Search results for: atmospheric models
6722 Modeling and Simulation of Practical Metamaterial Structures
Authors: Ridha Salhi, Mondher Labidi, Fethi Choubani
Abstract:
Metamaterials have attracted much attention in recent years because of their electromagnetic exquisite proprieties. We will present, in this paper, the modeling of three metamaterial structures by equivalent circuit model. We begin by modeling the SRR (Split Ring Resonator), then we model the HIS (High Impedance Surfaces), and finally, we present the model of the CPW (Coplanar Wave Guide). In order to validate models, we compare the results obtained by an equivalent circuit models with numerical simulation.Keywords: metamaterials, SRR, HIS, CPW, IDC
Procedia PDF Downloads 4296721 Spatial and Temporal Variability of Meteorological Drought Including Atmospheric Circulation in Central Europe
Authors: Andrzej Wałęga, Marta Cebulska, Agnieszka Ziernicka-Wojtaszek, Wojciech Młocek, Agnieszka Wałęga, Tommaso Caloiero
Abstract:
Drought is one of the natural phenomena influencing many aspects of human activities like food production, agriculture, industry, and the ecological conditions of the environment. In the area of the Polish Carpathians, there are periods with a deficit of rainwater and an increasing frequency in dry months, especially in the cold half of the year. The aim of this work is a spatial and temporal analysis of drought, expressed as SPI in a heterogenous area of the Polish Carpathian and of the highland Region in the Central part of Europe based on long-term precipitation data. Also, to our best knowledge, for the first time in this work, drought characteristics analyzed via the SPI were discussed based on the atmospheric circulation calendar. The study region is the Upper Vistula Basin, located in the southern and south-eastern part of Poland. In this work, monthly precipitation from 56 rainfall stations was analysed from 1961 to 2022. The 3-, 6-, 9-, and 12-month Standardized Precipitation Index (SPI) were used as indicators of meteorological drought. For the 3-month SPI, the main climatic mechanisms determining extreme droughts were defined based on the calendar of synoptic circulations. The Mann-Kendall test was used to detect the trend of extreme droughts. Statistically significant trends of SPI were observed on 52.7% of all analyzed stations, and in most cases, a positive trend was observed. Statistically significant trends were more frequently observed in stations located in the western part of the analyzed region. Long-term droughts, represented by the 12-month SPI, occurred in all stations but not in all years. Short-term droughts (3-month SPI) were most frequent in the winter season, 6 and 9-month SPI in winter and spring, and 12-month SPI in winter and autumn, respectively. The spatial distribution of drought was highly diverse. The most intensive drought occurred in 1984, with the 6-month SPI covering 98% of the analyzed region and the 9 and 12-month SPI covering 90% of the entire region. Droughts exhibit a seasonal pattern, with a dominant 10-year periodicity for all analyzed variants of SPI. Additionally, Fourier analysis revealed a 2-year periodicity for the 3-, 6-, and 9-month SPI and a 31-year periodicity for the 12-month SPI. The results provide insights into the typical climatic conditions in Poland, with strong seasonality in precipitation. The study highlighted that short-term extreme droughts, represented by the 3-month SPI, are often caused by anticyclonic situations with high-pressure wedges Ka and Wa, and anticyclonic West as observed in 52.3% of cases. These findings are crucial for understanding the spatial and temporal variability of short and long-term extreme droughts in Central Europe, particularly for the agriculture sector dominant in the northern part of the analyzed region, where drought frequency is highest.Keywords: atmospheric circulation, drought, precipitation, SPI, the Upper Vistula Basin
Procedia PDF Downloads 746720 Effective Charge Coupling in Low Dimensional Doped Quantum Antiferromagnets
Authors: Suraka Bhattacharjee, Ranjan Chaudhury
Abstract:
The interaction between the charge degrees of freedom for itinerant antiferromagnets is investigated in terms of generalized charge stiffness constant corresponding to nearest neighbour t-J model and t1-t2-t3-J model. The low dimensional hole doped antiferromagnets are the well known systems that can be described by the t-J-like models. Accordingly, we have used these models to investigate the fermionic pairing possibilities and the coupling between the itinerant charge degrees of freedom. A detailed comparison between spin and charge couplings highlights that the charge and spin couplings show very similar behaviour in the over-doped region, whereas, they show completely different trends in the lower doping regimes. Moreover, a qualitative equivalence between generalized charge stiffness and effective Coulomb interaction is also established based on the comparisons with other theoretical and experimental results. Thus it is obvious that the enhanced possibility of fermionic pairing is inherent in the reduction of Coulomb repulsion with increase in doping concentration. However, the increased possibility can not give rise to pairing without the presence of any other pair producing mechanism outside the t-J model. Therefore, one can conclude that the t-J-like models themselves solely are not capable of producing conventional momentum-based superconducting pairing on their own.Keywords: generalized charge stiffness constant, charge coupling, effective Coulomb interaction, t-J-like models, momentum-space pairing
Procedia PDF Downloads 1596719 Assessing Future Offshore Wind Farms in the Gulf of Roses: Insights from Weather Research and Forecasting Model Version 4.2
Authors: Kurias George, Ildefonso Cuesta Romeo, Clara Salueña Pérez, Jordi Sole Olle
Abstract:
With the growing prevalence of wind energy there is a need, for modeling techniques to evaluate the impact of wind farms on meteorology and oceanography. This study presents an approach that utilizes the WRF (Weather Research and Forecasting )with that include a Wind Farm Parametrization model to simulate the dynamics around Parc Tramuntana project, a offshore wind farm to be located near the Gulf of Roses off the coast of Barcelona, Catalonia. The model incorporates parameterizations for wind turbines enabling a representation of the wind field and how it interacts with the infrastructure of the wind farm. Current results demonstrate that the model effectively captures variations in temeperature, pressure and in both wind speed and direction over time along with their resulting effects on power output from the wind farm. These findings are crucial for optimizing turbine placement and operation thus improving efficiency and sustainability of the wind farm. In addition to focusing on atmospheric interactions, this study delves into the wake effects within the turbines in the farm. A range of meteorological parameters were also considered to offer a comprehensive understanding of the farm's microclimate. The model was tested under different horizontal resolutions and farm layouts to scrutinize the wind farm's effects more closely. These experimental configurations allow for a nuanced understanding of how turbine wakes interact with each other and with the broader atmospheric and oceanic conditions. This modified approach serves as a potent tool for stakeholders in renewable energy, environmental protection, and marine spatial planning. environmental protection and marine spatial planning. It provides a range of information regarding the environmental and socio economic impacts of offshore wind energy projects.Keywords: weather research and forecasting, wind turbine wake effects, environmental impact, wind farm parametrization, sustainability analysis
Procedia PDF Downloads 726718 Assimilating Remote Sensing Data Into Crop Models: A Global Systematic Review
Authors: Luleka Dlamini, Olivier Crespo, Jos van Dam
Abstract:
Accurately estimating crop growth and yield is pivotal for timely sustainable agricultural management and ensuring food security. Crop models and remote sensing can complement each other and form a robust analysis tool to improve crop growth and yield estimations when combined. This study thus aims to systematically evaluate how research that exclusively focuses on assimilating RS data into crop models varies among countries, crops, data assimilation methods, and farming conditions. A strict search string was applied in the Scopus and Web of Science databases, and 497 potential publications were obtained. After screening for relevance with predefined inclusion/exclusion criteria, 123 publications were considered in the final review. Results indicate that over 81% of the studies were conducted in countries associated with high socio-economic and technological advancement, mainly China, the United States of America, France, Germany, and Italy. Many of these studies integrated MODIS or Landsat data into WOFOST to improve crop growth and yield estimation of staple crops at the field and regional scales. Most studies use recalibration or updating methods alongside various algorithms to assimilate remotely sensed leaf area index into crop models. However, these methods cannot account for the uncertainties in remote sensing observations and the crop model itself. l. Over 85% of the studies were based on commercial and irrigated farming systems. Despite a great global interest in data assimilation into crop models, limited research has been conducted in resource- and data-limited regions like Africa. We foresee a great potential for such application in those conditions. Hence facilitating and expanding the use of such an approach, from which developing farming communities could benefit.Keywords: crop models, remote sensing, data assimilation, crop yield estimation
Procedia PDF Downloads 1316717 Assimilating Remote Sensing Data into Crop Models: A Global Systematic Review
Authors: Luleka Dlamini, Olivier Crespo, Jos van Dam
Abstract:
Accurately estimating crop growth and yield is pivotal for timely sustainable agricultural management and ensuring food security. Crop models and remote sensing can complement each other and form a robust analysis tool to improve crop growth and yield estimations when combined. This study thus aims to systematically evaluate how research that exclusively focuses on assimilating RS data into crop models varies among countries, crops, data assimilation methods, and farming conditions. A strict search string was applied in the Scopus and Web of Science databases, and 497 potential publications were obtained. After screening for relevance with predefined inclusion/exclusion criteria, 123 publications were considered in the final review. Results indicate that over 81% of the studies were conducted in countries associated with high socio-economic and technological advancement, mainly China, the United States of America, France, Germany, and Italy. Many of these studies integrated MODIS or Landsat data into WOFOST to improve crop growth and yield estimation of staple crops at the field and regional scales. Most studies use recalibration or updating methods alongside various algorithms to assimilate remotely sensed leaf area index into crop models. However, these methods cannot account for the uncertainties in remote sensing observations and the crop model itself. l. Over 85% of the studies were based on commercial and irrigated farming systems. Despite a great global interest in data assimilation into crop models, limited research has been conducted in resource- and data-limited regions like Africa. We foresee a great potential for such application in those conditions. Hence facilitating and expanding the use of such an approach, from which developing farming communities could benefit.Keywords: crop models, remote sensing, data assimilation, crop yield estimation
Procedia PDF Downloads 826716 Innovative Business Models in the Era of Digital Tourism: Examining Their Impact on International Travel, Local Businesses, and Residents’ Quality of Life
Authors: Madad Ali
Abstract:
In the contemporary landscape of international travel, the infusion of digital technologies has given rise to innovative business models that are reshaping the dynamics of tourism. This research delves into the transformative potential of these novel business models within the realm of digital tourism and their multifaceted impact on local businesses, residents' quality of life, and the overall travel experience. The study focuses on the captivating backdrop of Yunnan Province, China, renowned for its rich cultural heritage and diverse ethnic minorities, to uncover the intricate nuances of this phenomenon. The primary objectives of this research encompass the identification and categorization of emerging business models facilitated by digital technologies, their implications on tourist engagement, and their integration into the operations of local businesses. By employing a mixed-methods approach, blending qualitative techniques like interviews and content analysis with quantitative tools such as surveys and data analysis, the study provides a comprehensive evaluation of these business models' effects on various dimensions of the tourism landscape. The distinctiveness of this research lies in its exclusive focus on Yunnan Province, China. By concentrating on Yunnan Province, the research contributes exceptional insights into the interplay between digital tourism, ethnic diversity, cultural heritage, and sustainable development. The study's outcomes hold significance for both scholarly discourse and the stakeholders involved in shaping the region's tourism strategies.Keywords: business model, digital tourism, international travel, local businesses, quality of life
Procedia PDF Downloads 576715 CFD Simulation of a Large Scale Unconfined Hydrogen Deflagration
Authors: I. C. Tolias, A. G. Venetsanos, N. Markatos
Abstract:
In the present work, CFD simulations of a large scale open deflagration experiment are performed. Stoichiometric hydrogen-air mixture occupies a 20 m hemisphere. Two combustion models are compared and are evaluated against the experiment. The Eddy Dissipation Model and a Multi-physics combustion model which is based on Yakhot’s equation for the turbulent flame speed. The values of models’ critical parameters are investigated. The effect of the turbulence model is also examined. k-ε model and LES approach were tested.Keywords: CFD, deflagration, hydrogen, combustion model
Procedia PDF Downloads 5026714 Profitability Assessment of Granite Aggregate Production and the Development of a Profit Assessment Model
Authors: Melodi Mbuyi Mata, Blessing Olamide Taiwo, Afolabi Ayodele David
Abstract:
The purpose of this research is to create empirical models for assessing the profitability of granite aggregate production in Akure, Ondo state aggregate quarries. In addition, an artificial neural network (ANN) model and multivariate predicting models for granite profitability were developed in the study. A formal survey questionnaire was used to collect data for the study. The data extracted from the case study mine for this study includes granite marketing operations, royalty, production costs, and mine production information. The following methods were used to achieve the goal of this study: descriptive statistics, MATLAB 2017, and SPSS16.0 software in analyzing and modeling the data collected from granite traders in the study areas. The ANN and Multi Variant Regression models' prediction accuracy was compared using a coefficient of determination (R²), Root mean square error (RMSE), and mean square error (MSE). Due to the high prediction error, the model evaluation indices revealed that the ANN model was suitable for predicting generated profit in a typical quarry. More quarries in Nigeria's southwest region and other geopolitical zones should be considered to improve ANN prediction accuracy.Keywords: national development, granite, profitability assessment, ANN models
Procedia PDF Downloads 1016713 Seismic Response of Belt Truss System in Regular RC Frame Structure at the Different Positions of the Storey
Authors: Mohd Raish Ansari, Tauheed Alam Khan
Abstract:
This research paper is a comparative study of the belt truss in the Regular RC frame structure at the different positions of the floor. The method used in this research is the response spectrum method with the help of the ETABS Software, there are six models in this paper with belt truss. The Indian standard code used in this work are IS 456:2000, IS 800:2007, IS 875 part-1, IS 875 part-1, and IS 1893 Part-1:2016. The cross-section of the belt truss is the I-section, a grade of steel that is made up of Mild Steel. The basic model in this research paper is the same, only position of the belt truss is going to change, and the dimension of the belt truss is remain constant for all models. The plan area of all models is 24.5 meters x 28 meters, and the model has G+20, where the height of the ground floor is 3.5 meters, and all floor height is 3.0 meters remains constant. This comparative research work selected some important seismic parameters to check the stability of all models, the parameters are base shear, fundamental period, storey overturning moment, and maximum storey displacement.Keywords: belt truss, RC frames structure, ETABS, response spectrum analysis, special moment resisting frame
Procedia PDF Downloads 936712 Selection of Designs in Ordinal Regression Models under Linear Predictor Misspecification
Authors: Ishapathik Das
Abstract:
The purpose of this article is to find a method of comparing designs for ordinal regression models using quantile dispersion graphs in the presence of linear predictor misspecification. The true relationship between response variable and the corresponding control variables are usually unknown. Experimenter assumes certain form of the linear predictor of the ordinal regression models. The assumed form of the linear predictor may not be correct always. Thus, the maximum likelihood estimates (MLE) of the unknown parameters of the model may be biased due to misspecification of the linear predictor. In this article, the uncertainty in the linear predictor is represented by an unknown function. An algorithm is provided to estimate the unknown function at the design points where observations are available. The unknown function is estimated at all points in the design region using multivariate parametric kriging. The comparison of the designs are based on a scalar valued function of the mean squared error of prediction (MSEP) matrix, which incorporates both variance and bias of the prediction caused by the misspecification in the linear predictor. The designs are compared using quantile dispersion graphs approach. The graphs also visually depict the robustness of the designs on the changes in the parameter values. Numerical examples are presented to illustrate the proposed methodology.Keywords: model misspecification, multivariate kriging, multivariate logistic link, ordinal response models, quantile dispersion graphs
