calcite of poorer crystallinity was formed with MgCl2 additive. CSH (calcium silicate hydrate) in hydrated cement were changed to MSH (magnesium silicate hydrate). This transformation contributed to the high carbonation efficiency. Carbonation experiment with method 1 revealed that that the carbonation of hydrated cement took relatively long time in MgCl2 solution compared to that in NaCl solution and the contents of aragonite and vaterite were increased as increasing reaction time. In order to maximize carbonation efficiency in direct aqueous carbonation with CO2 gas injection (method 2), the control of solution pH was important. The solution pH was decreased with injection of CO2 gas. Therefore, the carbonation efficiency in direct aqueous carbonation was closely related to the stability of calcium carbonate minerals with pH changes. With no additive and NaCl additive, the maximum carbonation was achieved when the solution pH was greater than 11. Calcium carbonate form by mineral carbonation seemed to be re-dissolved as pH decreased below 11 with continuous CO2 gas injection. The type of calcium carbonate mineral formed during carbonation in MgCl2 solution was closely related to the variation of solution pH caused by CO2 gas injection. The amount of aragonite significantly increased with decreasing solution pH, whereas the amount of calcite decreased.

Keywords: CO2 sequestration, Mineral carbonation, Cement and concrete, MgCl2 and NaCl

Procedia PDF Downloads 379
7027 Using Machine Learning as an Alternative for Predicting Exchange Rates

Authors: Pedro Paulo Galindo Francisco, Eli Dhadad Junior

Abstract:

This study addresses the Meese-Rogoff Puzzle by introducing the latest machine learning techniques as alternatives for predicting the exchange rates. Using RMSE as a comparison metric, Meese and Rogoff discovered that economic models are unable to outperform the random walk model as short-term exchange rate predictors. Decades after this study, no statistical prediction technique has proven effective in overcoming this obstacle; although there were positive results, they did not apply to all currencies and defined periods. Recent advancements in artificial intelligence technologies have paved the way for a new approach to exchange rate prediction. Leveraging this technology, we applied five machine learning techniques to attempt to overcome the Meese-Rogoff puzzle. We considered daily data for the real, yen, British pound, euro, and Chinese yuan against the US dollar over a time horizon from 2010 to 2023. Our results showed that none of the presented techniques were able to produce an RMSE lower than the Random Walk model. However, the performance of some models, particularly LSTM and N-BEATS were able to outperform the ARIMA model. The results also suggest that machine learning models have untapped potential and could represent an effective long-term possibility for overcoming the Meese-Rogoff puzzle.

Keywords: exchage rate, prediction, machine learning, deep learning

Procedia PDF Downloads 30
7026 The Use of Secondary Crystallization in Cement-Based Composites

Authors: Nikol Žižková, Šárka Keprdová, Rostislav Drochytka

Abstract:

The paper focuses on the study of the properties of cement-based composites produced using secondary crystallization (crystalline additive). In this study, cement mortar made with secondary crystallization was exposed to an aggressive environment and the influence of secondary crystallization on the degradation of the cementitious composite was investigated. The results indicate that the crystalline additive contributed to increasing the resistance of the cement-based composite to the attack of the selected environments (sodium sulphate solution and ammonium chloride solution).

Keywords: secondary crystallization, cement-based composites, durability, degradation of the cementitious composite

Procedia PDF Downloads 397
7025 Determination of the Oxidative Potential of Organic Materials: Method Development

Authors: Jui Afrin, Akhtarul Islam

Abstract:

In this paper, the solution of glucose, yeast and glucose yeast mixture are being used as sample solution for determining the chemical oxygen demand (COD). In general COD determination method used to determine the different rang of oxidative potential. But in this work has shown to determine the definite oxidative potential for different concentration for known COD value and wanted to see the difference between experimental value and the theoretical value for evaluating the method drawbacks. In this study, made the values of oxidative potential like 400 mg/L, 500 mg/L, 600 mg/L, 700 mg/L and 800mg/L for various sample solutions and determined the oxidative potential according to our developed method. Plotting the experimental COD values vs. sample solutions of various concentrations in mg/L to draw the curve. From these curves see that the curves for glucose solution is not linear; its deviate from linearity for the lower concentration and the reason for this deviation is unknown. If these drawback can be removed this method can be effectively used to determine Oxidative Potential of Industrial wastewater (such as: Leather industry wastewater, Municipal wastewater, Food industry wastewater, Textile wastewater, Pharmaceuticals waste water) that’s why more experiment and study required.

