Search results for: harmonic forces
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1517

Search results for: harmonic forces

917 Research of Interaction between Layers of Compressed Composite Columns

Authors: Daumantas Zidanavicius

Abstract:

In order to investigate the bond between concrete and steel in the circular steel tube column filled with concrete, the 7 series of specimens were tested with the same geometrical parameters but different concrete properties. Two types of specimens were chosen. For the first type, the expansive additives to the concrete mixture were taken to increase internal forces. And for the second type, mechanical components were used. All 7 series of the short columns were modeled by FEM and tested experimentally. In the work, big attention was taken to the bond-slip models between steel and concrete. Results show that additives to concrete let increase the bond strength up to two times and the mechanical anchorage –up to 6 times compared to control specimens without additives and anchorage.

Keywords: concrete filled steel tube, push-out test, bond slip relationship, bond stress distribution

Procedia PDF Downloads 121
916 Daily Probability Model of Storm Events in Peninsular Malaysia

Authors: Mohd Aftar Abu Bakar, Noratiqah Mohd Ariff, Abdul Aziz Jemain

Abstract:

Storm Event Analysis (SEA) provides a method to define rainfalls events as storms where each storm has its own amount and duration. By modelling daily probability of different types of storms, the onset, offset and cycle of rainfall seasons can be determined and investigated. Furthermore, researchers from the field of meteorology will be able to study the dynamical characteristics of rainfalls and make predictions for future reference. In this study, four categories of storms; short, intermediate, long and very long storms; are introduced based on the length of storm duration. Daily probability models of storms are built for these four categories of storms in Peninsular Malaysia. The models are constructed by using Bernoulli distribution and by applying linear regression on the first Fourier harmonic equation. From the models obtained, it is found that daily probability of storms at the Eastern part of Peninsular Malaysia shows a unimodal pattern with high probability of rain beginning at the end of the year and lasting until early the next year. This is very likely due to the Northeast monsoon season which occurs from November to March every year. Meanwhile, short and intermediate storms at other regions of Peninsular Malaysia experience a bimodal cycle due to the two inter-monsoon seasons. Overall, these models indicate that Peninsular Malaysia can be divided into four distinct regions based on the daily pattern for the probability of various storm events.

Keywords: daily probability model, monsoon seasons, regions, storm events

Procedia PDF Downloads 337
915 Highly Concentrated Photo Voltaic using Multi-Junction Concentrator Cell

Authors: Oriahi Love Ndidi

Abstract:

High concentration photovoltaic promises a more efficient, higher power output than traditional photovoltaic modules. One of the driving forces of this high system efficiency has been the continuous improvement of III-V multi-junction solar cell efficiencies. Multi-junction solar cells built from III-V semiconductors are being evaluated globally in concentrated photovoltaic systems designed to supplement electricity generation for utility companies. The high efficiency of this III-V multi-junction concentrator cells, with demonstrated efficiency over 40 percent since 2006, strongly reduces the cost of concentrated photovoltaic systems, and makes III-V multi-junction cells the technology of choice for most concentrator systems today.

Keywords: cost of multi-junction solar cell, efficiency, photovoltaic systems, reliability

Procedia PDF Downloads 717
914 Thrust Vectoring Control of Supersonic Flow through an Orifice Injector

Authors: I. Mnafeg, A. Abichou, L. Beji

Abstract:

Traditional mechanical control systems in thrust vectoring are efficient in rocket thrust guidance but their costs and their weights are excessive. The fluidic injection in the nozzle divergent constitutes an alternative procedure to achieve the goal. In this paper, we present a 3D analytical model for fluidic injection in a supersonic nozzle integrating an orifice. The fluidic vectoring uses a sonic secondary injection in the divergent. As a result, the flow and interaction between the main and secondary jet has built in order to express the pressure fields from which the forces and thrust vectoring are deduced. Under various separation criteria, the present analytical model results are compared with the existing numerical and experimental data from the literature.

Keywords: flow separation, fluidic thrust vectoring, nozzle, secondary jet, shock wave

Procedia PDF Downloads 291
913 A Molding Surface Auto-inspection System

Authors: Ssu-Han Chen, Der-Baau Perng

Abstract:

Molding process in IC manufacturing secures chips against the harms done by hot, moisture or other external forces. While a chip was being molded, defects like cracks, dilapidation, or voids may be embedding on the molding surface. The molding surfaces the study poises to treat and the ones on the market, though, differ in the surface where texture similar to defects is everywhere. Manual inspection usually passes over low-contrast cracks or voids; hence an automatic optical inspection system for molding surface is necessary. The proposed system is consisted of a CCD, a coaxial light, a back light as well as a motion control unit. Based on the property of statistical textures of the molding surface, a series of digital image processing and classification procedure is carried out. After training of the parameter associated with above algorithm, result of the experiment suggests that the accuracy rate is up to 93.75%, contributing to the inspection quality of IC molding surface.

