Search results for: computational diagnostics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2283

Search results for: computational diagnostics

1683 Frequency Decomposition Approach for Sub-Band Common Spatial Pattern Methods for Motor Imagery Based Brain-Computer Interface

Authors: Vitor M. Vilas Boas, Cleison D. Silva, Gustavo S. Mafra, Alexandre Trofino Neto

Abstract:

Motor imagery (MI) based brain-computer interfaces (BCI) uses event-related (de)synchronization (ERS/ ERD), typically recorded using electroencephalography (EEG), to translate brain electrical activity into control commands. To mitigate undesirable artifacts and noise measurements on EEG signals, methods based on band-pass filters defined by a specific frequency band (i.e., 8 – 30Hz), such as the Infinity Impulse Response (IIR) filters, are typically used. Spatial techniques, such as Common Spatial Patterns (CSP), are also used to estimate the variations of the filtered signal and extract features that define the imagined motion. The CSP effectiveness depends on the subject's discriminative frequency, and approaches based on the decomposition of the band of interest into sub-bands with smaller frequency ranges (SBCSP) have been suggested to EEG signals classification. However, despite providing good results, the SBCSP approach generally increases the computational cost of the filtering step in IM-based BCI systems. This paper proposes the use of the Fast Fourier Transform (FFT) algorithm in the IM-based BCI filtering stage that implements SBCSP. The goal is to apply the FFT algorithm to reduce the computational cost of the processing step of these systems and to make them more efficient without compromising classification accuracy. The proposal is based on the representation of EEG signals in a matrix of coefficients resulting from the frequency decomposition performed by the FFT, which is then submitted to the SBCSP process. The structure of the SBCSP contemplates dividing the band of interest, initially defined between 0 and 40Hz, into a set of 33 sub-bands spanning specific frequency bands which are processed in parallel each by a CSP filter and an LDA classifier. A Bayesian meta-classifier is then used to represent the LDA outputs of each sub-band as scores and organize them into a single vector, and then used as a training vector of an SVM global classifier. Initially, the public EEG data set IIa of the BCI Competition IV is used to validate the approach. The first contribution of the proposed method is that, in addition to being more compact, because it has a 68% smaller dimension than the original signal, the resulting FFT matrix maintains the signal information relevant to class discrimination. In addition, the results showed an average reduction of 31.6% in the computational cost in relation to the application of filtering methods based on IIR filters, suggesting FFT efficiency when applied in the filtering step. Finally, the frequency decomposition approach improves the overall system classification rate significantly compared to the commonly used filtering, going from 73.7% using IIR to 84.2% using FFT. The accuracy improvement above 10% and the computational cost reduction denote the potential of FFT in EEG signal filtering applied to the context of IM-based BCI implementing SBCSP. Tests with other data sets are currently being performed to reinforce such conclusions.

Keywords: brain-computer interfaces, fast Fourier transform algorithm, motor imagery, sub-band common spatial patterns

Procedia PDF Downloads 128
1682 Two-Phase Flow Study of Airborne Transmission Control in Dental Practices

Authors: Mojtaba Zabihi, Stephen Munro, Jonathan Little, Ri Li, Joshua Brinkerhoff, Sina Kheirkhah

Abstract:

Occupational Safety and Health Administration (OSHA) identified dental workers at the highest risk of contracting COVID-19. This is because aerosol-generating procedures (AGP) during dental practices generate aerosols ( < 5µm) and droplets. These particles travel at varying speeds, in varying directions, and for varying durations. If these particles bear infectious viruses, their spreading causes airborne transmission of the virus in the dental room, exposing dentists, hygienists, dental assistants, and even other dental clinic clients to the infection risk. Computational fluid dynamics (CFD) simulation of two-phase flows based on a discrete phase model (DPM) is carried out to study the spreading of aerosol and droplets in a dental room. The simulation includes momentum, heat, and mass transfers between the particles and the airflow. Two simulations are conducted and compared. One simulation focuses on the effects of room ventilation in winter and summer on the particles' travel. The other simulation focuses on the control of aerosol and droplets' spreading. A suction collector is added near the source of aerosol and droplets, creating a flow sink in order to remove the particles. The effects of the suction flow on the aerosol and droplet travel are studied. The suction flow can remove aerosols and also reduce the spreading of droplets.

Keywords: aerosols, computational fluid dynamics, COVID-19, dental, discrete phase model, droplets, two-phase flow

Procedia PDF Downloads 265
1681 Evaluating the Implementation of a Quality Management System in the COVID-19 Diagnostic Laboratory of a Tertiary Care Hospital in Delhi

Authors: Sukriti Sabharwal, Sonali Bhattar, Shikhar Saxena

Abstract:

Introduction: COVID-19 molecular diagnostic laboratory is the cornerstone of the COVID-19 disease diagnosis as the patient’s treatment and management protocol depend on the molecular results. For this purpose, it is extremely important that the laboratory conducting these results adheres to the quality management processes to increase the accuracy and validity of the reports generated. We started our own molecular diagnostic setup at the onset of the pandemic. Therefore, we conducted this study to generate our quality management data to help us in improving on our weak points. Materials and Methods: A total of 14561 samples were evaluated by the retrospective observational method. The quality variables analysed were classified into pre-analytical, analytical, and post-analytical variables, and the results were presented in percentages. Results: Among the pre-analytical variables, sample leaking was the most common cause of the rejection of samples (134/14561, 0.92%), followed by non-generation of SRF ID (76/14561, 0.52%) and non-compliance to triple packaging (44/14561, 0.3%). The other pre-analytical aspects assessed were incomplete patient identification (17/14561, 0.11%), insufficient quantity of samples (12/14561, 0.08%), missing forms/samples (7/14561, 0.04%), samples in the wrong vials/empty VTM tubes (5/14561, 0.03%) and LIMS entry not done (2/14561, 0.01%). We are unable to obtain internal quality control in 0.37% of samples (55/14561). We also experienced two incidences of cross-contamination among the samples resulting in false-positive results. Among the post-analytical factors, a total of 0.07% of samples (11/14561) could not be dispatched within the stipulated time frame. Conclusion: Adherence to quality control processes is foremost for the smooth running of any diagnostic laboratory, especially the ones involved in critical reporting. Not only do the indicators help in keeping in check the laboratory parameters but they also allow comparison with other laboratories.

