Search results for: explorative learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7263

Search results for: explorative learning

1083 Time Series Simulation by Conditional Generative Adversarial Net

Authors: Rao Fu, Jie Chen, Shutian Zeng, Yiping Zhuang, Agus Sudjianto

Abstract:

Generative Adversarial Net (GAN) has proved to be a powerful machine learning tool in image data analysis and generation. In this paper, we propose to use Conditional Generative Adversarial Net (CGAN) to learn and simulate time series data. The conditions include both categorical and continuous variables with different auxiliary information. Our simulation studies show that CGAN has the capability to learn different types of normal and heavy-tailed distributions, as well as dependent structures of different time series. It also has the capability to generate conditional predictive distributions consistent with training data distributions. We also provide an in-depth discussion on the rationale behind GAN and the neural networks as hierarchical splines to establish a clear connection with existing statistical methods of distribution generation. In practice, CGAN has a wide range of applications in market risk and counterparty risk analysis: it can be applied to learn historical data and generate scenarios for the calculation of Value-at-Risk (VaR) and Expected Shortfall (ES), and it can also predict the movement of the market risk factors. We present a real data analysis including a backtesting to demonstrate that CGAN can outperform Historical Simulation (HS), a popular method in market risk analysis to calculate VaR. CGAN can also be applied in economic time series modeling and forecasting. In this regard, we have included an example of hypothetical shock analysis for economic models and the generation of potential CCAR scenarios by CGAN at the end of the paper.

Keywords: conditional generative adversarial net, market and credit risk management, neural network, time series

Procedia PDF Downloads 143
1082 A Comprehensive Study of Spread Models of Wildland Fires

Authors: Manavjit Singh Dhindsa, Ursula Das, Kshirasagar Naik, Marzia Zaman, Richard Purcell, Srinivas Sampalli, Abdul Mutakabbir, Chung-Horng Lung, Thambirajah Ravichandran

Abstract:

These days, wildland fires, also known as forest fires, are more prevalent than ever. Wildfires have major repercussions that affect ecosystems, communities, and the environment in several ways. Wildfires lead to habitat destruction and biodiversity loss, affecting ecosystems and causing soil erosion. They also contribute to poor air quality by releasing smoke and pollutants that pose health risks, especially for individuals with respiratory conditions. Wildfires can damage infrastructure, disrupt communities, and cause economic losses. The economic impact of firefighting efforts, combined with their direct effects on forestry and agriculture, causes significant financial difficulties for the areas impacted. This research explores different forest fire spread models and presents a comprehensive review of various techniques and methodologies used in the field. A forest fire spread model is a computational or mathematical representation that is used to simulate and predict the behavior of a forest fire. By applying scientific concepts and data from empirical studies, these models attempt to capture the intricate dynamics of how a fire spreads, taking into consideration a variety of factors like weather patterns, topography, fuel types, and environmental conditions. These models assist authorities in understanding and forecasting the potential trajectory and intensity of a wildfire. Emphasizing the need for a comprehensive understanding of wildfire dynamics, this research explores the approaches, assumptions, and findings derived from various models. By using a comparison approach, a critical analysis is provided by identifying patterns, strengths, and weaknesses among these models. The purpose of the survey is to further wildfire research and management techniques. Decision-makers, researchers, and practitioners can benefit from the useful insights that are provided by synthesizing established information. Fire spread models provide insights into potential fire behavior, facilitating authorities to make informed decisions about evacuation activities, allocating resources for fire-fighting efforts, and planning for preventive actions. Wildfire spread models are also useful in post-wildfire mitigation strategies as they help in assessing the fire's severity, determining high-risk regions for post-fire dangers, and forecasting soil erosion trends. The analysis highlights the importance of customized modeling approaches for various circumstances and promotes our understanding of the way forest fires spread. Some of the known models in this field are Rothermel’s wildland fuel model, FARSITE, WRF-SFIRE, FIRETEC, FlamMap, FSPro, cellular automata model, and others. The key characteristics that these models consider include weather (includes factors such as wind speed and direction), topography (includes factors like landscape elevation), and fuel availability (includes factors like types of vegetation) among other factors. The models discussed are physics-based, data-driven, or hybrid models, also utilizing ML techniques like attention-based neural networks to enhance the performance of the model. In order to lessen the destructive effects of forest fires, this initiative aims to promote the development of more precise prediction tools and effective management techniques. The survey expands its scope to address the practical needs of numerous stakeholders. Access to enhanced early warning systems enables decision-makers to take prompt action. Emergency responders benefit from improved resource allocation strategies, strengthening the efficacy of firefighting efforts.

Keywords: artificial intelligence, deep learning, forest fire management, fire risk assessment, fire simulation, machine learning, remote sensing, wildfire modeling

Procedia PDF Downloads 81
1081 Machine Learning Classification of Fused Sentinel-1 and Sentinel-2 Image Data Towards Mapping Fruit Plantations in Highly Heterogenous Landscapes

Authors: Yingisani Chabalala, Elhadi Adam, Khalid Adem Ali

Abstract:

Mapping smallholder fruit plantations using optical data is challenging due to morphological landscape heterogeneity and crop types having overlapped spectral signatures. Furthermore, cloud covers limit the use of optical sensing, especially in subtropical climates where they are persistent. This research assessed the effectiveness of Sentinel-1 (S1) and Sentinel-2 (S2) data for mapping fruit trees and co-existing land-use types by using support vector machine (SVM) and random forest (RF) classifiers independently. These classifiers were also applied to fused data from the two sensors. Feature ranks were extracted using the RF mean decrease accuracy (MDA) and forward variable selection (FVS) to identify optimal spectral windows to classify fruit trees. Based on RF MDA and FVS, the SVM classifier resulted in relatively high classification accuracy with overall accuracy (OA) = 0.91.6% and kappa coefficient = 0.91% when applied to the fused satellite data. Application of SVM to S1, S2, S2 selected variables and S1S2 fusion independently produced OA = 27.64, Kappa coefficient = 0.13%; OA= 87%, Kappa coefficient = 86.89%; OA = 69.33, Kappa coefficient = 69. %; OA = 87.01%, Kappa coefficient = 87%, respectively. Results also indicated that the optimal spectral bands for fruit tree mapping are green (B3) and SWIR_2 (B10) for S2, whereas for S1, the vertical-horizontal (VH) polarization band. Including the textural metrics from the VV channel improved crop discrimination and co-existing land use cover types. The fusion approach proved robust and well-suited for accurate smallholder fruit plantation mapping.

