Search results for: indoor residual spray
957 Efficacy of Different Soil-Applied Fungicides to Manage Phytophthora Root Rot of Chili (Solanum annum) in Pakistan
Authors: Kiran Nawaz, Ahmad Ali Shahid, Sehrish Iftikhar, Waheed Anwar, Muhammad Nasir Subhani
Abstract:
Chili (Solanum annum L.) attacks by many fungal pathogens, including members of Oomycetes which are responsible for root rot in different chili growing areas of the world. Oomycetes pathogens cause economic losses in different regions of the Pakistan. Most of the plant tissues, including roots, crowns, fruit, and leaves, are vulnerable to Phytophthora capsici. It is very difficult to manage the Phytophthora root rot of chili as many commercial varieties are tremendously vulnerable to P. capsici. The causal agent of the disease was isolated on corn meal agar (CMA) and identified on a morphological basis by using available taxonomic keys. The pathogen was also confirmed on the molecular basis through internal transcribed spacer region and with other molecular markers.The Blastn results showed 100% homology with already reported sequences of P. capsici in NCBI database. Most of the farmers have conventionally relied on foliar fungicide applications to control Phytophthora root rot in spite of their incomplete effectiveness. In this study, in vitro plate assay, seed soaking and foliar applications of 6 fungicides were evaluated against root rot of chili. In vitro assay revealed that significant inhibition of linear growth was obtained with Triflumizole at 7.0%, followed by Thiophanate methyl (8.9%), Etridiazole (6.0%), Propamocarb (5.9%) and 7.5% with Mefenoxam and Iprodione for P. capsici. The promising treatments of in vitro plate bioassay were evaluated in pot experiments under controlled conditions in the greenhouse. All fungicides were applied after at 6-day intervals. Results of pot experiment showed that all treatments considerably inhibited the percentage of P. capsici root rot incidence. In addition, application of seed soaking with all six fungicides combined with the foliar spray of the same components showed the significant reduction in root rot incidence. The combine treatments of all fungicides as in vitro bioassay, seed soaking followed by foliar spray is considered non-harmful control methods which have advantages and limitation. Hence, these applications proved effective and harmless for the management of soil-borne plant pathogens.Keywords: blastn, bioassay, corn meal agar(CMA), oomycetes
Procedia PDF Downloads 242956 Technical Non-Destructive Evaluation of Burnt Bridge at CH. 57+450 Along Abuja-Abaji-Lokoja Road, Nigeria
Authors: Abraham O. Olaniyi, Oluyemi Oke, Atilade Otunla
Abstract:
The structural performance of bridges decreases progressively throughout their service life due to many contributing factors (fatigue, carbonation, fire incidents etc.). Around the world, numerous bridges have attained their estimated service life and many have approached this limit. The structural integrity assessment of the burnt composite bridge located at CH57+450, Koita village along Abuja-Abaji-Lokoja road, Nigeria, is presented as a case study and shall be forthwith referred to as the 'Koita bridge' in this paper. From the technical evaluation, the residual compressive strength of the concrete piers was found to be below 16.0 N/mm2. This value is very low compared to the expected design value of 30.0 N/mm2. The pier capping beam at pier location 1 has a very low residual compressive strength. The cover to the reinforcement of certain capping beams has an outline of reinforcement which signifies poor concrete cover and the mean compressive strength is also less than 20.0 N/mm2. The steel girder indicated black colouration as a result of the fire incident without any significant structural defect like buckling or warping of the steel section. This paper reviews the structural integrity assessment and repair methodology of the Koita bridge; a composite bridge damaged by fire, highlighting the various challenges of limited obtainable guidance documents about the bridge. The objectives are to increase the understanding of processes and versatile equipment required to test and assess a fire-damaged bridge in order to improve the quality of structural appraisal and rehabilitation; thus, eliminating the prejudice associated with current visual inspection techniques.Keywords: assessment, bridge, rehabilitation, sustainability
Procedia PDF Downloads 366955 Towards Sustainable Concrete: Maturity Method to Evaluate the Effect of Curing Conditions on the Strength Development in Concrete Structures under Kuwait Environmental Conditions
Authors: F. Al-Fahad, J. Chakkamalayath, A. Al-Aibani
Abstract:
Conventional methods of determination of concrete strength under controlled laboratory conditions will not accurately represent the actual strength of concrete developed under site curing conditions. This difference in strength measurement will be more in the extreme environment in Kuwait as it is characterized by hot marine environment with normal temperature in summer exceeding 50°C accompanied by dry wind in desert areas and salt laden wind on marine and on shore areas. Therefore, it is required to have test methods to measure the in-place properties of concrete for quality assurance and for the development of durable concrete structures. The maturity method, which defines the strength of a given concrete mix as a function of its age and temperature history, is an approach for quality control for the production of sustainable and durable concrete structures. The unique harsh environmental conditions in Kuwait make it impractical to adopt experiences and empirical equations developed from the maturity methods in other countries. Concrete curing, especially in the early age plays an important role in developing and improving the strength of the structure. This paper investigates the use of maturity method to assess the effectiveness of three different types of curing methods on the compressive and flexural strength development of one high strength concrete mix of 60 MPa produced with silica fume. This maturity approach was used to predict accurately, the concrete compressive and flexural strength at later ages under different curing conditions. Maturity curves were developed for compressive and flexure strengths for a commonly used concrete mix in Kuwait, which was cured using three different curing conditions, including water curing, external spray coating and the use of internal curing compound during concrete mixing. It was observed that the maturity curve developed for the same mix depends on the type of curing conditions. It can be used to predict the concrete strength under different exposure and curing conditions. This study showed that concrete curing with external spray curing method cannot be recommended to use as it failed to aid concrete in reaching accepted values of strength, especially for flexural strength. Using internal curing compound lead to accepted levels of strength when compared with water cuing. Utilization of the developed maturity curves will help contactors and engineers to determine the in-place concrete strength at any time, and under different curing conditions. This will help in deciding the appropriate time to remove the formwork. The reduction in construction time and cost has positive impacts towards sustainable construction.Keywords: curing, durability, maturity, strength
Procedia PDF Downloads 305954 Formulation and Optimization of Topical 5-Fluorouracil Microemulsions Using Central Compisite Design
Authors: Sudhir Kumar, V. R. Sinha
Abstract:
Water in oil topical microemulsions of 5-FU were developed and optimized using face centered central composite design. Topical w/o microemulsion of 5-FU were prepared using sorbitan monooleate (Span 80), polysorbate 80 (Tween 80), with different oils such as oleic acid (OA), triacetin (TA), and isopropyl myristate (IPM). The ternary phase diagrams designated the microemulsion region and face centered central composite design helped in determining the effects of selected variables viz. type of oil, smix ratio and water concentration on responses like drug content, globule size and viscosity of microemulsions. The CCD design exhibited that the factors have statistically significant effects (p<0.01) on the selected responses. The actual responses showed excellent agreement with the predicted values as suggested by the CCD with lower residual standard error. Similarly, the optimized values were found within the range as predicted by the model. Furthermore, other characteristics of microemulsions like pH, conductivity were investigated. For the optimized microemulsion batch, ex-vivo skin flux, skin irritation and retention studies were performed and compared with marketed 5-FU formulation. In ex vivo skin permeation studies, higher skin retention of drug and minimal flux was achieved for optimized microemulsion batch then the marketed cream. Results confirmed the actual responses to be in agreement with predicted ones with least residual standard errors. Controlled release of drug was achieved for the optimized batch with higher skin retention of 5-FU, which can further be utilized for the treatment of many dermatological disorders.Keywords: 5-FU, central composite design, microemulsion, ternanry phase diagram
Procedia PDF Downloads 479953 Urban Block Design's Impact on the Indoor Daylight Quality, Heating and Cooling Loads of Buildings in the Semi-Arid Regions: Duhok City in Kurdistan Region-Iraq as a Case Study
Authors: Kawar Salih
Abstract:
It has been proven that designing sustainable buildings starts from early stages of urban design. The design of urban blocks specifically, is considered as one of the pragmatic strategies of sustainable urbanism. There have been previous studies that focused on the impact of urban block design and regulation on the outdoor thermal comfort in the semi-arid regions. However, no studies have been found that concentrated on that impact on the internal behavior of buildings of those regions specifically the daylight quality and energy performance. Further, most studies on semi-arid regions are focusing only on the cooling load reduction, neglecting the heating load. The study has focused on two parameters of urban block distribution which are the block orientation and the surface-to-volume ratio with the consideration of both heating and cooling loads of buildings. In Duhok (a semi-arid city in Kurdistan region of Iraq), energy consumption and daylight quality of different types of residential blocks have been examined using dynamic simulation. The findings suggest that there is a considerable higher energy load for heating than cooling, contradicting many previous studies about these regions. The results also highlight that the orientation of urban blocks can vary the energy consumption to 8%. Regarding the surface-to-volume ratio (S/V), it was observed that after the twice enlargement of the S/V, the energy consumption increased 15%. Though, the study demonstrates as well that there are opportunities for reducing energy consumption with the increase of the S/V which contradicts many previous research on S/V impacts on energy consumption. These results can help to design urban blocks with the bigger S/V than existing blocks in the city which it can provide better indoor daylight and relatively similar energy consumption.Keywords: blocke orienation, building energy consumption, urban block design, semi-arid regions, surfacet-to-volume ratio
Procedia PDF Downloads 361952 Barrier Membrane Influence Histology of Guided Bone Regenerations: A Systematic Review and Meta-Analysis
Authors: Laura Canagueral-Pellice, Antonio Munar-Frau, Adaia Valls-Ontanon, Joao Carames, Federico Hernandez-Alfaro, Jordi Caballe-Serrano
Abstract:
Objective: Guided bone regeneration (GBR) aims to replace the missing bone with a new structure to achieve long-term stability of rehabilitations. The aim of the present systematic review and meta-analysis is to determine the effect of barrier membranes on histological outcomes after GBR procedures. Moreover, the effect of the grafting material and tissue gain were analyzed. Materials & methods: Two independent reviewers performed an electronic search in Pubmed and Scopus, identifying all eligible publications up to March 2020. Only randomized controlled trials (RCTs) assessing a histological analysis of augmented areas were included. Results: A total of 6 publications were included for the present systematic review. A total of 110 biopsied sites were analysed; 10 corresponded to vertical bone augmentation procedures, whereas 100 analysed horizontal regeneration procedures. A mean tissue gain of 3 ± 1.48mm was obtained for horizontal defects. Histological assessment of new bone formation, residual particle and sub-epithelial connective tissue (SCT) was reported. The four main barrier membranes used were natural collagen membranes, e-PTFE, polylactic resorbable membranes and acellular dermal matrix membranes (AMDG). The analysis demonstrated that resorbable membranes result in higher values of new bone formation and lower values of residual particles and SCT. Xenograft resulted in lower new bone formation compared to allograft; however, no statistically significant differences were observed regarding residual particle and SCT. Overall, regeneration procedures adding autogenous bone, plasma derivate or growth factors achieved in general greater new bone formation and tissue gain. Conclusions: There is limited evidence favoring the effect of a certain type of barrier membrane in GBR. Data needs to be evaluated carefully; however, resorbable membranes are correlated with greater new bone formation values, especially when combined with allograft materials and/or the addition of autogenous bone, platelet reach plasma (PRP) or growth factors in the regeneration area. More studies assessing the histological outcomes of different GBR protocols and procedures testing different biomaterials are needed to maximize the clinical and histological outcomes in bone regeneration science.Keywords: barrier membrane, graft material, guided bone regeneration, implant surgery, histology
Procedia PDF Downloads 152951 An Energy-Balanced Clustering Method on Wireless Sensor Networks
Authors: Yu-Ting Tsai, Chiun-Chieh Hsu, Yu-Chun Chu
Abstract:
In recent years, due to the development of wireless network technology, many researchers have devoted to the study of wireless sensor networks. The applications of wireless sensor network mainly use the sensor nodes to collect the required information, and send the information back to the users. Since the sensed area is difficult to reach, there are many restrictions on the design of the sensor nodes, where the most important restriction is the limited energy of sensor nodes. Because of the limited energy, researchers proposed a number of ways to reduce energy consumption and balance the load of sensor nodes in order to increase the network lifetime. In this paper, we proposed the Energy-Balanced Clustering method with Auxiliary Members on Wireless Sensor Networks(EBCAM)based on the cluster routing. The main purpose is to balance the energy consumption on the sensed area and average the distribution of dead nodes in order to avoid excessive energy consumption because of the increasing in transmission distance. In addition, we use the residual energy and average energy consumption of the nodes within the cluster to choose the cluster heads, use the multi hop transmission method to deliver the data, and dynamically adjust the transmission radius according to the load conditions. Finally, we use the auxiliary cluster members to change the delivering path according to the residual energy of the cluster head in order to its load. Finally, we compare the proposed method with the related algorithms via simulated experiments and then analyze the results. It reveals that the proposed method outperforms other algorithms in the numbers of used rounds and the average energy consumption.Keywords: auxiliary nodes, cluster, load balance, routing algorithm, wireless sensor network
Procedia PDF Downloads 274950 Sound Analysis of Young Broilers Reared under Different Stocking Densities in Intensive Poultry Farming
