Search results for: calcium phosphate cement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1807

Search results for: calcium phosphate cement

1207 Effects of Additives on Thermal Decompositions of Carbon Black/High Density Polyethylene Compounds

Authors: Orathai Pornsunthorntawee, Wareerom Polrut, Nopphawan Phonthammachai

Abstract:

In the present work, the effects of additives, including contents of the added antioxidants and type of the selected metallic stearates (either calcium stearate (CaSt) or zinc stearate (ZnSt)), on the thermal stabilities of carbon black (CB)/high density polyethylene (HDPE) compounds were studied. The results showed that the AO contents played a key role in the thermal stabilities of the CB/HDPE compounds—the higher the AO content, the higher the thermal stabilities. Although the CaSt-containing compounds were slightly superior to those with ZnSt in terms of the thermal stabilities, the remaining solid residue of CaSt after heated to the temperature of 600 °C (mainly calcium carbonate (CaCO3) as characterized by the X-ray diffraction (XRD) technique) seemed to catalyze the decomposition of CB in the HDPE-based compounds. Hence, the quantification of CB in the CaSt-containing compounds with a muffle furnace gave an inaccurate CB content—much lower than actual value. However, this phenomenon was negligible in the ZnSt-containing system.

Keywords: antioxidant, stearate, carbon black, polyethylene

Procedia PDF Downloads 355
1206 Study on the Relationship between Obesity Indicators and Mineral Status in Qatari Adults

Authors: Alaa A. H. Shehada, Eman Abdelnasser Abouhassanein, Reem Mohsen Ali, Joyce J. Moawad, Hiba Bawadi, Abdelhamid Kerkadi

Abstract:

Background: The association between obesity and micronutrient deficiencies is well documented. Among minerals that have been widely studied: zinc, iron and magnesium. Objectives: This study aims to determine the association between obesity indices and mineral status among Qatari adults. Methods: Secondary data was obtained from Qatar Biobank. 414 healthy Qatari aged 20-50 years old were randomly selected from the database. Anthropometric measurements (WC, Weight, and height), body fat, and mineral status (Fe, Mg, Ca, K, Na) were obtained for all selected participants. Differences in anthropometric measurements and mineral status were analyzed by t-test or ANOVA. Spearman correlation coefficients were determined to assess the association between minerals and anthropometric variables. Statistical significance for the hypothesis tests was set at p <0.05. All statistical analysis was preformed using SPSS software version 23.0. Results: Iron, calcium, and sodium levels decreased with an increase in body mass index. Moreover, only iron showed a significant correlation with waist circumference, and waist to height ratio increased. Additionally, calcium, iron, magnesium, and sodium had a statistically significant negative correlation with total body fat percentage and trunk fat percentage. There were statistically significant negative correlations of anthropometrics with minerals. Conclusion: Body fat and trunk fat percentage had a significant inverse relationship with iron, calcium, sodium, and magnesium, while there was no correlation between body fat or trunk fat percentage with potassium.

Keywords: Qatar biobank, body fat distribution, mineral status, Qatari adults

Procedia PDF Downloads 135
1205 The Effect of Supplementary Cementitious Materials on the Quality of Passive Oxide Film Developed on Steel Reinforcement Bars in Simulated Concrete Pore Solution

Authors: M. S. Ashraf, Raja Rizwan Hussain, A. M. Alhozaimy, A. I. Al-Negheimish

Abstract:

The effect of supplementary cementitious materials (SCMs) with concrete pore solution on the protective properties of the oxide films that form on reinforcing steel bars has been experimentally investigated using electrochemical impedance spectroscopy (EIS) and Tafel Scan. The tests were conducted on oxide films grown in saturated calcium hydroxide solutions that included different representative amounts of NaOH and KOH which are the compounds commonly observed in ordinary portland cement concrete pore solution. In addition to that, commonly used mineral admixtures (silica fume, natural pozzolan and fly ash) were also added to the simulated concrete pore solution. The results of electrochemical tests show that supplementary cementitious materials do have an effect on the protective properties of the passive oxide film. In particular, silica fume has been shown to have a negative influence on the film quality though it has positive effect on the concrete properties. Fly ash and natural pozzolan increase the protective qualities of the passive film. The research data in this area is very limited in the past and needed further investigation.

Keywords: supplementary cementitious materials (SCMs), passive film, EIS, Tafel scan, rebar, concrete, simulated concrete pore solution (SPS)

Procedia PDF Downloads 388
1204 Evaluation of Invasive Tree Species for Production of Phosphate Bonded Composites

Authors: Stephen Osakue Amiandamhen, Schwaller Andreas, Martina Meincken, Luvuyo Tyhoda

Abstract:

Invasive alien tree species are currently being cleared in South Africa as a result of the forest and water imbalances. These species grow wildly constituting about 40% of total forest area. They compete with the ecosystem for natural resources and are considered as ecosystem engineers by rapidly changing disturbance regimes. As such, they are harvested for commercial uses but much of it is wasted because of their form and structure. The waste is being sold to local communities as fuel wood. These species can be considered as potential feedstock for the production of phosphate bonded composites. The presence of bark in wood-based composites leads to undesirable properties, and debarking as an option can be cost implicative. This study investigates the potentials of these invasive species processed without debarking on some fundamental properties of wood-based panels. Some invasive alien tree species were collected from EC Biomass, Port Elizabeth, South Africa. They include Acacia mearnsii (Black wattle), A. longifolia (Long-leaved wattle), A. cyclops (Red-eyed wattle), A. saligna (Golden-wreath wattle) and Eucalyptus globulus (Blue gum). The logs were chipped as received. The chips were hammer-milled and screened through a 1 mm sieve. The wood particles were conditioned and the quantity of bark in the wood was determined. The binding matrix was prepared using a reactive magnesia, phosphoric acid and class S fly ash. The materials were mixed and poured into a metallic mould. The composite within the mould was compressed at room temperature at a pressure of 200 KPa. After initial setting which took about 5 minutes, the composite board was demoulded and air-cured for 72 h. The cured product was thereafter conditioned at 20°C and 70% relative humidity for 48 h. Test of physical and strength properties were conducted on the composite boards. The effect of binder formulation and fly ash content on the properties of the boards was studied using fitted response surface technology, according to a central composite experimental design (CCD) at a fixed wood loading of 75% (w/w) of total inorganic contents. The results showed that phosphate/magnesia ratio of 3:1 and fly ash content of 10% was required to obtain a product of good properties and sufficient strength for intended applications. The proposed products can be used for ceilings, partitioning and insulating wall panels.