Keywords: smallholder agriculture, fruit trees, data fusion, precision agriculture

Procedia PDF Downloads 54
1080 Identification and Prioritisation of Students Requiring Literacy Intervention and Subsequent Communication with Key Stakeholders

Authors: Emilie Zimet

Abstract:

During networking and NCCD moderation meetings, best practices for identifying students who require Literacy Intervention are often discussed. Once these students are identified, consideration is given to the most effective process for prioritising those who have the greatest need for Literacy Support and the allocation of resources, tracking of intervention effectiveness and communicating with teachers/external providers/parents. Through a workshop, the group will investigate best practices to identify students who require literacy support and strategies to communicate and track their progress. In groups, participants will examine what they do in their settings and then compare with other models, including the researcher’s model, to decide the most effective path to identification and communication. Participants will complete a worksheet at the beginning of the session to deeply consider their current approaches. The participants will be asked to critically analyse their own identification processes for Literacy Intervention, ensuring students are not overlooked if they fall into the borderline category. A cut-off for students to access intervention will be considered so as not to place strain on already stretched resources along with the most effective allocation of resources. Furthermore, communicating learning needs and differentiation strategies to staff is paramount to the success of an intervention, and participants will look at the frequency of communication to share such strategies and updates. At the end of the session, the group will look at creating or evolving models that allow for best practices for the identification and communication of Literacy Interventions. The proposed outcome for this research is to develop a model of identification of students requiring Literacy Intervention that incorporates the allocation of resources and communication to key stakeholders. This will be done by pooling information and discussing a variety of models used in the participant's school settings.

Keywords: identification, student selection, communication, special education, school policy, planning for intervention

Procedia PDF Downloads 47
1079 A Survey of WhatsApp as a Tool for Instructor-Learner Dialogue, Learner-Content Dialogue, and Learner-Learner Dialogue

Authors: Ebrahim Panah, Muhammad Yasir Babar

Abstract:

Thanks to the development of online technology and social networks, people are able to communicate as well as learn. WhatsApp is a popular social network which is growingly gaining popularity. This app can be used for communication as well as education. It can be used for instructor-learner, learner-learner, and learner-content interactions; however, very little knowledge is available on these potentials of WhatsApp. The current study was undertaken to investigate university students’ perceptions of WhatsApp used as a tool for instructor-learner dialogue, learner-content dialogue, and learner-learner dialogue. The study adopted a survey approach and distributed the questionnaire developed by Google Forms to 54 (11 males and 43 females) university students. The obtained data were analyzed using SPSS version 20. The result of data analysis indicates that students have positive attitudes towards WhatsApp as a tool for Instructor-Learner Dialogue: it easy to reach the lecturer (4.07), the instructor gives me valuable feedback on my assignment (4.02), the instructor is supportive during course discussion and offers continuous support with the class (4.00). Learner-Content Dialogue: WhatsApp allows me to academically engage with lecturers anytime, anywhere (4.00), it helps to send graphics such as pictures or charts directly to the students (3.98), it also provides out of class, extra learning materials and homework (3.96), and Learner-Learner Dialogue: WhatsApp is a good tool for sharing knowledge with others (4.09), WhatsApp allows me to academically engage with peers anytime, anywhere (4.07), and we can interact with others through the use of group discussion (4.02). It was also found that there are significant positive correlations between students’ perceptions of Instructor-Learner Dialogue (ILD), Learner-Content Dialogue (LCD), Learner-Learner Dialogue (LLD) and WhatsApp Application in classroom. The findings of the study have implications for lectures, policy makers and curriculum developers.

Keywords: instructor-learner dialogue, learners-contents dialogue, learner-learner dialogue, whatsapp application

Procedia PDF Downloads 158
1078 Empowering Women through the Fishermen of Functional Skills for City Gorontalo Indonesia

Authors: Abdul Rahmat

Abstract:

Community-based education in the economic empowerment of the family is an attempt to accelerate human development index (HDI) Dumbo Kingdom District of Gorontalo economics (purchasing power) program developed in this activity is the manufacture of functional skills shredded fish, fish balls, fish nuggets, chips anchovies, and corn sticks fish. The target audience of this activity is fishing se mothers subdistrict Dumbo Kingdom include Talumolo Village, Village Botu, Kampung Bugis Village, Village North and Sub Leato South Leato that each village is represented by 20 participants so totaling 100 participants. Time activities beginning in October s/d November 2014 held once a week on every Saturday at 9.00 s/d 13:00/14:00. From the results of the learning process of testing the skills of functional skills of making shredded fish, fish balls, fish nuggets, chips anchovies, fish and corn sticks residents have additional knowledge and experience are: 1) Order the concept include: nutrient content, processing food with fish raw materials , variations in taste, packaging, pricing and marketing sales. 2) Products made: in accordance with the wishes of the residents learned that estimated Eligible selling, product packaging logo creation, preparation and realization of the establishment of Business Study Group (KBU) and pioneered the marketing network with restaurant, store / shop staple food vendors that are around CLC.

