Search results for: nonlinear shell element
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4500

Search results for: nonlinear shell element

3900 Evaluation of Prestressed Reinforced Concrete Slab Punching Shear Using Finite Element Method

Authors: Zhi Zhang, Liling Cao, Seyedbabak Momenzadeh, Lisa Davey

Abstract:

Reinforced concrete (RC) flat slab-column systems are commonly used in residential or office buildings, as the flat slab provides efficient clearance resulting in more stories at a given height than regular reinforced concrete beam-slab system. Punching shear of slab-column joints is a critical component of two-way reinforced concrete flat slab design. The unbalanced moment at the joint is transferred via slab moment and shear forces. ACI 318 provides an equation to evaluate the punching shear under the design load. It is important to note that the design code considers gravity and environmental load when considering the design load combinations, while it does not consider the effect from differential foundation settlement, which may be a governing load condition for the slab design. This paper describes how prestressed reinforced concrete slab punching shear is evaluated based on ACI 318 provisions and finite element analysis. A prestressed reinforced concrete slab under differential settlements is studied using the finite element modeling methodology. The punching shear check equation is explained. The methodology to extract data for punching shear check from the finite element model is described and correlated with the corresponding code provisions. The study indicates that the finite element analysis results should be carefully reviewed and processed in order to perform accurate punching shear evaluation. Conclusions are made based on the case studies to help engineers understand the punching shear behavior in prestressed and non-prestressed reinforced concrete slabs.

Keywords: differential settlement, finite element model, prestressed reinforced concrete slab, punching shear

Procedia PDF Downloads 116
3899 Control Strategy for a Solar Vehicle Race

Authors: Francois Defay, Martim Calao, Jean Francois Dassieu, Laurent Salvetat

Abstract:

Electrical vehicles are a solution for reducing the pollution using green energy. The shell Eco-Marathon provides rules in order to minimize the battery use for the race. The use of solar panel combined with efficient motor control and race strategy allow driving a 60kg vehicle with one pilot using only the solar energy in the best case. This paper presents a complete modelization of a solar vehicle used for the shell eco-marathon. This project called Helios is cooperation between non-graduated students, academic institutes, and industrials. The prototype is an ultra-energy-efficient vehicle based on one-meter square solar panel and an own-made brushless controller to optimize the electrical part. The vehicle is equipped with sensors and embedded system to provide all the data in real time in order to evaluate the best strategy for the course. A complete modelization with Matlab/Simulink is used to test the optimal strategy to increase the global endurance. Experimental results are presented to validate the different parts of the model: mechanical, aerodynamics, electrical, solar panel. The major finding of this study is to provide solutions to identify the model parameters (Rolling Resistance Coefficient, drag coefficient, motor torque coefficient, etc.) by means of experimental results combined with identification techniques. One time the coefficients are validated, the strategy to optimize the consumption and the average speed can be tested first in simulation before to be implanted for the race. The paper describes all the simulation and experimental parts and provides results in order to optimize the global efficiency of the vehicle. This works have been started four years ago and evolved many students for the experimental and theoretical parts and allow to increase the knowledge on electrical self-efficient vehicle.

Keywords: electrical vehicle, endurance, optimization, shell eco-marathon

Procedia PDF Downloads 248
3898 Stability of Square Plate with Concentric Cutout

Authors: B. S. Jayashankarbabu, Karisiddappa

Abstract:

The finite element method is used to obtain the elastic buckling load factor for square isotropic plate containing circular, square and rectangular cutouts. ANSYS commercial finite element software had been used in the study. The applied inplane loads considered are uniaxial and biaxial compressions. In all the cases the load is distributed uniformly along the plate outer edges. The effects of the size and shape of concentric cutouts with different plate thickness ratios and the influence of plate edge condition, such as SSSS, CCCC and mixed boundary condition SCSC on the plate buckling strength have been considered in the analysis.

Keywords: concentric cutout, elastic buckling, finite element method, inplane loads, thickness ratio

Procedia PDF Downloads 381
3897 Exploiting SLMail Server with a Developed Buffer Overflow with Kali Linux

Authors: Senesh Wijayarathne

Abstract:

This study focuses on how someone could develop a Buffer Overflow and could use that to exploit the SLMail Server. This study uses a Kali Linux V2018.4 Virtual Machine and Windows 7 - Internet Explorer V8 Virtual Machine (IPv4 Address - 192.168.56.107). This study starts by sending continued bytes to the SLMail Server to find the crashing point range and creating a unique pattern of the length of the crashing point range to control the Extended Instruction Pointer (EIP). Then by sending all characters to SLMail Server, we could observe and find which characters are not rendered properly by the software, also known as Bad Characters. By finding the ‘Jump to the ESP register (JMP ESP) and with the help of ‘Mona Modules’, we could use msfvenom to create a non-stage windows reverse shell payload. By including all the details gathered previously on one script, we could get a system-level reverse shell of the Windows 7 PC. The end of this paper will discuss how to mitigate this vulnerability.