Keywords: invasive alien tree species, phosphate bonded composites, physical properties, strength

Procedia PDF Downloads 279
1203 Study on Brick Aggregate Made Pervious Concrete at Zero Fine Level

Authors: Monjurul Hasan, Golam Kibria, Abdus Salam

Abstract:

Pervious concrete is a form of lightweight porous concrete, obtained by eliminating the fine aggregate from the normal concrete mix. The advantages of this type of concrete are lower density, lower cost due to lower cement content, lower thermal conductivity, relatively low drying shrinkage, no segregation and capillary movement of water. In this paper an investigation is made on the mechanical response of the pervious concrete at zero fine level (zero fine concrete) made with local brick aggregate. Effect of aggregate size variation on the strength, void ratio and permeability of the zero fine concrete is studied. Finally, a comparison is also presented between the stone aggregate made pervious concrete and brick aggregate made pervious concrete. In total 75 concrete cylinder were tested for compressive strength, 15 cylinder were tested for void ratio and 15 cylinder were tested for permeability test. Mix proportion (cement: Coarse aggregate) was kept fixed at 1:6 (by weights), where water cement ratio was valued 0.35 for preparing the sample specimens. The brick aggregate size varied among 25mm, 19mm, 12mm. It has been found that the compressive strength decreased with the increment of aggregate size but permeability increases and concrete made with 19mm maximum aggregate size yields the optimum value. No significant differences on the strength and permeability test are observed between the brick aggregate made zero fine concrete and stone aggregate made zero fine concrete.

Keywords: pervious concrete, brick aggregate concrete, zero fine concrete, permeability, porosity

Procedia PDF Downloads 533
1202 Stability Indicating Method Development and Validation for Estimation of Antiasthmatic Drug in Combined Dosages Formed by RP-HPLC

Authors: Laxman H. Surwase, Lalit V. Sonawane, Bhagwat N. Poul

Abstract:

A simple stability indicating high performance liquid chromatographic method has been developed for the simultaneous determination of Levosalbutamol Sulphate and Ipratropium Bromide in bulk and pharmaceutical dosage form using reverse phase Zorbax Eclipse Plus C8 column (250mm×4.6mm), with mobile phase phosphate buffer (0.05M KH2PO4): acetonitrile (55:45v/v) pH 3.5 adjusted with ortho-phosphoric acid, the flow rate was 1.0 mL/min and the detection was carried at 212 nm. The retention times of Levosalbutamol Sulphate and Ipratropium Bromide were 2.2007 and 2.6611 min respectively. The correlation coefficient of Levosalbutamol Sulphate and Ipratropium Bromide was found to be 0.997 and 0.998.Calibration plots were linear over the concentration ranges 10-100µg/mL for both Levosalbutamol Sulphate and Ipratropium Bromide. The LOD and LOQ of Levosalbutamol Sulphate were 2.520µg/mL and 7.638µg/mL while for Ipratropium Bromide was 1.201µg/mL and 3.640 µg/mL. The accuracy of the proposed method was determined by recovery studies and found to be 100.15% for Levosalbutamol Sulphate and 100.19% for Ipratropium Bromide respectively. The method was validated for accuracy, linearity, sensitivity, precision, robustness, system suitability. The proposed method could be utilized for routine analysis of Levosalbutamol Sulphate and Ipratropium Bromide in bulk and pharmaceutical capsule dosage form.

Keywords: levosalbutamol sulphate, ipratropium bromide, RP-HPLC, phosphate buffer, acetonitrile

Procedia PDF Downloads 335
1201 Demand Forecasting Using Artificial Neural Networks Optimized by Particle Swarm Optimization

Authors: Daham Owaid Matrood, Naqaa Hussein Raheem

Abstract:

Evolutionary algorithms and Artificial neural networks (ANN) are two relatively young research areas that were subject to a steadily growing interest during the past years. This paper examines the use of Particle Swarm Optimization (PSO) to train a multi-layer feed forward neural network for demand forecasting. We use in this paper weekly demand data for packed cement and towels, which have been outfitted by the Northern General Company for Cement and General Company of prepared clothes respectively. The results showed superiority of trained neural networks using particle swarm optimization on neural networks trained using error back propagation because their ability to escape from local optima.

Keywords: artificial neural network, demand forecasting, particle swarm optimization, weight optimization

Procedia PDF Downloads 435
1200 Assessment of Vermiculite Concrete Containing Bio-Polymer Aggregate

Authors: Aliakbar Sayadi, Thomas R. Neitzert, G. Charles Clifton, Min Cheol Han

Abstract:

The present study aims to assess the performance of vermiculite concrete containing poly-lactic acid beads as an eco-friendly aggregate. Vermiculite aggregate was replaced by poly-lactic acid in percentages of 0%, 20%, 40%, 60% and 80%. Mechanical and thermal properties of concrete were investigated. Test results indicated that the inclusion of poly-lactic acid decreased the PH value of concrete and all the poly-lactic acid particles were dissolved due to the formation of sodium lactide and lactide oligomers when subjected to the high alkaline environment of concrete. In addition, an increase in thermal conductivity value of concrete was observed as the ratio of poly-lactic acid increased. Moreover, a set of equations was proposed to estimate the water-cement ratio, cement content and water absorption ratio of concrete.