Keywords: bod (biological oxygen demand), cod (chemical oxygen demand), oxidative potential, titration, waste water, development

Procedia PDF Downloads 227
7024 Thermal Hysteresis Activity of Ice Binding Proteins during Ice Crystal Growth in Sucrose Solution

Authors: Bercem Kiran-Yildirim, Volker Gaukel

Abstract:

Ice recrystallization (IR) which occurs especially during frozen storage is an undesired process due to the possible influence on the quality of products. As a result of recrystallization, the total volume of ice remains constant, but the size, number, and shape of ice crystals change. For instance, as indicated in the literature, the size of ice crystals in ice cream increases due to recrystallization. This results in texture deterioration. Therefore, the inhibition of ice recrystallization is of great importance, not only for food industry but also for several other areas where sensitive products are stored frozen, like pharmaceutical products or organs and blood in medicine. Ice-binding proteins (IBPs) have the unique ability to inhibit ice growth and in consequence inhibit recrystallization. This effect is based on their ice binding affinity. In the presence of IBP in a solution, ice crystal growth is inhibited during temperature decrease until a certain temperature is reached. The melting during temperature increase is not influenced. The gap between melting and freezing points is known as thermal hysteresis (TH). In literature, the TH activity is usually investigated under laboratory conditions in IBP buffer solutions. In product applications (e.g., food) there are many other solutes present which may influence the TH activity. In this study, a subset of IBPs, so-called antifreeze proteins (AFPs), is used for the investigation of the influence of sucrose solution concentration on the TH activity. For the investigation, a polarization microscope (Nikon Eclipse LV100ND) equipped with a digital camera (Nikon DS-Ri1) and a cold stage (Linkam LTS420) was used. In a first step, the equipment was established and validated concerning the accuracy of TH measurements based on literature data.

Keywords: ice binding proteins, ice crystals, sucrose solution, thermal hysteresis

Procedia PDF Downloads 182
7023 Critical Investigation on Performance of Polymeric Materials in Rehabilitation of Metallic Components

Authors: Parastou Kharazmi

Abstract:

Failure and leakage of metallic components because of corrosion in infrastructure structures is a considerably problematic and expensive issue and the traditional solution of replacing the component is costly and time-consuming. Rehabilitation techniques by using advanced polymeric materials are an alternative solution towards this problem. This paper provides a summary of analyses on relined rehabilitated metallic samples after exposure in practice and real condition to study the composite material performance when it is exposed to water, heat and chemicals in real condition. The study was carried out by using different test methods such as microscopy, thermal and chemical as well as mechanical analyses.

Keywords: composite, material, rehabilitation, structure

Procedia PDF Downloads 235
7022 Rejection Sensitivity and Romantic Relationships: A Systematic Review and Meta-Analysis

Authors: Mandira Mishra, Mark Allen

Abstract:

This meta-analysis explored whether rejection sensitivity relates to facets of romantic relationships. A comprehensive literature search identified 60 studies (147 effect sizes; 16,955 participants) that met inclusion criteria. Data were analysed using inverse-variance weighted random effects meta-analysis. Mean effect sizes from 21 meta-analyses provided evidence that more rejection sensitive individuals report lower levels of relationship satisfaction and relationship closeness, lower levels of perceived partner satisfaction, a greater likelihood of intimate partner violence (perpetration and victimization), higher levels of relationship concerns and relationship conflict, and higher levels of jealousy and self-silencing behaviours. There was also some evidence that rejection sensitive individuals are more likely to engage in risky sexual behaviour and are more prone to sexual compulsivity. There was no evidence of publication bias and various levels of heterogeneity in computed averages. Random effects meta-regression identified participant age and sex as important moderators of pooled mean effects. These findings provide a foundation for the theoretical development of rejection sensitivity in romantic relationships and should be of interest to relationship and marriage counsellors and other relationship professionals.

Keywords: intimate partner violence, relationship satisfaction, commitment, sexual orientation, risky sexual behaviour

Procedia PDF Downloads 79
7021 Optimization of Hate Speech and Abusive Language Detection on Indonesian-language Twitter using Genetic Algorithms

Authors: Rikson Gultom

Abstract:

Hate Speech and Abusive language on social media is difficult to detect, usually, it is detected after it becomes viral in cyberspace, of course, it is too late for prevention. An early detection system that has a fairly good accuracy is needed so that it can reduce conflicts that occur in society caused by postings on social media that attack individuals, groups, and governments in Indonesia. The purpose of this study is to find an early detection model on Twitter social media using machine learning that has high accuracy from several machine learning methods studied. In this study, the support vector machine (SVM), Naïve Bayes (NB), and Random Forest Decision Tree (RFDT) methods were compared with the Support Vector machine with genetic algorithm (SVM-GA), Nave Bayes with genetic algorithm (NB-GA), and Random Forest Decision Tree with Genetic Algorithm (RFDT-GA). The study produced a comparison table for the accuracy of the hate speech and abusive language detection model, and presented it in the form of a graph of the accuracy of the six algorithms developed based on the Indonesian-language Twitter dataset, and concluded the best model with the highest accuracy.

