Search results for: water withdrawal
2673 Experimental and Theoretical Study on Hygrothermal Aging Effect on Mechanical Behavior of Fiber Reinforced Plastic Laminates
Authors: S. Larbi, R. Bensaada, S. Djebali, A. Bilek
Abstract:
The manufacture of composite parts is a major issue in many industrial domains. Polymer composite materials are ideal for structural applications where high strength-to-weight and stiffness-to-weight ratios are required. However, exposition to extreme environment conditions (temperature, humidity) affects mechanical properties of organic composite materials and lead to an undesirable degradation. Aging mechanisms in organic matrix are very diverse and vary according to the polymer and the aging conditions such as temperature, humidity etc. This paper studies the hygrothermal aging effect on the mechanical properties of fiber reinforced plastics laminates at 40 °C in different environment exposure. Two composite materials are used to conduct the study (carbon fiber/epoxy and glass fiber/vinyl ester with two stratifications for both the materials [904/04] and [454/04]). The experimental procedure includes a mechanical characterization of the materials in a virgin state and exposition of specimens to two environments (seawater and demineralized water). Absorption kinetics for the two materials and both the stratifications are determined. Three-point bending test is performed on the aged materials in order to determine the hygrothermal effect on the mechanical properties of the materials.Keywords: FRP laminates, hygrothermal aging, mechanical properties, theory of laminates
Procedia PDF Downloads 2862672 Elaboration and Characterization of Self-Compacting Mortar Based Biopolymer
Authors: I. Djefour, M. Saidi, I. Tlemsani, S. Toubal
Abstract:
Lignin is a molecule derived from wood and also generated as waste from the paper industry. With a view to its valorization and protection of the environment, we are interested in its use as a superplasticizer-type adjuvant in mortars and concretes to improve their mechanical strengths. The additives of the concrete have a very strong influence on the properties of the fresh and / or hardened concrete. This study examines the development and use of industrial waste and lignin extracted from a renewable natural source (wood) in cementitious materials. The use of these resources is known at present as a definite resurgence of interest in the development of building materials. Physicomechanical characteristics of mortars are determined by optimization quantity of the natural superplasticizer. The results show that the mechanical strengths of mortars based on natural adjuvant have improved by 20% (64 MPa) for a W/C ratio = 0.4, and the amount of natural adjuvant of dry extract needed is 40 times smaller than commercial adjuvant. This study has a scientific impact (improving the performance of the mortar with an increase in compactness and reduction of the quantity of water), ecological use of the lignin waste generated by the paper industry) and economic reduction of the cost price necessary to elaboration of self-compacting mortars and concretes).Keywords: biopolymer (lignin), industrial waste, mechanical resistances, self compacting mortars (SCM)
Procedia PDF Downloads 1682671 Long-Term Climate Patterns in Eastern and Southeastern Ethiopia
Authors: Messay Mulugeta, Degefa Tolossa
Abstract:
The purpose of this paper is to scrutinize trends of climate risks in eastern and southeastern parts of Ethiopia. This part of the country appears severely affected by recurrent droughts, erratic rainfall, and increasing temperature condition. Particularly, erratic rains and moisture stresses have been forcibly threatening and shoving the people over many decades coupled with unproductive policy frameworks and weak institutional setups. These menaces have been more severe in dry lowlands where rainfall is more erratic and scarce. Long-term climate data of nine weather stations in eastern and southeastern parts of Ethiopia were obtained from National Meteorological Agency of Ethiopia (NMA). As issues related to climate risks are very intricate, different techniques and indices were applied to deal with the objectives of the study. It is concluded that erratic rainfall, moisture scarcity, and increasing temperature conditions have been the main challenges in eastern and southeastern Ethiopia. In fact, these risks can be eased by putting in place efficient and integrated rural development strategies, environmental rehabilitation plans of action in overworked areas, proper irrigation and water harvesting practices and well thought-out and genuine resettlement schemes.Keywords: rainfall variability, erratic rains, precipitation concentration index (PCI), climatic pattern, Ethiopia
Procedia PDF Downloads 2412670 Prediction of Deformations of Concrete Structures
Authors: A. Brahma
Abstract:
Drying is a phenomenon that accompanies the hardening of hydraulic materials. It can, if it is not prevented, lead to significant spontaneous dimensional variations, which the cracking is one of events. In this context, cracking promotes the transport of aggressive agents in the material, which can affect the durability of concrete structures. Drying shrinkage develops over a long period almost 30 years although most occurred during the first three years. Drying shrinkage stabilizes when the material is water balance with the external environment. The drying shrinkage of cementitious materials is due to the formation of capillary tensions in the pores of the material, which has the consequences of bringing the solid walls of each other. Knowledge of the shrinkage characteristics of concrete is a necessary starting point in the design of structures for crack control. Such knowledge will enable the designer to estimate the probable shrinkage movement in reinforced or prestressed concrete and the appropriate steps can be taken in design to accommodate this movement. This study is concerned the modelling of drying shrinkage of the hydraulic materials and the prediction of the rate of spontaneous deformations of hydraulic materials during hardening. The model developed takes in consideration the main factors affecting drying shrinkage. There was agreement between drying shrinkage predicted by the developed model and experimental results. In last we show that developed model describe the evolution of the drying shrinkage of high performances concretes correctly.Keywords: drying, hydraulic concretes, shrinkage, modeling, prediction
Procedia PDF Downloads 3402669 Okara-Chickpea Fettuccine Pasta: Physico-chemical, Sensory Properties, and Cooking Quality Characterization
Authors: Elvira Cabadsan-Labartine
Abstract:
This study aimed to develop alternative and healthy fettuccine pasta using okara, chickpea flour, and vital wheat gluten blends. The effect of formulations on cooking quality, sensory properties, and physico-chemical characteristics was investigated using a mixture design. The levels of okara flour increase the cooking time, water absorption index, protein content, and dietary fiber while decreasing cooking loss. Dough formation exhibited up to 20% okara flour and peaked at 132 percent. The physico-chemical properties and microbiological results of chickpea-okara pasta were all within the acceptable range of the standards. The results show that the amount of protein and fiber also greatly affected the cooking qualities of pasta. The least okara flour in the mixture blends obtained the highest score in the affective sensory evaluation regarding color, appearance, and texture properties. Results showed that okara flour can be incorporated in the formulation up to 15%. These findings show that okara-chickpea flour and vital wheat gluten have a high nutritional value, making them a viable ingredient in pasta products.Keywords: okara flour, fettucine pasta, cooking and sensory characteristics, dough yield
Procedia PDF Downloads 82668 Physicochemical and Sensory Properties of Gluten-Free Semolina Produced from Blends of Cassava, Maize and Rice
Authors: Babatunde Stephen Oladeji, Gloria Asuquo Edet
Abstract:
The proximate, functional, pasting, and sensory properties of semolina from blends of cassava, maize, and rice were investigated. Cassava, maize, and rice were milled and sieved to pass through a 1000 µm sieve, then blended in the following ratios to produce five samples; FS₁ (40:30:30), FS₂ (20:50:30), FS₃ (25:25:50), FS₄ (34:33:33) and FS₅ (60:20:20) for cassava, maize, and rice, respectively. A market sample of wheat semolina labeled as FSc served as the control. The proximate composition, functional properties, pasting profile, and sensory characteristics of the blends were determined using standard analytical methods. The protein content of the samples ranged from 5.66% to 6.15%, with sample FS₂ having the highest value and being significantly different (p ≤ 0.05). The bulk density of the formulated samples ranged from 0.60 and 0.62 g/ml. The control (FSc) had a higher bulk density of 0.71 g/ml. The water absorption capacity of both the formulated and control samples ranged from 0.67% to 2.02%, with FS₃ having the highest value and FSc having the lowest value (0.67%). The peak viscosity of the samples ranged from 60.83-169.42 RVU, and the final viscosity of semolina samples ranged from 131.17 to 235.42 RVU. FS₅ had the highest overall acceptability score (7.46), but there was no significant difference (p ≤ 0.05) from other samples except for FS₂ (6.54) and FS₃ (6.29). This study establishes that high-quality and consumer-acceptable semolina that is comparable to the market sample could be produced from blends of cassava, maize, and rice.Keywords: semolina, gluten, celiac disease, wheat allergies
Procedia PDF Downloads 1102667 Campus Living Environments that Contribute to Mental Health: A Path Analysis Based on Environmental Characteristics
Authors: Jing Ren, Guifeng Han
Abstract:
The mental health of most college students in China is negative due to the multiple pressures of academics, life, and employment. The problem of psychological stress has been widely discussed and needs to be resolved immediately. Therefore, six typical green spaces in Chongqing University, China, were selected to explore the relationship between eight environmental characteristics and students' stress relief. A path analysis model is established using Amos26.0 to explain the paths for environmental characteristics influencing psychological stress relief. The results show that (1) tree species diversity (TSD) has a positive effect on stress relief, thus green coverage ratio (GCR), the proportion of water area (WAP), visual green index (VGI), and color richness (CR) have both positive and negative effects; (2) CR could reduce stress directly and indirectly, while GCR, TSD, WAP, and VGI could only reduce stress indirectly, and the most effective path is TSD→extent→stress relief; (3) CR can reduce stress more greatly for males than females, CR and VGI have better effects for art students than science students. The study can provide a theoretical reference for planning and designing campus living environments to improve students' mental health.Keywords: public health, residential environment, space planning and management, mental health, path analysis