Keywords: community development, functional skills, gender, HDI

Procedia PDF Downloads 313
1077 Multimedia Technologies Utilisation as Predictors of Lecturers’ Teaching Effectiveness in Colleges of Education in South-West, Nigeria

Authors: Abel Olusegun Egunjobi, Olusegun Oyeleye Adesanya

Abstract:

Teaching effectiveness of lecturers in a tertiary institution in Nigeria is one of the determinants of the lecturer’s productivity. In this study, therefore, lecturers’ teaching effectiveness was examined vis-à-vis their multimedia technologies utilisation in Colleges of Education (CoE) in South-West, Nigeria. This is for the purpose of ascertaining the relationship and contribution of multimedia technologies utilisation to lecturers’ teaching effectiveness in Nigerian colleges of education. The descriptive survey research design was adopted in the study, while a multi-stage sampling procedure was used in the study. A stratified sampling technique was used to select colleges of education, and a simple random sampling method was employed to select lecturers from the selected colleges of education. A total of 862 lecturers (627 males and 235 females) were selected from the colleges of education used for the study. The instrument used was lecturers’ questionnaire on multimedia technologies utilisation and teaching effectiveness with a reliability coefficient of 0.85 at 0.05 level of significance. The data collected were analysed using descriptive statistics, multiple regression, and t-test. The findings showed that the level of multimedia technologies utilisation in colleges of education was low, whereas lecturers’ teaching effectiveness was high. Findings also revealed that the lecturers used multimedia technologies purposely for personal and professional developments, so also for up to date news on economic and political matters. Also, findings indicated that laptop, Ipad, CD-ROMs, and computer instructional software were the multimedia technologies frequently utilised by the lecturers. There was also a significant difference in the teaching effectiveness between lecturers in the Federal and State COE. The government should, therefore, make adequate provision for multimedia technologies in the COE in Nigeria for lecturers’ utilisation in their instructions so as to boost their students’ learning outcomes.

Keywords: colleges of education, lecturers’ teaching effectiveness, multimedia technologies utilisation, Southwest Nigeria

Procedia PDF Downloads 140
1076 Local Interpretable Model-agnostic Explanations (LIME) Approach to Email Spam Detection

Authors: Rohini Hariharan, Yazhini R., Blessy Maria Mathew

Abstract:

The task of detecting email spam is a very important one in the era of digital technology that needs effective ways of curbing unwanted messages. This paper presents an approach aimed at making email spam categorization algorithms transparent, reliable and more trustworthy by incorporating Local Interpretable Model-agnostic Explanations (LIME). Our technique assists in providing interpretable explanations for specific classifications of emails to help users understand the decision-making process by the model. In this study, we developed a complete pipeline that incorporates LIME into the spam classification framework and allows creating simplified, interpretable models tailored to individual emails. LIME identifies influential terms, pointing out key elements that drive classification results, thus reducing opacity inherent in conventional machine learning models. Additionally, we suggest a visualization scheme for displaying keywords that will improve understanding of categorization decisions by users. We test our method on a diverse email dataset and compare its performance with various baseline models, such as Gaussian Naive Bayes, Multinomial Naive Bayes, Bernoulli Naive Bayes, Support Vector Classifier, K-Nearest Neighbors, Decision Tree, and Logistic Regression. Our testing results show that our model surpasses all other models, achieving an accuracy of 96.59% and a precision of 99.12%.

Keywords: text classification, LIME (local interpretable model-agnostic explanations), stemming, tokenization, logistic regression.

Procedia PDF Downloads 47
1075 Chronic Cognitive Impacts of Mild Traumatic Brain Injury during Aging

Authors: Camille Charlebois-Plante, Marie-Ève Bourassa, Gaelle Dumel, Meriem Sabir, Louis De Beaumont

Abstract:

To the extent of our knowledge, there has been little interest in the chronic effects of mild traumatic brain injury (mTBI) on cognition during normal aging. This is rather surprising considering the impacts on daily and social functioning. In addition, sustaining a mTBI during late adulthood may increase the effect of normal biological aging in individuals who consider themselves normal and healthy. The objective of this study was to characterize the persistent neuropsychological repercussions of mTBI sustained during late adulthood, on average 12 months prior to testing. To this end, 35 mTBI patients and 42 controls between the ages of 50 and 69 completed an exhaustive neuropsychological assessment lasting three hours. All mTBI patients were asymptomatic and all participants had a score ≥ 27 at the MoCA. The evaluation consisted of 20 standardized neuropsychological tests measuring memory, attention, executive and language functions, as well as information processing speed. Performance on tests of visual (Brief Visuospatial Memory Test Revised) and verbal memory (Rey Auditory Verbal Learning Test and WMS-IV Logical Memory subtest), lexical access (Boston Naming Test) and response inhibition (Stroop) revealed to be significantly lower in the mTBI group. These findings suggest that a mTBI sustained during late adulthood induces lasting effects on cognitive function. Episodic memory and executive functions seem to be particularly vulnerable to enduring mTBI effects.

Keywords: cognitive function, late adulthood, mild traumatic brain injury, neuropsychology

Procedia PDF Downloads 169
1074 Efficient DNN Training on Heterogeneous Clusters with Pipeline Parallelism

Authors: Lizhi Ma, Dan Liu

Abstract:

Pipeline parallelism has been widely used to accelerate distributed deep learning to alleviate GPU memory bottlenecks and to ensure that models can be trained and deployed smoothly under limited graphics memory conditions. However, in highly heterogeneous distributed clusters, traditional model partitioning methods are not able to achieve load balancing. The overlap of communication and computation is also a big challenge. In this paper, HePipe is proposed, an efficient pipeline parallel training method for highly heterogeneous clusters. According to the characteristics of the neural network model pipeline training task, oriented to the 2-level heterogeneous cluster computing topology, a training method based on the 2-level stage division of neural network modeling and partitioning is designed to improve the parallelism. Additionally, a multi-forward 1F1B scheduling strategy is designed to accelerate the training time of each stage by executing the computation units in advance to maximize the overlap between the forward propagation communication and backward propagation computation. Finally, a dynamic recomputation strategy based on task memory requirement prediction is proposed to improve the fitness ratio of task and memory, which improves the throughput of the cluster and solves the memory shortfall problem caused by memory differences in heterogeneous clusters. The empirical results show that HePipe improves the training speed by 1.6×−2.2× over the existing asynchronous pipeline baselines.

