Search results for: hyperspectral image classification using tree search algorithm
3357 Identification of High Stress Regions in Proximal Femur During Single-Leg Stance and Sideways Fall Using QCT-Based Finite Element Model
Authors: Hossein Kheirollahi, Yunhua Luo
Abstract:
Studying stress and strain trends in the femur and recognizing femur failure mechanism is very important for preventing hip fracture in the elderly. The aim of this study was to identify high stress and strain regions in the femur during normal walking and falling to find the mechanical behavior and failure mechanism of the femur. We developed a finite element model of the femur from the subject’s quantitative computed tomography (QCT) image and used it to identify potentially high stress and strain regions during the single-leg stance and the sideways fall. It was found that fracture may initiate from the superior region of femoral neck and propagate to the inferior region during a high impact force such as sideways fall. The results of this study showed that the femur bone is more sensitive to strain than stress which indicates the effect of strain, in addition to effect of stress, should be considered for failure analysis.Keywords: finite element analysis, hip fracture, strain, stress
Procedia PDF Downloads 5043356 Digital Musical Organology: The Audio Games: The Question of “A-Musicological” Interfaces
Authors: Hervé Zénouda
Abstract:
This article seeks to shed light on an emerging creative field: "Audio games," at the crossroads between video games and computer music. Indeed, many applications, which propose entertaining audio-visual experiences with the objective of musical creation, are available today for different supports (game consoles, computers, cell phones). The originality of this field is the use of the gameplay of video games applied to music composition. Thus, composing music using interfaces but also cognitive logics that we qualify as "a-musicological" seem to us particularly interesting from the perspective of musical digital organology. This field raises questions about the representation of sound and musical structures and develops new instrumental gestures and strategies of musical composition. We will try in this article to define the characteristics of this field by highlighting some historical milestones (abstract cinema, game theory in music, actions, and graphic scores) as well as the novelties brought by digital technologies.Keywords: audio-games, video games, computer generated music, gameplay, interactivity, synesthesia, sound interfaces, relationships image/sound, audiovisual music
Procedia PDF Downloads 1133355 Design and Implementation of Bluetooth Controlled Autonomous Vehicle
Authors: Amanuel Berhanu Kesamo
Abstract:
This paper presents both circuit simulation and hardware implementation of a robot vehicle that can be either controlled manually via Bluetooth with video streaming or navigate autonomously to a target point by avoiding obstacles. In manual mode, the user controls the mobile robot using C# windows form interfaced via Bluetooth. The camera mounted on the robot is used to capture and send the real time video to the user. In autonomous mode, the robot plans the shortest path to the target point while avoiding obstacles along the way. Ultrasonic sensor is used for sensing the obstacle in its environment. An efficient path planning algorithm is implemented to navigate the robot along optimal route.Keywords: Arduino Uno, autonomous, Bluetooth module, path planning, remote controlled robot, ultra sonic sensor
Procedia PDF Downloads 1453354 A Hybrid Hopfield Neural Network for Dynamic Flexible Job Shop Scheduling Problems
Authors: Aydin Teymourifar, Gurkan Ozturk
Abstract:
In this paper, a new hybrid Hopfield neural network is proposed for the dynamic, flexible job shop scheduling problem. A new heuristic based and easy to implement energy function is designed for the Hopfield neural network, which penalizes the constraints violation and decreases makespan. Moreover, for enhancing the performance, several heuristics are integrated to it that achieve active, and non-delay schedules also, prevent early convergence of the neural network. The suggested algorithm that is designed as a generalization of the previous studies for the flexible and dynamic scheduling problems can be used for solving real scheduling problems. Comparison of the presented hybrid method results with the previous studies results proves its efficiency.Keywords: dynamic flexible job shop scheduling, neural network, heuristics, constrained optimization
Procedia PDF Downloads 4193353 A Simple and Easy-To-Use Tool for Detecting Outer Contour of Leukocytes Based on Image Processing Techniques
Authors: Retno Supriyanti, Best Leader Nababan, Yogi Ramadhani, Wahyu Siswandari
Abstract:
Blood cell morphology is an important parameter in a hematology test. Currently, in developing countries, a lot of hematology is done manually, either by physicians or laboratory staff. According to the limitation of the human eye, examination based on manual method will result in a lower precision and accuracy. In addition, the hematology test by manual will further complicate the diagnosis in some areas that do not have competent medical personnel. This research aims to develop a simple tool in the detection of blood cell morphology-based computer. In this paper, we focus on the detection of the outer contour of leukocytes. The results show that the system that we developed is promising for detecting blood cell morphology automatically. It is expected, by implementing this method, the problem of accuracy, precision and limitations of the medical staff can be solved.Keywords: morphology operation, developing countries, hematology test, limitation of medical personnel
Procedia PDF Downloads 3393352 Recognizing an Individual, Their Topic of Conversation and Cultural Background from 3D Body Movement