Procedia PDF Downloads 642666 Biodegradation Study of Diethyl Phthalate Using Bacteria Isolated from Plastic Industry Wastewater Discharge Site
Authors: Sangram Shamrao Patil, Hara Mohan Jena
Abstract:
Phthalates are among the most common organic pollutant since they have become widespread in the environment and found in sediments, natural waters, soils, plants, landfill leachates, biota including human tissue and aquatic organisms. Diethyl phthalate (DEP) is a low molecular weight phthalate which has wide applications as plasticizer and become a major cause of environmental pollution. Environmental protection agency (EPA) listed DEP as priority pollutant because of its toxicity and they recommended human health ambient water quality criterion for diethyl phthalate (DEP) as 4 mg/l. Therefore, wastes containing phthalates require proper treatment before being discharged into the environment. Biodegradation is attractive and efficient treatment method as it is cost effective and produces non-toxic end products. In the present study, a DEP degrading aerobic bacterium was isolated from soil contaminated with plastic industry wastewater. Morphological and biochemical characteristics of isolate were performed. 16S rRNA sequencing and phylogenetic analysis of isolate was carried out and it was identified as Empedobacter brevis. Isolate has been found to tolerate up to 1650 mg/l of DEP. This study will be significant for exploring an application of microbes for remediation of phthalates and development of a suitable bioreactor.Keywords: diethyl phthalate, plasticizer, pollutant, biodegradation
Procedia PDF Downloads 2752665 Scientific Insight Review of Corrosion Methods and Corrosion Control of Pre-Stressed Concrete Cylinder Pipes
Authors: Saad A. Bakheet, Ashraf A. Younees, Abdalsamia M. Falah
Abstract:
The main purpose of this study is to the occurrence of several failures in four-meter diameter pre-restressed concrete cylinder pipes, which transport a huge quantity of water from the Libyan Sahara Desert to the populated coastal area in the north. This study will help to address the problems related to corrosion of the pre-stressed concrete cylinder pipes and methods of controlling it. The methodologies used depended on reviewing the design and fabrication of pre-stressed concrete cylinder pipes and studying the cause of the corrosion, which resulted in the failure of the pre-stressed concrete cylinder pipe Man-Made River project in Libya. The chloride-induced corrosion penetrating through the mortar coat was the main reason for corrosion. The beginning of the occurrence of corrosion, its causes, and the mechanisms of its development in pre-stressed concrete pipes since 1937 have been reviewed and are continuing until now. Manufacturing technology control corrosion and all associated problems and technology to control it have been demonstrated, including variables during manufacture, the use of a modified coating, and cathodic protection systems. It has been revised and is still based on international standards. The development of these standards and the change in some of their technical contents reflect the world's interest in the problems of corrosion and the cost of maintenance and replacement.Keywords: PCCP corrosion, international standard, coating system, failure assessment
Procedia PDF Downloads 782664 Analysis of the Extreme Hydrometeorological Events in the Theorical Hydraulic Potential and Streamflow Forecast
Authors: Sara Patricia Ibarra-Zavaleta, Rabindranarth Romero-Lopez, Rosario Langrave, Annie Poulin, Gerald Corzo, Mathias Glaus, Ricardo Vega-Azamar, Norma Angelica Oropeza
Abstract:
The progressive change in climatic conditions worldwide has increased frequency and severity of extreme hydrometeorological events (EHE). Mexico is an example; this has been affected by the presence of EHE leaving economic, social and environmental losses. The objective of this research was to apply a Canadian distributed hydrological model (DHM) to tropical conditions and to evaluate its capacity to predict flows in a basin in the central Gulf of Mexico. In addition, the DHM (once calibrated and validated) was used to calculate the theoretical hydraulic power and the performance to predict streamflow before the presence of an EHE. The results of the DHM show that the goodness of fit indicators between the observed and simulated flows in the calibration process (NSE=0.83, RSR=0.021 and BIAS=-4.3) and validation: temporal was assessed at two points: point one (NSE=0.78, RSR=0.113 and BIAS=0.054) and point two (NSE=0.825, RSR=0.103 and BIAS=0.063) are satisfactory. The DHM showed its applicability in tropical environments and its ability to characterize the rainfall-runoff relationship in the study area. This work can serve as a tool for identifying vulnerabilities before floods and for the rational and sustainable management of water resources.Keywords: HYDROTEL, hydraulic power, extreme hydrometeorological events, streamflow
Procedia PDF Downloads 3432663 Ceramic Glazes from Recycled Bottle Glass
Authors: Suraphan Rattanavadi
Abstract:
This research was a study based on an application of used glass in producing glaze on ceramics. The aim was to identify the factors in the production process that affected ceramic product property when used glass was applied as the ceramic glaze. The study factors included appropriate materials, appropriate temperature used in fusion process, percentage of water absorption, fluidity, crazing and appropriate proportion in glaze production by Biaxial Blend Technique and use of oxide in glaze coloring both on test and real product. The test of fluidity revealed that the glazes number 15 and 16 had appropriate fluidity ratio for use as basic glaze. When each glaze was mixed with oxide at different proportion, it was discovered that the glaze number 16 showed glossy brown with beautiful but not clear crazing, due to its dark shade. This was from the mixture of kaolin and pieces of glass at the ratio of 1:3 (kaolin : pieces of glass), affecting at 10% with iron oxide. When 0.5% of copper carbonate and 0.1% of tin oxide were added, the result was the glaze with glossy, Muzo emerald (green- blue) color with beautiful and clear crazing. Lastly, 0.4% of cobalt carbonate was added, ending in the glaze with glossy, bright blue with beautiful but not clear, due to its dark shade.Keywords: glaze, recycled, bottle glass, ceramic
Procedia PDF Downloads 3052662 Experimental Study of LPG Diffusion Flame at Elevated Preheated Air Temperatures
Authors: Ahmed A. El-Kafy Amer, H. M. Gad, A. I. Ibrahim, S. I. Abdel-Mageed, T. M. Farag
Abstract:
This paper represents an experimental study of LPG diffusion flame at elevated air preheated temperatures. The flame is stabilized in a vertical water-cooled combustor by using air swirler. An experimental test rig was designed to investigate the different operating conditions. The burner head is designed so that the LPG fuel issued centrally and surrounded by the swirling air issues from an air swirler. There are three air swirlers having the same dimensions but having different blade angles to give different swirl numbers of 0.5, 0.87 and 1.5. The combustion air was heated electrically before entering the combustor up to a temperature about 500 K. Three air to fuel mass ratios of 30, 40 and 50 were also studied. The effect of air preheated temperature, swirl number and air to fuel mass ratios on the temperature maps, visible flame length, high temperature region (size) and exhaust species concentrations are studied. Some results show that as the air preheated temperature increases, the volume of high temperature region also increased but the flame length decreased. Increasing the air preheated temperature, EINOx, EICO2 and EIO2 increased, while EICO decreased. Increasing the air preheated temperature from 300 to 500 K, for all air swirl numbers used, the highest increase in EINOx, EICO2 and EIO2 are 141, 4 and 65%, respectively.Keywords: air preheated temperature, air swirler, flame length, emission index
Procedia PDF Downloads 4812661 Guadua Bamboo as Eco-Friendly Element in Interior Design and Architecture
Authors: Sarah Noaman
Abstract:
Utilizing renewable resources has become extensive solution for most problems in Egypt nowadays. It plays role in environmental issues such as energy crisis, lake of natural resources and climate change. This paper focuses on the importance of working with the key concepts of creating eco-friendly spaces in Egypt by using traditional perennial plants, such as Guadua bamboo as renewable resources in structures manufacture. Egypt is in critical need to search for alternative raw materials. Thus, this paper focuses on studying the usage of neglected yet affordable materials, such as Guadua bamboo in light weight structures and digital fabrication. Guadua bamboo has been cultivated throughout in tropical and subtropical areas. In Egypt, they exist in many rural areas where people try to control their growth by using pesticides as it serves no economic purpose. This paper aims to discuss the usage of Guadua bamboo either in its original state or after fabrication in the context of interior design and architecture. The results will show the applicability of using perennial plants as complementary materials in the manufacturing processes; also the conclusion will focus the lights on the importance of re-forming shallow water plants in interior design and architecture.Keywords: digital fabrication, Guadua bamboo, zero-waste material, sustainable material, interior architecture
Procedia PDF Downloads 1542660 Droplet Impact on a High Frequency Vibrating Surface
Authors: Maryam Ebrahimiazar, Parsia Mohammadshahi, Amirreza Amighi, Nasser Ashgriz
Abstract:
Ultrasonic atomization is used to generate micron size aerosols. In this work, the aerosol formation by the atomization of a parent droplet dripping from a capillary needle onto the surface of a Teflon coated piezoelectric vibrating at 2.5 MHz is studied, and different steps of atomization are categorized. After the droplet impacts on the piezoelectric, surface acoustic streaming deforms the droplet into a fountain shape. This fountain soon collapses and forms a liquid layer. The breakup of the liquid layer results in the generation of both large ( 100 microns) and small drops (few microns). Next, the residual drops from the liquid layer start to be atomized to generate few micron size droplets. The high velocity and explosive aerosol formation in this step are better explained in terms of cavitation theory. However, the combination of both capillary waves and cavitation theory seem to be responsible for few-micron droplet generation. The current study focuses on both qualitative and quantitative aspects of fountain formation for both ethyl-alcohol and water. Even though the general steps of atomization are the same for both liquids, the quantitative results indicate that some noticeable differences lie between them.Keywords: droplet breakup, ultrasonic atomization, acoustic streaming, droplet oscillation