Keywords: slmail server, extended instruction pointer, jump to the esp register, bad characters, virtual machine, windows 7, kali Linux, buffer overflow, Seattle lab, vulnerability

Procedia PDF Downloads 148
3896 Shock Response Analysis of Soil-Structure Systems Induced by Near-Fault Pulses

Authors: H. Masaeli, R. Ziaei, F. Khoshnoudian

Abstract:

Shock response analysis of the soil–structure systems induced by near–fault pulses is investigated. Vibration transmissibility of the soil–structure systems is evaluated by Shock Response Spectra (SRS). Medium–to–high rise buildings with different aspect ratios located on different soil types as well as different foundations with respect to vertical load bearing safety factors are studied. Two types of mathematical near–fault pulses, i.e. forward directivity and fling step, with different pulse periods as well as pulse amplitudes are selected as incident ground shock. Linear versus nonlinear Soil–Structure Interaction (SSI) condition are considered alternatively and the corresponding results are compared. The results show that nonlinear SSI is likely to amplify the acceleration responses when subjected to long–period incident pulses with normalized period exceeding a threshold. It is also shown that this threshold correlates with soil type, so that increased shear–wave velocity of the underlying soil makes the threshold period decrease.

Keywords: nonlinear soil–structure interaction, shock response spectrum, near–fault ground shock, rocking isolation

Procedia PDF Downloads 306
3895 Influence of Random Fibre Packing on the Compressive Strength of Fibre Reinforced Plastic

Authors: Y. Wang, S. Zhang, X. Chen

Abstract:

The longitudinal compressive strength of fibre reinforced plastic (FRP) possess a large stochastic variability, which limits efficient application of composite structures. This study aims to address how the random fibre packing affects the uncertainty of FRP compressive strength. An novel approach is proposed to generate random fibre packing status by a combination of Latin hypercube sampling and random sequential expansion. 3D nonlinear finite element model is built which incorporates both the matrix plasticity and fibre geometrical instability. The matrix is modeled by isotropic ideal elasto-plastic solid elements, and the fibres are modeled by linear-elastic rebar elements. Composite with a series of different nominal fibre volume fractions are studied. Premature fibre waviness at different magnitude and direction is introduced in the finite element model. Compressive tests on uni-directional CFRP (carbon fibre reinforced plastic) are conducted following the ASTM D6641. By a comparison of 3D FE models and compressive tests, it is clearly shown that the stochastic variation of compressive strength is partly caused by the random fibre packing, and normal or lognormal distribution tends to be a good fit the probabilistic compressive strength. Furthermore, it is also observed that different random fibre packing could trigger two different fibre micro-buckling modes while subjected to longitudinal compression: out-of-plane buckling and twisted buckling. The out-of-plane buckling mode results much larger compressive strength, and this is the major reason why the random fibre packing results a large uncertainty in the FRP compressive strength. This study would contribute to new approaches to the quality control of FRP considering higher compressive strength or lower uncertainty.

Keywords: compressive strength, FRP, micro-buckling, random fibre packing

Procedia PDF Downloads 263
3894 Investigation a New Approach "AGM" to Solve of Complicate Nonlinear Partial Differential Equations at All Engineering Field and Basic Science

Authors: Mohammadreza Akbari, Pooya Soleimani Besheli, Reza Khalili, Davood Domiri Danji

Abstract:

In this conference, our aims are accuracy, capabilities and power at solving of the complicated non-linear partial differential. Our purpose is to enhance the ability to solve the mentioned nonlinear differential equations at basic science and engineering field and similar issues with a simple and innovative approach. As we know most of engineering system behavior in practical are nonlinear process (especially basic science and engineering field, etc.) and analytical solving (no numeric) these problems are difficult, complex, and sometimes impossible like (Fluids and Gas wave, these problems can't solve with numeric method, because of no have boundary condition) accordingly in this symposium we are going to exposure an innovative approach which we have named it Akbari-Ganji's Method or AGM in engineering, that can solve sets of coupled nonlinear differential equations (ODE, PDE) with high accuracy and simple solution and so this issue will emerge after comparing the achieved solutions by Numerical method (Runge-Kutta 4th). Eventually, AGM method will be proved that could be created huge evolution for researchers, professors and students in whole over the world, because of AGM coding system, so by using this software we can analytically solve all complicated linear and nonlinear partial differential equations, with help of that there is no difficulty for solving all nonlinear differential equations. Advantages and ability of this method (AGM) as follow: (a) Non-linear Differential equations (ODE, PDE) are directly solvable by this method. (b) In this method (AGM), most of the time, without any dimensionless procedure, we can solve equation(s) by any boundary or initial condition number. (c) AGM method always is convergent in boundary or initial condition. (d) Parameters of exponential, Trigonometric and Logarithmic of the existent in the non-linear differential equation with AGM method no needs Taylor expand which are caused high solve precision. (e) AGM method is very flexible in the coding system, and can solve easily varieties of the non-linear differential equation at high acceptable accuracy. (f) One of the important advantages of this method is analytical solving with high accuracy such as partial differential equation in vibration in solids, waves in water and gas, with minimum initial and boundary condition capable to solve problem. (g) It is very important to present a general and simple approach for solving most problems of the differential equations with high non-linearity in engineering sciences especially at civil engineering, and compare output with numerical method (Runge-Kutta 4th) and Exact solutions.