Keywords: poly-lactic acid (PLA), vermiculite concrete, eco-friendly, mechanical properties

Procedia PDF Downloads 391
1199 Proximate and Amino Acid Composition of Amaranthus hybridus (Spinach), Celosia argentea (Cock's Comb) and Solanum nigrum (Black nightshade)

Authors: S. O. Oladeji, I. Saleh, A. U. Adamu, S. A. Fowotade

Abstract:

The proximate composition, trace metal level and amino acid composition of Amaranthus hybridus, Celosia argentea and Solanum nigrum were determined. These vegetables were high in their ash contents. Twelve elements were determined: calcium, chromium, copper, iron, lead, magnesium, nickel, phosphorous, potassium, sodium and zinc using flame photometer, atomic absorption and UV-Visible spectrophotometers. Calcium levels were highest ranged between 145.28±0.38 to 235.62±0.41mg/100g in all the samples followed by phosphorus. Quantitative chromatographic analysis of the vegetables hydrolysates revealed seventeen amino acids with concentration of leucine (6.51 to 6.66±0.21g/16gN) doubling that of isoleucine (2.99 to 3.33±0.21g/16gN) in all the samples while the limiting amino acids were cystine and methionine. The result showed that these vegetables were of high nutritive values and could be adequate used as supplement in diet.

Keywords: proximate, amino acids, Amaranthus hybridus, Celosia argentea, Solanum nigrum

Procedia PDF Downloads 391
1198 Effect of Oxytocin on Cytosolic Calcium Concentration of Alpha and Beta Cells in Pancreas

Authors: Rauza Sukma Rita, Katsuya Dezaki, Yuko Maejima, Toshihiko Yada

Abstract:

Oxytocin is a nine-amino acid peptide synthesized in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) of the hypothalamus. Oxytocin promotes contraction of the uterus during birth and milk ejection during breast feeding. Although oxytocin receptors are found predominantly in the breasts and uterus of females, many tissues and organs express oxytocin receptors, including the pituitary, heart, kidney, thymus, vascular endothelium, adipocytes, osteoblasts, adrenal gland, pancreatic islets, and many cell lines. On the other hand, in pancreatic islets, oxytocin receptors are expressed in both α-cells and β-cells with stronger expression in α- cells. However, to our knowledge there are no reports yet about the effect of oxytocin on cytosolic calcium reaction on α and β-cell. This study aims to investigate the effect of oxytocin on α-cells and β-cells and its oscillation pattern. Islet of Langerhans from wild type mice were isolated by collagenase digestion. Isolated and dissociated single cells either α-cells or β-cells on coverslips were mounted in an open chamber and superfused in HKRB. Cytosolic concentration ([Ca2+]i) in single cells were measured by fura-2 microfluorimetry. After measurement of [Ca2+]i, α-cells were identified by subsequent immunocytochemical staining using an anti-glucagon antiserum. In β-cells, the [Ca2+]i increase in response to oxytocin was observed only under 8.3 mM glucose condition, whereas in α-cells, [Ca2+]i an increase induced by oxytocin was observed in both 2.8 mM and 8.3 mM glucose. The oscillation incidence was induced more frequently in β-cells compared to α-cells. In conclusion, the present study demonstrated that oxytocin directly interacts with both α-cells and β-cells and induces increase of [Ca2+]i and its specific patterns.

Keywords: α-cells, β-cells, cytosolic calcium concentration, oscillation, oxytocin

Procedia PDF Downloads 177
1197 Mass Transfer in Reactor with Magnetic Field Generator

Authors: Tomasz Borowski, Dawid Sołoducha, Rafał Rakoczy, Marian Kordas

Abstract:

The growing interest in magnetic fields applications is visible due to the increased number of articles on this topic published in the last few years. In this study, the influence of various magnetic fields (MF) on the mass transfer process was examined. To carry out the prototype set-up equipped with an MF generator that is able to generate a pulsed magnetic field (PMF), oscillating magnetic field (OMF), rotating magnetic field (RMF) and static magnetic field (SMF) was used. To demonstrate the effect of MF’s on mass transfer, the calcium carbonate precipitation process was selected. To the vessel with attached conductometric probes and placed inside the generator, specific doses of calcium chloride and sodium carbonate were added. Electrical conductivity changes of the mixture inside the vessel were measured over time until equilibrium was established. Measurements were conducted for various MF strengths and concentrations of added chemical compounds. Obtained results were analyzed, which allowed to creation of mathematical correlation models showing the influence of MF’s on the studied process.

Keywords: mass transfer, oscillating magnetic field, rotating magnetic field, static magnetic field

Procedia PDF Downloads 192
1196 Transcriptomic Response of Calmodulin Encoding Gene (CaM) in Pesticide Utilizing Talaromyces Fungal Strains

Authors: M. D. Asemoloye, S. G. Jonathan, A. Rafiq, O. J. Olawuyi, D. O. Adejoye

Abstract:

Calmodulin is one of the intracellular calcium proteins that regulates large spectrum of enzymes and cellular functions including metabolism of cyclic nucleotides and glycogen. The potentials of calmodulin gene in fungi necessitates their genetic response and their strong cassette of enzyme secretions for pesticide degradation. Therefore, this study was carried out to investigate the ‘Transcriptomic’ response of calmodulin encoding genes in Talaromyces fungi in response to 2, 2-dichlorovinyl dimethyl phosphate (DDVP or Dichlorvos) an organophosphate pesticide and γ-Hexachlorocyclohexane (Lindane) an organochlorine pesticide. Fungi strains isolated from rhizosphere from grasses rhizosphere in pesticide polluted sites were subjected to percentage incidence test. Two most frequent fungi were further characterized using ITS gene amplification (ITS1 and ITS4 combinations), they were thereafter subjected to In-vitro DDVP and lindane tolerance tests at different concentrations. They were also screened for presence and expression of calmodulin gene (caM) using RT-PCR technique. The two Talaromyces strains had the highest incidence of 50-72% in pesticide polluted site, they were both identified as Talaromyces astroroseus asemoG and Talaromyces purpurogenum asemoN submitted in NCBI gene-bank with accession numbers KY488464 and KY488468 respectively. T. astroroseus KY488464 tolerated DDVP (1.23±0.023 cm) and lindane (1.11±0.018 cm) at 25 % concentration while T. purpurogenum KY488468 tolerated DDVP (1.33±0.061 cm) and lindane (1.54±0.077 cm) at this concentration. Calmodulin gene was detected in both strains, but RT-PCR expression of caM gene revealed at 900-1000 bp showed an under-expression of caM in T. astrorosues KY488464 but overexpressed in T. purpurogenum KY488464. Thus, the calmodulin gene response of these fungal strains to both pesticides could be considered in monitoring the potentials of fungal strains to pesticide tolerance and bioremediation of pesticide in polluted soil.

Keywords: Calmodulin gene, pesticide, RT-PCR, talaromyces, tolerance

Procedia PDF Downloads 214
1195 Nano and Micro Silica Cooperating Effect on Ferrocement Mortar

Authors: Aziz Ibrahim Abdulla, Omar Mohanad Mahdi

Abstract:

The objective of this paper is to explore the effect of incorporating Nano-Silica with Silica-fume in ferrocement mortar to enhancing mechanical properties of it. One type of Nano silica with average diameter size 23nm and silica fume have been used with two percentage (1%, 2% Nano silica and 5%, 10% silica fume per weight of cement) and w/c with / without superplasticizer was been calculated by flow test method. Also three sand: cement ratios have been used (1.5, 2.0 and 2.5) with max. Aggregate size 0.6mm in this study for reference and other mixtures. Results reveal adding Nano silica with silica fume to ferrocement mortar enhances its physical and mechanical properties such as compressive strength and flexural strength. The SEM pictures and density with absorption ratio demonstrate that Nano silica with silica fume contributes to enhancement of mortar through yielding denser, more compact and uniform mixtures.

Keywords: nano silica, ferrocement mortar, compresion strength, flexural strength

Procedia PDF Downloads 367
1194 Using Electro-Biogrouting to Stabilize of Soft Soil

Authors: Hamed A. Keykha, Hadi Miri

Abstract:

This paper describes a new method of soil stabilisation, electro-biogrouting (EBM), for improvement of soft soil with low hydraulic conductivity. This method uses an applied voltage gradient across the soil to induce the ions and bacteria cells through the soil matrix, resulting in CaCO3 precipitation and an increase of the soil shear strength in the process. The EBM were used effectively with two injection methods; bacteria injection and products of bacteria injection. The bacteria cells, calcium ions and urea were moved across the soil by electromigration and electro osmotic flow respectively. The products of bacteria (CO3-2) were moved by electromigration. The results showed that the undrained shear strength of the soil increased from 6 to 65 and 70 kPa for first and second injection method respectively. The injection of carbonate solution and calcium could be effectively flowed in the clay soil compare to injection of bacteria cells. The detection of CaCO3 percentage and its corresponding water content across the specimen showed that the increase of undrained shear strength relates to the deposit of calcite crystals between soil particles.

Keywords: Sporosarcina pasteurii, electrophoresis, electromigration, electroosmosis, biocement

Procedia PDF Downloads 515
1193 Recovery from Detrimental pH Troughs in a Moorland River Using Monitored Calcium Carbonate Introductions

Authors: Lauren Dawson, Sean Comber, Richard Sandford, Alan Tappin, Bruce Stockley

Abstract:

The West Dart River is underperforming for Salmon (Salmo salar) survival rates due to acidified pH troughs under the European Water Framework Directive (2000/60/EC). These troughs have been identified as being caused by historic acid rain pollution which is being held in situ by peat bog presence at site and released during flushing events. Natural recovery has been deemed unlikely by the year 2020 using steady state water chemistry models and therefore a program of monitored calcium carbonate (CaCO3) introductions are being conducted to eliminate these troughs, which can drop to pH 2.93 (salmon survival – pH 5.5). The river should be naturally acidic (pH 5.5-6) due to the granite geology of Dartmoor and therefore the CaCO3 introductions are under new methodology (the encasing of the CaCO3 in permeable sacks) to ensure removal should the water pH rise above neutral levels. The water chemistry and ecology are undergoing comprehensive monitoring, including pH and turbidity levels, dissolved organic carbon and aluminum concentration and speciation, while the aquatic biota is being used to assess the potential water chemistry changes. While this project is ongoing, results from the preliminary field trial show only a temporary, localized increase in pH following CaCO3 introductions into the water column. However, changes to the water chemistry have only been identified in the West Dart after methodology adjustments to account for flow rates and spate-dissolution, though no long-term changes have so far been found in the ecology of the river. However, this is not necessarily a negative factor, as the aim of the study is to protect the current ecological communities and the natural pH of the river while remediating only the detrimental pH troughs.