Procedia PDF Downloads 1822659 Solid State Fermentation: A Technological Alternative for Enriching Bioavailability of Underutilized Crops
Authors: Vipin Bhandari, Anupama Singh, Kopal Gupta
Abstract:
Solid state fermentation, an eminent bioconversion technique for converting many biological substrates into a value-added product, has proven its role in the biotransformation of crops by nutritionally enriching them. Hence, an effort was made for nutritional enhancement of underutilized crops viz. barnyard millet, amaranthus and horse gram based composite flour using SSF. The grains were given pre-treatments before fermentation and these pre-treatments proved quite effective in diminishing the level of antinutrients in grains and in improving their nutritional characteristics. The present study deals with the enhancement of nutritional characteristics of underutilized crops viz. barnyard millet, amaranthus and horsegram based composite flour using solid state fermentation (SSF) as the principle bioconversion technique to convert the composite flour substrate into a nutritionally enriched value added product. Response surface methodology was used to design the experiments. The variables selected for the fermentation experiments were substrate particle size, substrate blend ratio, fermentation time, fermentation temperature and moisture content having three levels of each. Seventeen designed experiments were conducted randomly to find the effect of these variables on microbial count, reducing sugar, pH, total sugar, phytic acid and water absorption index. The data from all experiments were analyzed using Design Expert 8.0.6 and the response functions were developed using multiple regression analysis and second order models were fitted for each response. Results revealed that pretreatments proved quite handful in diminishing the level of antinutrients and thus enhancing the nutritional value of the grains appreciably, for instance, there was about 23% reduction in phytic acid levels after decortication of barnyard millet. The carbohydrate content of the decorticated barnyard millet increased to 81.5% from initial value of 65.2%. Similarly popping and puffing of horsegram and amaranthus respectively greatly reduced the trypsin inhibitor activity. Puffing of amaranthus also reduced the tannin content appreciably. Bacillus subtilis was used as the inoculating specie since it is known to produce phytases in solid state fermentation systems. These phytases remarkably reduce the phytic acid content which acts as a major antinutritional factor in food grains. Results of solid state fermentation experiments revealed that phytic acid levels reduced appreciably when fermentation was allowed to continue for 72 hours at a temperature of 35°C. Particle size and substrate blend ratio also affected the responses positively. All the parameters viz. substrate particle size, substrate blend ratio, fermentation time, fermentation temperature and moisture content affected the responses namely microbial count, reducing sugar, pH, total sugar, phytic acid and water absorption index but the effect of fermentation time was found to be most significant on all the responses. Statistical analysis resulted in the optimum conditions (particle size 355µ, substrate blend ratio 50:20:30 of barnyard millet, amaranthus and horsegram respectively, fermentation time 68 hrs, fermentation temperature 35°C and moisture content 47%) for maximum reduction in phytic acid. The model F- value was found to be highly significant at 1% level of significance in case of all the responses. Hence, second order model could be fitted to predict all the dependent parameters. The effect of fermentation time was found to be most significant as compared to other variables.Keywords: composite flour, solid state fermentation, underutilized crops, cereals, fermentation technology, food processing
Procedia PDF Downloads 3302658 Design of Single Point Mooring Buoy System by Parametric Analysis
Authors: Chul-Hee Jo, Do-Youb Kim, Seok-Jin Cho, Yu-Ho Rho
Abstract:
The Catenary Anchor Leg Mooring (CALM) Single Point Mooring (SPM) buoy system is the most popular and widely used type of offshore loading terminals. SPM buoy mooring systems have been deployed worldwide for a variety of applications, water depths and vessel sizes ranging from small production carriers to Very Large Crude Carriers (VLCCs). Because of safe and easy berthing and un-berthing operations, the SPM buoy mooring system is also preferred for offshore terminals. The SPM buoy consists of a buoy that is permanently moored to the seabed by means of multiple mooring lines. The buoy contains a bearing system that allows a part of it to rotate around the moored geostatic part. When moored to the rotating part of the buoy, a vessel is able to freely weathervane around the buoy. This study was verified the effects of design variables in order to design an SPM buoy mooring system through parametric analysis. The design variables have independent and nonlinear characteristics. Using parametric analysis, this research was found that the fairlead departure angle, wave height and period, chain diameter and line length effect to the mooring top tension, buoy excursion and line layback.Keywords: Single Point Mooring (SPM), Catenary Anchor Leg Mooring(CALM), design variables, parametric analysis, mooring system optimization