Keywords: laboratory quality management, COVID-19, molecular diagnostics, healthcare

Procedia PDF Downloads 163
1680 A Hybrid Classical-Quantum Algorithm for Boundary Integral Equations of Scattering Theory

Authors: Damir Latypov

Abstract:

A hybrid classical-quantum algorithm to solve boundary integral equations (BIE) arising in problems of electromagnetic and acoustic scattering is proposed. The quantum speed-up is due to a Quantum Linear System Algorithm (QLSA). The original QLSA of Harrow et al. provides an exponential speed-up over the best-known classical algorithms but only in the case of sparse systems. Due to the non-local nature of integral operators, matrices arising from discretization of BIEs, are, however, dense. A QLSA for dense matrices was introduced in 2017. Its runtime as function of the system's size N is bounded by O(√Npolylog(N)). The run time of the best-known classical algorithm for an arbitrary dense matrix scales as O(N².³⁷³). Instead of exponential as in case of sparse matrices, here we have only a polynomial speed-up. Nevertheless, sufficiently high power of this polynomial, ~4.7, should make QLSA an appealing alternative. Unfortunately for the QLSA, the asymptotic separability of the Green's function leads to high compressibility of the BIEs matrices. Classical fast algorithms such as Multilevel Fast Multipole Method (MLFMM) take advantage of this fact and reduce the runtime to O(Nlog(N)), i.e., the QLSA is only quadratically faster than the MLFMM. To be truly impactful for computational electromagnetics and acoustics engineers, QLSA must provide more substantial advantage than that. We propose a computational scheme which combines elements of the classical fast algorithms with the QLSA to achieve the required performance.

Keywords: quantum linear system algorithm, boundary integral equations, dense matrices, electromagnetic scattering theory

Procedia PDF Downloads 154
1679 Biorisk Management Education for Undergraduates Studying Clinical Microbiology at University in Japan

Authors: Shuji Fujimoto, Fumiko Kojima, Mika Shigematsu

Abstract:

Biorisk management (Biosafety/Biosecurity) is required for anyone working in a clinical laboratory (including medical/clinical research laboratories) where infectious agents and potentially hazardous biological materials are examined/stored. Proper education and training based on international standards of biorisk management should be provided not only as a part of laboratory safety program in work place but also as a part of introductory training at educational institutions for continuity and to elevate overall baseline of the biorisk management. We reported results of the pilot study of biorisk management education for graduate students majored in laboratory diagnostics previously. However, postgraduate education is still late in their profession and the participants’ interview also revealed importance and demands of earlier biorisk management education for undergraduates. The aim of this study is to identify the need for biosafety/biosecurity education and training program which is designed for undergraduate students who are entering the profession in clinical microbiology. We modified the previous program to include more basic topics and explanations (risk management, principles of safe clinical lab practices, personal protective equipment, disinfection, disposal of biological substances) and provided incorporating in the routine educational system for faculty of medical sciences in Kyushu University. The results of the pre and post examinations showed that the knowledge of the students on biorisk control had developed effectively as a proof of effectiveness of the program even in the undergraduate students. Our study indicates that administrating the basic biorisk management program in the earlier stage of learning will add positive impact to the understanding of biosafety to the health professional education.

Keywords: biorisk management, biosafety, biosecurity, clinical microbiology, education for undergraduates

Procedia PDF Downloads 211
1678 Two-Dimensional CFD Simulation of the Behaviors of Ferromagnetic Nanoparticles in Channel

Authors: Farhad Aalizadeh, Ali Moosavi

Abstract:

This paper presents a two-dimensional Computational Fluid Dynamics (CFDs) simulation for the steady, particle tracking. The purpose of this paper is applied magnetic field effect on Magnetic Nanoparticles velocities distribution. It is shown that the permeability of the particles determines the effect of the magnetic field on the deposition of the particles and the deposition of the particles is inversely proportional to the Reynolds number. Using MHD and its property it is possible to control the flow velocity, remove the fouling on the walls and return the system to its original form. we consider a channel 2D geometry and solve for the resulting spatial distribution of particles. According to obtained results when only magnetic fields are applied perpendicular to the flow, local particles velocity is decreased due to the direct effect of the magnetic field return the system to its original fom. In the method first, in order to avoid mixing with blood, the ferromagnetic particles are covered with a gel-like chemical composition and are injected into the blood vessels. Then, a magnetic field source with a specified distance from the vessel is used and the particles are guided to the affected area. This paper presents a two-dimensional Computational Fluid Dynamics (CFDs) simulation for the steady, laminar flow of an incompressible magnetorheological (MR) fluid between two fixed parallel plates in the presence of a uniform magnetic field. The purpose of this study is to develop a numerical tool that is able to simulate MR fluids flow in valve mode and determineB0, applied magnetic field effect on flow velocities and pressure distributions.

Keywords: MHD, channel clots, magnetic nanoparticles, simulations

Procedia PDF Downloads 368
1677 Improving Cheon-Kim-Kim-Song (CKKS) Performance with Vector Computation and GPU Acceleration

Authors: Smaran Manchala

Abstract:

Homomorphic Encryption (HE) enables computations on encrypted data without requiring decryption, mitigating data vulnerability during processing. Usable Fully Homomorphic Encryption (FHE) could revolutionize secure data operations across cloud computing, AI training, and healthcare, providing both privacy and functionality, however, the computational inefficiency of schemes like Cheon-Kim-Kim-Song (CKKS) hinders their widespread practical use. This study focuses on optimizing CKKS for faster matrix operations through the implementation of vector computation parallelization and GPU acceleration. The variable effects of vector parallelization on GPUs were explored, recognizing that while parallelization typically accelerates operations, it could introduce overhead that results in slower runtimes, especially in smaller, less computationally demanding operations. To assess performance, two neural network models, MLPN and CNN—were tested on the MNIST dataset using both ARM and x86-64 architectures, with CNN chosen for its higher computational demands. Each test was repeated 1,000 times, and outliers were removed via Z-score analysis to measure the effect of vector parallelization on CKKS performance. Model accuracy was also evaluated under CKKS encryption to ensure optimizations did not compromise results. According to the results of the trail runs, applying vector parallelization had a 2.63X efficiency increase overall with a 1.83X performance increase for x86-64 over ARM architecture. Overall, these results suggest that the application of vector parallelization in tandem with GPU acceleration significantly improves the efficiency of CKKS even while accounting for vector parallelization overhead, providing impact in future zero trust operations.