Keywords: anthropogenic acidification recovery, calcium carbonate introductions, ecology monitoring, water chemistry monitoring

Procedia PDF Downloads 138
1192 Enhancing Algal Bacterial Photobioreactor Efficiency: Nutrient Removal and Cost Analysis Comparison for Light Source Optimization

Authors: Shahrukh Ahmad, Purnendu Bose

Abstract:

Algal-Bacterial photobioreactors (ABPBRs) have emerged as a promising technology for sustainable biomass production and wastewater treatment. Nutrient removal is seldom done in sewage treatment plants and large volumes of wastewater which still have nutrients are being discharged and that can lead to eutrophication. That is why ABPBR plays a vital role in wastewater treatment. However, improving the efficiency of ABPBR remains a significant challenge. This study aims to enhance ABPBR efficiency by focusing on two key aspects: nutrient removal and cost-effective optimization of the light source. By integrating nutrient removal and cost analysis for light source optimization, this study proposes practical strategies for improving ABPBR efficiency. To reduce organic carbon and convert ammonia to nitrates, domestic wastewater from a 130 MLD sewage treatment plant (STP) was aerated with a hydraulic retention time (HRT) of 2 days. The treated supernatant had an approximate nitrate and phosphate values of 16 ppm as N and 6 ppm as P, respectively. This supernatant was then fed into the ABPBR, and the removal of nutrients (nitrate as N and phosphate as P) was observed using different colored LED bulbs, namely white, blue, red, yellow, and green. The ABPBR operated with a 9-hour light and 3-hour dark cycle, using only one color of bulbs per cycle. The study found that the white LED bulb, with a photosynthetic photon flux density (PPFD) value of 82.61 µmol.m-2 .sec-1 , exhibited the highest removal efficiency. It achieved a removal rate of 91.56% for nitrate and 86.44% for phosphate, surpassing the other colored bulbs. Conversely, the green LED bulbs showed the lowest removal efficiencies, with 58.08% for nitrate and 47.48% for phosphate at an HRT of 5 days. The quantum PAR (Photosynthetic Active Radiation) meter measured the photosynthetic photon flux density for each colored bulb setting inside the photo chamber, confirming that white LED bulbs operated at a wider wavelength band than the others. Furthermore, a cost comparison was conducted for each colored bulb setting. The study revealed that the white LED bulb had the lowest average cost (Indian Rupee)/light intensity (µmol.m-2 .sec-1 ) value at 19.40, while the green LED bulbs had the highest average cost (INR)/light intensity (µmol.m-2 .sec-1 ) value at 115.11. Based on these comparative tests, it was concluded that the white LED bulbs were the most efficient and costeffective light source for an algal photobioreactor. They can be effectively utilized for nutrient removal from secondary treated wastewater which helps in improving the overall wastewater quality before it is discharged back into the environment.

Keywords: algal bacterial photobioreactor, domestic wastewater, nutrient removal, led bulbs

Procedia PDF Downloads 53
1191 A Novel Cold Asphalt Concrete Mixture for Heavily Trafficked Binder Course

Authors: Anmar Dulaimi, Hassan Al Nageim, Felicite Ruddock, Linda Seton

Abstract:

Cold bituminous asphalt mixture (CBEM) provide a sustainable, cost effective and energy efficiency alternative to traditional hot mixtures. However, these mixtures have a comparatively low initial strength and as it is considered as evolutionary materials, mainly in the early life where the initial cohesion is low and builds up slowly. On the other hand, asphalt concrete is, by far, the most common mixtures in use as binder course and base in road pavement in the UK having a continuous grade offer a good aggregate interlock results in this material having very good load-spreading properties as well as a high resistance to permanent deformation. This study aims at developing a novel fast curing cold asphalt concrete binder course mixtures by using Ordinary Portland Cement (OPC) as a replacement to conventional mineral filler (0%-100%) while new by-product material (LJMU-A2) was used as a supplementary cementitious material. With this purpose, cold asphalt concrete binder course mixtures with cationic emulsions were studied by means of stiffness modulus whereas water sensitivity was approved by assessing the stiffness modulus ratio before and after sample conditioning. The results indicate that a substantial enhancement in the stiffness modulus and a considerable improvement of water sensitivity resistance by adding of LJMU-A2 to the cold asphalt mixtures as a supplementary cementitious material. Moreover, the addition of LJMU-A2 to those mixtures leads to stiffness modulus after 2- day curing comparable to those obtained with Portland cement after 7-day curing.

Keywords: cold mix asphalt, binder course, cement, stiffness modulus, water sensitivity

Procedia PDF Downloads 300
1190 Geopolymer Stabilization of Earth Building Material for Construction 3D Printing

Authors: Timur Mukhametkaliyev

Abstract:

The earthen material possesses low compression strength, and it is highly sensitive to the water content. Different binders can be added (Portland cement or lime) to improve the durability and the mechanical characteristics of earthen material, but the production of these binders has high embodied energy and results in an increase in world CO₂ emission. Geopolymers are binders which can be synthesized at low temperature in alkaline solutions from raw materials consisting of amorphous aluminosilicates. Geopolymers are an attractive substitution of Portland cement and can be used as an excellent stabilization for earthen material. In this study, earthen material stabilized with geopolymer binder for use in construction 3D printing was developed. Construction 3D printing offers freedom of design, waste minimisation, customisation, reduced labour, and automation. For successful 3D printing, the properties of used material are the most important aspects because they require adaptability for extrusion and controlled time of hardening for the binder.

Keywords: 3D printing, building construction, geopolymer, architecture

Procedia PDF Downloads 142
1189 Hybrid Structure Learning Approach for Assessing the Phosphate Laundries Impact

Authors: Emna Benmohamed, Hela Ltifi, Mounir Ben Ayed

Abstract:

Bayesian Network (BN) is one of the most efficient classification methods. It is widely used in several fields (i.e., medical diagnostics, risk analysis, bioinformatics research). The BN is defined as a probabilistic graphical model that represents a formalism for reasoning under uncertainty. This classification method has a high-performance rate in the extraction of new knowledge from data. The construction of this model consists of two phases for structure learning and parameter learning. For solving this problem, the K2 algorithm is one of the representative data-driven algorithms, which is based on score and search approach. In addition, the integration of the expert's knowledge in the structure learning process allows the obtainment of the highest accuracy. In this paper, we propose a hybrid approach combining the improvement of the K2 algorithm called K2 algorithm for Parents and Children search (K2PC) and the expert-driven method for learning the structure of BN. The evaluation of the experimental results, using the well-known benchmarks, proves that our K2PC algorithm has better performance in terms of correct structure detection. The real application of our model shows its efficiency in the analysis of the phosphate laundry effluents' impact on the watershed in the Gafsa area (southwestern Tunisia).