Authors: Xiaoyang Zhao, Kaiying Wang
Abstract:
The choice of stocking density in poultry farming is a potential way for determining welfare level of poultry. However, it is difficult to measure stocking densities in poultry farming because of a lot of variables such as species, age and weight, feeding way, house structure and geographical location in different broiler houses. A method was proposed in this paper to measure the differences of young broilers reared under different stocking densities by sound analysis. Vocalisations of broilers were recorded and analysed under different stocking densities to identify the relationship between sounds and stocking densities. Recordings were made continuously for three-week-old chickens in order to evaluate the variation of sounds emitted by the animals at the beginning. The experimental trial was carried out in an indoor reared broiler farm; the audio recording procedures lasted for 5 days. Broilers were divided into 5 groups, stocking density treatments were 8/m², 10/m², 12/m² (96birds/pen), 14/m² and 16/m², all conditions including ventilation and feed conditions were kept same except from stocking densities in every group. The recordings and analysis of sounds of chickens were made noninvasively. Sound recordings were manually analysed and labelled using sound analysis software: GoldWave Digital Audio Editor. After sound acquisition process, the Mel Frequency Cepstrum Coefficients (MFCC) was extracted from sound data, and the Support Vector Machine (SVM) was used as an early detector and classifier. This preliminary study, conducted in an indoor reared broiler farm shows that this method can be used to classify sounds of chickens under different densities economically (only a cheap microphone and recorder can be used), the classification accuracy is 85.7%. This method can predict the optimum stocking density of broilers with the complement of animal welfare indicators, animal productive indicators and so on.Keywords: broiler, stocking density, poultry farming, sound monitoring, Mel Frequency Cepstrum Coefficients (MFCC), Support Vector Machine (SVM)
Procedia PDF Downloads 162949 Thermal Comfort Evaluation in an Office Space Based on Pmv-Ppd Model
Authors: Kaoutar Jraida
Abstract:
Growing evidence demonstrates that thermal conditions in office buildings broadly influence productivity of workers. The purpose of this study is to evaluate and analyze the indoor thermal comfort in an office space based on the calculation of predicted mean vote and predicted percentage of dissatisfied (PMV-PPD) model and field survey.Keywords: Office, Predicted Mean Vote (PMV), Percentage People Dissatisfied (PPD), Thermal comfort
Procedia PDF Downloads 195948 Response of Wheat and Lentil to Herbicides Applied in the Preceding Non-Puddled Transplanted Rainy Season Rice
Authors: Taslima Zahan
Abstract:
A field study was done in 2013-14 and 2014-15 by following bio-assay technique to determine the carryover effect of herbicides applied in rainy season rice on growth and yield of two probable succeeding crops of rice viz., wheat and lentil. Rice seedlings were transplanted on strip-tilled non-puddled field, and five herbicides named pyrazosufuron-ethyl, butachlor, orthosulfamuron, butachlor + propanil and 2,4-D amine were applied in rice at their recommended rate and time as eight treatment combinations and compared with one untreated control. Residual effects of those rice herbicides on the succeeding wheat and lentil were examined by following micro-plot bioassay technique. The study revealed that germination of wheat and lentil seeds were not affected by the residue of herbicides applied in the preceding rainy season rice. Shoot length of wheat and lentil seedlings of herbicide treated plots were also non-significantly varied with untreated control plots. Herbicide treated plots of wheat had higher leaf chlorophyll contents over the control plots by 1.8-14.0% on an average while in case of lentil herbicide treated plots had negligible amount of reduction in leaf chlorophyll contents than control plots. Grain yields of wheat and lentil in herbicide treated plots were higher than control plots by 2.8-6.6% and 0.2-10.9%, respectively. Therefore, two-year bioassay study claimed that tested herbicides applied in rainy season rice under strip-tilled non-puddled field had no adverse residual effect on growth and yield of the succeeding wheat and lentil.Keywords: crop sensitivity, herbicide persistence, minimum tillage rice, yield improvement
Procedia PDF Downloads 160947 Fertigation Use in Agriculture and Biosorption of Residual Nitrogen by Soil Microorganisms
Authors: Irina Mikajlo, Jakub Elbl, Helena Dvořáčková, Antonín Kintl, Jindřich Kynický, Martin Brtnický, Jaroslav Záhora
Abstract:
Present work deals with the possible use of fertigation in agriculture and its impact on the availability of mineral nitrogen (Nmin) in topsoil and subsoil horizons. The aim of the present study is to demonstrate the effect of the organic matter presence in fertigation on microbial transformation and availability of mineral nitrogen forms. The main investigation reason is the potential use of pre-treated waste water, as a source of organic carbon (Corg) and residual nutrients (Nmin) for fertigation. Laboratory experiment has been conducted to demonstrate the effect of the arable land fertilization method on the Nmin availability in different depths of the soil with the usage of model experimental containers filled with soil from topsoil and podsoil horizons that were taken from the precise area. Tufted hairgrass (Deschampsia caespitosa) has been chosen as a model plant. The water source protection zone Brezova nad Svitavou has been a research area where significant underground reservoirs of drinking water of the highest quality are located. From the second half of the last century local sources of drinking water show nitrogenous compounds increase that get here almost only from arable lands. Therefore, an attention of the following text focuses on the fate of mineral nitrogen in the complex plant-soil. Research results show that the fertigation application with Corg in a combination with mineral fertilizer can reduce the amount of Nmin leached from topsoil horizon of agricultural soils. In addition, some plants biomass production reduce may occur.Keywords: fertigation, fertilizers, mineral nitrogen, soil microorganisms
Procedia PDF Downloads 352946 Amazonian Native Biomass Residue for Sustainable Development of Isolated Communities
Authors: Bruna C. Brasileiro, José Alberto S. Sá, Brigida R. P. Rocha
Abstract:
The Amazon region development was related to large-scale projects associated with economic cycles. Economic cycles were originated from policies implemented by successive governments that exploited the resources and have not yet been able to improve the local population's quality of life. These implanted development strategies were based on vertical planning centered on State that didn’t know and showed no interest in know the local needs and potentialities. The future of this region is a challenge that depends on a model of development based on human progress associated to intelligent, selective and environmentally safe exploitation of natural resources settled in renewable and no-polluting energy generation sources – a differential factor of attraction of new investments in a context of global energy and environmental crisis. In this process the planning and support of Brazilian State, local government, and selective international partnership are essential. Residual biomass utilization allows the sustainable development by the integration of production chain and energy generation process which could improve employment condition and income of riversides. Therefore, this research discourses how the use of local residual biomass (açaí lumps) could be an important instrument of sustainable development for isolated communities located at Alcobaça Sustainable Development Reserve (SDR), Tucuruí, Pará State, since in this region the energy source more accessible for who can pay are the fossil fuels that reaches about 54% of final energy consumption by the integration between the açaí productive chain and the use of renewable energy source besides it can promote less environmental impact and decrease the use of fossil fuels and carbon dioxide emissions.Keywords: Amazon, biomass, renewable energy, sustainability