Keywords: molding surface, machine vision, statistical texture, discrete Fourier transformation

Procedia PDF Downloads 425
912 Fusing Mentorship, Leadership and Empowerment Among Young Women In STEM

Authors: Anne Bubriski

Abstract:

Despite improvements in gender inequalities, women and girls continue to face glass ceilings, underrepresentation, and harmful stereotypes that can limit their aspirations and opportunities in STEM. While girls are taking similar high school math and science classes, boys are more likely to take physics and six times more likely to take an engineering course. The gap becomes even larger for minority or low-income girls. This gender gap is not due to biology; rather, it is due to cultural, social, and institutional forces. As girls get older, these forces often ‘teach’ them ‘STEM is more for boys’. The STEM gender gap widens in college, with only 20% of engineering degrees being awarded to women, and by the time women enter the workforce, they only occupy about 13% of engineering jobs. At the University of Central Florida, the Women’s and Gender Studies Program has developed a unique mentoring program to address these issues, Science Leadership and Mentoring (SLAM). What is unique about the approach of SLAM is that we look to address this problem through leadership and STEM. We look to help girls make connections between leadership and STEM—that young women can be leaders as scientists and that scientists are leaders making a change. This is particularly needed and relevant to our community because while there are mentoring programs to our knowledge, SLAM is one of the only, if not only, mentoring programs pairing college women and 7th-grade girls that includes a focus both on STEM and leadership in the United States. SLAM is a curriculum-based mentoring program pairing one 7th-grade girl with one UCF undergraduate STEM major. SLAM empowers young women to be assertive, brave, confident, independent, inquisitive and proud leaders in STEM. SLAM seeks to promote young women’s inspiration and excitement into STEM fields and careers while also building leadership abilities such as problem-solving, teamwork and cooperation, cultural identity and ethnic pride, advocacy for positive change, and goals for the future. SLAM serves about fifteen 7th-grade girls for the academic year and about 20 UCF students. SLAM holds weekly mentoring meetings lasting about 90 minutes, covering topics on leadership, STEM majors and careers, and STEM leadership. This past year, SLAM received a Community Action Grant from the American Association of University Women (AAUW) to run a sub-program, SLAM-Space. SLAM-Space focused on exposing SLAM participants to aerospace engineering and other space-related STEM fields, such as physics and astronomy, through guest speakers, workshops and field trips, including the Kenndy Space Center. The proposed paper presentation will present an overview of SLAM-Space and the data findings from pre and post-surveys, in-depth interviews and focus groups from the SLAM participants' experiences in the program.

Keywords: gender, leadership, STEM, empowerment

Procedia PDF Downloads 34
911 Development and Implementation of Curvature Dependent Force Correction Algorithm for the Planning of Forced Controlled Robotic Grinding

Authors: Aiman Alshare, Sahar Qaadan

Abstract:

A curvature dependent force correction algorithm for planning force controlled grinding process with off-line programming flexibility is designed for ABB industrial robot, in order to avoid the manual interface during the process. The machining path utilizes a spline curve fit that is constructed from the CAD data of the workpiece. The fitted spline has a continuity of the second order to assure path smoothness. The implemented algorithm computes uniform forces normal to the grinding surface of the workpiece, by constructing a curvature path in the spatial coordinates using the spline method.

Keywords: ABB industrial robot, grinding process, offline programming, CAD data extraction, force correction algorithm

Procedia PDF Downloads 354
910 Bypassing Docker Transport Layer Security Using Remote Code Execution

Authors: Michael J. Hahn

Abstract:

Docker is a powerful tool used by many companies such as PayPal, MetLife, Expedia, Visa, and many others. Docker works by bundling multiple applications, binaries, and libraries together on top of an operating system image called a container. The container runs on a Docker engine that in turn runs on top of a standard operating system. This centralization saves a lot of system resources. In this paper, we will be demonstrating how to bypass Transport Layer Security and execute remote code within Docker containers built on a base image of Alpine Linux version 3.7.0 through the use of .apk files due to flaws in the Alpine Linux package management program. This exploit renders any applications built using Docker with a base image of Alpine Linux vulnerable to unwanted outside forces.