Keywords: Bayesian network, classification, expert knowledge, structure learning, surface water analysis

Procedia PDF Downloads 118
1188 Noncritical Phase-Matched Fourth Harmonic Generation of Converging Beam by Deuterated Potassium Dihydrogen Phosphate Crystal

Authors: Xiangxu Chai, Bin Feng, Ping Li, Deyan Zhu, Liquan Wang, Guanzhong Wang, Yukun Jing

Abstract:

In high power large-aperture laser systems, such as the inertial confinement fusion project, the Nd: glass laser (1053nm) is usually needed to be converted to ultraviolet (UV) light and the fourth harmonic generation (FHG) is one of the most favorite candidates to achieve UV light. Deuterated potassium dihydrogen phosphate (DKDP) crystal is an optimal choice for converting the Nd: glass radiation to the fourth harmonic laser by noncritical phase matching (NCPM). To reduce the damage probability of focusing lens, the DKDP crystal is suggested to be set before the focusing lens. And a converging beam enters the FHG crystal consequently. In this paper, we simulate the process of FHG in the scheme and the dependence of FHG efficiency on the lens’ F is derived. Besides, DKDP crystal with gradient deuterium is proposed to realize the NCPM FHG of the converging beam. At every position, the phase matching is achieved by adjusting the deuterium level, and the FHG efficiency increases as a result. The relation of the lens’ F with the deuterium gradient is investigated as well.

Keywords: fourth harmonic generation, laser induced damage, converging beam, DKDP crystal

Procedia PDF Downloads 217
1187 Role of Sequestration of CO2 Due to the Carbonation in Total CO2 Emission Balance in Concrete Life

Authors: P. P. Woyciechowski

Abstract:

Calculation of the carbon footprint of cement concrete is a complex process including consideration of the phase of primary life (components and concrete production processes, transportation, construction works, maintenance of concrete structures) and secondary life, including demolition and recycling. Taking into consideration the effect of concrete carbonation can lead to a reduction in the calculated carbon footprint of concrete. In this paper, an example of CO2 balance for small bridge elements made of Portland cement reinforced concrete was done. The results include the effect of carbonation of concrete in a structure and of concrete rubble after demolition. It was shown that important impact of carbonation on the balance is possible only when rubble carbonation is possible. It was related to the fact that only the sequestration potential in the secondary phase of concrete life has significant value.

Keywords: carbon footprint, balance of carbon dioxide in nature, concrete carbonation, the sequestration potential of concrete

Procedia PDF Downloads 218
1186 Development of an Integrated System for the Treatment of Rural Domestic Wastewater: Emphasis on Nutrient Removal

Authors: Prangya Ranjan Rout, Puspendu Bhunia, Rajesh Roshan Dash

Abstract:

In a developing country like India, providing reliable and affordable wastewater treatment facilities in rural areas is a huge challenge. With the aim of enhancing the nutrient removal from rural domestic wastewater while reducing the cost of treatment process, a novel, integrated treatment system consisting of a multistage bio-filter with drop aeration and a post positioned attached growth carbonaceous denitrifying-bioreactor was designed and developed in this work. The bio-filter was packed with ‘dolochar’, a sponge iron industry waste, as an adsorbent mainly for phosphate removal through physiochemical approach. The Denitrifying bio-reactor was packed with many waste organic solid substances (WOSS) as carbon sources and substrates for biomass attachment, mainly to remove nitrate in biological denitrification process. The performance of the modular system, treating real domestic wastewater was monitored for a period of about 60 days and the average removal efficiencies during the period were as follows: phosphate, 97.37%; nitrate, 85.91%, ammonia, 87.85%, with mean final effluent concentration of 0.73, 9.86, and 9.46 mg/L, respectively. The multistage bio-filter played an important role in ammonium oxidation and phosphate adsorption. The multilevel drop aeration with increasing oxygenation, and the special media used, consisting of certain oxides were likely beneficial for nitrification and phosphorus removal, respectively, whereas the nitrate was effectively reduced by biological denitrification in the carbonaceous bioreactor. This treatment system would allow multipurpose reuse of the final effluent. Moreover, the saturated dolochar can be used as nutrient suppliers in agricultural practices and the partially degraded carbonaceous substances can be subjected to composting, and subsequently used as an organic fertilizer. Thus, the system displays immense potential for treating domestic wastewater significantly decreasing the concentrations of nutrients and more importantly, facilitating the conversion of the waste materials into usable ones.

Keywords: nutrient removal, denitrifying bioreactor, multi-stage bio-filter, dolochar, waste organic solid substances

Procedia PDF Downloads 372
1185 Effect of Permeability Reducing Admixture Utilization on Sulfate Resistance of Self-Consolidating Concrete Mixture

Authors: Ali Mardani-Aghabaglou, Zia Ahmad Faqiri, Semsi Yazici

Abstract:

In this study, the effect of permeability reducing admixture (PRA) utilization on fresh properties, compressive strength and sulfate resistance of self-consolidating concrete (SSC) were investigated. For this aim, two different commercial PRA were used at two utilization ratios as %0.1 and %0.2 wt. CEM I 42.5 R type cement and crushed limestone aggregate having Dmax of 15 mm were used for preparing of SCC mixtures. In all mixtures, cement content, water/cement ratio, and flow value were kept constant as 450 kg, 0.40 and 65 ± 2 cm, respectively. In order to obtain desired flow value, a polycarboxylate ether-based high range water reducing admixture was used at different content. T50 flow time, flow value, L-box, and U-funnel of SCC mixture were measured as fresh properties. 1, 3, 7 and 28-day compressive strength of SCC mixture were obtained on 150 mm cubic specimens. To investigate the sulfate resistance of SCC mixture 75x75x285 mm prismatic specimens were produced. After 28-day water curing, specimens were immersed in %5 sodium sulfate solution during 210 days. The length change of specimens was measured at 5-day time intervals up to 210 days. According to the test results, all fresh properties of SCC mixtures were in accordance with the European federation of specialist construction chemicals and concrete systems (EFNARC) critter for SCC mixtures. The utilization of PRA had no significant effect on compressive strength and fresh properties of SCC mixtures. Regardless of PRA type, sulfate resistance of SCC mixture increased by adding of PRA into the SCC mixtures. The length changes of the SCC mixtures containing %1 and %2 PRA were measured as %8 and %14 less than that of control mixture containing no PRA, respectively.