Authors: Gheida J. Shahrour, Martin J. Russell
Abstract:
The 3D body movement signals captured during human-human conversation include clues not only to the content of people’s communication but also to their culture and personality. This paper is concerned with automatic extraction of this information from body movement signals. For the purpose of this research, we collected a novel corpus from 27 subjects, arranged them into groups according to their culture. We arranged each group into pairs and each pair communicated with each other about different topics. A state-of-art recognition system is applied to the problems of person, culture, and topic recognition. We borrowed modeling, classification, and normalization techniques from speech recognition. We used Gaussian Mixture Modeling (GMM) as the main technique for building our three systems, obtaining 77.78%, 55.47%, and 39.06% from the person, culture, and topic recognition systems respectively. In addition, we combined the above GMM systems with Support Vector Machines (SVM) to obtain 85.42%, 62.50%, and 40.63% accuracy for person, culture, and topic recognition respectively. Although direct comparison among these three recognition systems is difficult, it seems that our person recognition system performs best for both GMM and GMM-SVM, suggesting that inter-subject differences (i.e. subject’s personality traits) are a major source of variation. When removing these traits from culture and topic recognition systems using the Nuisance Attribute Projection (NAP) and the Intersession Variability Compensation (ISVC) techniques, we obtained 73.44% and 46.09% accuracy from culture and topic recognition systems respectively.Keywords: person recognition, topic recognition, culture recognition, 3D body movement signals, variability compensation
Procedia PDF Downloads 5433351 Virtual Conciliation in Colombia: Evaluation of Maturity Level within the Framework of E-Government
Authors: Jenny Paola Forero Pachón, Sonia Cristina Gamboa Sarmiento, Luis Carlos Gómez Flórez
Abstract:
The Colombian government has defined an e-government strategy to take advantage of Information Technologies (IT) in order to contribute to the building of a more efficient, transparent and participative State that provides better services to citizens and businesses. In this regard, the Justice sector is one of the government sectors where IT has generated more expectation considering that the country has a judicial processes backlog. This situation has led to the search for alternative forms of access to justice that speed up the process while providing a low cost for citizens. To this end, the Colombian government has authorized the use of Alternative Dispute Resolution methods (ADR), a remedy where disputes can be resolved more quickly compared to judicial processes while facilitating greater communication between the parties, without recourse to judicial authority. One of these methods is conciliation, which includes a special modality that takes advantage of IT for the development of itself known as virtual conciliation. With this option the conciliation is supported by information systems, applications or platforms and communications are provided through it. This paper evaluates the level of maturity in how the service of virtual conciliation is under the framework of this strategy. This evaluation is carried out considering Shahkooh's 5-phase model for e-government. As a result, it is evident that in the context of conciliation, maturity does not reach the necessary level in the model so that it can be considered as virtual conciliation; therefore, it is necessary to define strategies to maximize the potential of IT in this context.Keywords: alternative dispute resolution, e-government, evaluation of maturity, Shahkooh model, virtual conciliation
Procedia PDF Downloads 2553350 Price Heterogeneity in Establishing Real Estate Composite Price Index as Underlying Asset for Property Derivatives in Russia
Authors: Andrey Matyukhin
Abstract:
Russian official statistics have been showing a steady decline in residential real estate prices for several consecutive years. Price risk in real estate markets is thus affecting various groups of economic agents, namely, individuals, construction companies and financial institutions. Potential use of property derivatives might help mitigate adverse consequences of negative price dynamics. Unless a sustainable price indicator is developed, settlement of such instruments imposes constraints on counterparties involved while imposing restrictions on real estate market development. The study addresses geographical and classification heterogeneity in real estate prices by means of variance analysis in various groups of real estate properties. In conclusion, we determine optimal sample structure of representative real estate assets with sufficient level of price homogeneity. The composite price indicator based on the sample would have a higher level of robustness and reliability and hence improving liquidity in the market for property derivatives through underlying standardization. Unlike the majority of existing real estate price indices, calculated on country-wide basis, the optimal indices for Russian market shall be constructed on the city-level.Keywords: price homogeneity, property derivatives, real estate price index, real estate price risk
Procedia PDF Downloads 3093349 Consequential Investigations on the Impact of Zakat Towards the Promotion of Socio-Economic Development in Morocco: A Theoretical Framework
Authors: Mennani Maha, Attak El Houssain
Abstract:
Under the massive effect of the Covid-19 health crisis, marked by a loss of competitiveness, a slowdown in growth and an accumulation of the repercussions of socio-economic inequalities, a considerable effort must be combined, in Morocco, to put into perspective macro-political, macro-economic and social opportunities. The development of a new economic and social approach is essential in order to respond to the authenticity of the new development model that will be used by the country. The appropriation of strategies of solidarity and social cohesion constitutes a participatory, competitive and inclusive approach to support the functionalities of the economic, social and political system. Therefore, the search for alternative financial resources has become a necessity to achieve the objectives of sustainable socio-economic growth on the one hand; and to promote, on the other hands, the dynamics, of large scale, social investments. The zakat remains a site of the Islamic economy dedicated to stimulating the bases of a collective adhesion of the population on the economic, as well as on the social level, thanks to a fair and equitable distribution of the zakat funds. However, Morocco is one of the few Muslim countries that has not yet had an institution for collecting and distributing this Islamic duty, which makes it difficult to measure the socio-economic impact of zakat. This theoretical document essentially ensures the development of the crucial utility of institutionalizing zakat in order to reinforce the objectives of social solidarity in Morocco in line with the process of conceptualizing a new development model.Keywords: zakat, socio-economic development, solidarity, social investment
Procedia PDF Downloads 1413348 Epigenetic Drugs for Major Depressive Disorder: A Critical Appraisal of Available Studies
Authors: Aniket Kumar, Jacob Peedicayil
Abstract:
Major depressive disorder (MDD) is a common and important psychiatric disorder. Several clinical features of MDD suggest an epigenetic basis for its pathogenesis. Since epigenetics (heritable changes in gene expression not involving changes in DNA sequence) may underlie the pathogenesis of MDD, epigenetic drugs such as DNA methyltransferase inhibitors (DNMTi) and histone deactylase inhibitors (HDACi) may be useful for treating MDD. The available literature indexed in Pubmed on preclinical drug trials of epigenetic drugs for the treatment of MDD was investigated. The search terms we used were ‘depression’ or ‘depressive’ and ‘HDACi’ or ‘DNMTi’. Among epigenetic drugs, it was found that there were 3 preclinical trials using HDACi and 3 using DNMTi for the treatment of MDD. All the trials were conducted on rodents (mice or rats). The animal models of depression that were used were: learned helplessness-induced animal model, forced swim test, open field test, and the tail suspension test. One study used a genetic rat model of depression (the Flinders Sensitive Line). The HDACi that were tested were: sodium butyrate, compound 60 (Cpd-60), and valproic acid. The DNMTi that were tested were: 5-azacytidine and decitabine. Among the three preclinical trials using HDACi, all showed an antidepressant effect in animal models of depression. Among the 3 preclinical trials using DNMTi also, all showed an antidepressant effect in animal models of depression. Thus, epigenetic drugs, namely, HDACi and DNMTi, may prove to be useful in the treatment of MDD and merit further investigation for the treatment of this disorder.Keywords: DNA methylation, drug discovery, epigenetics, major depressive disorder
Procedia PDF Downloads 1893347 Multidisciplinary and Multilevel Design Methodology of Unmanned Aerial Vehicles using Enhanced Collaborative Optimization
Authors: Pedro F. Albuquerque, Pedro V. Gamboa, Miguel A. Silvestre
Abstract:
The present work describes the implementation of the Enhanced Collaborative Optimization (ECO) multilevel architecture with a gradient-based optimization algorithm with the aim of performing a multidisciplinary design optimization of a generic unmanned aerial vehicle with morphing technologies. The concepts of weighting coefficient and a dynamic compatibility parameter are presented for the ECO architecture. A routine that calculates the aircraft performance for the user defined mission profile and vehicle’s performance requirements has been implemented using low fidelity models for the aerodynamics, stability, propulsion, weight, balance and flight performance. A benchmarking case study for evaluating the advantage of using a variable span wing within the optimization methodology developed is presented.Keywords: multidisciplinary, multilevel, morphing, enhanced collaborative optimization
Procedia PDF Downloads 9303346 Shaabi in the City: On Modernizing Sounds and Exclusion in Egyptian Cities
Authors: Mariam Aref Mahmoud
Abstract:
After centuries of historical development, Egypt is no stranger to national identity frustrations. What may or may not be counted as this “national identity” becomes a source of contention. Today, after decades of neoliberal reform, Cairo has become the center of Egypt’s cultural debacle. At its heart, the Egyptian capital serves as Egypt’s extension into global capitalism, its flailing hope to become part of the modernized, cosmopolitan world. Yet, to converge into this image of cosmopolitanism, Cairo must silence the perceived un-modernized sounds, cultures, and spaces that arise from within its alleyways. Currently, the agitation surrounding shaabi music, particularly, that of mahraganat, places these contentions to the center of the modernization debates. This paper will discuss the process through which the conversations between modernization, space, and culture have taken place through a historical analysis of national identity formation under Egypt’s neoliberal regimes. Through this, the paper concludes that music becomes a spatial force through which public space, identity, and globalization must be contested. From these findings researchers can then analyze Cairo through not only its physical landscapes, but also its metaphysical features – such as the soundscape.Keywords: music, space, globalization, Cairo