Keywords: CKKS scheme, runtime efficiency, fully homomorphic encryption (FHE), GPU acceleration, vector parallelization

Procedia PDF Downloads 23
1676 Molecular Epidemiology of Anthrax in Georgia

Authors: N. G. Vepkhvadze, T. Enukidze

Abstract:

Anthrax is a fatal disease caused by strains of Bacillus anthracis, a spore-forming gram-positive bacillus that causes the disease anthrax in animals and humans. Anthrax is a zoonotic disease that is also well-recognized as a potential agent of bioterrorism. Infection in humans is extremely rare in the developed world and is generally due to contact with infected animals or contaminated animal products. Testing of this zoonotic disease began in 1907 in Georgia and is still being tested routinely to provide accurate information and efficient testing results at the State Laboratory of Agriculture of Georgia. Each clinical sample is analyzed by RT-PCR and bacteriology methods; this study used Real-Time PCR assays for the detection of B. anthracis that rely on plasmid-encoded targets with a chromosomal marker to correctly differentiate pathogenic strains from non-anthracis Bacillus species. During the period of 2015-2022, the State Laboratory of Agriculture (SLA) tested 250 clinical and environmental (soil) samples from several different regions in Georgia. In total, 61 out of the 250 samples were positive during this period. Based on the results, Anthrax cases are mostly present in Eastern Georgia, with a high density of the population of livestock, specifically in the regions of Kakheti and Kvemo Kartli. All laboratory activities are being performed in accordance with International Quality standards, adhering to biosafety and biosecurity rules by qualified and experienced personnel handling pathogenic agents. Laboratory testing plays the largest role in diagnosing animals with anthrax, which helps pertinent institutions to quickly confirm a diagnosis of anthrax and evaluate the epidemiological situation that generates important data for further responses.

Keywords: animal disease, baccilus anthracis, edp, laboratory molecular diagnostics

Procedia PDF Downloads 87
1675 Forensic Applications of Quantum Dots

Authors: Samaneh Nabavi, Hadi Shirzad, Somayeh Khanjani, Shirin Jalili

Abstract:

Quantum dots (QDs) are semiconductor nanocrystals that exhibit intrinsic optical and electrical properties that are size dependent due to the quantum confinement effect. Quantum confinement is brought about by the fact that in bulk semiconductor material the electronic structure consists of continuous bands, and that as the size of the semiconductor material decreases its radius becomes less than the Bohr exciton radius (the distance between the electron and electron-hole) and discrete energy levels result. As a result QDs have a broad absorption range and a narrow emission which correlates to the band gap energy (E), and hence QD size. QDs can thus be tuned to give the desired wavelength of fluorescence emission.Due to their unique properties, QDs have attracted considerable attention in different scientific areas. Also, they have been considered for forensic applications in recent years. The ability of QDs to fluoresce up to 20 times brighter than available fluorescent dyes makes them an attractive nanomaterial for enhancing the visualization of latent fingermarks, or poorly developed fingermarks. Furthermore, the potential applications of QDs in the detection of nitroaromatic explosives, such as TNT, based on directive fluorescence quenching of QDs, electron transfer quenching process or fluorescence resonance energy transfer have been paid to attention. DNA analysis is associated tightly with forensic applications in molecular diagnostics. The amount of DNA acquired at a criminal site is inherently limited. This limited amount of human DNA has to be quantified accurately after the process of DNA extraction. Accordingly, highly sensitive detection of human genomic DNA is an essential issue for forensic study. QDs have also a variety of advantages as an emission probe in forensic DNA quantification.

Keywords: forensic science, quantum dots, DNA typing, explosive sensor, fingermark analysis

Procedia PDF Downloads 854
1674 A Structure-Switching Electrochemical Aptasensor for Rapid, Reagentless and Single-Step, Nanomolar Detection of C-Reactive Protein

Authors: William L. Whitehouse, Louisa H. Y. Lo, Andrew B. Kinghorn, Simon C. C. Shiu, Julian. A. Tanner

Abstract:

C-reactive protein (CRP) is an acute-phase reactant and sensitive indicator for sepsis and other life-threatening pathologies, including systemic inflammatory response syndrome (SIRS). Currently, clinical turn-around times for established CRP detection methods take between 30 minutes to hours or even days from centralized laboratories. Here, we report the development of an electrochemical biosensor using redox probe-tagged DNA aptamers functionalized onto cheap, commercially available screen-printed electrodes. Binding-induced conformational switching of the CRP-targeting aptamer induces a specific and selective signal-ON event, which enables single-step and reagentless detection of CRP in as little as 1 minute. The aptasensor dynamic range spans 5-1000nM (R=0.97) or 5-500nM (R=0.99) in 50% diluted human serum, with a LOD of 3nM, corresponding to 2-orders of magnitude sensitivity under the clinically relevant cut-off for CRP. The sensor is stable for up to one week and can be reused numerous times, as judged from repeated real-time dosing and dose-response assays. By decoupling binding events from the signal induction mechanism, structure-switching electrochemical aptamer-based sensors (SS-EABs) provide considerable advantages over their adsorption-based counterparts. Our work expands on the retinue of such sensors reported in the literature and is the first instance of an SS-EAB for reagentless CRP detection. We hope this study can inspire further investigations into the suitability of SS-EABs for diagnostics, which will aid translational R&D toward fully realized devices aimed at point-of-care applications or for use more broadly by the public.

Keywords: structure-switching, C-reactive protein, electrochemical, biosensor, aptasensor.

Procedia PDF Downloads 70
1673 Characteristics of an Impact on Reading Comprehension of Elementary School Students

Authors: Judith Hanke

Abstract:

Due to the rise of students with reading difficulties, a digital reading support was developed. The digital reading support focuses on reading comprehension of elementary school students. It consists of literary texts and reading exercises with diagnostics. To analyze the use of the reading packages an intervention study took place in 2023. For the methodology, an ABA-design was selected for the intervention study to examine the reading packages. The study was expedited from April 2023 until July 2023 and collected quantitative data of individuals, groups, and classes. It consisted of a survey group (N = 58) and a control group (N = 53). The pretest was conducted before the reading support intervention. The students of the survey group received reading support on their ability level to aid the individual student’s needs. At the beginning of the study characteristics of the students were collected. The characteristics included gender, age, repetition of a class, spoken language at home, German as a second language, and special support needs such as dyslexia; right after the intervention, the posttest was examined. At least three weeks after the intervention, the follow-up testing was administered. A standardized reading comprehension test was used for the three test times. The test consists of three subtests: word comprehension, sentence comprehension, and text comprehension. The focus of this paper is to determine which characteristics have an impact on reading comprehension of elementary school students. The students’ characteristics were correlated with the three test times through a Pearson correlation. The main findings are that age, repetition of a class, spoken language at home, German as a second language have an effect on reading comprehension. Interestingly gender and special support needs did not have a significant effect on the reading comprehension of the students. The significance of the study is to determine which characteristics have an impact on reading comprehension and then to assess how reading support can be modified to support the diverse students.