Keywords: cloud, cryptography, Docker, Linux, security

Procedia PDF Downloads 189
909 Enhancement of Tribological Behavior for Diesel Engine Piston of Solid Skirt by an Optimal Choice of Interface Material

Authors: M. Amara, M. Tahar Abbes, A. Dokkiche, M. Benbrike

Abstract:

Shear stresses generate frictional forces thus lead to the reduction of engine performance due to the power losses. This friction can also cause damage to the piston material. Thus, the choice of an optimal material for the piston is necessary to improve the elastohydrodynamical contacts of the piston. In this study, to achieve this objective, an elastohydrodynamical lubrication model that satisfies the best tribological behavior of the piston with the optimum choice of material is developed. Several aluminum alloys composed of different components are studied in this simulation. An application is made on the piston 60 x 120 mm Diesel engine type F8L413 currently mounted on Deutz trucks TB230 by using different aluminum alloys where alloys based on aluminum-silicon have better tribological performance.

Keywords: EHD lubricated contacts, friction, properties of materials, tribological performance

Procedia PDF Downloads 263
908 3D Modelling and Numerical Analysis of Human Inner Ear by Means of Finite Elements Method

Authors: C. Castro-Egler, A. Durán-Escalante, A. García-González

Abstract:

This paper presents a method to generate a finite element model of the human auditory inner ear system. The geometric model has been realized using 2D images from a virtual model of temporal bones. A point cloud has been gotten manually from those images to construct a whole mesh with hexahedral elements. The main difference with the predecessor models is the spiral shape of the cochlea with its three scales completely defined: scala tympani, scala media and scala vestibuli; which are separate by basilar membrane and Reissner membrane. To validate this model, numerical simulations have been realised with two models: an isolated inner ear and a whole model of human auditory system. Ideal conditions of displacement are applied over the oval window in the isolated Inner Ear model. The whole model is made up of the outer auditory channel, the tympani, the ossicular chain, and the inner ear. The boundary condition for the whole model is 1Pa over the auditory channel entrance. The numerical simulations by FEM have been done using a harmonic analysis with a frequency range between 100-10.000 Hz with an interval of 100Hz. The following results have been carried out: basilar membrane displacement; the scala media pressure according to the cochlea length and the transfer function of the middle ear normalized with the pressure in the tympanic membrane. The basilar membrane displacements and the pressure in the scala media make it possible to validate the response in frequency of the basilar membrane.

Keywords: finite elements method, human auditory system model, numerical analysis, 3D modelling cochlea

Procedia PDF Downloads 358
907 Artificial Neural Networks and Geographic Information Systems for Coastal Erosion Prediction

Authors: Angeliki Peponi, Paulo Morgado, Jorge Trindade

Abstract:

Artificial Neural Networks (ANNs) and Geographic Information Systems (GIS) are applied as a robust tool for modeling and forecasting the erosion changes in Costa Caparica, Lisbon, Portugal, for 2021. ANNs present noteworthy advantages compared with other methods used for prediction and decision making in urban coastal areas. Multilayer perceptron type of ANNs was used. Sensitivity analysis was conducted on natural and social forces and dynamic relations in the dune-beach system of the study area. Variations in network’s parameters were performed in order to select the optimum topology of the network. The developed methodology appears fitted to reality; however further steps would make it better suited.

Keywords: artificial neural networks, backpropagation, coastal urban zones, erosion prediction

Procedia PDF Downloads 382
906 The Role of Physically Adsorbing Species of Oxyhydryl Reagents in Flotation Aggregate Formation

Authors: S. A. Kondratyev, O. I. Ibragimova

Abstract:

The authors discuss the collecting abilities of desorbable species (DS) of saturated fatty acids. The DS species of the reagent are understood as species capable of moving from the surface of the mineral particle to the bubble at the moment of the rupture of the interlayer of liquid separating these objects of interaction. DS species of carboxylic acids (molecules and ionic-molecular complexes) have the ability to spread over the surface of the bubble. The rate of their spreading at pH 7 and 10 over the water surface is determined. The collectibility criterion of saturated fatty acids is proposed. The values of forces exerted by the spreading DS species of reagents on liquid in the interlayer and the liquid flow rate from the interlayer are determined.