Keywords: new approach, AGM, sets of coupled nonlinear differential equation, exact solutions, numerical

Procedia PDF Downloads 449
3893 Bright–Dark Pulses in Nonlinear Polarisation Rotation Based Erbium-Doped Fiber Laser

Authors: R. Z. R. R. Rosdin, N. M. Ali, S. W. Harun, H. Arof

Abstract:

We have experimentally demonstrated bright-dark pulses in a nonlinear polarization rotation (NPR) based mode-locked Erbium-doped fiber laser (EDFL) with a long cavity configuration. Bright–dark pulses could be achieved when the laser works in the passively mode-locking regime and the net group velocity dispersion is quite anomalous. The EDFL starts to generate a bright pulse train with degenerated dark pulse at the mode-locking threshold pump power of 35.09 mW by manipulating the polarization states of the laser oscillation modes using a polarization controller (PC). A split bright–dark pulse is generated when further increasing the pump power up to 37.95 mW. Stable bright pulses with no obvious evidence of a dark pulse can also be generated when further adjusting PC and increasing the pump power up to 52.19 mW. At higher pump power of 54.96 mW, a new form of bright-dark pulse emission was successfully identified with the repetition rate of 29 kHz. The bright and dark pulses have a duration of 795.5 ns and 640 ns, respectively.

Keywords: Erbium-doped fiber laser, nonlinear polarization rotation, bright-dark pulse, photonic

Procedia PDF Downloads 515
3892 Single Ion Transport with a Single-Layer Graphene Nanopore

Authors: Vishal V. R. Nandigana, Mohammad Heiranian, Narayana R. Aluru

Abstract:

Graphene material has found tremendous applications in water desalination, DNA sequencing and energy storage. Multiple nanopores are etched to create opening for water desalination and energy storage applications. The nanopores created are of the order of 3-5 nm allowing multiple ions to transport through the pore. In this paper, we present for the first time, molecular dynamics study of single ion transport, where only one ion passes through the graphene nanopore. The diameter of the graphene nanopore is of the same order as the hydration layers formed around each ion. Analogous to single electron transport resulting from ionic transport is observed for the first time. The current-voltage characteristics of such a device are similar to single electron transport in quantum dots. The current is blocked until a critical voltage, as the ions are trapped inside a hydration shell. The trapped ions have a high energy barrier compared to the applied input electrical voltage, preventing the ion to break free from the hydration shell. This region is called “Coulomb blockade region”. In this region, we observe zero transport of ions inside the nanopore. However, when the electrical voltage is beyond the critical voltage, the ion has sufficient energy to break free from the energy barrier created by the hydration shell to enter into the pore. Thus, the input voltage can control the transport of the ion inside the nanopore. The device therefore acts as a binary storage unit, storing 0 when no ion passes through the pore and storing 1 when a single ion passes through the pore. We therefore postulate that the device can be used for fluidic computing applications in chemistry and biology, mimicking a computer. Furthermore, the trapped ion stores a finite charge in the Coulomb blockade region; hence the device also acts a super capacitor.

Keywords: graphene nanomembrane, single ion transport, Coulomb blockade, nanofluidics

Procedia PDF Downloads 312
3891 Element Content in Some Wild Amantia Taxa from Marmara Region, Turkey

Authors: Hasan Hüseyin Doğan, Murad Aydın Şanda

Abstract:

Element contents were analyzed in twelve wild Amanita taxa [A. caesarea (Scop.) Pers., A. citrina (Schaeff.) Pers., A. excelsa (Fr.) Bertill., A. franchetii (Boud.) Fayod, A. gemmata (Fr.) Bertill., A. mairei Foley, A. muscaria (L.) Lam., A. pantherina (DC.) Krombh., A. phalloides (Fr.) Link, A. rubescens Pers., A. vaginata (Bull.) Lam., and A. verna (Bull.) Lam.] from Marmara Region of Turkey by ICP-AES equipment. The element uptake levels were observed at different amounts in each Amanita species. The highest Pb and P concentrations were determined as 15.11 and 0.861 mg.kg-1 in A. caesarea. Fe, Co, As, Sr, Ca, Mg, Al and Na concentrations were determined as 0.832, 4.56, 15.6, 18.9, 0.44, 0.253 and 0.190 mg.kg-1 in A. gemmata respectively. A. muscaria has highest Mo, Th, Sb, V, Cr, and B concentrations as 1.45, 1.17, 1.06, 44, 75, and 7 mg.kg-1 respectively, whereas A. rubescens has highest Zn, Ba, K, S, and Se as 430.6, 65.7, 5.47, 1.16, 11.5 mg.kg-1 respectively. A. muscaria has highest Hg concentrations as 5855 µg.kg-1.The highest Mn concentration were found in A. pantherina with 1176 mg.kg-1, the highest Cd were found in A. phalloides as 10.77 mg.kg-1. In contrast to A. verna has highest Ag and Au content as 77728 and 192 µg.kg-1. Although A. citrina has only the highest Ni content as 75.9 mg.kg-1and A. vaginata has Cu content as 67.04 mg.kg-1 on the other hand A. phalloides has highest Cd concentrations as 10.77 mg.kg-1.