Keywords: class repetition, reading comprehension, reading support, second language, spoken language at home

Procedia PDF Downloads 33
1672 Developing a Cloud Intelligence-Based Energy Management Architecture Facilitated with Embedded Edge Analytics for Energy Conservation in Demand-Side Management

Authors: Yu-Hsiu Lin, Wen-Chun Lin, Yen-Chang Cheng, Chia-Ju Yeh, Yu-Chuan Chen, Tai-You Li

Abstract:

Demand-Side Management (DSM) has the potential to reduce electricity costs and carbon emission, which are associated with electricity used in the modern society. A home Energy Management System (EMS) commonly used by residential consumers in a down-stream sector of a smart grid to monitor, control, and optimize energy efficiency to domestic appliances is a system of computer-aided functionalities as an energy audit for residential DSM. Implementing fault detection and classification to domestic appliances monitored, controlled, and optimized is one of the most important steps to realize preventive maintenance, such as residential air conditioning and heating preventative maintenance in residential/industrial DSM. In this study, a cloud intelligence-based green EMS that comes up with an Internet of Things (IoT) technology stack for residential DSM is developed. In the EMS, Arduino MEGA Ethernet communication-based smart sockets that module a Real Time Clock chip to keep track of current time as timestamps via Network Time Protocol are designed and implemented for readings of load phenomena reflecting on voltage and current signals sensed. Also, a Network-Attached Storage providing data access to a heterogeneous group of IoT clients via Hypertext Transfer Protocol (HTTP) methods is configured to data stores of parsed sensor readings. Lastly, a desktop computer with a WAMP software bundle (the Microsoft® Windows operating system, Apache HTTP Server, MySQL relational database management system, and PHP programming language) serves as a data science analytics engine for dynamic Web APP/REpresentational State Transfer-ful web service of the residential DSM having globally-Advanced Internet of Artificial Intelligence (AI)/Computational Intelligence. Where, an abstract computing machine, Java Virtual Machine, enables the desktop computer to run Java programs, and a mash-up of Java, R language, and Python is well-suited and -configured for AI in this study. Having the ability of sending real-time push notifications to IoT clients, the desktop computer implements Google-maintained Firebase Cloud Messaging to engage IoT clients across Android/iOS devices and provide mobile notification service to residential/industrial DSM. In this study, in order to realize edge intelligence that edge devices avoiding network latency and much-needed connectivity of Internet connections for Internet of Services can support secure access to data stores and provide immediate analytical and real-time actionable insights at the edge of the network, we upgrade the designed and implemented smart sockets to be embedded AI Arduino ones (called embedded AIduino). With the realization of edge analytics by the proposed embedded AIduino for data analytics, an Arduino Ethernet shield WizNet W5100 having a micro SD card connector is conducted and used. The SD library is included for reading parsed data from and writing parsed data to an SD card. And, an Artificial Neural Network library, ArduinoANN, for Arduino MEGA is imported and used for locally-embedded AI implementation. The embedded AIduino in this study can be developed for further applications in manufacturing industry energy management and sustainable energy management, wherein in sustainable energy management rotating machinery diagnostics works to identify energy loss from gross misalignment and unbalance of rotating machines in power plants as an example.

Keywords: demand-side management, edge intelligence, energy management system, fault detection and classification

Procedia PDF Downloads 251
1671 Liesegang Phenomena: Experimental and Simulation Studies

Authors: Vemula Amalakrishna, S. Pushpavanam

Abstract:

Change and motion characterize and persistently reshape the world around us, on scales from molecular to global. The subtle interplay between change (Reaction) and motion (Diffusion) gives rise to an astonishing intricate spatial or temporal pattern. These pattern formation in nature has been intellectually appealing for many scientists since antiquity. Periodic precipitation patterns, also known as Liesegang patterns (LP), are one of the stimulating examples of such self-assembling reaction-diffusion (RD) systems. LP formation has a great potential in micro and nanotechnology. So far, the research on LPs has been concentrated mostly on how these patterns are forming, retrieving information to build a universal mathematical model for them. Researchers have developed various theoretical models to comprehensively construct the geometrical diversity of LPs. To the best of our knowledge, simulation studies of LPs assume an arbitrary value of RD parameters to explain experimental observation qualitatively. In this work, existing models were studied to understand the mechanism behind this phenomenon and challenges pertaining to models were understood and explained. These models are not computationally effective due to the presence of discontinuous precipitation rate in RD equations. To overcome the computational challenges, smoothened Heaviside functions have been introduced, which downsizes the computational time as well. Experiments were performed using a conventional LP system (AgNO₃-K₂Cr₂O₇) to understand the effects of different gels and temperatures on formed LPs. The model is extended for real parameter values to compare the simulated results with experimental data for both 1-D (Cartesian test tubes) and 2-D(cylindrical and Petri dish).

Keywords: reaction-diffusion, spatio-temporal patterns, nucleation and growth, supersaturation

Procedia PDF Downloads 152
1670 Sensor and Actuator Fault Detection in Connected Vehicles under a Packet Dropping Network

Authors: Z. Abdollahi Biron, P. Pisu

Abstract:

Connected vehicles are one of the promising technologies for future Intelligent Transportation Systems (ITS). A connected vehicle system is essentially a set of vehicles communicating through a network to exchange their information with each other and the infrastructure. Although this interconnection of the vehicles can be potentially beneficial in creating an efficient, sustainable, and green transportation system, a set of safety and reliability challenges come out with this technology. The first challenge arises from the information loss due to unreliable communication network which affects the control/management system of the individual vehicles and the overall system. Such scenario may lead to degraded or even unsafe operation which could be potentially catastrophic. Secondly, faulty sensors and actuators can affect the individual vehicle’s safe operation and in turn will create a potentially unsafe node in the vehicular network. Further, sending that faulty sensor information to other vehicles and failure in actuators may significantly affect the safe operation of the overall vehicular network. Therefore, it is of utmost importance to take these issues into consideration while designing the control/management algorithms of the individual vehicles as a part of connected vehicle system. In this paper, we consider a connected vehicle system under Co-operative Adaptive Cruise Control (CACC) and propose a fault diagnosis scheme that deals with these aforementioned challenges. Specifically, the conventional CACC algorithm is modified by adding a Kalman filter-based estimation algorithm to suppress the effect of lost information under unreliable network. Further, a sliding mode observer-based algorithm is used to improve the sensor reliability under faults. The effectiveness of the overall diagnostic scheme is verified via simulation studies.