Procedia PDF Downloads 3992657 Allelopathic Effect of Duranta Repens on Salinity-Stressed Solanum Lycopersicum Seedlings
Authors: Olusola Nafisat Omoniyi
Abstract:
Aqueous extract of Duranta repens leaves was investigated for its allelopathic effect on Solanum lycopersicum Seedlings germinated and grown under salinity condition. The study was carried out using both laboratory petri dish and pot assays to simulate the plant’s natural environmental conditions. The experiment consisted of 5 groups (1-5), each containing 5 replicates (of 10 seeds). Group 1 was treated with distilled water; Group 2 was treated with 5 mM NaCl; Group 3 was treated with the Extract, Group 4 was treated with a mixture of 5 mM NaCl and the Extract (2:1 v/v), and Group 5 was treated with a mixture of 5 mM NaCl and the Extract (1:2 v/v). The results showed that treatment with NaCl caused significant reductions in germination, growth parameters (plumule and radicle lengths), and chlorophyll concentration of S. lycopersicum seedlings when compared to those treated with D. rupens aqueous leaf extract. Salinity also caused an increase in malondialdehyde and proline concentrations and lowered the activity of superoxide dismutase. However, in the presence of the extract, the adverse effects of the NaCl were attenuated, implying that the extract improved tolerance of S. lycopersicum seedlings. In conclusion, the findings of this study show that the extract is very important in the optimal growth of the plant in saline soil, which has become useful for the management of soil salinity problems.Keywords: agriculture, allelopathic, salinity, soil, tomato, production, photosynthesis
Procedia PDF Downloads 2242656 Detection of Latent Fingerprints Recovered from Arson Simulation by a Novel Fluorescent Method
Authors: Somayeh Khanjani, Samaneh Nabavi, Shirin Jalili, Afshin Khara
Abstract:
Fingerprints are area source of ubiquitous evidence and consequential for establishing identity. The detection and subsequent development of fingerprints are thus inevitable in criminal investigations. This becomes a difficult task in the case of certain extreme conditions like fire. A fire scene may be accidental or arson. The evidence subjected to fire is generally overlooked as there is a misconception that they are damaged. There are several scientific approaches to determine whether the fire was deliberate or not. In such as scenario, fingerprints may be most critical to link the perpetrator to the crime. The reason for this may be the destructive nature of fire. Fingerprints subjected to fire are exposed to high temperatures, soot deposition, electromagnetic radiation, and subsequent water force. It is believed that these phenomena damage the fingerprint. A novel fluorescent and a pre existing small particle reagent were investigated for the same. Zinc carbonates based fluorescent small particle reagent was capable of developing latent fingerprints exposed to a maximum temperature of 800 ̊C. Fluorescent SPR may prove very useful in such cases. Fluorescent SPR reagent based on zinc carbonate is a potential method for developing fingerprints from arson sites. The method is cost effective and non hazardous. This formulation is suitable for developing fingerprints exposed to fire/ arson.Keywords: fingerprint, small particle reagent (SPR), arson, novel fluorescent
Procedia PDF Downloads 4742655 Anatase TiO₂ Nanostructures with Enhanced Surface Activity for High-Performance Lithium-Ion Batteries
Authors: Basharat Hussain, Wasim Abbas, Sayed Sajid Hussain
Abstract:
Amorphous colloidal TiO₂ spheres were annealed at high temperatures to yield anatase-phase TiO₂ nanoparticles. With a specific discharge capacity of around 296 mAh g⁻¹ (0.1C), the annealed TiO₂ outperformed its amorphous counterpart, which produced about 182 mAh g⁻¹ at the same rate. The annealed material's larger surface area and more active sites are responsible for this improvement. The amorphous TiO₂ nanoparticles, on the other hand, produced a solid electrolyte interface (SEI) layer that contained organic phosphates, lithium carbonate, and lithium alkyl carbonates. This led to a decrease in performance and increased intrinsic resistance. By successfully removing surface hydroxyl groups and chemisorbed water, high-temperature annealing reduced capacity loss and improved structural and electrochemical stability. After prolonged cycling, the annealed TiO₂ demonstrated enhanced rate capability and cycling performance, retaining 93.5% of its capacity as opposed to 42.1% for the amorphous material. By shedding light on the function of surface chemistry and material processing in maximizing battery performance, our results show the potential of annealed anatase TiO₂ as a high-performance electrode material for Li-ion batteries.Keywords: TiO₂ li-ion battery, electrode, capacity, stability
Procedia PDF Downloads 122654 The Effect of Supplementary Cementitious Materials on Fresh and Hardened Properties of Self-Compacting Concretes
Authors: Akram Salah Eddine Belaidi, Said Kenai, El-Hadj Kadri, Benchaâ Benabed, Hamza Soualhi
Abstract:
Self-compacting concrete (SCC) was developed in the middle of the 1980’s in Japan. SCC flows alone under its dead weight and consolidates itself without any entry of additional compaction energy and without segregation. As an integral part of a SCC, self-compacting mortars (SCM) may serve as a basis for the mix design of concrete since the measurement of the rheological properties of SCCs. This paper discusses the effect of using natural pozzolana (PZ) and marble powder (MP) in two alternative systems ratios PZ/MP = 1 and 1/3 of the performance of the SCC. A total of 11 SCC’s were prepared having a constant water-binder (w/b) ratio of 0.40 and total cementitious materials content of 475 kg/m3. Then, the fresh properties of the mortars were tested for mini-slump flow diameter and mini-V-funnel flow time for SCMs and Slumps flow test, L-Box height ratio, V-Funnel flow time and sieve stability for SCC. Moreover, the development in the compressive strength was determined at 3, 7, 28, 56, and 90 days. Test results have shown that using of ternary blends improved the fresh properties of the mixtures. The compressive strength of SCC at 90 days with 30% of PZ and MP was similar to those of ordinary concrete use in situ.Keywords: self-compacting mortar, self-compacting concrete, natural pozzolana, marble powder, rheology, compressive strength
Procedia PDF Downloads 3772653 Utilization of Solid Waste Materials to Produce Glass-Ceramic Tiles
Authors: Sonjida Mustafia
Abstract:
Glass-ceramic is a material that contains both the properties of glass and ceramic within. They always contain a residual glassy phase and one or more embedded crystalline phases. Ceramic tiles are very popular in the world because of their high structural strength, low absorption, increased hygiene, and hot and cold insulation. Glass-ceramic materials are used to produce marble-like floor and wall tiles. There are a huge amount of waste materials like rice husk ash (RHA), waste iron, waste glass, and other industrial solid waste in Bangladesh, which can be used to produce glass-ceramic floor and wall tiles. The raw materials (rice husk ash, waste glass, and k-feldspar) are a mixture, and the mixture is melted to form glass frit at 1175°C. The frits are grained to require fine particle size. The powder is moistened in 7-8% water with sodium silicate. The green glass-ceramic tiles were fired at different temperatures (800–1100°C) for a soaking time of 1 hour to form glass-ceramic tiles and to study the sintering-crystallization process. The results reveal that the modulus of rupture increases with increasing sintering temperature and reaches the highest value (95.25Mpa) at 925°C. Glossiness and linear shrinkage increase with increasing temperature.Keywords: rice husk ash, waste glass, glass-ceramic, modulus of rupture, glossiness, linear shrinkage, micro-structure
Procedia PDF Downloads 982652 Recovery and Εncapsulation of Μarine Derived Antifouling Agents
Authors: Marina Stramarkou, Sofia Papadaki, Maria Kaloupi, Ioannis Batzakas
Abstract:
Biofouling is a complex problem of the aquaculture industry, as it reduces the efficiency of the equipment and causes significant losses of cultured organisms. Nowadays, the current antifouling methods are proved to be labor intensive, have limited lifetime and use toxic substances that result in fish mortality. Several species of marine algae produce a wide variety of biogenic compounds with antibacterial and antifouling properties, which are effective in the prevention and control of biofouling and can be incorporated in antifouling coatings. In the present work, Fucus spiralis, a species of macro algae, and Chlorella vulgaris, a well-known species of microalgae, were used for the isolation and recovery of bioactive compounds, belonging to groups of fatty acids, lipopeptides and amides. The recovery of the compounds was achieved through the application of the ultrasound- assisted extraction, an environmentally friendly method, using green, non-toxic solvents. Moreover, the coating of the antifouling agents was done by innovative encapsulation and coating methods, such as electro-hydrodynamic process. For the encapsulation of the bioactive compounds natural matrices were used, such as polysaccharides and proteins. Water extracts that were incorporated in protein matrices were considered the most efficient antifouling coating.Keywords: algae, electrospinning, fatty acids, ultrasound-assisted extraction
Procedia PDF Downloads 3432651 Microfluidic Fluid Shear Mechanotransduction Device Using Linear Optimization of Hydraulic Channels
Authors: Sanat K. Dash, Rama S. Verma, Sarit K. Das
Abstract:
A logarithmic microfluidic shear device was designed and fabricated for cellular mechanotransduction studies. The device contains four cell culture chambers in which flow was modulated to achieve a logarithmic increment. Resistance values were optimized to make the device compact. The network of resistances was developed according to a unique combination of series and parallel resistances as found via optimization. Simulation results done in Ansys 16.1 matched the analytical calculations and showed the shear stress distribution at different inlet flow rates. Fabrication of the device was carried out using conventional photolithography and PDMS soft lithography. Flow profile was validated taking DI water as working fluid and measuring the volume collected at all four outlets. Volumes collected at the outlets were in accordance with the simulation results at inlet flow rates ranging from 1 ml/min to 0.1 ml/min. The device can exert fluid shear stresses ranging four orders of magnitude on the culture chamber walls which will cover shear stress values from interstitial flow to blood flow. This will allow studying cell behavior in the long physiological range of shear stress in a single run reducing number of experiments.Keywords: microfluidics, mechanotransduction, fluid shear stress, physiological shear
Procedia PDF Downloads 1322650 Design and Experimental Studies of a Centrifugal SWIRL Atomizer