Procedia PDF Downloads 3936711 A Review of Gas Hydrate Rock Physics Models
Authors: Hemin Yuan, Yun Wang, Xiangchun Wang
Abstract:
Gas hydrate is drawing attention due to the fact that it has an enormous amount all over the world, which is almost twice the conventional hydrocarbon reserves, making it a potential alternative source of energy. It is widely distributed in permafrost and continental ocean shelves, and many countries have launched national programs for investigating the gas hydrate. Gas hydrate is mainly explored through seismic methods, which include bottom simulating reflectors (BSR), amplitude blanking, and polarity reverse. These seismic methods are effective at finding the gas hydrate formations but usually contain large uncertainties when applying to invert the micro-scale petrophysical properties of the formations due to lack of constraints. Rock physics modeling links the micro-scale structures of the rocks to the macro-scale elastic properties and can work as effective constraints for the seismic methods. A number of rock physics models have been proposed for gas hydrate modeling, which addresses different mechanisms and applications. However, these models are generally not well classified, and it is confusing to determine the appropriate model for a specific study. Moreover, since the modeling usually involves multiple models and steps, it is difficult to determine the source of uncertainties. To solve these problems, we summarize the developed models/methods and make four classifications of the models according to the hydrate micro-scale morphology in sediments, the purpose of reservoir characterization, the stage of gas hydrate generation, and the lithology type of hosting sediments. Some sub-categories may overlap each other, but they have different priorities. Besides, we also analyze the priorities of different models, bring up the shortcomings, and explain the appropriate application scenarios. Moreover, by comparing the models, we summarize a general workflow of the modeling procedure, which includes rock matrix forming, dry rock frame generating, pore fluids mixing, and final fluid substitution in the rock frame. These procedures have been widely used in various gas hydrate modeling and have been confirmed to be effective. We also analyze the potential sources of uncertainties in each modeling step, which enables us to clearly recognize the potential uncertainties in the modeling. In the end, we explicate the general problems of the current models, including the influences of pressure and temperature, pore geometry, hydrate morphology, and rock structure change during gas hydrate dissociation and re-generation. We also point out that attenuation is also severely affected by gas hydrate in sediments and may work as an indicator to map gas hydrate concentration. Our work classifies rock physics models of gas hydrate into different categories, generalizes the modeling workflow, analyzes the modeling uncertainties and potential problems, which can facilitate the rock physics characterization of gas hydrate bearding sediments and provide hints for future studies.Keywords: gas hydrate, rock physics model, modeling classification, hydrate morphology
Procedia PDF Downloads 1586710 A Content Analysis of Corporate Sustainability Performance and Business Excellence Models
Authors: Kari M. Solomon
Abstract:
Companies with a culture accepting of change management and performance excellence are better suited to determine their sustainability performance and impacts. A mature corporate culture supportive of performance excellence is better positioned to integrate sustainability management tools into their standard business strategy. Companies use various sustainability management tools and reporting standards to communicate levels of sustainability performance to their stakeholders, more often focusing on shareholders and investors. A research gap remains in understanding how companies adapt business excellence models to define corporate sustainability performance. A content analysis of medium-sized enterprises using corporate sustainability reports and business excellence models reveals the challenges and opportunities of reporting sustainability performance in the context of organizational excellence. The outcomes of this content analysis contribute knowledge on the resources needed for companies to build sustainability performance management systems integral to existing management systems. The findings of this research inform academic research areas of corporate sustainability performance, the business community contributing to sustainable development initiatives, and integrating sustainable development issues into business excellence models. There are potential research links between sustainability performance management and the alignment of the United Nations Sustainable Development Goals (UN SDGs) when organizations promote a culture of performance or business excellence.Keywords: business excellence, corporate sustainability, performance excellence, sustainability performance
Procedia PDF Downloads 1826709 Utilization of an Object Oriented Tool to Perform Model-Based Safety Analysis According to Extended Failure System Models
Authors: Royia Soliman, Salma ElAnsary, Akram Amin Abdellatif, Florian Holzapfel
Abstract:
Model-Based Safety Analysis (MBSA) is an approach in which the system and safety engineers share a common system model created using a model-based development process. The model can also be extended by the failure modes of the system components. There are two famous approaches for the addition of fault behaviors to system models. The first one is to enclose the failure into the system design directly. The second approach is to develop a fault model separately from the system model, thus combining both independent models for safety analysis. This paper introduces a hybrid approach of MBSA. The approach tries to use informal abstracted models to investigate failure behaviors. The approach will combine various concepts such as directed graph traversal, event lists and Constraint Satisfaction Problems (CSP). The approach is implemented using an Object Oriented programming language. The components are abstracted to its failure logic and relationships of connected components. The implemented approach is tested on various flight control systems, including electrical and multi-domain examples. The various tests are analyzed, and a comparison to different approaches is represented.Keywords: flight control systems, model based safety analysis, safety assessment analysis, system modelling