Keywords: fault diagnostics, communication network, connected vehicles, packet drop out, platoon

Procedia PDF Downloads 239
1669 Experimental Research on Neck Thinning Dynamics of Droplets in Cross Junction Microchannels

Authors: Yilin Ma, Zhaomiao Liu, Xiang Wang, Yan Pang

Abstract:

Microscale droplets play an increasingly important role in various applications, including medical diagnostics, material synthesis, chemical engineering, and cell research due to features of high surface-to-volume ratio and tiny scale, which can significantly improve reaction rates, enhance heat transfer efficiency, enable high-throughput parallel studies as well as reduce reagent usage. As a mature technique to manipulate small amounts of liquids, droplet microfluidics could achieve the precise control of droplet parameters such as size, uniformity, structure, and thus has been widely adopted in the engineering and scientific research of multiple fields. Necking processes of the droplet in the cross junction microchannels are experimentally and theoretically investigated and dynamic mechanisms of the neck thinning in two different regimes are revealed. According to evolutions of the minimum neck width and the thinning rate, the necking process is further divided into different stages and the main driving force during each stage is confirmed. Effects of the flow rates and the cross-sectional aspect ratio on the necking process as well as the neck profile at different stages are provided in detail. The distinct features of the two regimes in the squeezing stage are well captured by the theoretical estimations of the effective flow rate and the variations of the actual flow rates in different channels are reasonably reflected by the channel width ratio. In the collapsing stage, the quantitative relation between the minimum neck width and the remaining time is constructed to identify the physical mechanism.

Keywords: cross junction, neck thinning, force analysis, inertial mechanism

Procedia PDF Downloads 109
1668 Computational Fluid Dynamics (CFD) Simulation Approach for Developing New Powder Dispensing Device

Authors: Revanth Rallapalli

Abstract:

Manually dispensing solids and powders can be difficult as it requires gradually pour and check the amount on the scale to be dispensed. Current systems are manual and non-continuous in nature and are user-dependent and difficult to control powder dispensation. Recurrent dosing of powdered medicines in precise amounts quickly and accurately has been an all-time challenge. Various new powder dispensing mechanisms are being designed to overcome these challenges. A battery-operated screw conveyor mechanism is being innovated to overcome the above problems faced. These inventions are numerically evaluated at the concept development level by employing Computational Fluid Dynamics (CFD) of gas-solids multiphase flow systems. CFD has been very helpful in development of such devices saving time and money by reducing the number of prototypes and testing. Furthermore, this paper describes a simulation of powder dispensation from the trocar’s end by considering the powder as secondary flow in air, is simulated by using the technique called Dense Discrete Phase Model incorporated with Kinetic Theory of Granular Flow (DDPM-KTGF). By considering the volume fraction of powder as 50%, the transportation of powder from the inlet side to trocar’s end side is done by rotation of the screw conveyor. Thus, the performance is calculated for a 1-sec time frame in an unsteady computation manner. This methodology will help designers in developing design concepts to improve the dispensation and also at the effective area within a quick turnaround time frame.

Keywords: DDPM-KTGF, gas-solids multiphase flow, screw conveyor, Unsteady

Procedia PDF Downloads 180
1667 Three Dimensional Large Eddy Simulation of Blood Flow and Deformation in an Elastic Constricted Artery

Authors: Xi Gu, Guan Heng Yeoh, Victoria Timchenko

Abstract:

In the current work, a three-dimensional geometry of a 75% stenosed blood vessel is analysed. Large eddy simulation (LES) with the help of a dynamic subgrid scale Smagorinsky model is applied to model the turbulent pulsatile flow. The geometry, the transmural pressure and the properties of the blood and the elastic boundary were based on clinical measurement data. For the flexible wall model, a thin solid region is constructed around the 75% stenosed blood vessel. The deformation of this solid region was modelled as a deforming boundary to reduce the computational cost of the solid model. Fluid-structure interaction is realised via a two-way coupling between the blood flow modelled via LES and the deforming vessel. The information of the flow pressure and the wall motion was exchanged continually during the cycle by an arbitrary lagrangian-eulerian method. The boundary condition of current time step depended on previous solutions. The fluctuation of the velocity in the post-stenotic region was analysed in the study. The axial velocity at normalised position Z=0.5 shows a negative value near the vessel wall. The displacement of the elastic boundary was concerned in this study. In particular, the wall displacement at the systole and the diastole were compared. The negative displacement at the stenosis indicates a collapse at the maximum velocity and the deceleration phase.

Keywords: Large Eddy Simulation, Fluid Structural Interaction, constricted artery, Computational Fluid Dynamics

Procedia PDF Downloads 293
1666 A Prediction Model for Dynamic Responses of Building from Earthquake Based on Evolutionary Learning

Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park

Abstract:

The seismic responses-based structural health monitoring system has been performed to prevent seismic damage. Structural seismic damage of building is caused by the instantaneous stress concentration which is related with dynamic characteristic of earthquake. Meanwhile, seismic response analysis to estimate the dynamic responses of building demands significantly high computational cost. To prevent the failure of structural members from the characteristic of the earthquake and the significantly high computational cost for seismic response analysis, this paper presents an artificial neural network (ANN) based prediction model for dynamic responses of building considering specific time length. Through the measured dynamic responses, input and output node of the ANN are formed by the length of specific time, and adopted for the training. In the model, evolutionary radial basis function neural network (ERBFNN), that radial basis function network (RBFN) is integrated with evolutionary optimization algorithm to find variables in RBF, is implemented. The effectiveness of the proposed model is verified through an analytical study applying responses from dynamic analysis for multi-degree of freedom system to training data in ERBFNN.

Keywords: structural health monitoring, dynamic response, artificial neural network, radial basis function network, genetic algorithm

Procedia PDF Downloads 304
1665 Design and Testing of Electrical Capacitance Tomography Sensors for Oil Pipeline Monitoring

Authors: Sidi M. A. Ghaly, Mohammad O. Khan, Mohammed Shalaby, Khaled A. Al-Snaie

Abstract:

Electrical capacitance tomography (ECT) is a valuable, non-invasive technique used to monitor multiphase flow processes, especially within industrial pipelines. This study focuses on the design, testing, and performance comparison of ECT sensors configured with 8, 12, and 16 electrodes, aiming to evaluate their effectiveness in imaging accuracy, resolution, and sensitivity. Each sensor configuration was designed to capture the spatial permittivity distribution within a pipeline cross-section, enabling visualization of phase distribution and flow characteristics such as oil and water interactions. The sensor designs were implemented and tested in closed pipes to assess their response to varying flow regimes. Capacitance data collected from each electrode configuration were reconstructed into cross-sectional images, enabling a comparison of image resolution, noise levels, and computational demands. Results indicate that the 16-electrode configuration yields higher image resolution and sensitivity to phase boundaries compared to the 8- and 12-electrode setups, making it more suitable for complex flow visualization. However, the 8 and 12-electrode sensors demonstrated advantages in processing speed and lower computational requirements. This comparative analysis provides critical insights into optimizing ECT sensor design based on specific industrial requirements, from high-resolution imaging to real-time monitoring needs.