Keywords: criterion of action of physically adsorbed reagent, flotation, saturated fatty acids, surface pressure

Procedia PDF Downloads 215
905 Computational Fluid Dynamics (CFD) Calculations of the Wind Turbine with an Adjustable Working Surface

Authors: Zdzislaw Kaminski, Zbigniew Czyz, Krzysztof Skiba

Abstract:

This paper discusses the CFD simulation of a flow around a rotor of a Vertical Axis Wind Turbine. Numerical simulation, unlike experiments, enables us to validate project assumptions when it is designed and avoid a costly preparation of a model or a prototype for a bench test. CFD simulation enables us to compare characteristics of aerodynamic forces acting on rotor working surfaces and define operational parameters like torque or power generated by a turbine assembly. This research focused on the rotor with the blades capable of modifying their working surfaces, i.e. absorbing wind kinetic energy. The operation of this rotor is based on adjusting angular aperture α of the top and bottom parts of the blades mounted on an axis. If this angular aperture α increases, the working surface which absorbs wind kinetic energy also increases. The operation of turbines is characterized by parameters like the angular aperture of blades, power, torque, speed for a given wind speed. These parameters have an impact on the efficiency of assemblies. The distribution of forces acting on the working surfaces in our turbine changes according to the angular velocity of the rotor. Moreover, the resultant force from the force acting on an advancing blade and retreating blade should be as high as possible. This paper is part of the research to improve an efficiency of a rotor assembly. Therefore, using simulation, the courses of the above parameters were studied in three full rotations individually for each of the blades for three angular apertures of blade working surfaces, i.e. 30 °, 60 °, 90 °, at three wind speeds, i.e. 4 m / s, 6 m / s, 8 m / s and rotor speeds ranging from 100 to 500 rpm. Finally, there were created the characteristics of torque coefficients and power as a function of time for each blade separately and for the entire rotor. Accordingly, the correlation between the turbine rotor power as a function of wind speed for varied values of rotor rotational speed. By processing this data, the correlation between the power of the turbine rotor and its rotational speed for each of the angular aperture of the working surfaces was specified. Finally, the optimal values, i.e. of the highest output power for given wind speeds were read. The research results in receiving the basic characteristics of turbine rotor power as a function of wind speed for the three angular apertures of the blades. Given the nature of rotor operation, the growth in the output turbine can be estimated if angular aperture of the blades increases. The controlled adjustment of angle α enables a smooth adjustment of power generated by a turbine rotor. If wind speed is significant, this type of adjustment enables this output power to remain at the same level (by reducing angle α) with no risk of damaging a construction. This work has been financed by the Polish Ministry of Science and Higher Education.

Keywords: computational fluid dynamics, numerical analysis, renewable energy, wind turbine

Procedia PDF Downloads 212
904 Critical Realism as a Bridge between Critical Pedagogy and Queer Theory

Authors: Mike Seal

Abstract:

This paper explores the traditions of critical and queer pedagogy, its intersections, tensions and paradoxes. Critical pedagogy, with a materialist realist ontology, and queer theory, which is often post-modern, post-structural and anti-essential, may not seem compatible. Similarly, there are tensions between activist orientations, often enacted through essential sexual identities, and a queer approach that questions such identities and subjectivities. It will argue that critical realism gives us a bridge between critical and queer pedagogy in preserving a realist materialist ontology, where economic forces are real, and independent of consciousness and hermeneutic constructions of them. At the same time, it offers an epistemology that does not necessitate a binary view of the roles of the oppressed, liberator, or even oppressor. It accepts that our knowledge is contingent, partial and contestable, but has the potential, and enough validity, to demand action and potentially inform the actions of others.

Keywords: critical pedagogy, queer pedagogy, critical realsim, heteronormativity

Procedia PDF Downloads 187
903 Copper Complexe Derivative of Chalcone: Synthesis, Characterization, Electrochemical Properties and XRD/Hirschfeld Surface

Authors: Salima Tabti, Amel Djedouani., Djouhra Aggoun, Ismail Warad

Abstract:

The reaction of copper (II) with 4-hydroxy-3-[(2E)-3-(1H-indol-3-yl)prop-2-enoyl]-6-methyl-2H-pyran-2-one (HL) lead to a new complexe: Cu(L)₂(DMF)₂. The crystal structure of the Cu(L)₂(DMF)₂ complex have been determined by X-ray diffraction methods. The Cu(II) lying on an inversion centre is coordinated to six oxygen atoms forming an octahedral elongated. Additionally, the electrochemical behavior of the metal complexe was investigated by cyclic voltammetry at a glassy carbon electrode (GC) in CH₃CN solution, showing the quasi-reversible redox process ascribed to the reduction of the MII/MI couple. The X-ray single crystal structure data of the complex was matched excellently with the optimized monomer structure of the desired compound; Hirschfeld surface analysis supported the packed crystal lattice 3D network intermolecular forces.