Procedia PDF Downloads 1646708 Assessing the Impact of Heatwaves on Intertidal Mudflat Colonized by an Exotic Mussel
Authors: Marie Fouet, Olivier Maire, Cécile Masse, Hugues Blanchet, Salomé Coignard, Nicolas Lavesque, Guillaume Bernard
Abstract:
Exacerbated by global change, extreme climatic events such as atmospheric and marine heat waves may interact with the spread of non-indigenous species and their associated impacts on marine ecosystems. Since the 1970’s, the introduction of non-indigenous species due to oyster exchanges has been numerous. Among them, the Asian date mussel Arcuatula senhousia has colonized a large number of ecosystems worldwide (e.g., California, New Zealand, Italy). In these places, A.senhousia led to important habitat modifications in the benthic compartment through physical, biological, and biogeochemical effects associated with the development of dense mussel populations. In Arcachon Bay (France), a coastal lagoon of the French Atlantic and hotspot of oyster farming, abundances of A. senhousia recently increased, following a lag time of ca. 20 years since the first record of the species in 2002. Here, we addressed the potential effects of the interaction between A. senhousia invasion and heatwave intensity on ecosystem functioning within an intertidal mudflat. More precisely, two realistic intensities (“High” and “Severe”) of combined marine and atmospheric heatwaves have been simulated in an experimental tidal mesocosm system onto which naturally varying densities of A. senhousia and associated benthic communities were exposed in sediment cores collected in situ. Following a six-day exposure, community-scale responses were assessed by measuring benthic metabolism (oxygen and nutrient fluxes) in each core. Results show that besides significantly enhanced benthic metabolism with increasing heatwave intensity, mussel density clearly mediated the magnitude of the community-scale response, thereby highlighting the importance of understanding the interactive effects of environmental stressors co-occurring with non-indigenous species and their dependencies for a better assessment of their impacts.Keywords: arcuatula senhousia, benthic habitat, ecosystem functioning, heatwaves, metabolism
Procedia PDF Downloads 676707 Governance Models of Higher Education Institutions
Authors: Zoran Barac, Maja Martinovic
Abstract:
Higher Education Institutions (HEIs) are a special kind of organization, with its unique purpose and combination of actors. From the societal point of view, they are central institutions in the society that are involved in the activities of education, research, and innovation. At the same time, their societal function derives complex relationships between involved actors, ranging from students, faculty and administration, business community and corporate partners, government agencies, to the general public. HEIs are also particularly interesting as objects of governance research because of their unique public purpose and combination of stakeholders. Furthermore, they are the special type of institutions from an organizational viewpoint. HEIs are often described as “loosely coupled systems” or “organized anarchies“ that implies the challenging nature of their governance models. Governance models of HEIs describe roles, constellations, and modes of interaction of the involved actors in the process of strategic direction and holistic control of institutions, taking into account each particular context. Many governance models of the HEIs are primarily based on the balance of power among the involved actors. Besides the actors’ power and influence, leadership style and environmental contingency could impact the governance model of an HEI. Analyzing them through the frameworks of institutional and contingency theories, HEI governance models originate as outcomes of their institutional and contingency adaptation. HEIs tend to fit to institutional context comprised of formal and informal institutional rules. By fitting to institutional context, HEIs are converging to each other in terms of their structures, policies, and practices. On the other hand, contingency framework implies that there is no governance model that is suitable for all situations. Consequently, the contingency approach begins with identifying contingency variables that might impact a particular governance model. In order to be effective, the governance model should fit to contingency variables. While the institutional context creates converging forces on HEI governance actors and approaches, contingency variables are the causes of divergence of actors’ behavior and governance models. Finally, an HEI governance model is a balanced adaptation of the HEIs to the institutional context and contingency variables. It also encompasses roles, constellations, and modes of interaction of involved actors influenced by institutional and contingency pressures. Actors’ adaptation to the institutional context brings benefits of legitimacy and resources. On the other hand, the adaptation of the actors’ to the contingency variables brings high performance and effectiveness. HEI governance models outlined and analyzed in this paper are collegial, bureaucratic, entrepreneurial, network, professional, political, anarchical, cybernetic, trustee, stakeholder, and amalgam models.Keywords: governance, governance models, higher education institutions, institutional context, situational context
Procedia PDF Downloads 3366706 Comparison of the Thermal Characteristics of Induction Motor, Switched Reluctance Motor and Inset Permanent Magnet Motor for Electric Vehicle Application
Authors: Sadeep Sasidharan, T. B. Isha
Abstract:
Modern day electric vehicles require compact high torque/power density motors for electric propulsion. This necessitates proper thermal management of the electric motors. The main focus of this paper is to compare the steady state thermal analysis of a conventional 20 kW 8/6 Switched Reluctance Motor (SRM) with that of an Induction Motor and Inset Permanent Magnet (IPM) motor of the same rating. The goal is to develop a proper thermal model of the three types of models for Finite Element Thermal Analysis. JMAG software is used for the development and simulation of the thermal models. The results show that the induction motor is subjected to more heating when used for electric vehicle application constantly, compared to the SRM and IPM.Keywords: electric vehicles, induction motor, inset permanent magnet motor, loss models, switched reluctance motor, thermal analysis
Procedia PDF Downloads 2236705 Analytical Solution of the Boundary Value Problem of Delaminated Doubly-Curved Composite Shells
Authors: András Szekrényes
Abstract:
Delamination is one of the major failure modes in laminated composite structures. Delamination tips are mostly captured by spatial numerical models in order to predict crack growth. This paper presents some mechanical models of delaminated composite shells based on shallow shell theories. The mechanical fields are based on a third-order displacement field in terms of the through-thickness coordinate of the laminated shell. The undelaminated and delaminated parts are captured by separate models and the continuity and boundary conditions are also formulated in a general way providing a large size boundary value problem. The system of differential equations is solved by the state space method for an elliptic delaminated shell having simply supported edges. The comparison of the proposed and a numerical model indicates that the primary indicator of the model is the deflection, the secondary is the widthwise distribution of the energy release rate. The model is promising and suitable to determine accurately the J-integral distribution along the delamination front. Based on the proposed model it is also possible to develop finite elements which are able to replace the computationally expensive spatial models of delaminated structures.Keywords: J-integral, levy method, third-order shell theory, state space solution
Procedia PDF Downloads 1316704 A Review on Modeling and Optimization of Integration of Renewable Energy Resources (RER) for Minimum Energy Cost, Minimum CO₂ Emissions and Sustainable Development, in Recent Years
Authors: M. M. Wagh, V. V. Kulkarni
Abstract:
The rising economic activities, growing population and improving living standards of world have led to a steady growth in its appetite for quality and quantity of energy services. As the economy expands the electricity demand is going to grow further, increasing the challenges of the more generation and stresses on the utility grids. Appropriate energy model will help in proper utilization of the locally available renewable energy sources such as solar, wind, biomass, small hydro etc. to integrate in the available grid, reducing the investments in energy infrastructure. Further to these new technologies like smart grids, decentralized energy planning, energy management practices, energy efficiency are emerging. In this paper, the attempt has been made to study and review the recent energy planning models, energy forecasting models, and renewable energy integration models. In addition, various modeling techniques and tools are reviewed and discussed.Keywords: energy modeling, integration of renewable energy, energy modeling tools, energy modeling techniques
Procedia PDF Downloads 3446703 Breast Cancer Prediction Using Score-Level Fusion of Machine Learning and Deep Learning Models
Authors: Sam Khozama, Ali M. Mayya
Abstract:
Breast cancer is one of the most common types in women. Early prediction of breast cancer helps physicians detect cancer in its early stages. Big cancer data needs a very powerful tool to analyze and extract predictions. Machine learning and deep learning are two of the most efficient tools for predicting cancer based on textual data. In this study, we developed a fusion model of two machine learning and deep learning models. To obtain the final prediction, Long-Short Term Memory (LSTM) and ensemble learning with hyper parameters optimization are used, and score-level fusion is used. Experiments are done on the Breast Cancer Surveillance Consortium (BCSC) dataset after balancing and grouping the class categories. Five different training scenarios are used, and the tests show that the designed fusion model improved the performance by 3.3% compared to the individual models.Keywords: machine learning, deep learning, cancer prediction, breast cancer, LSTM, fusion
Procedia PDF Downloads 1636702 Design and Implementation of Low-code Model-building Methods
Authors: Zhilin Wang, Zhihao Zheng, Linxin Liu
Abstract:
This study proposes a low-code model-building approach that aims to simplify the development and deployment of artificial intelligence (AI) models. With an intuitive way to drag and drop and connect components, users can easily build complex models and integrate multiple algorithms for training. After the training is completed, the system automatically generates a callable model service API. This method not only lowers the technical threshold of AI development and improves development efficiency but also enhances the flexibility of algorithm integration and simplifies the deployment process of models. The core strength of this method lies in its ease of use and efficiency. Users do not need to have a deep programming background and can complete the design and implementation of complex models with a simple drag-and-drop operation. This feature greatly expands the scope of AI technology, allowing more non-technical people to participate in the development of AI models. At the same time, the method performs well in algorithm integration, supporting many different types of algorithms to work together, which further improves the performance and applicability of the model. In the experimental part, we performed several performance tests on the method. The results show that compared with traditional model construction methods, this method can make more efficient use, save computing resources, and greatly shorten the model training time. In addition, the system-generated model service interface has been optimized for high availability and scalability, which can adapt to the needs of different application scenarios.Keywords: low-code, model building, artificial intelligence, algorithm integration, model deployment
Procedia PDF Downloads 296701 How to Perform Proper Indexing?