Keywords: capacitance tomography, modeling, simulation, electrode, permittivity, fluid dynamics, imaging sensitivity measurement

Procedia PDF Downloads 10
1664 Computational Fluid Dynamics Modeling of Flow Properties Fluctuations in Slug-Churn Flow through Pipe Elbow

Authors: Nkemjika Chinenye-Kanu, Mamdud Hossain, Ghazi Droubi

Abstract:

Prediction of multiphase flow induced forces, void fraction and pressure is crucial at both design and operating stages of practical energy and process pipe systems. In this study, transient numerical simulations of upward slug-churn flow through a vertical 90-degree elbow have been conducted. The volume of fluid (VOF) method was used to model the two-phase flows while the K-epsilon Reynolds-Averaged Navier-Stokes (RANS) equations were used to model turbulence in the flows. The simulation results were validated using experimental results. Void fraction signal, peak frequency and maximum magnitude of void fraction fluctuation of the slug-churn flow validation case studies compared well with experimental results. The x and y direction force fluctuation signals at the elbow control volume were obtained by carrying out force balance calculations using the directly extracted time domain signals of flow properties through the control volume in the numerical simulation. The computed force signal compared well with experiment for the slug and churn flow validation case studies. Hence, the present numerical simulation technique was able to predict the behaviours of the one-way flow induced forces and void fraction fluctuations.

Keywords: computational fluid dynamics, flow induced vibration, slug-churn flow, void fraction and force fluctuation

Procedia PDF Downloads 156
1663 Private Coded Computation of Matrix Multiplication

Authors: Malihe Aliasgari, Yousef Nejatbakhsh

Abstract:

The era of Big Data and the immensity of real-life datasets compels computation tasks to be performed in a distributed fashion, where the data is dispersed among many servers that operate in parallel. However, massive parallelization leads to computational bottlenecks due to faulty servers and stragglers. Stragglers refer to a few slow or delay-prone processors that can bottleneck the entire computation because one has to wait for all the parallel nodes to finish. The problem of straggling processors, has been well studied in the context of distributed computing. Recently, it has been pointed out that, for the important case of linear functions, it is possible to improve over repetition strategies in terms of the tradeoff between performance and latency by carrying out linear precoding of the data prior to processing. The key idea is that, by employing suitable linear codes operating over fractions of the original data, a function may be completed as soon as enough number of processors, depending on the minimum distance of the code, have completed their operations. The problem of matrix-matrix multiplication in the presence of practically big sized of data sets faced with computational and memory related difficulties, which makes such operations are carried out using distributed computing platforms. In this work, we study the problem of distributed matrix-matrix multiplication W = XY under storage constraints, i.e., when each server is allowed to store a fixed fraction of each of the matrices X and Y, which is a fundamental building of many science and engineering fields such as machine learning, image and signal processing, wireless communication, optimization. Non-secure and secure matrix multiplication are studied. We want to study the setup, in which the identity of the matrix of interest should be kept private from the workers and then obtain the recovery threshold of the colluding model, that is, the number of workers that need to complete their task before the master server can recover the product W. The problem of secure and private distributed matrix multiplication W = XY which the matrix X is confidential, while matrix Y is selected in a private manner from a library of public matrices. We present the best currently known trade-off between communication load and recovery threshold. On the other words, we design an achievable PSGPD scheme for any arbitrary privacy level by trivially concatenating a robust PIR scheme for arbitrary colluding workers and private databases and the proposed SGPD code that provides a smaller computational complexity at the workers.

Keywords: coded distributed computation, private information retrieval, secret sharing, stragglers

Procedia PDF Downloads 122
1662 Evaluating the Validity of the Combined Bedside Test in Diagnosing Juvenile Myasthenia Gravis (2012-2024)

Authors: Pechpailin Kortnoi, Tanitnun Paprad

Abstract:

Background: Myasthenia gravis (MG) is an autoimmune disorder characterized by impaired neuromuscular transmission due to antibodies against nicotinic receptors, leading to muscle weakness, ptosis, and respiratory issues. The incidence of MG has risen globally, emphasizing the need for effective diagnostics. Objective: This study evaluates the validity of a combined bedside test (the ice pack test and fatigability test) for diagnosing juvenile myasthenia gravis (JMG) in pediatric patients with ptosis. Methods: This cross-sectional study, conducted from January 2012 to May 2024 at King Chulalongkorn Memorial Hospital, Thailand, included pediatric patients (1 month to 18 years) with ptosis undergoing ice pack and fatigability tests. Data included demographics, clinical findings, and test results. Diagnostic efficacy was assessed using sensitivity, specificity, accuracy, PPV, NPV, Fagan Nomogram, Kappa Statistics, and McNemar’s Chi-Square. Results: Of 43 identified patients, 32 were included, with 47% male and a mean age of 7 years. The combined bedside test had high sensitivity (92.8%) and accuracy (87.5%) but moderate specificity (50%). It significantly outperformed the ice pack test (P = 0.0005), which showed low sensitivity (42.8%) and accuracy (43.8%). The fatigability test had 82% sensitivity and 92% PPV. Confirmatory tests (AChR-Ab, MuSK-Ab, neostigmine, repetitive nerve stimulation) supported most diagnoses. Conclusions: The combined bedside test, with high sensitivity (92.8%) and accuracy (87.5%), is an effective screening tool for juvenile myasthenia gravis, outperforming the ice pack test. Integrating it into clinical practice may improve diagnosis and enable timely treatment. The fatigability test (82% sensitivity) is also useful as an adjunct screening tool.