Keywords: chalcones, cyclic voltametry, X-ray, Hirschfeld surface

Procedia PDF Downloads 55
902 A Case Study on Tension Drop of Cable-band Bolts in Suspension Bridge

Authors: Sihyun Park, Hyunwoo Kim, Wooyoung Jung, Dongwoo You

Abstract:

Regular maintenance works are very important on the axial forces of the cable-band bolts in suspension bridges. The band bolts show stress reduction for several reasons, including cable wire creep, the bolt relaxation, load fluctuation and cable rearrangements, etc., with time. In this study, with respect to the stress reduction that occurs over time, we carried out the theoretical review of the main cause based on the field measurements. As a result, the main cause of reduction in the cable-band bolt axial force was confirmed by the plastic deformation of the zinc plating layer used in the main cable wire, and thus, the theoretical process was established for the practical use in the field.

Keywords: cable-band Bolts, field test, maintenance, stress reduction

Procedia PDF Downloads 329
901 Optimization of Process Parameters by Using Taguchi Method for Bainitic Steel Machining

Authors: Vinay Patil, Swapnil Kekade, Ashish Supare, Vinayak Pawar, Shital Jadhav, Rajkumar Singh

Abstract:

In recent days, bainitic steel is used in automobile and non-automobile sectors due to its high strength. Bainitic steel is difficult to machine because of its high hardness, hence in this paper machinability of bainitic steel is studied by using Taguchi design of experiments (DOE) approach. Convectional turning experiments were done by using L16 orthogonal array for three input parameters viz. cutting speed, depth of cut and feed. The Taguchi method is applied to study the performance characteristics of machining parameters with surface roughness (Ra), cutting force and tool wear rate. By using Taguchi analysis, optimized process parameters for best surface finish and minimum cutting forces were analyzed.

Keywords: conventional turning, Taguchi method, S/N ratio, bainitic steel machining

Procedia PDF Downloads 327
900 Slope Stability and Landslides Hazard Analysis, Limitations of Existing Approaches, and a New Direction

Authors: Alisawi Alaa T., Collins P. E. F.

Abstract:

The analysis and evaluation of slope stability and landslide hazards are landslide hazards are critically important in civil engineering projects and broader considerations of safety. The level of slope stability risk should be identified due to its significant and direct financial and safety effects. Slope stability hazard analysis is performed considering static and/or dynamic loading circumstances. To reduce and/or prevent the failure hazard caused by landslides, a sophisticated and practical hazard analysis method using advanced constitutive modeling should be developed and linked to an effective solution that corresponds to the specific type of slope stability and landslides failure risk. Previous studies on slope stability analysis methods identify the failure mechanism and its corresponding solution. The commonly used approaches include used approaches include limit equilibrium methods, empirical approaches for rock slopes (e.g., slope mass rating and Q-slope), finite element or finite difference methods, and district element codes. This study presents an overview and evaluation of these analysis techniques. Contemporary source materials are used to examine these various methods on the basis of hypotheses, the factor of safety estimation, soil types, load conditions, and analysis conditions and limitations. Limit equilibrium methods play a key role in assessing the level of slope stability hazard. The slope stability safety level can be defined by identifying the equilibrium of the shear stress and shear strength. The slope is considered stable when the movement resistance forces are greater than those that drive the movement with a factor of safety (ratio of the resistance of the resistance of the driving forces) that is greater than 1.00. However, popular and practical methods, including limit equilibrium approaches, are not effective when the slope experiences complex failure mechanisms, such as progressive failure, liquefaction, internal deformation, or creep. The present study represents the first episode of an ongoing project that involves the identification of the types of landslides hazards, assessment of the level of slope stability hazard, development of a sophisticated and practical hazard analysis method, linkage of the failure type of specific landslides conditions to the appropriate solution and application of an advanced computational method for mapping the slope stability properties in the United Kingdom, and elsewhere through geographical information system (GIS) and inverse distance weighted spatial interpolation(IDW) technique. This study investigates and assesses the different assesses the different analysis and solution techniques to enhance the knowledge on the mechanism of slope stability and landslides hazard analysis and determine the available solutions for each potential landslide failure risk.