Keywords: pipeline parallelism, heterogeneous cluster, model training, 2-level stage partitioning

Procedia PDF Downloads 18
1073 Meaning and Cultivating Factors of Mindfulness as Experienced by Thai Females Who Practice Dhamma

Authors: Sukjai Charoensuk, Penphan Pitaksongkram, Michael Christopher

Abstract:

Preliminary evidences supported the effectiveness of mindfulness-based interventions in reducing symptoms associated with a variety of medical and psychological conditions. However, the measurements of mindfulness are questionable since they have not been developed based-on Buddhist experiences. The purpose of this qualitative study was to describe meaning and cultivating factors of mindfulness as experienced by Thai females who practice Dhamma. Participants were purposively selected to include 2 groups of Thai females who practice Dhamma. The first group consisted of 6 female Buddhist monks, and the second group consisted of 7 female who practice Dhamma without ordaining. Data were collected using in-depth interview. The instruments used were demographic data questionnaire and guideline for in-depth interview developed by researchers. Content analysis was employed to analyze the data. The results revealed that Thai women who practice Dhamma described their experience in 2 themes, which were meaning and cultivating factors of mindfulness. The meaning composed of 4 categories; 1) Being Present, 2) Self-awareness, 3) Contemplation, and 4) Neutral. The cultivating factors of mindfulness composed of 2 categories; In-personal factors and Ex-personal factors. The In-personal cultivating factors included 4 sub-categories; Faith and Love, the Five Precepts, Sound body, and Practice. The Ex-personal cultivating factors included 2 sub-categories; Serenity, and Learning. These findings increase understanding about meaning of mindfulness and its cultivating factors. These could be used as a guideline to promote mental health and develop nursing interventions using mindfulness based, as well as, develop the instrument for assessing mindfulness in Thai context.

Keywords: cultivating factor, meaning of mindfulness, practice Dhamma, Thai women

Procedia PDF Downloads 351
1072 Training the Hospitality Entrepreneurship on the Account of Constructing Nascent Entrepreneurial Competence

Authors: Ching-Hsu Huang, Yao-Ling Liu

Abstract:

Over the past several decades there has been considerable research on the topics of entrepreneurship education and nascent entrepreneurial competence. The purpose of this study is to explore the nascent entrepreneurial competence within entrepreneurship education via the use of three studies. It will be a three-phrases longitudinal study and the effective plan will combine the qualitative and quantitative mixed research methodology in order to understand the issues of nascent entrepreneurship and entrepreneurial competence in hospitality industry in Taiwan. In study one, the systematic literature reviews and twelve nascent entrepreneurs who graduated from hospitality management department will be conducted simultaneously to construct the nascent entrepreneurial competence indicators. Nine subjects who are from industry, government, and academia will be the decision makers in terms of forming the systematic nascent entrepreneurial competence indicators. The relative importance of indicators to each decision maker will be synthesized and compared using the Analytic Hierarchy Process method. According to the results of study one, this study will develop the teaching module of nascent hospitality entrepreneurship. It will include the objectives, context, content, audiences, assessment, pedagogy and outcomes. Based on the results of the second study, the quasi-experiment will be conducted in third study to explore the influence of nascent hospitality entrepreneurship teaching module on learners’ learning effectiveness. The nascent hospitality entrepreneurship education program and entrepreneurial competence will be promoted all around the hospitality industry and vocational universities. At the end, the implication for designing the nascent hospitality entrepreneurship teaching module and training programs will be suggested for the nascent entrepreneurship education. All of the proposed hypotheses will be examined and major finding, implication, discussion, and recommendations will be provided for the government and education administration in hospitality field.

Keywords: entrepreneurial competence, hospitality entrepreneurship, nascent entrepreneurial, training in hospitality entrepreneurship

Procedia PDF Downloads 244
1071 Relational Effect of Parent Interest, Basic School Attended, Gender, and Scare of Basic School Mathematics Teacher on Student Interest in Mathematics

Authors: Yarhands Dissou Arthur, Samuel Asiedu Addo, Jonathan Annan

Abstract:

Interest in subject specific is very essential in the quest to ensure effective teaching and learning. In building interest in subject specific areas requires certain factors and strategies well-spelled out.The factors such as the gender of the student, the type of basic school attended, the parent interest as well as the scare of the basic school mathematics teacher is very important to consider. The relational effect and the contribution these above mentioned variables on student have not been fully investigated and this paper address the effect of these factors on the student interest. In the attainment of this goal, the current paper addresses the effect of parent interest, the type of basic school attended, the scare by basic school mathematics teacher and its effect on student’s interest in mathematics. A cross sectional data collected from two hundred and sixty post-secondary school student were analyzed using descriptive and inferential statistical methods by aid of SPSS version 16. The study found that parent interest and value for mathematics significantly influenced students interest and joy in solving mathematical problems. Moreover, we also observed that the fear imposed by basic school mathematics teachers was found to significantly influence students’ interest. The study further found that the type of basic school attended and gender are factors that do not influence students’ interest in mathematics. In addition to concluding that a student’s interest is influenced by both parent interest and the fear of basic school mathematics teacher, the study also showed that the type of basic school attended and gender does not affect the students’ interest in mathematics.

Keywords: gender, mathematics interest, teacher interest, teacher interest, student interest

Procedia PDF Downloads 367
1070 Methods and Algorithms of Ensuring Data Privacy in AI-Based Healthcare Systems and Technologies

Authors: Omar Farshad Jeelani, Makaire Njie, Viktoriia M. Korzhuk

Abstract:

Recently, the application of AI-powered algorithms in healthcare continues to flourish. Particularly, access to healthcare information, including patient health history, diagnostic data, and PII (Personally Identifiable Information) is paramount in the delivery of efficient patient outcomes. However, as the exchange of healthcare information between patients and healthcare providers through AI-powered solutions increases, protecting a person’s information and their privacy has become even more important. Arguably, the increased adoption of healthcare AI has resulted in a significant concentration on the security risks and protection measures to the security and privacy of healthcare data, leading to escalated analyses and enforcement. Since these challenges are brought by the use of AI-based healthcare solutions to manage healthcare data, AI-based data protection measures are used to resolve the underlying problems. Consequently, this project proposes AI-powered safeguards and policies/laws to protect the privacy of healthcare data. The project presents the best-in-school techniques used to preserve the data privacy of AI-powered healthcare applications. Popular privacy-protecting methods like Federated learning, cryptographic techniques, differential privacy methods, and hybrid methods are discussed together with potential cyber threats, data security concerns, and prospects. Also, the project discusses some of the relevant data security acts/laws that govern the collection, storage, and processing of healthcare data to guarantee owners’ privacy is preserved. This inquiry discusses various gaps and uncertainties associated with healthcare AI data collection procedures and identifies potential correction/mitigation measures.