Keywords: myasthenia gravis (MG), the ice pack test, the fatigability test, the combined bedside test

Procedia PDF Downloads 5
1661 Optimizing Emergency Rescue Center Layouts: A Backpropagation Neural Networks-Genetic Algorithms Method

Authors: Xiyang Li, Qi Yu, Lun Zhang

Abstract:

In the face of natural disasters and other emergency situations, determining the optimal location of rescue centers is crucial for improving rescue efficiency and minimizing impact on affected populations. This paper proposes a method that integrates genetic algorithms (GA) and backpropagation neural networks (BPNN) to address the site selection optimization problem for emergency rescue centers. We utilize BPNN to accurately estimate the cost of delivering supplies from rescue centers to each temporary camp. Moreover, a genetic algorithm with a special partially matched crossover (PMX) strategy is employed to ensure that the number of temporary camps assigned to each rescue center adheres to predetermined limits. Using the population distribution data during the 2022 epidemic in Jiading District, Shanghai, as an experimental case, this paper verifies the effectiveness of the proposed method. The experimental results demonstrate that the BPNN-GA method proposed in this study outperforms existing algorithms in terms of computational efficiency and optimization performance. Especially considering the requirements for computational resources and response time in emergency situations, the proposed method shows its ability to achieve rapid convergence and optimal performance in the early and mid-stages. Future research could explore incorporating more real-world conditions and variables into the model to further improve its accuracy and applicability.

Keywords: emergency rescue centers, genetic algorithms, back-propagation neural networks, site selection optimization

Procedia PDF Downloads 85
1660 Investigating Kinetics and Mathematical Modeling of Batch Clarification Process for Non-Centrifugal Sugar Production

Authors: Divya Vats, Sanjay Mahajani

Abstract:

The clarification of sugarcane juice plays a pivotal role in the production of non-centrifugal sugar (NCS), profoundly influencing the quality of the final NCS product. In this study, we have investigated the kinetics and mathematical modeling of the batch clarification process. The turbidity of the clarified cane juice (NTU) emerges as the determinant of the end product’s color. Moreover, this parameter underscores the significance of considering other variables as performance indicators for accessing the efficacy of the clarification process. Temperature-controlled experiments were meticulously conducted in a laboratory-scale batch mode. The primary objective was to discern the essential and optimized parameters crucial for augmenting the clarity of cane juice. Additionally, we explored the impact of pH and flocculant loading on the kinetics. Particle Image Velocimetry (PIV) is employed to comprehend the particle-particle and fluid-particle interaction. This technique facilitated a comprehensive understanding, paving the way for the subsequent multiphase computational fluid dynamics (CFD) simulations using the Eulerian-Lagrangian approach in the Ansys fluent. Impressively, these simulations accurately replicated comparable velocity profiles. The final mechanism of this study helps to make a mathematical model and presents a valuable framework for transitioning from the traditional batch process to a continuous process. The ultimate aim is to attain heightened productivity and unwavering consistency in product quality.

Keywords: non-centrifugal sugar, particle image velocimetry, computational fluid dynamics, mathematical modeling, turbidity

Procedia PDF Downloads 71
1659 Fabricating Method for Complex 3D Microfluidic Channel Using Soluble Wax Mold

Authors: Kyunghun Kang, Sangwoo Oh, Yongha Hwang

Abstract:

PDMS (Polydimethylsiloxane)-based microfluidic device has been recently applied to area of biomedical research, tissue engineering, and diagnostics because PDMS is low cost, nontoxic, optically transparent, gas-permeable, and especially biocompatible. Generally, PDMS microfluidic devices are fabricated by conventional soft lithography. Microfabrication requires expensive cleanroom facilities and a lot of time; however, only two-dimensional or simple three-dimensional structures can be fabricated. In this study, we introduce fabricating method for complex three-dimensional microfluidic channels using soluble wax mold. Using the 3D printing technique, we firstly fabricated three-dimensional mold which consists of soluble wax material. The PDMS pre-polymer is cast around, followed by PDMS casting and curing. The three-dimensional casting mold was removed from PDMS by chemically dissolved with methanol and acetone. In this work, two preliminary experiments were carried out. Firstly, the solubility of several waxes was tested using various solvents, such as acetone, methanol, hexane, and IPA. We found the combination between wax and solvent which dissolves the wax. Next, side effects of the solvent were investigated during the curing process of PDMS pre-polymer. While some solvents let PDMS drastically swell, methanol and acetone let PDMS swell only 2% and 6%, respectively. Thus, methanol and acetone can be used to dissolve wax in PDMS without any serious impact. Based on the preliminary tests, three-dimensional PDMS microfluidic channels was fabricated using the mold which was printed out using 3D printer. With the proposed fabricating technique, PDMS-based microfluidic devices have advantages of fast prototyping, low cost, optically transparence, as well as having complex three-dimensional geometry. Acknowledgements: This research was supported by Supported by a Korea University Grant and Basic Science Research Program through the National Research Foundation of Korea(NRF).

Keywords: microfluidic channel, polydimethylsiloxane, 3D printing, casting

Procedia PDF Downloads 274
1658 A Transient Coupled Numerical Analysis of the Flow of Magnetorheological Fluids in Closed Domains

Authors: Wael Elsaady, S. Olutunde Oyadiji, Adel Nasser

Abstract:

The non-linear flow characteristics of magnetorheological (MR) fluids in MR dampers are studied via a coupled numerical approach that incorporates a two-phase flow model. The approach couples the Finite Element (FE) modelling of the damper magnetic circuit, with the Computational Fluid Dynamics (CFD) analysis of the flow field in the damper. The two-phase flow CFD model accounts for the effect of fluid compressibility due to the presence of liquid and gas in the closed domain of the damper. The dynamic mesh model included in ANSYS/Fluent CFD solver is used to simulate the movement of the MR damper piston in order to perform the fluid excitation. The two-phase flow analysis is studied by both Volume-Of-Fluid (VOF) model and mixture model that are included in ANSYS/Fluent. The CFD models show that the hysteretic behaviour of MR dampers is due to the effect of fluid compressibility. The flow field shows the distributions of pressure, velocity, and viscosity contours. In particular, it shows the high non-Newtonian viscosity in the affected fluid regions by the magnetic field and the low Newtonian viscosity elsewhere. Moreover, the dependence of gas volume fraction on the liquid pressure inside the damper is predicted by the mixture model. The presented approach targets a better understanding of the complicated flow characteristics of viscoplastic fluids that could be applied in different applications.