Keywords: slope stability, finite element analysis, hazard analysis, landslides hazard

Procedia PDF Downloads 93
899 Kernel Parallelization Equation for Identifying Structures under Unknown and Periodic Loads

Authors: Seyed Sadegh Naseralavi

Abstract:

This paper presents a Kernel parallelization equation for damage identification in structures under unknown periodic excitations. Herein, the dynamic differential equation of the motion of structure is viewed as a mapping from displacements to external forces. Utilizing this viewpoint, a new method for damage detection in structures under periodic loads is presented. The developed method requires only two periods of load. The method detects the damages without finding the input loads. The method is based on the fact that structural displacements under free and forced vibrations are associated with two parallel subspaces in the displacement space. Considering the concept, kernel parallelization equation (KPE) is derived for damage detection under unknown periodic loads. The method is verified for a case study under periodic loads.

Keywords: Kernel, unknown periodic load, damage detection, Kernel parallelization equation

Procedia PDF Downloads 275
898 A Biomechanical Model for the Idiopathic Scoliosis Using the Antalgic-Trak Technology

Authors: Joao Fialho

Abstract:

The mathematical modelling of idiopathic scoliosis has been studied throughout the years. The models presented on those papers are based on the orthotic stabilization of the idiopathic scoliosis, which are based on a transversal force being applied to the human spine on a continuous form. When considering the ATT (Antalgic-Trak Technology) device, the existent models cannot be used, as the type of forces applied are no longer transversal nor applied in a continuous manner. In this device, vertical traction is applied. In this study we propose to model the idiopathic scoliosis, using the ATT (Antalgic-Trak Technology) device, and with the parameters obtained from the mathematical modeling, set up a case-by-case individualized therapy plan, for each patient.

Keywords: idiopathic scoliosis, mathematical modelling, human spine, Antalgic-Trak technology

Procedia PDF Downloads 264
897 Sloshing Response of Liquid in Prismatic Container under Oscillation

Authors: P. R. Maiti, S. K. Bhattacharyya

Abstract:

Sloshing is a physical phenomenon characterized by the oscillation of unrestrained free surface of liquid in a partially liquid filled container subjected to external excitation. Determination of sloshing frequency in container is important to avoid resonance condition of the system. The complex behavior of the free surface movement and its combined mode of vibration make difficulty for exact analysis of sloshing. In the present study, numerical analysis is carried out for a partially liquid filled tank under external forces. Boundary element approach is used to formulate the sloshing problem in two -dimensional prismatic container with potential flow. Effort has been made to find slosh response for two dimensional problems in partially liquid filled prismatic container.

Keywords: sloshing, boundary element method, prismatic container, oscillation

Procedia PDF Downloads 315
896 Exploiting Kinetic and Kinematic Data to Plot Cyclograms for Managing the Rehabilitation Process of BKAs by Applying Neural Networks

Authors: L. Parisi

Abstract:

Kinematic data wisely correlate vector quantities in space to scalar parameters in time to assess the degree of symmetry between the intact limb and the amputated limb with respect to a normal model derived from the gait of control group participants. Furthermore, these particular data allow a doctor to preliminarily evaluate the usefulness of a certain rehabilitation therapy. Kinetic curves allow the analysis of ground reaction forces (GRFs) to assess the appropriateness of human motion. Electromyography (EMG) allows the analysis of the fundamental lower limb force contributions to quantify the level of gait asymmetry. However, the use of this technological tool is expensive and requires patient’s hospitalization. This research work suggests overcoming the above limitations by applying artificial neural networks.

Keywords: kinetics, kinematics, cyclograms, neural networks, transtibial amputation

Procedia PDF Downloads 438
895 Integration of Virtual Learning of Induction Machines for Undergraduates

Authors: Rajesh Kumar, Puneet Aggarwal

Abstract:

In context of understanding problems faced by undergraduate students while carrying out laboratory experiments dealing with high voltages, it was found that most of the students are hesitant to work directly on machine. The reason is that error in the circuitry might lead to deterioration of machine and laboratory instruments. So, it has become inevitable to include modern pedagogic techniques for undergraduate students, which would help them to first carry out experiment in virtual system and then to work on live circuit. Further advantages include that students can try out their intuitive ideas and perform in virtual environment, hence leading to new research and innovations. In this paper, virtual environment used is of MATLAB/Simulink for three-phase induction machines. The performance analysis of three-phase induction machine is carried out using virtual environment which includes Direct Current (DC) Test, No-Load Test, and Block Rotor Test along with speed torque characteristics for different rotor resistances and input voltage, respectively. Further, this paper carries out computer aided teaching of basic Voltage Source Inverter (VSI) drive circuitry. Hence, this paper gave undergraduates a clearer view of experiments performed on virtual machine (No-Load test, Block Rotor test and DC test, respectively). After successful implementation of basic tests, VSI circuitry is implemented, and related harmonic distortion (THD) and Fast Fourier Transform (FFT) of current and voltage waveform are studied.

Keywords: block rotor test, DC test, no load test, virtual environment, voltage source inverter

Procedia PDF Downloads 345
894 Labor Productivity in the Construction Industry: Factors Influencing the Spanish Construction Labor Productivity

Authors: G. Robles, A. Stifi, José L. Ponz-Tienda, S. Gentes

Abstract:

This research paper aims to identify, analyze and rank factors affecting labor productivity in Spain with respect to their relative importance. Using a selected set of 35 factors, a structured questionnaire survey was utilized as the method to collect data from companies. Target population is comprised by a random representative sample of practitioners related with the Spanish construction industry. Findings reveal the top five ranked factors are as follows: (1) shortage or late supply of materials; (2) clarity of the drawings and project documents; (3) clear and daily task assignment; (4) tools or equipment shortages; (5) level of skill and experience of laborers. Additionally, this research also pretends to provide simple and comprehensive recommendations so that they could be implemented by construction managers for an effective management of construction labor forces.

Keywords: construction management, factors, improvement, labor productivity, lean construction

Procedia PDF Downloads 285
893 Non-Convex Multi Objective Economic Dispatch Using Ramp Rate Biogeography Based Optimization

Authors: Susanta Kumar Gachhayat, S. K. Dash

Abstract:

Multi objective non-convex economic dispatch problems of a thermal power plant are of grave concern for deciding the cost of generation and reduction of emission level for diminishing the global warming level for improving green-house effect. This paper deals with ramp rate constraints for achieving better inequality constraints so as to incorporate valve point loading for cost of generation in thermal power plant through ramp rate biogeography based optimization involving mutation and migration. Through 50 out of 100 trials, the cost function and emission objective function were found to have outperformed other classical methods such as lambda iteration method, quadratic programming method and many heuristic methods like particle swarm optimization method, weight improved particle swarm optimization method, constriction factor based particle swarm optimization method, moderate random particle swarm optimization method etc. Ramp rate biogeography based optimization applications prove quite advantageous in solving non convex multi objective economic dispatch problems subjected to nonlinear loads that pollute the source giving rise to third harmonic distortions and other such disturbances.

Keywords: economic load dispatch, ELD, biogeography-based optimization, BBO, ramp rate biogeography-based optimization, RRBBO, valve-point loading, VPL

Procedia PDF Downloads 373
892 Thiourea: Single Crystal with Non Linear Optical Characteristics

Authors: Kishor C. Poria, Deepak Adroja, Arvind Bajaj

Abstract:

During the last few decades, the growth of single crystals has attained enormous importance for both academic research and technology. Single crystals are pillars of modern technology. In recent emerging trends of photonics and optoelectronics technology, there has been increased need for organic and semi organic materials for Non-Linear Optical (NLO) applications. The paper dealt with the initiation of good single crystals of thiourea and metal doped thiourea. The authors have successfully grown thiourea (pure) and metal doped thiourea crystals using relatively simple and inexpensive slow evaporation of aqueous solution technique. Pure thiourea crystals were grown with different light intensities and frequencies as there growth conditions. Metals (Cu, Co, Ni, Fe) doped crystals were grown using a simple evaporation technique. The paper explains growth methods and associated grown parameters in detail. The average size of the crystal is varied in size from 40 mm x 1mm to 1.5 mm x 1.5 mm to 0.5 mm. Crystals obtained are hexagonal, tetragonal, and rectangular in shape with different optical qualities. All grown crystals are characterized using X-Ray Diffraction Analysis (XRD), Ultra Violet Visible analysis, and Fourier Transform Infrared Spectrometry. Their non-linear optical characteristics were determined by Second Harmonic Generation (SHG) and their Laser Dispersive analysis. The grown crystals are characterized using Nd:YAG laser and the highest conversion efficiency of the signal pass light are calculated. It shows 58 % of standard values for KDP crystals. All results are summarized in this work.