Procedia PDF Downloads 1143345 Studying Relationship between Local Geometry of Decision Boundary with Network Complexity for Robustness Analysis with Adversarial Perturbations
Authors: Tushar K. Routh
Abstract:
If inputs are engineered in certain manners, they can influence deep neural networks’ (DNN) performances by facilitating misclassifications, a phenomenon well-known as adversarial attacks that question networks’ vulnerability. Recent studies have unfolded the relationship between vulnerability of such networks with their complexity. In this paper, the distinctive influence of additional convolutional layers at the decision boundaries of several DNN architectures was investigated. Here, to engineer inputs from widely known image datasets like MNIST, Fashion MNIST, and Cifar 10, we have exercised One Step Spectral Attack (OSSA) and Fast Gradient Method (FGM) techniques. The aftermaths of adding layers to the robustness of the architectures have been analyzed. For reasoning, separation width from linear class partitions and local geometry (curvature) near the decision boundary have been examined. The result reveals that model complexity has significant roles in adjusting relative distances from margins, as well as the local features of decision boundaries, which impact robustness.Keywords: DNN robustness, decision boundary, local curvature, network complexity
Procedia PDF Downloads 763344 Exploring Data Leakage in EEG Based Brain-Computer Interfaces: Overfitting Challenges
Authors: Khalida Douibi, Rodrigo Balp, Solène Le Bars
Abstract:
In the medical field, applications related to human experiments are frequently linked to reduced samples size, which makes the training of machine learning models quite sensitive and therefore not very robust nor generalizable. This is notably the case in Brain-Computer Interface (BCI) studies, where the sample size rarely exceeds 20 subjects or a few number of trials. To address this problem, several resampling approaches are often used during the data preparation phase, which is an overly critical step in a data science analysis process. One of the naive approaches that is usually applied by data scientists consists in the transformation of the entire database before the resampling phase. However, this can cause model’ s performance to be incorrectly estimated when making predictions on unseen data. In this paper, we explored the effect of data leakage observed during our BCI experiments for device control through the real-time classification of SSVEPs (Steady State Visually Evoked Potentials). We also studied potential ways to ensure optimal validation of the classifiers during the calibration phase to avoid overfitting. The results show that the scaling step is crucial for some algorithms, and it should be applied after the resampling phase to avoid data leackage and improve results.Keywords: data leackage, data science, machine learning, SSVEP, BCI, overfitting
Procedia PDF Downloads 1533343 Antibacterial Activity of Melaleuca Cajuputi Oil against Resistant Strain Bacteria
Authors: R. M. Noah, N. M. Nasir, M. R. Jais, M. S. S. Wahab, M. H. Abdullah, A. S. S. Raj
Abstract:
Infectious diseases are getting more difficult to treat due to the resistant strains of bacteria. Current generations of antibiotics are most likely ineffective against multi-drug resistant strains bacteria. Thus, there is an urgent need in search of natural antibiotics in particular from medicinal plants. One of the common medicinal plants, Melaleuca cajuputi, has been reported to possess antibacterial properties. The study was conducted to evaluate and justify the presence of antibacterial activity of Melaleuca cajuputi essential oil (EO) against the multi-drug resistant bacteria. Clinical isolates obtained from the teaching hospital were re-assessed to confirm the exact identity of the bacteria to be tested, namely methicillin-resistant staphylococcus aureus (MRSA), carbapenem-resistant enterobacteriaceae (CRE), and extended-spectrum beta-lactamases producer (ESBLs). A well diffusion method was done to observe the inhibition zones of the essential oil against the bacteria. Minimum inhibitory concentration (MIC) was determined using the microdilution method in 96-well flat microplate. The absorbance was measured using a microplate reader. Minimum bactericidal concentration (MBC) was performed using the agar medium method. The zones of inhibition produced by the EO against MRSA, CRE, and ESBL were comparable to that of generic antibiotics used, gentamicin and augmentin. The MIC and MBC results highlighted the antimicrobial efficacy of the EO. The outcome of this study indicated that the EO of Melaleuca cajuputi had antibacterial activity on the multi-drug resistant bacteria. This finding was eventually substantiated by electron microscopy work.Keywords: melaleuca cajuputi, antibacterial, resistant bacteria, essential oil
Procedia PDF Downloads 1223342 Applying Critical Realism to Qualitative Social Work Research: A Critical Realist Approach for Social Work Thematic Analysis Method
Authors: Lynne Soon-Chean Park
Abstract:
Critical Realism (CR) has emerged as an alternative to both the positivist and constructivist perspectives that have long dominated social work research. By unpacking the epistemic weakness of two dogmatic perspectives, CR provides a useful philosophical approach that incorporates the ontological objectivist and subjectivist stance. The CR perspective suggests an alternative approach for social work researchers who have long been looking to engage in the complex interplay between perceived reality at the empirical level and the objective reality that lies behind the empirical event as a causal mechanism. However, despite the usefulness of CR in informing social work research, little practical guidance is available about how CR can inform methodological considerations in social work research studies. This presentation aims to provide a detailed description of CR-informed thematic analysis by drawing examples from a social work doctoral research of Korean migrants’ experiences and understanding of trust associated with their settlement experience in New Zealand. Because of its theoretical flexibility and accessibility as a qualitative analysis method, thematic analysis can be applied as a method that works both to search for the demi-regularities of the collected data and to identify the causal mechanisms that lay behind the empirical data. In so doing, this presentation seeks to provide a concrete and detailed exemplar for social work researchers wishing to employ CR in their qualitative thematic analysis process.Keywords: critical Realism, data analysis, epistemology, research methodology, social work research, thematic analysis
Procedia PDF Downloads 2123341 Multi-Criteria Evaluation of IDS Architectures in Cloud Computing
Authors: Elmahdi Khalil, Saad Enniari, Mostapha Zbakh
Abstract:
Cloud computing promises to increase innovation and the velocity with witch applications are deployed, all while helping any enterprise meet most IT service needs at a lower total cost of ownership and higher return investment. As the march of cloud continues, it brings both new opportunities and new security challenges. To take advantages of those opportunities while minimizing risks, we think that Intrusion Detection Systems (IDS) integrated in the cloud is one of the best existing solutions nowadays in the field. The concept of intrusion detection was known since past and was first proposed by a well-known researcher named Anderson in 1980's. Since that time IDS's are evolving. Although, several efforts has been made in the area of Intrusion Detection systems for cloud computing environment, many attacks still prevail. Therefore, the work presented in this paper proposes a multi criteria analysis and a comparative study between several IDS architectures designated to work in a cloud computing environments. To achieve this objective, in the first place we will search in the state of the art of several consistent IDS architectures designed to work in a cloud environment. Whereas, in a second step we will establish the criteria that will be useful for the evaluation of architectures. Later, using the approach of multi criteria decision analysis Mac Beth (Measuring Attractiveness by a Categorical Based Evaluation Technique we will evaluate the criteria and assign to each one the appropriate weight according to their importance in the field of IDS architectures in cloud computing. The last step is to evaluate architectures against the criteria and collecting results of the model constructed in the previous steps.Keywords: cloud computing, cloud security, intrusion detection/prevention system, multi-criteria decision analysis
Procedia PDF Downloads 4743340 Experimental Approach for Determining Hemi-Anechoic Characteristics of Engineering Acoustical Test Chambers
Authors: Santiago Montoya-Ospina, Raúl E. Jiménez-Mejía, Rosa Elvira Correa Gutiérrez
Abstract:
An experimental methodology is proposed for determining hemi-anechoic characteristics of an engineering acoustic room built at the facilities of Universidad Nacional de Colombia to evaluate the free-field conditions inside the chamber. Experimental results were compared with theoretical ones in both, the source and the sound propagation inside the chamber. Acoustic source was modeled by using monopole radiation pattern from punctual sources and the image method was considered for dealing with the reflective plane of the room, that means, the floor without insulation. Finite-difference time-domain (FDTD) method was implemented to calculate the sound pressure value at every spatial point of the chamber. Comparison between theoretical and experimental data yields to minimum error, giving satisfactory results for the hemi-anechoic characterization of the chamber.Keywords: acoustic impedance, finite-difference time-domain, hemi-anechoic characterization
Procedia PDF Downloads 1633339 Computing Maximum Uniquely Restricted Matchings in Restricted Interval Graphs
Authors: Swapnil Gupta, C. Pandu Rangan
Abstract:
A uniquely restricted matching is defined to be a matching M whose matched vertices induces a sub-graph which has only one perfect matching. In this paper, we make progress on the open question of the status of this problem on interval graphs (graphs obtained as the intersection graph of intervals on a line). We give an algorithm to compute maximum cardinality uniquely restricted matchings on certain sub-classes of interval graphs. We consider two sub-classes of interval graphs, the former contained in the latter, and give O(|E|^2) time algorithms for both of them. It is to be noted that both sub-classes are incomparable to proper interval graphs (graphs obtained as the intersection graph of intervals in which no interval completely contains another interval), on which the problem can be solved in polynomial time.Keywords: uniquely restricted matching, interval graph, matching, induced matching, witness counting
Procedia PDF Downloads 3923338 Critical Conditions for the Initiation of Dynamic Recrystallization Prediction: Analytical and Finite Element Modeling
Authors: Pierre Tize Mha, Mohammad Jahazi, Amèvi Togne, Olivier Pantalé
Abstract:
Large-size forged blocks made of medium carbon high-strength steels are extensively used in the automotive industry as dies for the production of bumpers and dashboards through the plastic injection process. The manufacturing process of the large blocks starts with ingot casting, followed by open die forging and a quench and temper heat treatment process to achieve the desired mechanical properties and numerical simulation is widely used nowadays to predict these properties before the experiment. But the temperature gradient inside the specimen remains challenging in the sense that the temperature before loading inside the material is not the same, but during the simulation, constant temperature is used to simulate the experiment because it is assumed that temperature is homogenized after some holding time. Therefore to be close to the experiment, real distribution of the temperature through the specimen is needed before the mechanical loading. Thus, We present here a robust algorithm that allows the calculation of the temperature gradient within the specimen, thus representing a real temperature distribution within the specimen before deformation. Indeed, most numerical simulations consider a uniform temperature gradient which is not really the case because the surface and core temperatures of the specimen are not identical. Another feature that influences the mechanical properties of the specimen is recrystallization which strongly depends on the deformation conditions and the type of deformation like Upsetting, Cogging...etc. Indeed, Upsetting and Cogging are the stages where the greatest deformations are observed, and a lot of microstructural phenomena can be observed, like recrystallization, which requires in-depth characterization. Complete dynamic recrystallization plays an important role in the final grain size during the process and therefore helps to increase the mechanical properties of the final product. Thus, the identification of the conditions for the initiation of dynamic recrystallization is still relevant. Also, the temperature distribution within the sample and strain rate influence the recrystallization initiation. So the development of a technique allowing to predict the initiation of this recrystallization remains challenging. In this perspective, we propose here, in addition to the algorithm allowing to get the temperature distribution before the loading stage, an analytical model leading to determine the initiation of this recrystallization. These two techniques are implemented into the Abaqus finite element software via the UAMP and VUHARD subroutines for comparison with a simulation where an isothermal temperature is imposed. The Artificial Neural Network (ANN) model to describe the plastic behavior of the material is also implemented via the VUHARD subroutine. From the simulation, the temperature distribution inside the material and recrystallization initiation is properly predicted and compared to the literature models.Keywords: dynamic recrystallization, finite element modeling, artificial neural network, numerical implementation
Procedia PDF Downloads 803337 Estimating Knowledge Flow Patterns of Business Method Patents with a Hidden Markov Model
Authors: Yoonjung An, Yongtae Park
Abstract:
Knowledge flows are a critical source of faster technological progress and stouter economic growth. Knowledge flows have been accelerated dramatically with the establishment of a patent system in which each patent is required by law to disclose sufficient technical information for the invention to be recreated. Patent analysis, thus, has been widely used to help investigate technological knowledge flows. However, the existing research is limited in terms of both subject and approach. Particularly, in most of the previous studies, business method (BM) patents were not covered although they are important drivers of knowledge flows as other patents. In addition, these studies usually focus on the static analysis of knowledge flows. Some use approaches that incorporate the time dimension, yet they still fail to trace a true dynamic process of knowledge flows. Therefore, we investigate dynamic patterns of knowledge flows driven by BM patents using a Hidden Markov Model (HMM). An HMM is a popular statistical tool for modeling a wide range of time series data, with no general theoretical limit in regard to statistical pattern classification. Accordingly, it enables characterizing knowledge patterns that may differ by patent, sector, country and so on. We run the model in sets of backward citations and forward citations to compare the patterns of knowledge utilization and knowledge dissemination.Keywords: business method patents, dynamic pattern, Hidden-Markov Model, knowledge flow
Procedia PDF Downloads 3293336 Energy Management of Hybrid Energy Source Composed of a Fuel Cell and Supercapacitor for an Electric Vehicle
Authors: Mejri Achref
Abstract:
This paper proposes an energy management strategy for an electrical hybrid vehicle which is composed of a Proton Exchange Membrane (PEM) fuel cell and a supercapacitor storage device. In this paper, the mathematical model for the proposed power train, comprising the PEM Fuel Cell, supercapacitor, boost converter, inverter, and vehicular structure, was modeled in MATLAB/Simulink. The proposed algorithm is evaluated for the Highway Fuel Economy Test (HWFET) driving cycle. The obtained results demonstrate the effectiveness of the proposed energy management strategy in reduction of hydrogen consumption.Keywords: proton exchange membrane fuel cell, hybrid vehicle, hydrogen consumption, energy management strategy
Procedia PDF Downloads 1783335 An Assessment of Adverse Events Following Immunization Reporting Pattern of Selected Vaccines in VigiAccess
Authors: Peter Yamoah, Frasia Oosthuizen
Abstract:
Introduction: Reporting of Adverse Events Following Immunization continues to be a challenge. Pharmacovigilance centers throughout the world are mandated by the WHO to submit AEFI reports from various countries to a large pool of adverse drug reaction electronic database called Vigibase. Despite the relevant information of AEFI in Vigibase, it is unavailable to the general public. However, the WHO has an alternative website called VigiAccess which is an open access website serving as a repository of reported adverse drug reactions and AEFIs. The aim of the study was to ascertain the reporting pattern of a number of commonly used vaccines in VigiAccess. Methods: VigiAccess was thoroughly searched on the 5th of February 2018 for AEFI reports of measles vaccine, oral polio vaccine (OPV), yellow fever vaccine, pneumococcal vaccine, rotavirus vaccine, meningococcal vaccine, tetanus vaccine and tuberculosis (BCG) vaccine. These were reports from all pharmacovigilance centers in the world from the time they joined the WHO drug monitoring program. Results: After a thorough search in VigiAccess, there were 9,062 measles vaccine AEFIs, 185,829 OPV AEFIs, 24,577 yellow fever vaccine AEFIs, 317,208 pneumococcal vaccine AEFIs, 73,513 rotavirus vaccine AEFIs, 145,447 meningococcal vaccine AEFIs, 22,781 tetanus vaccine AEFIs and 35,556 BCG vaccine AEFIs. Conclusion: The study revealed that out of the eight vaccines studied, pneumococcal vaccines are associated with the highest number of AEFIs whilst measles vaccines were associated with the least AEFIs.Keywords: vaccines, adverse reactions, VigiAccess, adverse event reporting
Procedia PDF Downloads 1583334 The Impact of Psychiatric Symptoms on Return to Work after Occupational Injury
Authors: Kuan-Han Lin, Kuan-Yin Lin, Ka-Chun Siu
Abstract:
The purpose of this systematic review was to determine the impact of post-traumatic stress disorders (PTSD) symptom or depressive symptoms on return to work (RTW) after occupational injury. The original articles of clinical trials and observational studies from PubMed, MEDLINE, and PsycINFO between January 1980 and November 2016 were retrieved. Two reviewers evaluated the abstracts identified by the search criteria for full-text review. To be included in the final analysis, studies were required to use either intervention or observational study design to examine the association between psychiatric symptoms and RTW. A modified checklist designed by Downs & Black and Crombie was used to assess the methodological quality of included study. A total of 58 articles were identified from the electronic databases after duplicate removed. Seven studies fulfilled the inclusion criteria and were critically reviewed. The rates of RTW in the included studies were reported to be 6% to 63.6% among workers after occupational injuries. This review found that post-traumatic stress symptom and depressive symptoms were negatively associated with RTW. Although the impact of psychiatric symptoms on RTW after occupational injury remains poorly understood, this review brought up the important information that injured workers with psychiatric symptoms had poor RTW outcome. Future work should address the effective management of psychiatric factors affecting RTW among workers.Keywords: depressive symptom, occupational injury, post-traumatic stress disorder, return to work
Procedia PDF Downloads 2643333 Exploring Heidegger’s Fourfold through Architecture-Dwelling for Imaginary Fictional Characters in Drawings
Authors: Hassan Wajid
Abstract:
Architecture design studio with all its accouterments, especially pedagogies, has been committed to awakening the students to the true meaning of the concept of Dwelling. The real task is how to make them unlearn the associations of “dwelling as a rented or owned accommodation by the road with a car parked in front of a garage door and replace it by the fundamental experiential-phenomenological manifestations of Light, Space, Gravity and Time through assigned readings and small theoretical challenges resulting in drawings and models. The primary challenge for teachers remained the introduction of the act or desire of ‘Dwelling’ philosophically. The academic link had been offered by Albert Hofstadter's Poetry, Language, through which Martin Heidegger’s fourfold concept of ‘Building Dwelling, Thinking’ primarily served to guide us through this trajectory in helping to build an intellectual framework as justification of the term “dwelling” in its various meanings. Gaston Bachelard’s Poetics of Space and Merleau-Ponti’s Phenomenology of Perception also got assigned as reading. Four fictional characters created by two master short story writers G Maupassant, and O Henry were introduced as DwellersClients in search of their respective dwellings as drawn imaginations in the studio four-fold of Light, Space, Gravity, and Time and at the same time aspire to understand thoroughly Heidegger’s Four-Fold of Earth, Sky, Divinities and Mortals. asserting its place in the corresponding story and its unique character as the Dweller.Keywords: dwelling, imagination, architectural manifestation, phenomenological
Procedia PDF Downloads 703332 AutoML: Comprehensive Review and Application to Engineering Datasets
Authors: Parsa Mahdavi, M. Amin Hariri-Ardebili
Abstract:
The development of accurate machine learning and deep learning models traditionally demands hands-on expertise and a solid background to fine-tune hyperparameters. With the continuous expansion of datasets in various scientific and engineering domains, researchers increasingly turn to machine learning methods to unveil hidden insights that may elude classic regression techniques. This surge in adoption raises concerns about the adequacy of the resultant meta-models and, consequently, the interpretation of the findings. In response to these challenges, automated machine learning (AutoML) emerges as a promising solution, aiming to construct machine learning models with minimal intervention or guidance from human experts. AutoML encompasses crucial stages such as data preparation, feature engineering, hyperparameter optimization, and neural architecture search. This paper provides a comprehensive overview of the principles underpinning AutoML, surveying several widely-used AutoML platforms. Additionally, the paper offers a glimpse into the application of AutoML on various engineering datasets. By comparing these results with those obtained through classical machine learning methods, the paper quantifies the uncertainties inherent in the application of a single ML model versus the holistic approach provided by AutoML. These examples showcase the efficacy of AutoML in extracting meaningful patterns and insights, emphasizing its potential to revolutionize the way we approach and analyze complex datasets.Keywords: automated machine learning, uncertainty, engineering dataset, regression