Keywords: viscoplastic fluid, magnetic FE analysis, computational fluid dynamics, two-phase flow, dynamic mesh, user-defined functions

Procedia PDF Downloads 174
1657 Analyzing the Effect of Multilingualism, Language 1, and Language 2 on Reading Comprehension

Authors: Judith Hanke

Abstract:

Due to the increase of students with reading difficulties, digital reading support with diagnostics was developed to foster the individual student's reading comprehension. The digital reading support focused on the reading comprehension of elementary school students. The digital reading packages consist of literary texts with aligned reading exercises. The number of students with German as a second language is growing in Germany. Students with multilingualism, language 1, and language 2 learn German together in school. The research's focus is on determining whether and to what extent multilingualism, language 1, and language 2 affect reading comprehension. For the methodology, an ABA design was selected for the intervention study to examine the reading support. The study was expedited from April 2023 until July 2023 and collected quantitative data of individuals, groups, and classes. It comprised a survey group (N = 58) and a control group (N = 53). The quantitative data was collected from 3 classes of 3 teachers and 47 students for all three test times. To show differences between the groups, a standardized reading comprehension test was used for the three test times, pretest, posttest, and follow-up. The standardized test consists of three subtests regarding word comprehension, sentence comprehension, and text comprehension. The main findings include that students who spoke German as their first language had the best test scores. Interestingly, students with a different language had better testing scores than students with German as the first language and (an) other language/s. Also, the students with another language outperformed the native language speakers in one of the subtests of the post-testing. The variables of spoken language at home and German as a second language were also examined and correlated with the test results. One significant correlation was found between spoken language at home and the text comprehension test of the pretesting. Additionally, the variable German as a second language had multiple significant correlations in the pretest, posttest and follow-up. The study's significance is to understand the influence of several languages, language 1, and language 2, on reading comprehension.

Keywords: multilingualism, language 1, language 2, reading comprehension, second language

Procedia PDF Downloads 29
1656 Electrochemical Behavior of Cocaine on Carbon Paste Electrode Chemically Modified with Cu(II) Trans 3-MeO Salcn Complex

Authors: Alex Soares Castro, Matheus Manoel Teles de Menezes, Larissa Silva de Azevedo, Ana Carolina Caleffi Patelli, Osmair Vital de Oliveira, Aline Thais Bruni, Marcelo Firmino de Oliveira

Abstract:

Considering the problem of the seizure of illicit drugs, as well as the development of electrochemical sensors using chemically modified electrodes, this work shows the study of the electrochemical activity of cocaine in carbon paste electrode chemically modified with Cu (II) trans 3-MeO salcn complex. In this context, cyclic voltammetry was performed on 0.1 mol.L⁻¹ KCl supporting electrolyte at a scan speed of 100 mV s⁻¹, using an electrochemical cell composed of three electrodes: Ag /AgCl electrode (filled KCl 3 mol.L⁻¹) from Metrohm® (reference electrode); a platinum spiral electrode, as an auxiliary electrode, and a carbon paste electrode chemically modified with Cu (II) trans 3-MeO complex (as working electrode). Two forms of cocaine were analyzed: cocaine hydrochloride (pH 3) and cocaine free base form (pH 8). The PM7 computational method predicted that the hydrochloride form is more stable than the free base form of cocaine, so with cyclic voltammetry, we found electrochemical signal only for cocaine in the form of hydrochloride, with an anodic peak at 1.10 V, with a linearity range between 2 and 20 μmol L⁻¹ had LD and LQ of 2.39 and 7.26x10-5 mol L⁻¹, respectively. The study also proved that cocaine is adsorbed on the surface of the working electrode, where through an irreversible process, where only anode peaks are observed, we have the oxidation of cocaine, which occurs in the hydrophilic region due to the loss of two electrons. The mechanism of this reaction was confirmed by the ab-inito quantum method.

Keywords: ab-initio computational method, analytical method, cocaine, Schiff base complex, voltammetry

Procedia PDF Downloads 194
1655 A Single Stage Rocket Using Solid Fuels in Conventional Propulsion Systems

Authors: John R Evans, Sook-Ying Ho, Rey Chin

Abstract:

This paper describes the research investigations orientated to the starting and propelling of a solid fuel rocket engine which operates as combined cycle propulsion system using three thrust pulses. The vehicle has been designed to minimise the cost of launching small number of Nano/Cube satellites into low earth orbits (LEO). A technology described in this paper is a ground-based launch propulsion system which starts the rocket vertical motion immediately causing air flow to enter the ramjet’s intake. Current technology has a ramjet operation predicted to be able to start high subsonic speed of 280 m/s using a liquid fuel ramjet (LFRJ). The combined cycle engine configuration is in many ways fundamentally different from the LFRJ. A much lower subsonic start speed is highly desirable since the use of a mortar to obtain the latter speed for rocket means a shorter launcher length can be utilized. This paper examines the means and has some performance calculations, including Computational Fluid Dynamics analysis of air-intake at suitable operational conditions, 3-DOF point mass trajectory analysis of multi-pulse propulsion system (where pulse ignition time and thrust magnitude can be controlled), etc. of getting a combined cycle rocket engine use in a single stage vehicle.

Keywords: combine cycle propulsion system, low earth orbit launch vehicle, computational fluid dynamics analysis, 3dof trajectory analysis

Procedia PDF Downloads 191
1654 Evaluation of Initial Graft Tension during ACL Reconstruction Using a Three-Dimensional Computational Finite Element Simulation: Effect of the Combination of a Band of Gracilis with the Former Graft

Authors: S. Alireza Mirghasemi, Javad Parvizi, Narges R. Gabaran, Shervin Rashidinia, Mahdi M. Bijanabadi, Dariush G. Savadkoohi

Abstract:

Background: The anterior cruciate ligament is one of the most frequent ligament to be disrupted. Surgical reconstruction of the anterior cruciate ligament is a common practice to treat the disability or chronic instability of the knee. Several factors associated with success or failure of the ACL reconstruction including preoperative laxity of the knee, selection of the graft material, surgical technique, graft tension, and postoperative rehabilitation. We aimed to examine the biomechanical properties of any graft type and initial graft tensioning during ACL reconstruction using 3-dimensional computational finite element simulation. Methods: In this paper, 3-dimensional model of the knee was constructed to investigate the effect of graft tensioning on the knee joint biomechanics. Four different grafts were compared: 1) Bone-patellar tendon-bone graft (BPTB) 2) Hamstring tendon 3) BPTB and a band of gracilis4) Hamstring and a band of gracilis. The initial graft tension was set as “0, 20, 40, or 60N”. The anterior loading was set to 134 N. Findings: The resulting stress pattern and deflection in any of these models were compared to that of the intact knee. The obtained results showed that the combination of a band of gracilis with the former graft (BPTB or Hamstring) increases the structural stiffness of the knee. Conclusion: Required pretension during surgery decreases significantly by adding a band of gracilis to the proper graft.

Keywords: ACL reconstruction, deflection, finite element simulation, stress pattern

Procedia PDF Downloads 299