Keywords: amanita, element, macrofungi, Turkey

Procedia PDF Downloads 400
3890 A Study on Improvement of Straightness of Preform Pulling Process of Hollow Pipe by Finete Element Analysis Method

Authors: Yeon-Jong Jeong, Jun-Hong Park, Hyuk Choi

Abstract:

In this study, we have studied the design of intermediate die in multipass drawing. Research has been continuously studied because of the advantage of better dimensional accuracy, smooth surface and improved mechanical properties in the case of drawing. Among them, multipass drawing, which is a method to realize complicated shape by drawing, was discussed in this study. The most important factor in the multipass drawing is the dimensional accuracy and simplify the process. To accomplish this, a multistage shape drawing was performed using various intermediate die shape designs, and finite element analysis was performed.

Keywords: FEM (Finite Element Method), multipass drawing, intermediate die, hollow pipe

Procedia PDF Downloads 309
3889 Analysis of the Suspension Rocker of Formula SAE Prototype by Finite Element Method

Authors: Jessyca A. Bessa, Darlan A. Barroso, Jonas P. Reges, Auzuir R. Alexandria

Abstract:

This work aims to study the rocker. This is a device of the suspension of Formula SAE vehicle that receives efforts from the motion scrolling of the vehicle and transmits them to the chassis frame minimized by a momentum ratio and smoothed by the set spring - damper. A review of parameters used in vehicle dynamics and a geometric analysis of the forces and stresses caused by such was carried out. The main function of the rocker is to reduce the force transmitted to the frame due to movement of rolling and subsequent application of the suspension. This functions is taken as satisfactory, since the force applied to the wheel and which would be transmitted to the chassis is reduced from 3833.9N to 3496.48N. From these values can be further more detailed simulations using the finite element method aimed at mass reduction or even rocker manufacturing feasibility aluminum. Then, the analysis by the finite element method was applied. This analysis uses the theory of discretization of systems and examines the strength of the component based on the distortion energy, determining the maximum straining experienced by the component and the region of higher demand.

Keywords: rocker, suspension, the finite element method, mechatronics engineering

Procedia PDF Downloads 529
3888 The Effect of Soil-Structure Interaction on the Post-Earthquake Fire Performance of Structures

Authors: A. T. Al-Isawi, P. E. F. Collins

Abstract:

The behaviour of structures exposed to fire after an earthquake is not a new area of engineering research, but there remain a number of areas where further work is required. Such areas relate to the way in which seismic excitation is applied to a structure, taking into account the effect of soil-structure interaction (SSI) and the method of analysis, in addition to identifying the excitation load properties. The selection of earthquake data input for use in nonlinear analysis and the method of analysis are still challenging issues. Thus, realistic artificial ground motion input data must be developed to certify that site properties parameters adequately describe the effects of the nonlinear inelastic behaviour of the system and that the characteristics of these parameters are coherent with the characteristics of the target parameters. Conversely, ignoring the significance of some attributes, such as frequency content, soil site properties and earthquake parameters may lead to misleading results, due to the misinterpretation of required input data and the incorrect synthesise of analysis hypothesis. This paper presents a study of the post-earthquake fire (PEF) performance of a multi-storey steel-framed building resting on soft clay, taking into account the effects of the nonlinear inelastic behaviour of the structure and soil, and the soil-structure interaction (SSI). Structures subjected to an earthquake may experience various levels of damage; the geometrical damage, which indicates the change in the initial structure’s geometry due to the residual deformation as a result of plastic behaviour, and the mechanical damage which identifies the degradation of the mechanical properties of the structural elements involved in the plastic range of deformation. Consequently, the structure presumably experiences partial structural damage but is then exposed to fire under its new residual material properties, which may result in building failure caused by a decrease in fire resistance. This scenario would be more complicated if SSI was also considered. Indeed, most earthquake design codes ignore the probability of PEF as well as the effect that SSI has on the behaviour of structures, in order to simplify the analysis procedure. Therefore, the design of structures based on existing codes which neglect the importance of PEF and SSI can create a significant risk of structural failure. In order to examine the criteria for the behaviour of a structure under PEF conditions, a two-dimensional nonlinear elasto-plastic model is developed using ABAQUS software; the effects of SSI are included. Both geometrical and mechanical damages have been taken into account after the earthquake analysis step. For comparison, an identical model is also created, which does not include the effects of soil-structure interaction. It is shown that damage to structural elements is underestimated if SSI is not included in the analysis, and the maximum percentage reduction in fire resistance is detected in the case when SSI is included in the scenario. The results are validated using the literature.