Keywords: permeability reducing admixture, self-consolidating concrete, fresh properties, sulfate resistance

Procedia PDF Downloads 152
1184 Compressive Strength and Capillary Water Absorption of Concrete Containing Recycled Aggregate

Authors: Yeşim Tosun, Remzi Şahin

Abstract:

This paper presents results of compressive strength, capillary water absorption, and density tests conducted on concrete containing recycled aggregate (RCA) which is obtained from structural waste generated by the construction industry in Turkey. In the experiments, 0%, 15%, 30%, 45% and 60% of the normal (natural) coarse aggregate was replaced by the recycled aggregate. Maximum aggregate particle sizes were selected as 16 mm, 22,4 mm and 31,5 mm; and 0,06%, 0,13% and 0,20% of air-entraining agent (AEA) were used in mixtures. Fly ash and superplasticizer were used as a mineral and chemical admixture, respectively. The same type (CEM I 42.5) and constant dosage of cement were used in the study. Water/cement ratio was kept constant as 0.53 for all mixture. It was concluded that capillary water absorption, compressive strength, and density of concrete decreased with increasing RCA ratio. Increasing in maximum aggregate particle size and amount of AEA also affect the properties of concrete significantly.

Keywords: capillary water absorption, compressive strength, recycled concrete aggregates

Procedia PDF Downloads 298
1183 Flame Retardancy of Organophosphorus Compound on Cellulose - an Eco Friendly Concern

Authors: M. A. Hannan, N. Matthias Neisius

Abstract:

Organophosphorus compound diethyloxymethyl-9-oxa-10-phosphaphenanthrene-10-oxide (DOPAC) was applied on cotton cellulose to impart eco-friendly flame retardant property to it. Here acetal linkage was introduced rather than conventionally used ester linkage to rescue from the undurability problem of flame retardant compound. Some acidic catalysts, sodium dihydrogen phosphate (NaH2PO4), ammonium dihydrogen phosphate (NH4H2PO4) and phosphoric acid (H3PO4) were successfully used to form acetal linkage between the base material and flame retardant compound. Inspiring limiting oxygen index (LOI) value of 22.4 was found after exclusive washing treatment. A good outcome of total heat of combustion (THC) 6.05 KJ/g was found possible during pyrolysis combustion flow calorimetry (PCFC) test of the treated sample. Low temperature dehydration with sufficient amount of char residue (14.89%) was experienced in case of treated sample. In addition, the temperature of peak heat release rate (TPHRR) 343.061°C supported the expected low temperature pyrolysis in condensed phase mechanism. With the consequence of pyrolysis effects, thermogravimetric analysis (TGA) also reported inspiring weight retention% of the treated samples.

Keywords: acetal linkage, char residue, cotton cellulose, flame retardant, loi, low temperature pyrolysis, organophosphorus, THC, THRR

Procedia PDF Downloads 286
1182 Polypharmacy Overdose: Case Report on Mixed Overdose of Ramipril, Quetiapine, Lercanidipine and Duloxetine

Authors: Chui Ling Teng, R. Matsa

Abstract:

We report a case with combined overdose of Lercanidipine (non-dihydropyridine calcium channel blocker), Quetiapine (Atypical antipsychotic), Ramipril and Duloxetine. A 66-year old male presented to the Emergency Department 12-hours after the ingestion of 1.2g Lercanidipine, 3g Quetiapine, 280mg of Ramipril and 420mg of Duloxetine. He describes lethargic, drowsiness and was unable to pass any urine since overdosed. He was found to be bradycardic, hypotensive and anuric. He had refractory hypotension and anuric despite fluid resuscitation, glucagon therapy and intravenous naloxone. His care was escalated to Intensive care, requiring noradrenaline, adrenaline, vasopressin, and hyperinsulinaemic euglycaemia therapy. He achieved haemodynamic stability and kidney function improved gradually with the support received. The total length of therapy lasted for 30 horus in which individual therapy was weaned down based on the requirement. He was then transferred to medical ward for further psychiatric assessment. This is a the first repored case of mixed overdose with lercanidipine, Quetiapine, Rampmipril and Duloxetine.

Keywords: calcium channel blocker, hyperinsulinaemic Euglycaemia therapy, lercanidipine, overdose

Procedia PDF Downloads 310
1181 Study of the Hydraulic Concrete Physical-Mechanical Properties by Using Admixtures

Authors: Natia Tabatadze

Abstract:

The research aim is to study the physical - mechanical characteristics of structural materials, in particular, hydraulic concrete in the surface active environment and receiving of high strength concrete, low-deformable, resistant to aggressive environment concrete due application of nano technologies. The obtained concrete with additives will by possible to apply in hydraulic structures. We used cement (compressive strength R28=39,42 mPa), sand (0- 5 mm), gravel (5-10 mm, 10-20 mm), admixture CHRYSO® Fuge B 1,5% dosage of cement. CHRYSO® Fuge B renders mortar and concrete highly resistant to capillary action and reduces, or even eliminates infiltration of water under pressure. The fine particles that CHRYSO® Fuge B contains combine with the lime in the cement to form water repellent particles. These obstruct the capillary action within concrete. CHRYSO® Fuge B does not significantly modify the characteristics of the fresh concrete and mortar, nor the compressive strength. As result of research, the alkali-silica reaction was improved (relative elongation 0,122 % of admixture instead of 0,126 % of basic concrete after 14 days). The aggressive environment impact on the strength of heavy concrete, fabricated on the basis of the hydraulic admixture with the penetrating waterproof additives also was improved (strength on compression R28=47,5 mPa of admixture instead of R28=35,8 mPa), as well as the mass water absorption (W=3,37 % of admixture instead of W=1,41 %), volume water absorption (W=1,41 % of admixture instead of W=0,59 %), water tightness (R14=37,9 mPa instead R14=28,7 mPa) and water-resistance (B=18 instead B=12). The basic parameters of concrete with admixture was improved in comparison with basic concrete.

Keywords: structural materials, hydraulic concrete, low-deformable, water absorption for mass, water absorption for volume

Procedia PDF Downloads 305
1180 Hydraulic Conductivity Prediction of Cement Stabilized Pavement Base Incorporating Recycled Plastics and Recycled Aggregates

Authors: Md. Shams Razi Shopnil, Tanvir Imtiaz, Sabrina Mahjabin, Md. Sahadat Hossain

Abstract:

Saturated hydraulic conductivity is one of the most significant attributes of pavement base course. Determination of hydraulic conductivity is a routine procedure for regular aggregate base courses. However, in many cases, a cement-stabilized base course is used with compromised drainage ability. Traditional hydraulic conductivity testing procedure is a readily available option which leads to two consequential drawbacks, i.e., the time required for the specimen to be saturated and extruding the sample after completion of the laboratory test. To overcome these complications, this study aims at formulating an empirical approach to predicting hydraulic conductivity based on Unconfined Compressive Strength test results. To do so, this study comprises two separate experiments (Constant Head Permeability test and Unconfined Compressive Strength test) conducted concurrently on a specimen having the same physical credentials. Data obtained from the two experiments were then used to devise a correlation between hydraulic conductivity and unconfined compressive strength. This correlation in the form of a polynomial equation helps to predict the hydraulic conductivity of cement-treated pavement base course, bypassing the cumbrous process of traditional permeability and less commonly used horizontal permeability tests. The correlation was further corroborated by a different set of data, and it has been found that the derived polynomial equation is deemed to be a viable tool to predict hydraulic conductivity.

Keywords: hydraulic conductivity, unconfined compressive strength, recycled plastics, recycled concrete aggregates

Procedia PDF Downloads 81
1179 Mechanical Properties and Shrinkage and Expansion Assessment of Rice Husk Ash Concrete and Its Comparison with the Control Concrete

Authors: Hamed Ahmadi Moghadam, Omolbanin Arasteh Khoshbin

Abstract:

The possibility of using of rice husk ash (RHA) of Guilan (a province located in the north of Iran) (RHA) in concrete was studied by performing experiments. Mechanical properties and shrinkage and expansion of concrete containing different percentage of RHA and the control concrete consisting of cement type II were investigated. For studying, a number of cube and prism concrete specimens containing of 5 to 30% of RHA with constant water to binder ratio of 0.4 were casted and the compressive strength, tensile strength, shrinkage and expansion for water curing conditions up to 360 days were measured. The tests results show that the cement replacement of rice husk ash (RHA) caused both the quality and mechanical properties alterations. It is shown that the compressive strength, tensile strength increase also shrinkage and expansion of specimens were increased that should be controlled in mass concrete structures.

Keywords: rice husk ash, mechanical properties, shrinkage and expansion, Pozzolan

Procedia PDF Downloads 395
1178 25 (OH)D3 Level and Obesity Type, and Its Effect on Renal Excretory Function in Patients with a Functioning Transplant

Authors: Magdalena Barbara Kaziuk, Waldemar Kosiba, Marek Jan Kuzniewski

Abstract:

Introduction: Vitamin D3 has a proven pleiotropic effect, not only responsible for calcium and phosphate management, but also influencing normal functioning of the whole body. Aim: Evaluation of vitamin D3 resources and its effect on a nutritional status, obesity type and glomerular filtration in kidney transplant recipients. Methods: Group of 152 (81 women and 71 men, average age 47.8 ± 11.6 years) patients with a functioning renal transplant their body composition was assessed using the bioimpendance method (BIA) and anthropometric measurements more than 3 months after the transplant. The nutritional status and the obesity type were determined with the Waist to Height Ratio (WHtR) and the Waist to Hip Ratio (WHR). 25- Hydroxyvitamin D3 (25 (OH)D3) was determined, together with its correlation with the obesity type and the glomerular filtration rate (eGFR) calculated with the MDRD formula. Results: The mean 25 (OH)D3 level was 20.4 ng/ml. 30ng/ml was considered as a minimum correct level 22,7% of patients from the study group were classified to be a correct body weight, 56,7% of participants had an android type and 20,6% had a gynoid type. Significant correlation was observed between 25 (OH)D3 deficiency and abdominal obesity (p < 0.005) in patients. Furthermore, a statistically significant relationship was demonstrated between the 25 (OH)D3 levels and eGFR in patients after a kidney transplant. Patients with an android body type had lower eGFR versus those with the gynoid body type (p=0.004). Conclusions: Correct diet in patients after a kidney transplant determines minimum recommended serum levels of vitamin D3. Excessive fatty tissue, low levels of 25 (OH)D3), may be a predictor for android obesity and renal injury; therefore, correct diet and pharmacological management together with physical activities adapted to the physical fitness level of a patient are necessary.

Keywords: kidney transplantation, glomerular filtration rate, obesity, vitamin D3

Procedia PDF Downloads 267