Procedia PDF Downloads 304945 Effects of Injector Nozzle Geometry on Spray Atomization Characteristics
Authors: Arya Pirooz
Abstract:
Air and fuel must be mixed correctly so that there is perfect combustion, which calls for fuel atomization by injection. In this study, the effects of different parameters such as number of orifices, length and diameter of orifices, diameter of nozzle sac and the angle of needle seat in injectors were investigated with the use of rate of injection and sac pressure. The unit pump of the OM-457 diesel engine was modelled on Avl-Hydsim. The results illustrate that the sac pressure decreased by 46% when the number of holes were doubled, although the rate of injection had an immense change. Also, the sac pressure increased up to 60% when the diameter of orifices decreased by 40% in spite of the semi-constant injection rate.Keywords: injection, OM-457 engine, nozzle geometry, atomization
Procedia PDF Downloads 502944 The Nutritional Status and the Kidney Function in Older Patients
Authors: Magdalena Barbara Kaziuk, Waldemar Kosiba
Abstract:
Background: Obesity, particularly abdominal type, lead to accelerated progress of atherosclerosis and thus affects the functioning of various human organs. Non-HDL cholesterol includes residual risk of the cardiovascular diseases which persists in patients after achieved recommended level of LDL cholesterol. The maintenance of normal body mass index plays a particularly important role in both the prevention and treatment of chronic diseases. Materials and Methods: The study covered 96 patients (55 females, 42 males, age 66,9 +/-10,2 years). The nutritional status was determined with the Waist to Height Ratio (WHtR) and the Waist to Hip Ratio (WHR). A function of the kidney was evaluated by calculating the estimated glomerular filtration rate (eGFR) using the MDRD formula. Non-high-density lipoprotein cholesterol (non-HDL) is simply the difference between the total cholesterol concentration and the HDL cholesterol concentration. Results: The higher was level of non-HDL cholesterol, the lower eGFR had studied subjects (p<0.001). Significant correlation was found between higher WHtR and lower the eGFR (p=0.002). Also underweight (30% of patient) led to obtaining lower values of eGFR in subjects over 65 years old. The poorer nutrition the lower was glomerular filtration rate. Conclusions: Nutritional statuses of patients have a significant impact on the level of kidney function. Not only accumulated excess fat in the abdominal area, but also its deficiency affects the deterioration in renal filtration. Higher level of non-HDL not only raises the residual risk of the heart disease but also influences on kidney by worsening eGFR. Proper diet in connection with physical activity should lead to achieving good nutrition in these patients and protect their kidney function.Keywords: nutrition, non-HDL cholesterol, glomerular filtration rate, lifestyle
Procedia PDF Downloads 277943 Evaluation of Molasses and Sucrose as Cabohydrate Sources for Biofloc System on Nile Tilapia (Oreochromis niloticus) Performances
Authors: A. M. Nour, M. A. Zaki, E. A. Omer, Nourhan Mohamed
Abstract:
Performances of mixed-sex Nile tilapia (Oreochromis niloticus) fingerlings (11.33 ± 1.78 g /fish) reared under biofloc system developed by molasses and sucrose as carbon sources in indoor fiberglass tanks were evaluated. Six indoor fiberglass tanks (1m 3 each filled with 1000 l of underground fresh water), each was stocked with 2kg fish were used for 14 weeks experimental period. Three experimental groups were designed (each group 2 tanks) as following: 1-control: 20% daily without biofloc, 2-zero water exchange rate with biofloc (molasses as C source) and 3-zero water exchange rate with biofloc (sucrose as C source). Fish in all aquariums were fed on floating feed pellets (30% crude protein, 3 mm in diameter) at a rate of 3% of the actual live fish body, 3 times daily and 6 days a week. Carbohydrate supplementations were applied daily to each tank two hrs, after feeding to maintain the carbon: nitrogen ratio (C: N) ratio 20:1. Fish were reared under continuous aeration by pumping air into the water in the tank bottom using two sandy diffusers and constant temperature between 27.0-28.0 ºC by using electrical heaters for 10 weeks. Criteria's for assessment of water quality parameters, biofloc production and fish growth performances were collected and evaluated. The results showed that total ammonia nitrogen in control group was higher than biofloc groups. The biofloc volumes were 19.13 mg/l and 13.96 mg/l for sucrose and molasses, respectively. Biofloc protein (%), ether extract (%) and gross energy (kcal/100g DM), they were higher in biofloc molasses group than biofloc sucrose group. Tilapia growth performances were significantly higher (P < 0.05) with molasses group than in sucrose and control groups, respectively. The highest feed and nutrient utilization values for protein efficiency ratio (PER), protein productive (PPV%) and energy utilization (EU, %) were higher in molasses group followed by sucrose group and control group respectively.Keywords: biofloc, Nile tilapia, cabohydrates, performances
Procedia PDF Downloads 192942 An Experimental Machine Learning Analysis on Adaptive Thermal Comfort and Energy Management in Hospitals
Authors: Ibrahim Khan, Waqas Khalid
Abstract:
The Healthcare sector is known to consume a higher proportion of total energy consumption in the HVAC market owing to an excessive cooling and heating requirement in maintaining human thermal comfort in indoor conditions, catering to patients undergoing treatment in hospital wards, rooms, and intensive care units. The indoor thermal comfort conditions in selected hospitals of Islamabad, Pakistan, were measured on a real-time basis with the collection of first-hand experimental data using calibrated sensors measuring Ambient Temperature, Wet Bulb Globe Temperature, Relative Humidity, Air Velocity, Light Intensity and CO2 levels. The Experimental data recorded was analyzed in conjunction with the Thermal Comfort Questionnaire Surveys, where the participants, including patients, doctors, nurses, and hospital staff, were assessed based on their thermal sensation, acceptability, preference, and comfort responses. The Recorded Dataset, including experimental and survey-based responses, was further analyzed in the development of a correlation between operative temperature, operative relative humidity, and other measured operative parameters with the predicted mean vote and adaptive predicted mean vote, with the adaptive temperature and adaptive relative humidity estimated using the seasonal data set gathered for both summer – hot and dry, and hot and humid as well as winter – cold and dry, and cold and humid climate conditions. The Machine Learning Logistic Regression Algorithm was incorporated to train the operative experimental data parameters and develop a correlation between patient sensations and the thermal environmental parameters for which a new ML-based adaptive thermal comfort model was proposed and developed in our study. Finally, the accuracy of our model was determined using the K-fold cross-validation.Keywords: predicted mean vote, thermal comfort, energy management, logistic regression, machine learning
Procedia PDF Downloads 63941 Effects of Free-Hanging Horizontal Sound Absorbers on the Cooling Performance of Thermally Activated Building Systems
Authors: L. Marcos Domínguez, Nils Rage, Ongun B. Kazanci, Bjarne W. Olesen
Abstract:
Thermally Activated Building Systems (TABS) have proven to be an energy-efficient solution to provide buildings with an optimal indoor thermal environment. This solution uses the structure of the building to store heat, reduce the peak loads, and decrease the primary energy demand. TABS require the heated or cooled surfaces to be as exposed as possible to the indoor space, but exposing the bare concrete surfaces has a diminishing effect on the acoustic qualities of the spaces in a building. Acoustic solutions capable of providing optimal acoustic comfort and allowing the heat exchange between the TABS and the room are desirable. In this study, the effects of free-hanging units on the cooling performance of TABS and the occupants’ thermal comfort was measured in a full-scale TABS laboratory. Investigations demonstrate that the use of free-hanging sound absorbers are compatible with the performance of TABS and the occupant’s thermal comfort, but an appropriate acoustic design is needed to find the most suitable solution for each case. The results show a reduction of 11% of the cooling performance of the TABS when 43% of the ceiling area is covered with free-hanging horizontal sound absorbers, of 23% for 60% ceiling coverage ratio and of 36% for 80% coverage. Measurements in actual buildings showed an increase of the room operative temperature of 0.3 K when 50% of the ceiling surface is covered with horizontal panels and of 0.8 to 1 K for a 70% coverage ratio. According to numerical simulations using a new TRNSYS Type, the use of comfort ventilation has a considerable influence on the thermal conditions in the room; if the ventilation is removed, then the operative temperature increases by 1.8 K for a 60%-covered ceiling.Keywords: acoustic comfort, concrete core activation, full-scale measurements, thermally activated building systems, TRNSys
Procedia PDF Downloads 328940 A Comparison of Direct Water Injection with Membrane Humidifier for Proton Exchange Membrane Fuel Cells Humification
Authors: Flavien Marteau, Pedro Affonso Nóbrega, Pascal Biwole, Nicolas Autrusson, Iona De Bievre, Christian Beauger
Abstract:
Effective water management is essential for the optimal performance of fuel cells. For this reason, many vehicle systems use a membrane humidifier, a passive device that humidifies the air before the cathode inlet. Although they offer good performance, humidifiers are voluminous, costly, and fragile, hence the desire to find an alternative. Direct water injection could be an option, although this method lacks maturity. It consists of injecting liquid water as a spray in the dry heated air coming out from the compressor. This work focuses on the evaluation of direct water injection and its performance compared to the membrane humidifier selected as a reference. Two architectures were experimentally tested to humidify an industrial 2 kW short stack made up of 20 cells of 150 cm² each. For the reference architecture, the inlet air is humidified with a commercial membrane humidifier. For the direct water injection architecture, a pneumatic nozzle was selected to generate a fine spray in the air flow with a Sauter mean diameter of about 20 μm. Initial performance was compared over the entire range of current based on polarisation curves. Then, the influence of various parameters impacting water management was studied, such as the temperature, the gas stoichiometry, and the water injection flow rate. The experimental results obtained confirm the possibility of humidifying the fuel cell using direct water injection. This study, however shows the limits of this humidification method, the mean cell voltage being significantly lower in some operating conditions with direct water injection than with the membrane humidifier. The voltage drop reaches 30 mV per cell (4 %) at 1 A/cm² (1,8 bara, 80 °C) and increases in more demanding humidification conditions. It is noteworthy that the heat of compression available is not enough to evaporate all the injected liquid water in the case of DWI, resulting in a mix of liquid and vapour water entering the fuel cell, whereas only vapour is present with the humidifier. Variation of the injection flow rate shows that part of the injected water is useless for humidification and seems to cross channels without reaching the membrane. The stack was successfully humidified thanks to direct water injection. Nevertheless, our work shows that its implementation requires substantial adaptations and may reduce the fuel cell stack performance when compared to conventional membrane humidifiers, but opportunities for optimisation have been identified.Keywords: cathode humidification, direct water injection, membrane humidifier, proton exchange membrane fuel cell
Procedia PDF Downloads 44939 Optimization of Assembly and Welding of Complex 3D Structures on the Base of Modeling with Use of Finite Elements Method
Authors: M. N. Zelenin, V. S. Mikhailov, R. P. Zhivotovsky
Abstract:
It is known that residual welding deformations give negative effect to processability and operational quality of welded structures, complicating their assembly and reducing strength. Therefore, selection of optimal technology, ensuring minimum welding deformations, is one of the main goals in developing a technology for manufacturing of welded structures. Through years, JSC SSTC has been developing a theory for estimation of welding deformations and practical activities for reducing and compensating such deformations during welding process. During long time a methodology was used, based on analytic dependence. This methodology allowed defining volumetric changes of metal due to welding heating and subsequent cooling. However, dependences for definition of structures deformations, arising as a result of volumetric changes of metal in the weld area, allowed performing calculations only for simple structures, such as units, flat sections and sections with small curvature. In case of complex 3D structures, estimations on the base of analytic dependences gave significant errors. To eliminate this shortage, it was suggested to use finite elements method for resolving of deformation problem. Here, one shall first calculate volumes of longitudinal and transversal shortenings of welding joints using method of analytic dependences and further, with obtained shortenings, calculate forces, which action is equivalent to the action of active welding stresses. Further, a finite-elements model of the structure is developed and equivalent forces are added to this model. Having results of calculations, an optimal sequence of assembly and welding is selected and special measures to reduce and compensate welding deformations are developed and taken.Keywords: residual welding deformations, longitudinal and transverse shortenings of welding joints, method of analytic dependences, finite elements method
Procedia PDF Downloads 409938 Dengue Virus Infection Rate in Mosquitoes Collected in Thailand Related to Environmental Factors
Authors: Chanya Jetsukontorn
Abstract:
Dengue hemorrhagic fever is the most important Mosquito-borne disease and the major public health problem in Thailand. The most important vector is Aedes aegypti. Environmental factors such as temperature, relative humidity, and biting rate affect dengue virus infection. The most effective measure for prevention is controlling of vector mosquitoes. In addition, surveillance of field-caught mosquitoes is imperative for determining the natural vector and can provide an early warning sign at risk of transmission in an area. In this study, Aedes aegypti mosquitoes were collected in Amphur Muang, Phetchabun Province, Thailand. The mosquitoes were collected in the rainy season and the dry season both indoor and outdoor. During mosquito’s collection, the data of environmental factors such as temperature, humidity and breeding sites were observed and recorded. After identified to species, mosquitoes were pooled according to genus/species, and sampling location. Pools consisted of a maximum of 10 Aedes mosquitoes. 70 pools of 675 Aedes aegypti were screened with RT-PCR for flaviviruses. To confirm individual infection for determining True infection rate, individual mosquitoes which gave positive results of flavivirus detection were tested for dengue virus by RT-PCR. The infection rate was 5.93% (4 positive individuals from 675 mosquitoes). The probability to detect dengue virus in mosquitoes at the neighbour’s houses was 1.25 times, especially where distances between neighboring houses and patient’s houses were less than 50 meters. The relative humidity in dengue-infected villages with dengue-infected mosquitoes was significantly higher than villages that free from dengue-infected mosquitoes. Indoor biting rate of Aedes aegypti was 14.87 times higher than outdoor, and biting times of 09.00-10.00, 10.00-11.00, 11.00-12.00 yielded 1.77, 1.46, 0.68mosquitoes/man-hour, respectively. These findings confirm environmental factors were related to Dengue infection in Thailand. Data obtained from this study will be useful for the prevention and control of the diseases.Keywords: Aedes aegypti, Dengue virus, environmental factors, one health, PCR