Keywords: data privacy, artificial intelligence (AI), healthcare AI, data sharing, healthcare organizations (HCOs)

Procedia PDF Downloads 93
1069 Pilot-free Image Transmission System of Joint Source Channel Based on Multi-Level Semantic Information

Authors: Linyu Wang, Liguo Qiao, Jianhong Xiang, Hao Xu

Abstract:

In semantic communication, the existing joint Source Channel coding (JSCC) wireless communication system without pilot has unstable transmission performance and can not effectively capture the global information and location information of images. In this paper, a pilot-free image transmission system of joint source channel based on multi-level semantic information (Multi-level JSCC) is proposed. The transmitter of the system is composed of two networks. The feature extraction network is used to extract the high-level semantic features of the image, compress the information transmitted by the image, and improve the bandwidth utilization. Feature retention network is used to preserve low-level semantic features and image details to improve communication quality. The receiver also is composed of two networks. The received high-level semantic features are fused with the low-level semantic features after feature enhancement network in the same dimension, and then the image dimension is restored through feature recovery network, and the image location information is effectively used for image reconstruction. This paper verifies that the proposed multi-level JSCC algorithm can effectively transmit and recover image information in both AWGN channel and Rayleigh fading channel, and the peak signal-to-noise ratio (PSNR) is improved by 1~2dB compared with other algorithms under the same simulation conditions.

Keywords: deep learning, JSCC, pilot-free picture transmission, multilevel semantic information, robustness

Procedia PDF Downloads 120
1068 Integrated Intensity and Spatial Enhancement Technique for Color Images

Authors: Evan W. Krieger, Vijayan K. Asari, Saibabu Arigela

Abstract:

Video imagery captured for real-time security and surveillance applications is typically captured in complex lighting conditions. These less than ideal conditions can result in imagery that can have underexposed or overexposed regions. It is also typical that the video is too low in resolution for certain applications. The purpose of security and surveillance video is that we should be able to make accurate conclusions based on the images seen in the video. Therefore, if poor lighting and low resolution conditions occur in the captured video, the ability to make accurate conclusions based on the received information will be reduced. We propose a solution to this problem by using image preprocessing to improve these images before use in a particular application. The proposed algorithm will integrate an intensity enhancement algorithm with a super resolution technique. The intensity enhancement portion consists of a nonlinear inverse sign transformation and an adaptive contrast enhancement. The super resolution section is a single image super resolution technique is a Fourier phase feature based method that uses a machine learning approach with kernel regression. The proposed technique intelligently integrates these algorithms to be able to produce a high quality output while also being more efficient than the sequential use of these algorithms. This integration is accomplished by performing the proposed algorithm on the intensity image produced from the original color image. After enhancement and super resolution, a color restoration technique is employed to obtain an improved visibility color image.

Keywords: dynamic range compression, multi-level Fourier features, nonlinear enhancement, super resolution

Procedia PDF Downloads 554
1067 The Impact of Technology on Media Content Regulation

Authors: Eugene Mashapa

Abstract:

The age of information has witnessed countless unprecedented technological developments, which signal the articulation of succinct technological capabilities that can match these cutting-edge technological trends. These changes have impacted patterns in the production, distribution, and consumption of media content, a space that the Film and Publication Board (FPB) is concerned with. Consequently, the FPB is keen to understand the nature and impact of these technological changes on media content regulation. This exploratory study sought to investigate how content regulators in high and middle-income economies have adapted to the changes in this space, seeking insights into innovations, technological and operational, that facilitate continued relevance during this fast-changing environment. The study is aimed at developing recommendations that could assist and inform the organisation in regulating media content as it evolves. Thus, the overall research strategy in this analysis is applied research, and the analytical model adopted is a mixed research design guided by both qualitative and quantitative research instruments. It was revealed in the study that the FPB was significantly impacted by the unprecedented technological advancements in the media regulation space. Additionally, there exists a need for the FPB to understand the current and future penetrations of 4IR technology in the industry and its impact on media governance and policy implementation. This will range from reskilling officials to align with the technological skills to developing technological innovations as well as adopting co-regulatory or self-regulatory arrangements together with content distributors, where more content is distributed in higher volumes and with increased frequency. Importantly, initiating an interactive learning process for both FPB employees and the general public can assist the regulator and improve FPB’s operational efficiency and effectiveness.

Keywords: media, regulation, technology, film and publications board

Procedia PDF Downloads 106
1066 The Colombian Special Jurisdiction for Peace, a Transitional Justice Mechanism That Prioritizes Reconciliation over Punishment: A Content Analysis of the Colombian Peace Agreement

Authors: Laura Mendez

Abstract:

Tribunals for the prosecution of crimes against humanity have been implemented in recent history via international intervention or imposed by one side of the conflict, as in the cases of Rwanda, Iraq, Argentina, and Chile. However, the creation of a criminal tribunal as the result of a peace agreement between formerly warring parties has been unique to the Colombian peace process. As such, the Colombian Jurisdiction for Peace (SJP), or JEP for its Spanish acronym, is viewed as a site of social contestation where actors shape its design and implementation. This study contributes to the literature of transitional justice by analyzing how the framing of the creation of the Colombian tribunal reveals the parties' interests. The analysis frames the interests of the power-brokers, i.e., the government and the Revolutionary Armed Forces of Colombia (FARC), and the victims in light of the tribunal’s functions. The purpose of this analysis is to understand how the interests of the parties are embedded in the designing of the SJP. This paper argues that the creation of the SJP rests on restorative justice, for which the victim, not the perpetrator, is at the center of prosecution. The SJP’s approach to justice moves from prosecution as punishment to prosecution as sanctions. SJP’s alternative sanctions focused on truth, reparation, and restoration are designed to humanize both the victim and the perpetrator in order to achieve reconciliation. The findings also show that requiring the perpetrator to perform labor to repair the victim as an alternative form of sanction aims to foster relations of reintegration and social learning between victims and perpetrators.