Keywords: Abaqus Software, Finite Element Analysis, post-earthquake fire, seismic analysis, soil-structure interaction

Procedia PDF Downloads 114
3887 High Frequency Memristor-Based BFSK and 8QAM Demodulators

Authors: Nahla Elazab, Mohamed Aboudina, Ghada Ibrahim, Hossam Fahmy, Ahmed Khalil

Abstract:

This paper presents the developed memristor based demodulators for eight circular Quadrature Amplitude Modulation (QAM) and Binary Frequency Shift Keying (BFSK) operating at relatively high frequency. In our implementations, the experimental-based ‘nonlinear’ dopant drift model is adopted along with the proposed circuits providing incorporation of all known non-idealities of practically realized memristor and gaining high operation frequency. The suggested designs leverage the distinctive characteristics of the memristor device, definitely, its changeable average memristance versus the frequency, phase and amplitude of the periodic excitation input. The proposed demodulators feature small integration area, low power consumption, and easy implementation. Moreover, the proposed QAM demodulator precludes the requirement for the carrier recovery circuits. In doing so, the designs were validated by transient simulations using the nonlinear dopant drift memristor model. The simulations results show high agreement with the theory presented.

Keywords: BFSK, demodulator, high frequency memristor applications, memristor based analog circuits, nonlinear dopant drift model, QAM

Procedia PDF Downloads 150
3886 Numerical Simulation of Fracturing Behaviour of Pre-Cracked Crystalline Rock Using a Cohesive Grain-Based Distinct Element Model

Authors: Mahdi Saadat, Abbas Taheri

Abstract:

Understanding the cracking response of crystalline rocks at mineralogical scale is of great importance during the design procedure of mining structures. A grain-based distinct element model (GBM) is employed to numerically study the cracking response of Barre granite at micro- and macro-scales. The GBM framework is augmented with a proposed distinct element-based cohesive model to reproduce the micro-cracking response of the inter- and intra-grain contacts. The cohesive GBM framework is implemented in PFC2D distinct element codes. The microstructural properties of Barre granite are imported in PFC2D to generate synthetic specimens. The microproperties of the model is calibrated against the laboratory uniaxial compressive and Brazilian split tensile tests. The calibrated model is then used to simulate the fracturing behaviour of pre-cracked Barre granite with different flaw configurations. The numerical results of the proposed model demonstrate a good agreement with the experimental counterparts. The GBM framework proposed thus appears promising for further investigation of the influence of grain microstructure and mineralogical properties on the cracking behaviour of crystalline rocks.

Keywords: discrete element modelling, cohesive grain-based model, crystalline rock, fracturing behavior

Procedia PDF Downloads 120
3885 Identification of the Orthotropic Parameters of Cortical Bone under Nanoindentation

Authors: D. Remache, M. Semaan, C. Baron, M. Pithioux, P. Chabrand, J. M. Rossi, J. L. Milan

Abstract:

A good understanding of the mechanical properties of the bone implies a better understanding of its various diseases, such as osteoporosis. Berkovich nanoindentation tests were performed on the human cortical bone to extract its orthotropic parameters. The nanoindentation experiments were then simulated by the finite element method. Different configurations of interactions between the tip indenter and the bone were simulated. The orthotropic parameters of the material were identified by the inverse method for each configuration. The friction effect on the bone mechanical properties was then discussed. It was found that the inverse method using the finite element method is a very efficient method to predict the mechanical behavior of the bone.

Keywords: mechanical behavior of bone, nanoindentation, finite element analysis, inverse optimization approaches

Procedia PDF Downloads 375
3884 Application of Continuum Damage Concept to Simulation of the Interaction between Hydraulic Fractures and Natural Fractures

Authors: Anny Zambrano, German Gonzalez, Yair Quintero

Abstract:

The continuum damage concept is used to study the interaction between hydraulic fractures and natural fractures, the objective is representing the path and relation among this two fractures types and predict its complex behavior without the need to pre-define their direction as occurs in other finite element applications, providing results more consistent with the physical behavior of the phenomenon. The approach uses finite element simulations through Abaqus software to model damage fracturing, the fracturing process by damage propagation in a rock. The modeling the phenomenon develops in two dimensional (2D) so that the fracture will be represented by a line and the crack front by a point. It considers nonlinear constitutive behavior, finite strain, time-dependent deformation, complex boundary conditions, strain hardening and softening, and strain based damage evolution in compression and tension. The complete governing equations are provided and the method is described in detail to permit readers to replicate all results. The model is compared to models that are published and available. Comparisons are focused in five interactions between natural fractures (NF) and hydraulic fractures: Fractured arrested at NF, crossing NF with or without offset, branching at intersecting NFs, branching at end of NF and NF dilation due to shear slippage. The most significant new finding is, that is not necessary to use pre-defined addresses propagation and stress condition can be evaluated as a dominant factor in the process. This is important because it can model in a more real way the generated complex hydraulic fractures, and be a valuable tool to predict potential problems and different geometries of the fracture network in the process of fracturing due to fluid injection.

Keywords: continuum damage, hydraulic fractures, natural fractures, complex fracture network, stiffness

Procedia PDF Downloads 325
3883 Fast Terminal Sliding Mode Controller For Quadrotor UAV

Authors: Vahid Tabrizi, Reza GHasemi, Ahmadreza Vali

Abstract:

This paper presents robust nonlinear control law for a quadrotor UAV using fast terminal sliding mode control. Fast terminal sliding mode idea is used for introducing a nonlinear sliding variable that guarantees the finite time convergence in sliding phase. Then, in reaching phase for removing chattering and producing smooth control signal, continuous approximation idea is used. Simulation results show that the proposed algorithm is robust against parameter uncertainty and has better performance than conventional sliding mode for controlling a quadrotor UAV.