Procedia PDF Downloads 623331 The Impact of Childhood Cancer on the Quality of Life of Survivor: A Qualitative Analysis of Functionality and Participation
Authors: Catarina Grande, Barbara Mota
Abstract:
The main goal of the present study was to understand the impact of childhood cancer on the quality of life of survivors and the extent to which oncologic disease affects the functionality and participation of survivors at the present time, compared to the time of diagnosis. Six survivors of pediatric cancer participated in the study. Participants were interviewed using a semi-structured interview, adapted from two instruments present in the literature - QALY and QLACS - and piloted through a previous study. This study is based on a qualitative approach using content analysis, allowing the identification of categories and subcategories. Subsequently, the correspondence between the units of meaning and the codes in the International Classification of Functioning, Disability, and Health for Children and Young, which contributed to a more detailed analysis of the impact on the quality of life of survivors in relation to the domains under study. The results showed significant changes between the moment of diagnosis and the present moment, concretely at the microsystem of the survivor. Regarding functionality and participation, the results show that the functions of the body are the most affected domain, emphasizing the emotional component that currently has a greater impact on the quality of life of survivors. The present study allowed identifying a set of codes for the development of a CIF-CJ core set for pediatric cancer survivors. He also indicated the need for future studies to validate and deepen these issues.Keywords: cancer, participation, quality of life, survivor
Procedia PDF Downloads 2393330 3D Scanning Documentation and X-Ray Radiography Examination for Ancient Egyptian Canopic Jar
Authors: Abdelrahman Mohamed Abdelrahman
Abstract:
Canopic jars are one of the vessels of funerary nature used by the ancient Egyptian in mummification process that were used to save the viscera of the mummified body after being extracted from the body and treated. Canopic jars are made of several types of materials like Limestone, Alabaster, and Pottery. The studied canopic jar dates back to Late period, located in the Grand Egyptian Museum (GEM), Giza, Egypt. This jar carved from limestone with carved hieroglyphic inscriptions, and it filled and closed by mortar from inside. Some aspects of damage appeared in the jar, such as dust, dirts, classification, wide crack, weakness of limestone. In this study, we used documentation and investigation modern techniques to document and examine the jar. 3D scanning and X-ray Radiography imaging used in applied study. X-ray imaging showed that the mortar was placed at a time when the jar contained probably viscera where the mortar appeared that not reach up to the base of the inner jar. Through the three-dimensional photography, the jar was documented, and we have 3D model of the jar, and now we have the ability through the computer to see any part of the jar in all its details. After that, conservation procedures have been applied with high accuracy to conserve the jar, including mechanical, wet, and chemical cleaning, filling wide crack in the body of the jar using mortar consisting of calcium carbonate powder mixing with primal E330 S, and consolidation, so the limestone became strong after using paraloid B72 2% concentrate as a consolidate material.Keywords: vessel, limestone, canopic jar, mortar, 3D scanning, X-ray radiography
Procedia PDF Downloads 793329 Electric Load Forecasting Based on Artificial Neural Network for Iraqi Power System
Authors: Afaneen Anwer, Samara M. Kamil
Abstract:
Load Forecast required prediction accuracy based on optimal operation and maintenance. A good accuracy is the basis of economic dispatch, unit commitment, and system reliability. A good load forecasting system fulfilled fast speed, automatic bad data detection, and ability to access the system automatically to get the needed data. In this paper, the formulation of the load forecasting is discussed and the solution is obtained by using artificial neural network method. A MATLAB environment has been used to solve the load forecasting schedule of Iraqi super grid network considering the daily load for three years. The obtained results showed a good accuracy in predicting the forecasted load.Keywords: load forecasting, neural network, back-propagation algorithm, Iraqi power system
Procedia PDF Downloads 5843328 Constrained RGBD SLAM with a Prior Knowledge of the Environment
Authors: Kathia Melbouci, Sylvie Naudet Collette, Vincent Gay-Bellile, Omar Ait-Aider, Michel Dhome
Abstract:
In this paper, we handle the problem of real time localization and mapping in indoor environment assisted by a partial prior 3D model, using an RGBD sensor. The proposed solution relies on a feature-based RGBD SLAM algorithm to localize the camera and update the 3D map of the scene. To improve the accuracy and the robustness of the localization, we propose to combine in a local bundle adjustment process, geometric information provided by a prior coarse 3D model of the scene (e.g. generated from the 2D floor plan of the building) along with RGBD data from a Kinect camera. The proposed approach is evaluated on a public benchmark dataset as well as on real scene acquired by a Kinect sensor.Keywords: SLAM, global localization, 3D sensor, bundle adjustment, 3D model
Procedia PDF Downloads 415