Keywords: transitional justice mechanisms, criminal tribunals, Colombia, Colombian Jurisdiction for Peace, JEP

Procedia PDF Downloads 118
1065 Using Geo-Statistical Techniques and Machine Learning Algorithms to Model the Spatiotemporal Heterogeneity of Land Surface Temperature and its Relationship with Land Use Land Cover

Authors: Javed Mallick

Abstract:

In metropolitan areas, rapid changes in land use and land cover (LULC) have ecological and environmental consequences. Saudi Arabia's cities have experienced tremendous urban growth since the 1990s, resulting in urban heat islands, groundwater depletion, air pollution, loss of ecosystem services, and so on. From 1990 to 2020, this study examines the variance and heterogeneity in land surface temperature (LST) caused by LULC changes in Abha-Khamis Mushyet, Saudi Arabia. LULC was mapped using the support vector machine (SVM). The mono-window algorithm was used to calculate the land surface temperature (LST). To identify LST clusters, the local indicator of spatial associations (LISA) model was applied to spatiotemporal LST maps. In addition, the parallel coordinate (PCP) method was used to investigate the relationship between LST clusters and urban biophysical variables as a proxy for LULC. According to LULC maps, urban areas increased by more than 330% between 1990 and 2018. Between 1990 and 2018, built-up areas had an 83.6% transitional probability. Furthermore, between 1990 and 2020, vegetation and agricultural land were converted into built-up areas at a rate of 17.9% and 21.8%, respectively. Uneven LULC changes in built-up areas result in more LST hotspots. LST hotspots were associated with high NDBI but not NDWI or NDVI. This study could assist policymakers in developing mitigation strategies for urban heat islands

Keywords: land use land cover mapping, land surface temperature, support vector machine, LISA model, parallel coordinate plot

Procedia PDF Downloads 78
1064 Learning Dynamic Representations of Nodes in Temporally Variant Graphs

Authors: Sandra Mitrovic, Gaurav Singh

Abstract:

In many industries, including telecommunications, churn prediction has been a topic of active research. A lot of attention has been drawn on devising the most informative features, and this area of research has gained even more focus with spread of (social) network analytics. The call detail records (CDRs) have been used to construct customer networks and extract potentially useful features. However, to the best of our knowledge, no studies including network features have yet proposed a generic way of representing network information. Instead, ad-hoc and dataset dependent solutions have been suggested. In this work, we build upon a recently presented method (node2vec) to obtain representations for nodes in observed network. The proposed approach is generic and applicable to any network and domain. Unlike node2vec, which assumes a static network, we consider a dynamic and time-evolving network. To account for this, we propose an approach that constructs the feature representation of each node by generating its node2vec representations at different timestamps, concatenating them and finally compressing using an auto-encoder-like method in order to retain reasonably long and informative feature vectors. We test the proposed method on churn prediction task in telco domain. To predict churners at timestamp ts+1, we construct training and testing datasets consisting of feature vectors from time intervals [t1, ts-1] and [t2, ts] respectively, and use traditional supervised classification models like SVM and Logistic Regression. Observed results show the effectiveness of proposed approach as compared to ad-hoc feature selection based approaches and static node2vec.

Keywords: churn prediction, dynamic networks, node2vec, auto-encoders

Procedia PDF Downloads 314
1063 Cross Professional Team-Assisted Teaching Effectiveness

Authors: Shan-Yu Hsu, Hsin-Shu Huang

Abstract:

The main purpose of this teaching research is to design an interdisciplinary team-assisted teaching method for trainees and interns and review the effectiveness of this teaching method on trainees' understanding of peritoneal dialysis. The teaching research object is the fifth and sixth-grade trainees in a medical center's medical school. The teaching methods include media teaching, demonstration of technical operation, face-to-face communication with patients, special case discussions, and field visits to the peritoneal dialysis room. Evaluate learning effectiveness before, after, and verbally. Statistical analysis was performed using the SPSS paired-sample t-test to analyze whether there is a difference in peritoneal dialysis professional cognition before and after teaching intervention. Descriptive statistics show that the average score of the previous test is 74.44, the standard deviation is 9.34, the average score of the post-test is 95.56, and the standard deviation is 5.06. The results of the t-test of the paired samples are shown as p-value = 0.006, showing the peritoneal dialysis professional cognitive test. Significant differences were observed before and after. The interdisciplinary team-assisted teaching method helps trainees and interns to improve their professional awareness of peritoneal dialysis. At the same time, trainee physicians have positive feedback on the inter-professional team-assisted teaching method. This teaching research finds that the clinical ability development education of trainees and interns can provide cross-professional team-assisted teaching methods to assist clinical teaching guidance.

Keywords: monitor quality, patient safety, health promotion objective, cross-professional team-assisted teaching methods

Procedia PDF Downloads 143
1062 Higher Education for Knowledge and Technology Transfer in Egypt

Authors: M. A. Zaki Ewiss, S. Afifi

Abstract:

Nahda University (NUB) believes that internationalisation of higher educational is able to provide global society with an education that meets current needs and that can respond efficiently to contemporary demands and challenges, which are characterized by globalisation, interdependence, and multiculturalism. In this paper, we will discuss the the challenges of the Egyptian Higher Education system and the future vision to improve this system> In this report, the following issues will be considered: Increasing knowledge on the development of specialized programs of study at the university. Developing international cooperation programs, which focus on the development of the students and staff skills, and providing academic culture and learning opportunities. Increasing the opportunities for student mobility, and research projects for faculty members. Increased opportunities for staff, faculty and students to continue to learn foreign universities, and to benefit from scholarships in various disciplines. Taking the advantage of the educational experience and modern teaching methods; Providing the opportunities to study abroad without increasing the period of time required for graduation, and through greater integration in the curricula and programs; More cultural interaction through student exchanges.Improving and providing job opportunities for graduates through participation in the global labor market. This document sets out NUB strategy to move towards that vision. We are confident that greater explicit differentiation, greater freedom and greater collaboration are the keys to delivering the further improvement in quality we shall need to retain and strengthen our position as one of the world’s leading higher education systems.