Keywords: quadrotor UAV, fast terminal sliding mode, second order sliding mode t

Procedia PDF Downloads 528
3882 Numerical Study of Fatigue Crack Growth at a Web Stiffener of Ship Structural Details

Authors: Wentao He, Jingxi Liu, De Xie

Abstract:

It is necessary to manage the fatigue crack growth (FCG) once those cracks are detected during in-service inspections. In this paper, a simulation program (FCG-System) is developed utilizing the commercial software ABAQUS with its object-oriented programming interface to simulate the fatigue crack path and to compute the corresponding fatigue life. In order to apply FCG-System in large-scale marine structures, the substructure modeling technique is integrated in the system under the consideration of structural details and load shedding during crack growth. Based on the nodal forces and nodal displacements obtained from finite element analysis, a formula for shell elements to compute stress intensity factors is proposed in the view of virtual crack closure technique. The cracks initiating from the intersection of flange and the end of the web-stiffener are investigated for fatigue crack paths and growth lives under water pressure loading and axial force loading, separately. It is found that the FCG-System developed by authors could be an efficient tool to perform fatigue crack growth analysis on marine structures.

Keywords: crack path, fatigue crack, fatigue live, FCG-system, virtual crack closure technique

Procedia PDF Downloads 557
3881 Simscape Library for Large-Signal Physical Network Modeling of Inertial Microelectromechanical Devices

Authors: S. Srinivasan, E. Cretu

Abstract:

The information flow (e.g. block-diagram or signal flow graph) paradigm for the design and simulation of Microelectromechanical (MEMS)-based systems allows to model MEMS devices using causal transfer functions easily, and interface them with electronic subsystems for fast system-level explorations of design alternatives and optimization. Nevertheless, the physical bi-directional coupling between different energy domains is not easily captured in causal signal flow modeling. Moreover, models of fundamental components acting as building blocks (e.g. gap-varying MEMS capacitor structures) depend not only on the component, but also on the specific excitation mode (e.g. voltage or charge-actuation). In contrast, the energy flow modeling paradigm in terms of generalized across-through variables offers an acausal perspective, separating clearly the physical model from the boundary conditions. This promotes reusability and the use of primitive physical models for assembling MEMS devices from primitive structures, based on the interconnection topology in generalized circuits. The physical modeling capabilities of Simscape have been used in the present work in order to develop a MEMS library containing parameterized fundamental building blocks (area and gap-varying MEMS capacitors, nonlinear springs, displacement stoppers, etc.) for the design, simulation and optimization of MEMS inertial sensors. The models capture both the nonlinear electromechanical interactions and geometrical nonlinearities and can be used for both small and large signal analyses, including the numerical computation of pull-in voltages (stability loss). Simscape behavioral modeling language was used for the implementation of reduced-order macro models, that present the advantage of a seamless interface with Simulink blocks, for creating hybrid information/energy flow system models. Test bench simulations of the library models compare favorably with both analytical results and with more in-depth finite element simulations performed in ANSYS. Separate MEMS-electronic integration tests were done on closed-loop MEMS accelerometers, where Simscape was used for modeling the MEMS device and Simulink for the electronic subsystem.

Keywords: across-through variables, electromechanical coupling, energy flow, information flow, Matlab/Simulink, MEMS, nonlinear, pull-in instability, reduced order macro models, Simscape

Procedia PDF Downloads 123
3880 Optimum Structural Wall Distribution in Reinforced Concrete Buildings Subjected to Earthquake Excitations

Authors: Nesreddine Djafar Henni, Akram Khelaifia, Salah Guettala, Rachid Chebili

Abstract:

Reinforced concrete shear walls and vertical plate-like elements play a pivotal role in efficiently managing a building's response to seismic forces. This study investigates how the performance of reinforced concrete buildings equipped with shear walls featuring different shear wall-to-frame stiffness ratios aligns with the requirements stipulated in the Algerian seismic code RPA99v2003, particularly in high-seismicity regions. Seven distinct 3D finite element models are developed and evaluated through nonlinear static analysis. Engineering Demand Parameters (EDPs) such as lateral displacement, inter-story drift ratio, shear force, and bending moment along the building height are analyzed. The findings reveal two predominant categories of induced responses: force-based and displacement-based EDPs. Furthermore, as the shear wall-to-frame ratio increases, there is a concurrent increase in force-based EDPs and a decrease in displacement-based ones. Examining the distribution of shear walls from both force and displacement perspectives, model G with the highest stiffness ratio, concentrating stiffness at the building's center, intensifies induced forces. This configuration necessitates additional reinforcements, leading to a conservative design approach. Conversely, model C, with the lowest stiffness ratio, distributes stiffness towards the periphery, resulting in minimized induced shear forces and bending moments, representing an optimal scenario with maximal performance and minimal strength requirements.