Procedia PDF Downloads 145937 Building on Previous Microvalving Approaches for Highly Reliable Actuation in Centrifugal Microfluidic Platforms
Authors: Ivan Maguire, Ciprian Briciu, Alan Barrett, Dara Kervick, Jens Ducrèe, Fiona Regan
Abstract:
With the ever-increasing myriad of applications of which microfluidic devices are capable, reliable fluidic actuation development has remained fundamental to the success of these microfluidic platforms. There are a number of approaches which can be taken in order to integrate liquid actuation on microfluidic platforms, which can usually be split into two primary categories; active microvalves and passive microvalves. Active microvalves are microfluidic valves which require a physical parameter change by external, or separate interaction, for actuation to occur. Passive microvalves are microfluidic valves which don’t require external interaction for actuation due to the valve’s natural physical parameters, which can be overcome through sample interaction. The purpose of this paper is to illustrate how further improvements to past microvalve solutions can largely enhance systematic reliability and performance, with both novel active and passive microvalves demonstrated. Covered within this scope will be two alternative and novel microvalve solutions for centrifugal microfluidic platforms; a revamped pneumatic-dissolvable film active microvalve (PAM) strategy and a spray-on Sol-Gel based hydrophobic passive microvalve (HPM) approach. Both the PAM and the HPM mechanisms were demonstrated on a centrifugal microfluidic platform consisting of alternating layers of 1.5 mm poly(methyl methacrylate) (PMMA) (for reagent storage) sheets and ~150 μm pressure sensitive adhesive (PSA) (for microchannel fabrication) sheets. The PAM approach differs from previous SOLUBON™ dissolvable film methods by introducing a more reliable and predictable liquid delivery mechanism to microvalve site, thus significantly reducing premature activation. This approach has also shown excellent synchronicity when performed in a multiplexed form. The HPM method utilises a new spray-on and low curing temperature (70°C) sol-gel material. The resultant double layer coating comprises a PMMA adherent sol-gel as the bottom layer and an ultra hydrophobic silica nano-particles (SNPs) film as the top layer. The optimal coating was integrated to microfluidic channels with varying cross-sectional area for assessing microvalve burst frequencies consistency. It is hoped that these microvalving solutions, which can be easily added to centrifugal microfluidic platforms, will significantly improve automation reliability.Keywords: centrifugal microfluidics, hydrophobic microvalves, lab-on-a-disc, pneumatic microvalves
Procedia PDF Downloads 188936 Studies on the Characterization and Machinability of Duplex Stainless Steel 2205 during Dry Turning
Authors: Gaurav D. Sonawane, Vikas G. Sargade
Abstract:
The present investigation is a study of the effect of advanced Physical Vapor Deposition (PVD) coatings on cutting temperature residual stresses and surface roughness during Duplex Stainless Steel (DSS) 2205 turning. Austenite stabilizers like nickel, manganese, and molybdenum reduced the cost of DSS. Surface Integrity (SI) plays an important role in determining corrosion resistance and fatigue life. Resistance to various types of corrosion makes DSS suitable for applications with critical environments like Heat exchangers, Desalination plants, Seawater pipes and Marine components. However, lower thermal conductivity, poor chip control and non-uniform tool wear make DSS very difficult to machine. Cemented carbide tools (M grade) were used to turn DSS in a dry environment. AlTiN and AlTiCrN coatings were deposited using advanced PVD High Pulse Impulse Magnetron Sputtering (HiPIMS) technique. Experiments were conducted with cutting speed of 100 m/min, 140 m/min and 180 m/min. A constant feed and depth of cut of 0.18 mm/rev and 0.8 mm were used, respectively. AlTiCrN coated tools followed by AlTiN coated tools outperformed uncoated tools due to properties like lower thermal conductivity, higher adhesion strength and hardness. Residual stresses were found to be compressive for all the tools used for dry turning, increasing the fatigue life of the machined component. Higher cutting temperatures were observed for coated tools due to its lower thermal conductivity, which results in very less tool wear than uncoated tools. Surface roughness with uncoated tools was found to be three times higher than coated tools due to lower coefficient of friction of coating used.Keywords: cutting temperature, DSS2205, dry turning, HiPIMS, surface integrity
Procedia PDF Downloads 134935 Physical Exertion and Fatigue: A Breakthrough in Choking Sphere
Authors: R. Maher, D. Marchant, F. Fazel
Abstract:
Choking in sport has been defined as ‘an acute performance breakdown’, and is generally explained through a range of contributory antecedents, factors, and explanatory theories. The influence of mental antecedents on an athlete’s performance under pressure has been widely examined through numerous studies. Researchers have only recently begun to investigate the influence of physical effort and associated residual fatigue as a potential contributor to choking in sport. Consequently, the initial aim of the present study was to examine the extent to which both physical exertion and pressure affect free-throw shooting performance. It was hypothesized that the free-throw shooting scores would decline under manipulated conditions. Design and Methods: Using a within-subjects design, 50 student-athletes were assigned to four manipulated conditions: (a) higher pressure-running, (b) higher pressure-no running, (c) lower pressure-running, and (d) lower pressure-no running. The physical exertion was manipulated by including a 56 meter shuttle-run in two of the running conditions. The pressure was manipulated with the presence of an audience, video-recording, performance contingent rewards, and weighting successful shots in the higher pressure conditions. A repeated measure analysis of variance was used to analyse the data. Results: The free-throw performance significantly deteriorated under manipulated physical exertion F (1, 49) = 10.13, p = .003, ηp 2 = .17 and pressure conditions F (1, 49) = 5.25, p = .02, ηp 2 = .09. The lowest free-throw scores were observed in the higher pressure-running condition, whereas the highest free-throw scores were reported in the lower pressure-no running condition. Conclusions: Physical exertion and the associated residual fatigue were contributors to choking. The results of the present study herald a new concept in choking research and yield a practical platform for use by athletes, coaches, and sport psychologists to better manage the psychological and physiological aspects of performance under pressure.Keywords: anxiety, basketball, choking, fatigue, free-throw shooting, physical exertion
Procedia PDF Downloads 286934 Development of Surface Modification Technology for Control Element Drive Mechanism Nozzle and Fatigue Enhancement of Ni-Based Alloys
Authors: Auezhan Amanov, Inho Cho, Young-Sik Pyun
Abstract:
Control element drive mechanism (CEDM) nozzle is manufactured as welded on the reactor vessel and currently uses Alloy 690 material. The top of the reactor is equipped with about 100 CEDM nozzles with an internal diameter of about 70 mm. Relatively large Inlet/Outlet nozzles are equipped with two outlet nozzles and four inlet nozzles on the reactor wall. The inner diameter of the nozzle is vulnerable to stress corrosion cracking (SCC), and in order to solve this problem, an ultrasonic nanocrystal surface modification (UNSM) treatment is performed on the inner diameter of the nozzle and the weld surface. The ultimate goal is to improve the service life of parts by applying compressive residual stress and suppressing primary water stress corrosion cracking (PWSCC). The main purpose is to design and fabricate a UNSM treatment device for the internal diameter processing of CEDM nozzles and inlet/outlet nozzles. In order to develop the system, the basic technology such as the development of UNSM tooling is developed and the mechanical properties and fatigue performance of before and after UNSM treatment of reactor nozzle material made of Ni-based alloys using the specimen are compared and evaluated. The inner diameter of the nozzle was treated by a newly developed UNSM treatment under the optimized treatment parameters. It was found that the mechanical properties and fatigue performance of nozzle were improved in comparison with the untreated nozzle, which may be attributed to the increase in hardness, induced compressive residual stress.Keywords: control element drive mechanism nozzle, fatigue, Ni-based alloy, ultrasonic nanocrystal surface modification, UNSM
Procedia PDF Downloads 111933 Study on the Mechanism of CO₂-Viscoelastic Fluid Synergistic Oil Displacement in Tight Sandstone Reservoirs
Authors: Long Long Chen, Xinwei Liao, Shanfa Tang, Shaojing Jiang, Ruijia Tang, Rui Wang, Shu Yun Feng, Si Yao Wang
Abstract:
Tight oil reservoirs have poor physical properties, insufficient formation energy, and low natural productivity; it is necessary to effectively improve their crude oil recovery. CO₂ flooding is an important technical means to enhance oil recovery and achieve effective CO₂ storage in tight oil reservoirs, but its heterogeneity is strong, which makes CO₂ flooding prone to gas channeling and poor recovery. Aiming at the problem of gas injection channeling, combined with the excellent performance of low interfacial tension viscoelastic fluid (GOBTK), the research on CO₂-low interfacial tension viscoelastic fluid synergistic oil displacement in tight reservoirs was carried out, and the synergy of CO₂ and low interfacial tension viscoelastic fluid was discussed. Oil displacement mechanism. Experiments show that GOBTK has good injectability in tight oil reservoirs (Kg=0.141~0.793mD); CO₂-0.4% GOBTK synergistic flooding can improve the recovery factor of low permeability layers (31.41%) under heterogeneous (gradient difference of 10) conditions the) effect is better than that of CO₂ flooding (0.56%) and 0.4% GOBT-water flooding (20.99%); CO₂-GOBT synergistic oil displacement mechanism includes: 1) The formation of CO₂ foam increases the flow resistance of viscoelastic fluid, forcing the displacement fluid to flow 2) GOBTK can emulsify and disperse residual oil into small oil droplets, and smoothly pass through narrow pores to produce; 3) CO₂ dissolved in GOBTK synergistically enhances the water wettability of the core, and the use of viscosity Elastomeric fluid injection and stripping of residual oil; 4) CO₂-GOBTK synergy superimposes multiple mechanisms, effectively improving the swept volume and oil washing efficiency of the injected fluid to the reservoir.Keywords: tight oil reservoir, CO₂ flooding, low interfacial tension viscoelastic fluid flooding, synergistic oil displacement, EOR mechanism
Procedia PDF Downloads 183932 Shear Strength Envelope Characteristics of LimeTreated Clays
Authors: Mohammad Moridzadeh, Gholamreza Mesri
Abstract:
The effectiveness of lime treatment of soils has been commonly evaluated in terms of improved workability and increased undrained unconfined compressive strength in connection to road and airfield construction. The most common method of strength measurement has been the unconfined compression test. However, if the objective of lime treatment is to improve long-term stability of first-time or reactivated landslides in stiff clays and shales, permanent changes in the size and shape of clay particles must be realized to increase drained frictional resistance. Lime-soil interactions that may produce less platy and larger soil particles begin and continue with time under the highly alkaline pH environment. In this research, pH measurements are used to monitor chemical environment and progress of reactions. Atterberg limits are measured to identify changes in particle size and shape indirectly. Also, fully softened and residual strength measurements are used to examine an improvement in frictional resistance due to lime-soil interactions. The main variables are soil plasticity and mineralogy, lime content, water content, and curing period. Lime effect on frictional resistance is examined using samples of clays with different mineralogy and characteristics which may react with lime to various extents. Drained direct shear tests on reconstituted lime-treated clay specimens with various properties have been performed to measure fully softened shear strength. To measure residual shear strength, drained multiple reversal direct shear tests on precut specimens were conducted. This way, soil particles are oriented along the direction of shearing to the maximum possible extent and provide minimum frictional resistance. This is applicable to reactivated and part of first-time landslides. The Brenna clay, which is the highly plastic lacustrine clay of Lake Agassiz causing slope instability along the banks of the Red River, is one of the soil samples used in this study. The Brenna Formation characterized as a uniform, soft to firm, dark grey, glaciolacustrine clay with little or no visible stratification, is full of slickensided surfaces. The major source of sediment for the Brenna Formation was the highly plastic montmorillonitic Pierre Shale bedrock. The other soil used in this study is one of the main sources of slope instability in Harris County Flood Control District (HCFCD), i.e. the Beaumont clay. The shear strengths of untreated and treated clays were obtained under various normal pressures to evaluate the shear envelope nonlinearity.Keywords: Brenna clay, friction resistance, lime treatment, residual
Procedia PDF Downloads 159931 Influence of Distribution of Body Fat on Cholesterol Non-HDL and Its Effect on Kidney Filtration
Authors: Magdalena B. Kaziuk, Waldemar Kosiba
Abstract:
Background: In the XXI century we have to deal with the epidemic of obesity which is important risk factor for the cardiovascular and kidney diseases. Lipo proteins are directly involved in the atherosclerotic process. Non-high-density lipo protein (non-HDL) began following widespread recognition of its superiority over LDL as a measurement of vascular event risk. Non-HDL includes residual risk which persists in patients after achieved recommended level of LDL. Materials and Methods: The study covered 111 patients (52 females, 59 males, age 51,91±14 years), hospitalized on the intern department. Body composition was assessed using the bioimpendance method and anthropometric measurements. Physical activity data were collected during the interview. The nutritional status and the obesity type were determined with the Waist to Height Ratio and the Waist to Hip Ratio. A function of the kidney was evaluated by calculating the estimated glomerular filtration rate (eGFR) using MDRD formula. Non-HDL was calculated as a difference between concentration of the Total and HDL cholesterol. Results: 10% of patients were found to be underweight; 23.9 % had correct body weight; 15,08 % had overweight, while the remaining group had obesity: 51,02 %. People with the android shape have higher non-HDL cholesterol versus with the gynoid shape (p=0.003). The higher was non-HDL, the lower eGFR had studied subjects (p < 0.001). Significant correlation was found between high non-HDL and incorrect dietary habits in patients avoiding eating vegetables, fruits and having low physical activity (p < 0.005). Conclusions: Android type of figure raises the residual risk of the heart disease associated with higher levels of non-HDL. Increasing physical activity in these patients reduces the level of non-HDL. Non-HDL seems to be the best predictor among all cholesterol measures for the cardiovascular events and worsening eGFR.Keywords: obesity, non-HDL cholesterol, glomerular filtration rate, lifestyle