Keywords: technology transfer higher education, knowledge transfer, internationalisation, mobility

Procedia PDF Downloads 438
1061 The Mashishing Marking Memories Project: A Culture-Centered Approach to Participation

Authors: Nongcebo Ngcobo

Abstract:

This research explores the importance of including a multitude of voices in the cultural heritage narrative, particularly in South Africa. The Mashishing project is an extension of and builds on the existing ‘Biesje Poort project’ which is a rock art project that was funded by the National Heritage Council in 2010 - 2013. Hence, the Mashishing marking memories project applies comparable Biesje Poort project objectives, though in a different geographical area. The wider project objectives are to transfer skills, promote social cohesion and empowerment, and lastly to add to the knowledge base of the Mashishing region and the repository of the local museum in the Lydenburg museum. This study is located in the Mashishing area, in Mpumalanga, South Africa. In this area, there were no present multi-vocal heritage projects. This research assesses the Mashishing marking memories project through the culture-centered approach for communication for social change, which examines the impact that the diverse participants have on the operations of the Mashishing project and also investigates whether the culturally diverse participants facilitates or hinders effective participation within the project. Key findings of this research uncovered the significance of participation and diverse voices in the cultural heritage field. Furthermore, this study highlights how unequal power relations affect effective participation. As a result, this study encourages the importance of bringing the researcher and the participant in a safe space to facilitate mutual learning. It also encourages an exchange of roles, where the researcher shifts from being an authoritarian figure to being in the role of a listener.

Keywords: culture, heritage, participation, social change

Procedia PDF Downloads 121
1060 Prediction Modeling of Alzheimer’s Disease and Its Prodromal Stages from Multimodal Data with Missing Values

Authors: M. Aghili, S. Tabarestani, C. Freytes, M. Shojaie, M. Cabrerizo, A. Barreto, N. Rishe, R. E. Curiel, D. Loewenstein, R. Duara, M. Adjouadi

Abstract:

A major challenge in medical studies, especially those that are longitudinal, is the problem of missing measurements which hinders the effective application of many machine learning algorithms. Furthermore, recent Alzheimer's Disease studies have focused on the delineation of Early Mild Cognitive Impairment (EMCI) and Late Mild Cognitive Impairment (LMCI) from cognitively normal controls (CN) which is essential for developing effective and early treatment methods. To address the aforementioned challenges, this paper explores the potential of using the eXtreme Gradient Boosting (XGBoost) algorithm in handling missing values in multiclass classification. We seek a generalized classification scheme where all prodromal stages of the disease are considered simultaneously in the classification and decision-making processes. Given the large number of subjects (1631) included in this study and in the presence of almost 28% missing values, we investigated the performance of XGBoost on the classification of the four classes of AD, NC, EMCI, and LMCI. Using 10-fold cross validation technique, XGBoost is shown to outperform other state-of-the-art classification algorithms by 3% in terms of accuracy and F-score. Our model achieved an accuracy of 80.52%, a precision of 80.62% and recall of 80.51%, supporting the more natural and promising multiclass classification.

Keywords: eXtreme gradient boosting, missing data, Alzheimer disease, early mild cognitive impairment, late mild cognitive impair, multiclass classification, ADNI, support vector machine, random forest

Procedia PDF Downloads 188
1059 From Proficiency to High Accomplishment: Transformative Inquiry and Institutionalization of Mentoring Practices in Teacher Education in South-Western Nigeria

Authors: Michael A. Ifarajimi

Abstract:

The transition from being a graduate teacher to a highly accomplished teacher has been widely portrayed in literature as challenging. Pre-service teachers are troubled with complex issues such as implementing, assessment, meeting prescribed learning outcomes, taking risks, supporting eco sustainability, etc. This list is not exhaustive as they are further complicated when the concerns extend beyond the classroom into the broader school setting and community. Meanwhile, the pre-service teacher education programme as is currently run in Nigeria, cannot adequately prepare newly trained teachers for the realities of classroom teaching. And there appears to be no formal structure in place for mentoring such teachers by the more seasoned teachers in schools. The central research question of the study, therefore, is which institutional framework can be distinguished for enactment in mentoring practices in teacher education? The study was conducted in five colleges of education in South-West Nigeria, and a sample of 1000 pre-service teachers on their final year practicum was randomly selected from the colleges of education. A pre-service teacher mentorship programme (PTMP) framework was designed and implemented, with a focus on the impact of transformative inquiry on the pre-service teacher support system. The study discovered a significant impact of mentoring on pre-service teacher’s professional transformation. The study concluded that institutionalizing mentorship through transformative inquiry is a means to sustainable teacher education, professional growth, and effective classroom practice. The study recommended that the government should enact policies that will promote mentoring in teacher education and establish a framework for the implementation of mentoring practices in the colleges of education in Nigeria.

Keywords: institutionalization, mentoring, pre-service teachers teacher education, transformative inquiry

Procedia PDF Downloads 133
1058 The Effect of Excess Workload on Lecturers in Higher Institution and Its Relation with Instructional Technology a Case Study of North-West Nigeria

Authors: Shitu Sani

Abstract:

The paper is advanced on the historical background of the effects of excess work load on lecturers in higher institutions of learning which will assess the socio-economic and psychological disposition of lecturers in the realm of quality production. The paper further discusses the significant roles played by excess work load in general transformation of higher education, which will give the management and stake holders input for successful development of higher education. Even though all forms of work and organizational procedures are potential source of stress and stressors. In higher institution of leaning, lecturers perform many responsibilities such as lecturing, carrying out research and engaging in community services. If these multiple roles could not be handle property it would have result in stress which may have negative impact on job performance, and it’s relation with instructional technology. A sample 191 lecturers were randomly selected from the higher institutions in the northern west zone in Nigerian using two instruments i.e. work load stress management question and job performance Approval, data were collected on lecturers of socio-economic and physiological stress and job performances. Findings of the study shows that lecture experienced excess work load in academic activities. Lecturer’s job performance was negatively influences by socio-economic and psychological work stress. Among the recommendation made were the need for organizing regular induction courses for lecturers on stress, and enhance interpersonal relations among the lecturers as well as provision of electronic public address system to reduce the stress.