Keywords: dual RC buildings, RC shear walls, modeling, static nonlinear pushover analysis, optimization, seismic performance

Procedia PDF Downloads 42
3879 The Nonlinear Optical Properties Analysis of AlPc-Cl Organic Compound

Authors: M. Benhaliliba, A. Ben Ahmed, C.E. Benouis, A.Ayeshamariam

Abstract:

The properties of nonlinear optical NLOs are examined, and the results confirm the 2.19 eV HOMO-LUMO mismatch. In the Al-Pc cluster, certain functional bond lengths and bond angles have been observed. The Quantum chemical method (DFT and TD-DFT) and Vibrational spectra properties of AlPc are studied. X-ray pattern reveals the crystalline structure along with the (242) orientation of the AlPc organic thin layer. UV-Vis shows the frequency selective behavior of the device. The absorbance of such layer exhibits a high value within the UV range and two consecutive peaks within visible range. Spin coating is used to make an organic diode based on the Aluminium-phthalocynanine (AlPc-Cl) molecule. Under dark and light conditions, electrical characterization of Ag/AlPc/Si/Au is obtained. The diode's high rectifying capability (about 1x104) is subsequently discovered. While the height barrier is constant and saturation current is greatly reliant on light, the ideality factor of such a diode increases to 6.9 which confirms the non-ideality of such a device. The Cheung-Cheung technique is employed to further the investigation and gain additional data such as series resistance and barrier height.

Keywords: AlPc-Cl organic material, nonlinear optic, optical filter, diode

Procedia PDF Downloads 125
3878 Numerical Investigation of Poling Vector Angle on Adaptive Sandwich Plate Deflection

Authors: Alireza Pouladkhan, Mohammad Yavari Foroushani, Ali Mortazavi

Abstract:

This paper presents a finite element model for a sandwich plate containing a piezoelectric core. A sandwich plate with a piezoelectric core is constructed using the shear mode of piezoelectric materials. The orientation of poling vector has a significant effect on deflection and stress induced in the piezo-actuated adaptive sandwich plate. In the present study, the influence of this factor for a clamped-clamped-free-free and simple-simple-free-free square sandwich plate is investigated using Finite Element Method. The study uses ABAQUS (v.6.7) software to derive the finite element model of the sandwich plate. By using this model, the study gives the influences of the poling vector angle on the response of the smart structure and determines the maximum transverse displacement and maximum stress induced.

Keywords: finite element method, sandwich plate, poling vector, piezoelectric materials, smart structure, electric enthalpy

Procedia PDF Downloads 224
3877 Experimental Study Analysis of Flow over Pickup Truck’s Cargo Area Using Bed Covers

Authors: Jonathan Rodriguez, Dominga Guerrero, Surupa Shaw

Abstract:

Automobiles are modeled in various forms, and they interact with air when in motion. Aerodynamics is the study of such interactions where solid bodies affect the way air moves around them. The shape of solid bodies can impact the ease at which they move against the flow of air; due to which any additional freightage, or loads, impact its aerodynamics. It is important to transport people and cargo safely. Despite the various safety measures, there are a large number of vehicle-related accidents. This study precisely explores the effects an automobile experiences, with added cargo and covers. The addition of these items changes the original vehicle shape and the approved design for safe driving. This paper showcases the effects of the changed vehicle shape and design via experimental testing conducted on a physical 1:27 scale and CAD model of an F-150 pickup truck, the most common pickup truck in the United States, with differently shaped loads and weight traveling at a constant speed. The additional freightage produces unwanted drag or lift resulting in lower fuel efficiencies and unsafe driving conditions. This study employs an adjustable external shell on the F-150 pickup truck to create a controlled aerodynamic geometry to combat the detrimental effects of additional freightage. The results utilize colored powder [ which acts as a visual medium for the interaction of air with the vehicle], to highlight the impact of the additional freight on the automobile’s external shell. This will be done along with simulation models using Altair CFD software of twelve cases regarding the effects of an added load onto an F-150 pickup truck. This paper is an attempt toward standardizing the geometric design of the external shell, given the uniqueness of every load and its placement on the vehicle; while providing real-time data to be compared to simulation results from the existing literature.

Keywords: aerodynamics, CFD, freightage, pickup cover

Procedia PDF Downloads 151
3876 Red Blood Cells Deformability: A Chaotic Process

Authors: Ana M. Korol, Bibiana Riquelme, Osvaldo A. Rosso

Abstract:

Since erythrocyte deformability analysis is mostly qualitative, the development of quantitative nonlinear methods is crucial for restricting subjectivity in the study of cell behaviour. An electro-optic mechanic system called erythrodeformeter has been developed and constructed in our laboratory in order to evaluate the erythrocytes' viscoelasticity. A numerical method formulated on the basis of fractal approximation for ordinary (OBM) and fractionary Brownian motion (FBM), as well as wavelet transform analysis, are proposed to distinguish chaos from noise based on the assumption that diffractometric data involves both deterministic and stochastic components, so it could be modelled as a system of bounded correlated random walk. Here we report studies on 25 donors: 4 alpha thalassaemic patients, 11 beta thalassaemic patients, and 10 healthy controls non-alcoholic and non-smoker individuals. The Correlation Coefficient, a nonlinear parameter, showed evidence of the changes in the erythrocyte deformability; the Wavelet Entropy could quantify those differences which are detected by the light diffraction patterns. Such quantifiers allow a good deal of promise and the possibility of a better understanding of the rheological erythrocytes aspects and also could help in clinical diagnosis.