Authors: Watheq Mansour, Waleed Bin Owais, Mohammad Basheer Kotit, Khaled Khan
Abstract:
Efficient query processing is one of the utmost requisites in any business environment to satisfy consumer needs. This paper investigates the various types of indexing models, viz. primary, secondary, and multi-level. The investigation is done under the ambit of various types of queries to which each indexing model performs with efficacy. This study also discusses the inherent advantages and disadvantages of each indexing model and how indexing models can be chosen based on a particular environment. This paper also draws parallels between various indexing models and provides recommendations that would help a Database administrator to zero-in on a particular indexing model attributed to the needs and requirements of the production environment. In addition, to satisfy industry and consumer needs attributed to the colossal data generation nowadays, this study has proposed two novel indexing techniques that can be used to index highly unstructured and structured Big Data with efficacy. The study also briefly discusses some best practices that the industry should follow in order to choose an indexing model that is apposite to their prerequisites and requirements.Keywords: indexing, hashing, latent semantic indexing, B-tree
Procedia PDF Downloads 1566700 Moment Estimators of the Parameters of Zero-One Inflated Negative Binomial Distribution
Authors: Rafid Saeed Abdulrazak Alshkaki
Abstract:
In this paper, zero-one inflated negative binomial distribution is considered, along with some of its structural properties, then its parameters were estimated using the method of moments. It is found that the method of moments to estimate the parameters of the zero-one inflated negative binomial models is not a proper method and may give incorrect conclusions.Keywords: zero one inflated models, negative binomial distribution, moments estimator, non negative integer sampling
Procedia PDF Downloads 2946699 Estimation of the Acute Toxicity of Halogenated Phenols Using Quantum Chemistry Descriptors
Authors: Khadidja Bellifa, Sidi Mohamed Mekelleche
Abstract:
Phenols and especially halogenated phenols represent a substantial part of the chemicals produced worldwide and are known as aquatic pollutants. Quantitative structure–toxicity relationship (QSTR) models are useful for understanding how chemical structure relates to the toxicity of chemicals. In the present study, the acute toxicities of 45 halogenated phenols to Tetrahymena Pyriformis are estimated using no cost semi-empirical quantum chemistry methods. QSTR models were established using the multiple linear regression technique and the predictive ability of the models was evaluated by the internal cross-validation, the Y-randomization and the external validation. Their structural chemical domain has been defined by the leverage approach. The results show that the best model is obtained with the AM1 method (R²= 0.91, R²CV= 0.90, SD= 0.20 for the training set and R²= 0.96, SD= 0.11 for the test set). Moreover, all the Tropsha’ criteria for a predictive QSTR model are verified.Keywords: halogenated phenols, toxicity mechanism, hydrophobicity, electrophilicity index, quantitative stucture-toxicity relationships
Procedia PDF Downloads 3006698 Methodologies for Crack Initiation in Welded Joints Applied to Inspection Planning
Authors: Guang Zou, Kian Banisoleiman, Arturo González
Abstract:
Crack initiation and propagation threatens structural integrity of welded joints and normally inspections are assigned based on crack propagation models. However, the approach based on crack propagation models may not be applicable for some high-quality welded joints, because the initial flaws in them may be so small that it may take long time for the flaws to develop into a detectable size. This raises a concern regarding the inspection planning of high-quality welded joins, as there is no generally acceptable approach for modeling the whole fatigue process that includes the crack initiation period. In order to address the issue, this paper reviews treatment methods for crack initiation period and initial crack size in crack propagation models applied to inspection planning. Generally, there are four approaches, by: 1) Neglecting the crack initiation period and fitting a probabilistic distribution for initial crack size based on statistical data; 2) Extrapolating the crack propagation stage to a very small fictitious initial crack size, so that the whole fatigue process can be modeled by crack propagation models; 3) Assuming a fixed detectable initial crack size and fitting a probabilistic distribution for crack initiation time based on specimen tests; and, 4) Modeling the crack initiation and propagation stage separately using small crack growth theories and Paris law or similar models. The conclusion is that in view of trade-off between accuracy and computation efforts, calibration of a small fictitious initial crack size to S-N curves is the most efficient approach.Keywords: crack initiation, fatigue reliability, inspection planning, welded joints
Procedia PDF Downloads 3536697 Artificial Intelligence Methods in Estimating the Minimum Miscibility Pressure Required for Gas Flooding
Authors: Emad A. Mohammed
Abstract:
Utilizing the capabilities of Data Mining and Artificial Intelligence in the prediction of the minimum miscibility pressure (MMP) required for multi-contact miscible (MCM) displacement of reservoir petroleum by hydrocarbon gas flooding using Fuzzy Logic models and Artificial Neural Network models will help a lot in giving accurate results. The factors affecting the (MMP) as it is proved from the literature and from the dataset are as follows: XC2-6: Intermediate composition in the oil-containing C2-6, CO2 and H2S, in mole %, XC1: Amount of methane in the oil (%),T: Temperature (°C), MwC7+: Molecular weight of C7+ (g/mol), YC2+: Mole percent of C2+ composition in injected gas (%), MwC2+: Molecular weight of C2+ in injected gas. Fuzzy Logic and Neural Networks have been used widely in prediction and classification, with relatively high accuracy, in different fields of study. It is well known that the Fuzzy Inference system can handle uncertainty within the inputs such as in our case. The results of this work showed that our proposed models perform better with higher performance indices than other emprical correlations.Keywords: MMP, gas flooding, artificial intelligence, correlation
Procedia PDF Downloads 1446696 Coupling Large Language Models with Disaster Knowledge Graphs for Intelligent Construction
Authors: Zhengrong Wu, Haibo Yang
Abstract:
In the context of escalating global climate change and environmental degradation, the complexity and frequency of natural disasters are continually increasing. Confronted with an abundance of information regarding natural disasters, traditional knowledge graph construction methods, which heavily rely on grammatical rules and prior knowledge, demonstrate suboptimal performance in processing complex, multi-source disaster information. This study, drawing upon past natural disaster reports, disaster-related literature in both English and Chinese, and data from various disaster monitoring stations, constructs question-answer templates based on large language models. Utilizing the P-Tune method, the ChatGLM2-6B model is fine-tuned, leading to the development of a disaster knowledge graph based on large language models. This serves as a knowledge database support for disaster emergency response.Keywords: large language model, knowledge graph, disaster, deep learning
Procedia PDF Downloads 566695 Some Characteristics Based on Literature, for an Ideal Disinfectant
Authors: Saimir Heta, Ilma Robo, Rialda Xhizdari, Kers Kapaj
Abstract:
The stability of an ideal disinfectant should be constant regardless of the change in the atmospheric conditions of the environment where it is kept. If the conditions such as temperature or humidity change, it is understood that it will also be necessary to approach possible changes in the holding materials such as plastic or glass bottles with the aim of protecting, for example, the disinfectant from the excessive lighting of the environment, which can also be translated as an increase in the temperature of disinfectant as a fluid. Material and Methods: In this study, an attempt was made to find the most recent published data about the best possible combination of disinfectants indicated for use after dental procedures. This purpose of the study was realized by comparing the basic literature that is studied in the field of dentistry by students with the most published data in the literature of recent years about this topic. Each disinfectant is represented by a number called the disinfectant count, in which different factors can influence the increase or reduction of variables whose production remains a specific statistic for a specific disinfectant. Results: The changes in the atmospheric conditions where the disinfectant is deposited and stored in the environment are known to affect the stability of the disinfectant as a fluid; this fact is known and even cited in the leaflets accompanying the manufactured boxes of disinfectants. It is these cares, in the form of advice, which are based not only on the preservation of the disinfectant but also on the application in order to have the desired clinical result. Aldehydes have the highest constant among the types of disinfectants, followed by acids. The lowest value of the constant belongs to the class of glycols, the predecessors of which were the halogens, in which class there are some representatives with disinfection applications. The class of phenols and acids have almost the same intervals of constants. Conclusions: If the goal were to find the ideal disinfectant among the large variety of disinfectants produced, a good starting point would be to find something unchanging or a fixed, unchanging element on the basis of which the comparison can be made properties of different disinfectants. Precisely based on the results of this study, the role of the specific constant according to the specific disinfectant is highlighted. Finding an ideal disinfectant, like finding a medication or the ideal antibiotic, is an ongoing but unattainable goal.Keywords: different disinfectants, ideal, specific constant, dental procedures
Procedia PDF Downloads 746694 Voxel Models as Input for Heat Transfer Simulations with Siemens NX Based on X-Ray Microtomography Images of Random Fibre Reinforced Composites
Authors: Steven Latré, Frederik Desplentere, Ilya Straumit, Stepan V. Lomov
Abstract:
A method is proposed in order to create a three-dimensional finite element model representing fibre reinforced insulation materials for the simulation software Siemens NX. VoxTex software, a tool for quantification of µCT images of fibrous materials, is used for the transformation of microtomography images of random fibre reinforced composites into finite element models. An automatic tool was developed to execute the import of the models to the thermal solver module of Siemens NX. The paper describes the numerical tools used for the image quantification and the transformation and illustrates them on several thermal simulations of fibre reinforced insulation blankets filled with low thermal conductive fillers. The calculation of thermal conductivity is validated by comparison with the experimental data.Keywords: analysis, modelling, thermal, voxel
Procedia PDF Downloads 2876693 Derivation of Bathymetry from High-Resolution Satellite Images: Comparison of Empirical Methods through Geographical Error Analysis
Authors: Anusha P. Wijesundara, Dulap I. Rathnayake, Nihal D. Perera
Abstract:
Bathymetric information is fundamental importance to coastal and marine planning and management, nautical navigation, and scientific studies of marine environments. Satellite-derived bathymetry data provide detailed information in areas where conventional sounding data is lacking and conventional surveys are inaccessible. The two empirical approaches of log-linear bathymetric inversion model and non-linear bathymetric inversion model are applied for deriving bathymetry from high-resolution multispectral satellite imagery. This study compares these two approaches by means of geographical error analysis for the site Kankesanturai using WorldView-2 satellite imagery. Based on the Levenberg-Marquardt method calibrated the parameters of non-linear inversion model and the multiple-linear regression model was applied to calibrate the log-linear inversion model. In order to calibrate both models, Single Beam Echo Sounding (SBES) data in this study area were used as reference points. Residuals were calculated as the difference between the derived depth values and the validation echo sounder bathymetry data and the geographical distribution of model residuals was mapped. The spatial autocorrelation was calculated by comparing the performance of the bathymetric models and the results showing the geographic errors for both models. A spatial error model was constructed from the initial bathymetry estimates and the estimates of autocorrelation. This spatial error model is used to generate more reliable estimates of bathymetry by quantifying autocorrelation of model error and incorporating this into an improved regression model. Log-linear model (R²=0.846) performs better than the non- linear model (R²=0.692). Finally, the spatial error models improved bathymetric estimates derived from linear and non-linear models up to R²=0.854 and R²=0.704 respectively. The Root Mean Square Error (RMSE) was calculated for all reference points in various depth ranges. The magnitude of the prediction error increases with depth for both the log-linear and the non-linear inversion models. Overall RMSE for log-linear and the non-linear inversion models were ±1.532 m and ±2.089 m, respectively.Keywords: log-linear model, multi spectral, residuals, spatial error model
Procedia PDF Downloads 297