Keywords: effect, excess, lecturers, workload

Procedia PDF Downloads 352
1057 Towards Law Data Labelling Using Topic Modelling

Authors: Daniel Pinheiro Da Silva Junior, Aline Paes, Daniel De Oliveira, Christiano Lacerda Ghuerren, Marcio Duran

Abstract:

The Courts of Accounts are institutions responsible for overseeing and point out irregularities of Public Administration expenses. They have a high demand for processes to be analyzed, whose decisions must be grounded on severity laws. Despite the existing large amount of processes, there are several cases reporting similar subjects. Thus, previous decisions on already analyzed processes can be a precedent for current processes that refer to similar topics. Identifying similar topics is an open, yet essential task for identifying similarities between several processes. Since the actual amount of topics is considerably large, it is tedious and error-prone to identify topics using a pure manual approach. This paper presents a tool based on Machine Learning and Natural Language Processing to assists in building a labeled dataset. The tool relies on Topic Modelling with Latent Dirichlet Allocation to find the topics underlying a document followed by Jensen Shannon distance metric to generate a probability of similarity between documents pairs. Furthermore, in a case study with a corpus of decisions of the Rio de Janeiro State Court of Accounts, it was noted that data pre-processing plays an essential role in modeling relevant topics. Also, the combination of topic modeling and a calculated distance metric over document represented among generated topics has been proved useful in helping to construct a labeled base of similar and non-similar document pairs.

Keywords: courts of accounts, data labelling, document similarity, topic modeling

Procedia PDF Downloads 179
1056 Pride and Prejudice in Higher Education: Countering Elitist Perspectives in the Curriculum at Imperial College London

Authors: Mark R. Skopec, Hamdi M. Issa, Henock B. Taddese, Kate Ippolito, Matthew J. Harris

Abstract:

In peer review, there is a skew toward research from high-income countries, otherwise known as geographic bias. Research from well-known and prestigious institutions is often favored in the peer review process and is more frequently cited in biomedical research. English clinicians have been found to rate research from low-income countries worse compared to the same research presented as if from high-income countries. This entrenched bias, which is rooted in the perceived superiority of academic institutions in high-income countries is damaging in many regards. Crucially, it reinforces colonial roots by strengthening the dominance of knowledge bases in high-income contexts and perpetuates the perceived inferiority of research from low-income settings. We report on the interventions that Imperial College London is conducting to “decolonize” the higher education curriculum – a root and branch review of reading material in the Masters of Public Health course; identification of unconscious bias against low-income country research in faculty and staff; in-depth interviews with faculty members on their experiences and practices with respect to inclusion of low-income country research in their own teaching and learning practice; and exploring issues surrounding entrenched biases and structural impediments for enabling desirable changes. We intend to use these findings to develop frameworks and approaches, including workshops and online resources, to effect sustainable changes to diversify the curriculum at Imperial College London.

Keywords: curriculum design, diversity, geographic bias, higher education, implicit associations, inclusivity

Procedia PDF Downloads 171
1055 Time Series Analysis the Case of China and USA Trade Examining during Covid-19 Trade Enormity of Abnormal Pricing with the Exchange rate

Authors: Md. Mahadi Hasan Sany, Mumenunnessa Keya, Sharun Khushbu, Sheikh Abujar

Abstract:

Since the beginning of China's economic reform, trade between the U.S. and China has grown rapidly, and has increased since China's accession to the World Trade Organization in 2001. The US imports more than it exports from China, reducing the trade war between China and the U.S. for the 2019 trade deficit, but in 2020, the opposite happens. In international and U.S. trade, Washington launched a full-scale trade war against China in March 2016, which occurred a catastrophic epidemic. The main goal of our study is to measure and predict trade relations between China and the U.S., before and after the arrival of the COVID epidemic. The ML model uses different data as input but has no time dimension that is present in the time series models and is only able to predict the future from previously observed data. The LSTM (a well-known Recurrent Neural Network) model is applied as the best time series model for trading forecasting. We have been able to create a sustainable forecasting system in trade between China and the US by closely monitoring a dataset published by the State Website NZ Tatauranga Aotearoa from January 1, 2015, to April 30, 2021. Throughout the survey, we provided a 180-day forecast that outlined what would happen to trade between China and the US during COVID-19. In addition, we have illustrated that the LSTM model provides outstanding outcome in time series data analysis rather than RFR and SVR (e.g., both ML models). The study looks at how the current Covid outbreak affects China-US trade. As a comparative study, RMSE transmission rate is calculated for LSTM, RFR and SVR. From our time series analysis, it can be said that the LSTM model has given very favorable thoughts in terms of China-US trade on the future export situation.

Keywords: RFR, China-U.S. trade war, SVR, LSTM, deep learning, Covid-19, export value, forecasting, time series analysis

Procedia PDF Downloads 198
1054 Teacher Training Course: Conflict Resolution through Mediation

Authors: Csilla Marianna Szabó

Abstract:

In Hungary, the society has changes a lot for the past 25 years, and these changes could be detected in educational situations as well. The number and the intensity of conflicts have been increased in most fields of life, as well as at schools. Teachers have difficulties to be able to handle school conflicts. What is more, the new net generation, generation Z has values and behavioural patterns different from those of the previous one, which might generate more serious conflicts at school, especially with teachers who were mainly socialising in a traditional teacher – student relationships. In Hungary, the bill CCIV, 2011 declared the foundation of Institutes of Teacher Training in higher education institutes. One of the tasks of the Institutes is to survey the competences and needs of teachers working in public education and to provide further trainings and services for them according to their needs and requirements. This job is supported by the Social Renewal Operative Programs 4.1.2.B. The Institute of Teacher Training at the College of Dunaújváros, Hungary carried out a questionnaire and surveyed the needs and the requirements of teachers working in the Central Transdanubian region. Based on the results, the professors of the Institute of Teacher Training decided to meet the requirements of teachers and launch short courses in spring 2015. One of the courses is going to focus on school conflict management through mediation. The aim of the pilot course is to provide conflict management techniques for teachers presenting different mediation techniques to them. The theoretical part of the course (5 hours) will enable participants to understand the main points and the advantages of mediation, while the practical part (10 hours) will involve teachers in role plays to learn how to cope with conflict situations applying mediation. We hope if conflicts could be reduced, it would influence school atmosphere in a positive way and the teaching – learning process could be more successful and effective.

Keywords: conflict resolution, generation Z, mediation, teacher training

Procedia PDF Downloads 410