Keywords: crystal, metal-doped thiourea, non-linear optical, NLO, thiourea

Procedia PDF Downloads 135
891 Unified Power Quality Conditioner Presentation and Dimensioning

Authors: Abderrahmane Kechich, Othmane Abdelkhalek

Abstract:

Static converters behave as nonlinear loads that inject harmonic currents into the grid and increase the consumption of the inactive power. On the other hand, the increased use of sensitive equipment requires the application of sinusoidal voltages. As a result, the electrical power quality control has become a major concern in the field of power electronics. In this context, the active power conditioner (UPQC) was developed. It combines both serial and parallel structures; the series filter can protect sensitive loads and compensate for voltage disturbances such as voltage harmonics, voltage dips or flicker when the shunt filter compensates for current disturbances such as current harmonics, reactive currents and imbalance. This double feature is that it is one of the most appropriate devices. Calculating parameters is an important step and in the same time it’s not easy for that reason several researchers based on trial and error method for calculating parameters but this method is not easy for beginners researchers especially what about the controller’s parameters, for that reason this paper gives a mathematical way to calculate of almost all of UPQC parameters away from trial and error method. This paper gives also a new approach for calculating of PI regulators parameters for purpose to have a stable UPQC able to compensate for disturbances acting on the waveform of line voltage and load current in order to improve the electrical power quality.

Keywords: UPQC, Shunt active filer, series active filer, PI controller, PWM control, dual-loop control

Procedia PDF Downloads 395
890 Innovation as Entrepreneurial Drives in the Romanian Automotive Industry

Authors: Alina Petronela Negrea, Valentin Cojanu

Abstract:

The article examines the synergy between innovation and entrepreneurship by means of a qualitative research on actors in the automotive industry in the Romanian southern region, Muntenia. The region is of particular interest because most of the industry suppliers are located there, as well as because it gathers the full range of key actors involved in the innovation process. The research design aims (1) to reflect entrepreneurs’ approach to and perception on innovation; (2) to underline forces driving or stifling innovation in the automotive industry; and (3) to evaluate the awareness of the existing knowledge database and the communication channels through which it is transferred within and between innovation networks. Empirical evidence results from triangula¬tion of three data collection methods: statistical data and other publicly available materials; semi - structured inter¬views, and experiential visits. The conclusions emphasize the convergent opinion of the entrepreneurs about the vital role of innovation in their investment plans.

Keywords: automotive industry, entrepreneurship, innovation, Romania

Procedia PDF Downloads 543
889 Structural Analysis of Hydro-Turbine Spiral Casing and Stay Ring Using Ansys

Authors: Surjit Angra, Pooja Rani, Vinod Kumar

Abstract:

In hydro power plant spiral casing and Stay ring is meant to guide the water flow to guide vane and runner. Spiral casing and Stay ring is subjected to static i.e. pressure load as well as fluctuating load acting on the structure due to water hammer effect in water conductor system. Finite element method has been used to calculate stresses on spiral casing and stay ring. These calculations were done for the maximum possible loading under operating condition "LC1 Quick Shut Down”. The design load is reached for the spiral casing and stay ring during the emergency closure of the guide apparatus "LC1 Quick Shut Down”. During this operation the forces from the head cover to the stay ring also reach their maximum.

Keywords: hydro-turbine, spiral casing, stay ring, structural analysis

Procedia PDF Downloads 509
888 Value for Money in Investment Projects

Authors: Jan Ceselsky

Abstract:

Construction and reconstruction of settlements and individual municipalities, environmental management and the creation, deployment of the forces of production and building transport and technical equipment requires a large expenditure of material and human resources. That is why the economic aspects of the majority decision in these planes built in the foreground and are often decisive. Thereby but more serious is that the economic aspects of the settlement, the creation and function remain in their whole, unprocessed, and can not speak of a set of individual techniques and methods traditional indicators and experiments with new approaches. This is true both at the level of the national economy, and in their own urban designs. Still a few remain identified specific economic shaping patterns of settlement and the less it is possible to speak of their control. Also practical assessing economics of specific solutions are often used non-apt indicators in addition to economics usually identifies with the lowest acquisition cost or high-intensity land use with little regard for functional efficiency and little studied much higher operating and maintenance costs.

Keywords: investment, municipal engineering, value for money, construction

Procedia PDF Downloads 282