Procedia PDF Downloads 373930 Residual Plastic Deformation Capacity in Reinforced Concrete Beams Subjected to Drop Weight Impact Test
Authors: Morgan Johansson, Joosef Leppanen, Mathias Flansbjer, Fabio Lozano, Josef Makdesi
Abstract:
Concrete is commonly used for protective structures and how impact loading affects different types of concrete structures is an important issue. Often the knowledge gained from static loading is also used in the design of impulse loaded structures. A large plastic deformation capacity is essential to obtain a large energy absorption in an impulse loaded structure. However, the structural response of an impact loaded concrete beam may be very different compared to a statically loaded beam. Consequently, the plastic deformation capacity and failure modes of the concrete structure can be different when subjected to dynamic loads; and hence it is not sure that the observations obtained from static loading are also valid for dynamic loading. The aim of this paper is to investigate the residual plastic deformation capacity in reinforced concrete beams subjected to drop weight impact tests. A test-series consisting of 18 simply supported beams (0.1 x 0.1 x 1.18 m, ρs = 0.7%) with a span length of 1.0 m and subjected to a point load in the beam mid-point, was carried out. 2x6 beams were first subjected to drop weight impact tests, and thereafter statically tested until failure. The drop in weight had a mass of 10 kg and was dropped from 2.5 m or 5.0 m. During the impact tests, a high-speed camera was used with 5 000 fps and for the static tests, a camera was used with 0.5 fps. Digital image correlation (DIC) analyses were conducted and from these the velocities of the beam and the drop weight, as well as the deformations and crack propagation of the beam, were effectively measured. Additionally, for the static tests, the applied load and midspan deformation were measured. The load-deformation relations for the beams subjected to an impact load were compared with 6 reference beams that were subjected to static loading only. The crack pattern obtained were compared using DIC, and it was concluded that the resulting crack formation depended much on the test method used. For the static tests, only bending cracks occurred. For the impact loaded beams, though, distinctive diagonal shear cracks also formed below the zone of impact and less wide shear cracks were observed in the region half-way to the support. Furthermore, due to wave propagation effects, bending cracks developed in the upper part of the beam during initial loading. The results showed that the plastic deformation capacity increased for beams subjected to drop weight impact tests from a high drop height of 5.0 m. For beams subjected to an impact from a low drop height of 2.5 m, though, the plastic deformation capacity was in the same order of magnitude as for the statically loaded reference beams. The beams tested were designed to fail due to bending when subjected to a static load. However, for the impact tested beams, one beam exhibited a shear failure at a significantly reduced load level when it was tested statically; indicating that there might be a risk of reduced residual load capacity for impact loaded structures.Keywords: digital image correlation (DIC), drop weight impact, experiments, plastic deformation capacity, reinforced concrete
Procedia PDF Downloads 148929 Formulation and Invivo Evaluation of Salmeterol Xinafoate Loaded MDI for Asthma Using Response Surface Methodology
Authors: Paresh Patel, Priya Patel, Vaidehi Sorathiya, Navin Sheth
Abstract:
The aim of present work was to fabricate Salmeterol Xinafoate (SX) metered dose inhaler (MDI) for asthma and to evaluate the SX loaded solid lipid nanoparticles (SLNs) for pulmonary delivery. Solid lipid nanoparticles can be used to deliver particles to the lungs via MDI. A modified solvent emulsification diffusion technique was used to prepare Salmeterol Xinafoate loaded solid lipid nanoparticles by using compritol 888 ATO as lipid, tween 80 as surfactant, D-mannitol as cryoprotecting agent and L-leucine was used to improve aerosolization behaviour. Box-Behnken design was applied with 17 runs. 3-D surface response plots and contour plots were drawn and optimized formulation was selected based on minimum particle size and maximum % EE. % yield, in vitro diffusion study, scanning electron microscopy, X-ray diffraction, DSC, FTIR also characterized. Particle size, zeta potential analyzed by Zetatrac particle size analyzer and aerodynamic properties was carried out by cascade impactor. Pre convulsion time was examined for control group, treatment group and compare with marketed group. MDI was evaluated for leakage test, flammability test, spray test and content per puff. By experimental design, particle size and % EE found to be in range between 119-337 nm and 62.04-76.77% by solvent emulsification diffusion technique. Morphologically, particles have spherical shape and uniform distribution. DSC & FTIR study showed that no interaction between drug and excipients. Zeta potential shows good stability of SLNs. % respirable fraction found to be 52.78% indicating reach to the deep part of lung such as alveoli. Animal study showed that fabricated MDI protect the lungs against histamine induced bronchospasm in guinea pigs. MDI showed sphericity of particle in spray pattern, 96.34% content per puff and non-flammable. SLNs prepared by Solvent emulsification diffusion technique provide desirable size for deposition into the alveoli. This delivery platform opens up a wide range of treatment application of pulmonary disease like asthma via solid lipid nanoparticles.Keywords: salmeterol xinafoate, solid lipid nanoparticles, box-behnken design, solvent emulsification diffusion technique, pulmonary delivery
Procedia PDF Downloads 451928 Experimental Study of Complete Loss of Coolant Flow (CLOF) Test by System–Integrated Modular Advanced Reactor Integral Test Loop (SMART-ITL) with Passive Residual Heat Removal System (PRHRS)
Authors: Jin Hwa Yang, Hwang Bae, Sung Uk Ryu, Byong Guk Jeon, Sung Jae Yi, Hyun Sik Park
Abstract:
Experimental studies using a large-scale thermal-hydraulic integral test facility, System–integrated Modular Advanced Reactor Integral Test Loop (SMART-ITL), have been carried out to validate the performance of the prototype, SMART. After Fukushima accident, the passive safety systems have been dealt as important designs for retaining of nuclear safety. One of the concerned scenarios for evaluating the passive safety system is a Complete Loss of Coolant Flow (CLOF). The flowrate of coolant in the primary system is maintained by Reactor Coolant Pump (RCP). When the supply of electric power of RCP is shut off, the flowrate of coolant decreases sharply, and the temperature of the coolant increases rapidly. Therefore, the reactor trip signal is activated to prevent the over-heating of the core. In this situation, Passive Residual Heat Removal System (PRHRS) plays a significant role to assure the soundness of the SMART. The PRHRS using a two-phase natural circulation is a passive safety system in the SMART to eliminate the heat of steam generator in the secondary system with heat exchanger submarined in the Emergency Cooling Tank (ECT). As the RCPs continue to coast down, inherent natural circulation in the primary system transfers heat to the secondary system. The transferred heat is removed by PRHRS in the secondary system. In this paper, the progress of the CLOF accident is described with experimental data of transient condition performed by SMART-ITL. Finally, the capability of passive safety system and inherent natural circulation will be evaluated.Keywords: CLOF, natural circulation, PRHRS, SMART-ITL
Procedia PDF Downloads 438