Keywords: red blood cells, deformability, nonlinear dynamics, chaos theory, wavelet trannsform

Procedia PDF Downloads 47
3875 Simulation Model of Induction Heating in COMSOL Multiphysics

Authors: K. Djellabi, M. E. H. Latreche

Abstract:

The induction heating phenomenon depends on various factors, making the problem highly nonlinear. The mathematical analysis of this problem in most cases is very difficult and it is reduced to simple cases. Another knowledge of induction heating systems is generated in production environments, but these trial-error procedures are long and expensive. The numerical models of induction heating problem are another approach to reduce abovementioned drawbacks. This paper deals with the simulation model of induction heating problem. The simulation model of induction heating system in COMSOL Multiphysics is created. In this work we present results of numerical simulations of induction heating process in pieces of cylindrical shapes, in an inductor with four coils. The modeling of the inducting heating process was made with the software COMSOL Multiphysics Version 4.2a, for the study we present the temperature charts.

Keywords: induction heating, electromagnetic field, inductor, numerical simulation, finite element

Procedia PDF Downloads 300
3874 Evaluation of Dynamic Behavior of a Rotor-Bearing System in Operating Conditions

Authors: Mohammad Hadi Jalali, Behrooz Shahriari, Mostafa Ghayour, Saeed Ziaei-Rad, Shahram Yousefi

Abstract:

Most flexible rotors can be considered as beam-like structures. In many cases, rotors are modeled as one-dimensional bodies, made basically of beam-like shafts with rigid bodies attached to them. This approach is typical of rotor dynamics, both analytical and numerical, and several rotor dynamic codes, based on the finite element method, follow this trend. In this paper, a finite element model based on Timoshenko beam elements is utilized to analyze the lateral dynamic behavior of a certain rotor-bearing system in operating conditions.

Keywords: finite element method, Timoshenko beam elements, operational deflection shape, unbalance response

Procedia PDF Downloads 404
3873 Vibration Analysis of Pendulum in a Viscous Fluid by Analytical Methods

Authors: Arash Jafari, Mehdi Taghaddosi, Azin Parvin

Abstract:

In this study, a vibrational differential equation governing on swinging single-degree-of-freedom pendulum in a viscous fluid has been investigated. The damping process is characterized according to two different regimes: at first, damping in stationary viscous fluid, in the second, damping in flowing viscous fluid with constant velocity. Our purpose is to enhance the ability of solving the mentioned nonlinear differential equation with a simple and innovative approach. Comparisons are made between new method and Numerical Method (rkf45). The results show that this method is very effective and simple and can be applied for other nonlinear problems.

Keywords: oscillating systems, angular frequency and damping ratio, pendulum at fluid, locus of maximum

Procedia PDF Downloads 328
3872 Three Dimensional Numerical Analysis for Longitudinal Seismic Response of Tunnels under Asynchronous Earthquake

Authors: Peng Li, Er-xiang Song

Abstract:

Numerical analysis of longitudinal tunnel seismic response due to spatial variation of earthquake ground motion is an important issue that cannot be ignored in the design and safety evaluation of tunnel structures. In this paper, numerical methods for analysis of tunnel longitudinal response under asynchronous seismic wave is extensively studied, including the improvement of the 1D time-domain finite element method, three dimensional numerical simulation technique for the site asynchronous earthquake response as well as the 3-D soil-tunnel structure interaction analysis. The study outcome will be beneficial to aid further research on the nonlinear meticulous numerical analysis and seismic response mechanism of tunnel structures under asynchronous earthquake motion.

Keywords: asynchronous input, longitudinal seismic response, tunnel structure, numerical simulation, traveling wave effect

Procedia PDF Downloads 424
3871 Comparative Study of Titanium and Polyetheretherketone Cranial Implant Using Finite Element Model

Authors: Khaja Moiduddin, Sherif Mohammed Elseufy, Hisham Alkhalefah

Abstract:

Recent advances in three-dimensional (3D) printing, medical imaging, and implant design may alter how craniomaxillofacial surgeons construct individualized treatments using patient data. By utilizing medical image data, medical professionals can obtain detailed information about a patient's injuries, enabling them to conduct a thorough preoperative assessment while ensuring the implant's accuracy. However, selecting the right implant material requires careful consideration of various mechanical properties. This study aims to compare the two commonly used implant material for cranial reconstruction which includes titanium (Ti6Al4V) and Polyetheretherketone (PEEK). Biomechanical analysis was performed to study the implant behavior, by keeping the implant design and fixation constant in both cases. A finite element model was created and analyzed under loading conditions. The finite element analysis proves that although Ti6Al4V is stronger than PEEK but, its mechanical strength is adequate to bear the loads of the adjacent bone tissue.

Keywords: cranial reconstruction, titanium implants, PEEK, finite element model

Procedia PDF Downloads 57