Keywords: abusive language, hate speech, machine learning, optimization, social media

Procedia PDF Downloads 126
7020 A Genetic Algorithm Approach to Solve a Weaving Job Scheduling Problem, Aiming Tardiness Minimization

Authors: Carolina Silva, João Nuno Oliveira, Rui Sousa, João Paulo Silva

Abstract:

This study uses genetic algorithms to solve a job scheduling problem in a weaving factory. The underline problem regards an NP-Hard problem concerning unrelated parallel machines, with sequence-dependent setup times. This research uses real data regarding a weaving industry located in the North of Portugal, with a capacity of 96 looms and a production, on average, of 440000 meters of fabric per month. Besides, this study includes a high level of complexity once most of the real production constraints are applied, and several real data instances are tested. Topics such as data analyses and algorithm performance are addressed and tested, to offer a solution that can generate reliable and due date results. All the approaches will be tested in the operational environment, and the KPIs monitored, to understand the solution's impact on the production, with a particular focus on the total number of weeks of late deliveries to clients. Thus, the main goal of this research is to develop a solution that allows for the production of automatically optimized production plans, aiming to the tardiness minimizing.

Keywords: genetic algorithms, textile industry, job scheduling, optimization

Procedia PDF Downloads 155
7019 Computational Fluid Dynamics Simulations of Thermal and Flow Fields inside a Desktop Personal Computer Cabin

Authors: Mohammad Salehi, Mohammad Erfan Doraki

Abstract:

In this paper, airflow analysis inside a desktop computer case is performed by simulating computational fluid dynamics. The purpose is to investigate the cooling process of the central processing unit (CPU) with thermal capacities of 80 and 130 watts. The airflow inside the computer enclosure, selected from the microATX model, consists of the main components of heat production such as CPU, hard disk drive, CD drive, floppy drive, memory card and power supply unit; According to the amount of thermal power produced by the CPU with 80 and 130 watts of power, two different geometries have been used for a direct and radial heat sink. First, the independence of the computational mesh and the validation of the solution were performed, and after ensuring the correctness of the numerical solution, the results of the solution were analyzed. The simulation results showed that changes in CPU temperature and other components linearly increased with increasing CPU heat output. Also, the ambient air temperature has a significant effect on the maximum processor temperature.

Keywords: computational fluid dynamics, CPU cooling, computer case simulation, heat sink

Procedia PDF Downloads 120
7018 Application of Machine Learning on Google Earth Engine for Forest Fire Severity, Burned Area Mapping and Land Surface Temperature Analysis: Rajasthan, India

Authors: Alisha Sinha, Laxmi Kant Sharma

Abstract:

Forest fires are a recurring issue in many parts of the world, including India. These fires can have various causes, including human activities (such as agricultural burning, campfires, or discarded cigarettes) and natural factors (such as lightning). This study presents a comprehensive and advanced methodology for assessing wildfire susceptibility by integrating diverse environmental variables and leveraging cutting-edge machine learning techniques across Rajasthan, India. The primary goal of the study is to utilize Google Earth Engine to compare locations in Sariska National Park, Rajasthan (India), before and after forest fires. High-resolution satellite data were used to assess the amount and types of changes caused by forest fires. The present study meticulously analyzes various environmental variables, i.e., slope orientation, elevation, normalized difference vegetation index (NDVI), drainage density, precipitation, and temperature, to understand landscape characteristics and assess wildfire susceptibility. In addition, a sophisticated random forest regression model is used to predict land surface temperature based on a set of environmental parameters.

Keywords: wildfire susceptibility mapping, LST, random forest, GEE, MODIS, climatic parameters

Procedia PDF Downloads 20
7017 Use the Null Space to Create Starting Point for Stochastic Programming

Authors: Ghussoun Al-Jeiroudi

Abstract:

Stochastic programming is one of the powerful technique which is used to solve real-life problems. Hence, the data of real-life problems is subject to significant uncertainty. Uncertainty is well studied and modeled by stochastic programming. Each day, problems become bigger and bigger and the need for a tool, which does deal with large scale problems, increase. Interior point method is a perfect tool to solve such problems. Interior point method is widely employed to solve the programs, which arise from stochastic programming. It is an iterative technique, so it is required a starting point. Well design starting point plays an important role in improving the convergence speed. In this paper, we propose a starting point for interior point method for multistage stochastic programming. Usually, the optimal solution of stage k+1 is used as starting point for the stage k. This point has the advantage of being close to the solution of the current program. However, it has a disadvantage; it is not in the feasible region of the current program. So, we suggest to take this point and modifying it. That is by adding to it a vector in the null space of the matrix of the unchanged constraints because the solution will change only in the null space of this matrix.

Keywords: interior point methods, stochastic programming, null space, starting points

Procedia PDF Downloads 416