Authors: Hemabushan K., Manikandan
Abstract:
In a swirl atomizer, fluid undergoes a swirling motion as a result of centrifugal force created by opposed tangential inlets in the swirl chamber. The angular momentum of fluid continually increases as it reaches the exit orifice and forms a hollow sheet. Which disintegrates to form ligaments and droplets respectively as it flows downstream. This type of atomizers used in rocket injectors and oil burner furnaces. In this present investigation a swirl atomizer with two opposed tangential inlets has been designed. Water as working fluid, experiments had been conducted for the fluid injection pressures in regime of 0.033 bar to 0.519 bar. The fluid has been pressured by a 0.5hp pump and regulated by a pressure regulator valve. Injection pressure of fluid has been measured by a U-tube mercury manometer. The spray pattern and the droplets has been captured with a high resolution camera in black background with a high intensity flash highlighting the fluid. The unprocessed images were processed in ImageJ processing software for measuring the droplet diameters and its shape characteristics along the downstream. The parameters such as mean droplet diameter and distribution, wave pattern, rupture distance and spray angle were studied for this atomizer. The above results were compared with theoretical results and also analysed for deviation with design parameters.Keywords: swirl atomizer, injector, spray, SWIRL
Procedia PDF Downloads 4942649 Logistics Process of Pineapple’s Leaves Product in Prachuapkhirikhan Province
Authors: Atcharawan Phenwansuk
Abstract:
The product design is important to the development of SME towards the global, because it made to the quality product to react the needs of consumers and could reduces cost in the production, making it more profitable. As a results, the business are competition advantage for more marketing. It also enhance image of product and firms to build its own brand products to be acceptable. The product was designed should be shape, size, colorful, and direct of target consumers. This is method to add value products to get popular and effective, because the beauty is first satisfaction which come from main shape and color of the design product, but the product was designed need to hold data and law combination of shape and color between artistic theory and satisfaction of consumers together. The design must consider the safety of life and asset of consumers the most important. From to use of designed products should be to consider the cost savings, convenient distance, transportation, routes (land, water or air) of living space on transport (capacity, volume, width, length of the car, truck and container, etc). The packaging must be can to prevent not damage of the products. If products is more large , maybe to design new packaging, which can easily disassembled for make smaller package such as designing the assembly. Products must be packed in the container for size standard for save costs, as well as the buyer can make transport and assembly of products to fit easily on your own.Keywords: logistics process , pineapple’s leaves product, product design, satisfaction of consumers
Procedia PDF Downloads 3992648 A Vertical-Axis Unidirectional Rotor with Nested Blades for Wave Energy Conversion
Authors: Yingchen Yang
Abstract:
In the present work, development of a new vertical-axis unidirectional wave rotor is reported. The wave rotor is a key component of a wave energy converter (WEC), which harvests energy from ocean waves. Differing from the huge majority of WEC designs that perform reciprocating motions (heaving up and down, swaying back and forth, etc.), our wave rotor performs unidirectional rotation about a vertical axis when directly exposed in waves. The unidirectional feature of the rotor makes the rotor respond well in a wide range of the wave frequency. The vertical axis arrangement of the rotor makes the rotor insensitive to the wave propagation direction. The rotor employs blades with a cross-section in an airfoil shape and a span curled into a semi-oval shape. Two sets of blades, with one nested inside the other, constitute the rotor. In waves, water particles perform an omnidirectional motion that constantly changes in both spatial and temporal domains. The blade nesting permits a compact rotor configuration that ‘sees’ a relatively uniform local flow in the spatial domain. The rotor was experimentally tested in simulated waves in a wave flume under various conditions. The testing results show a promising unidirectional rotor that is capable of extracting energy from waves at a capture width ratio of 0.08 to 0.15, depending on detailed wave conditions.Keywords: unidirectional, vertical axis, wave energy converter, wave rotor
Procedia PDF Downloads 2392647 Study and Modeling of Flood Watershed in Arid and Semi Arid Regions of Algeria
Authors: Belagoune Fares, Boutoutaou Djamel
Abstract:
The study on floods in Algeria established by the National Agency of Water Resources (ANRH) shows that the country is confronted with the phenomenon of very destructive floods and floods especially in arid and semiarid regions. Flooding of rivers in these areas is less known. They are characterized by their sudden duration (rain showers, thunderstorm).The duration of the flood is of the order of minutes to hours. The human and material damage caused by these floods were still high. The study area encompasses three watersheds in semi-arid and arid south and Algeria. THERE are pools of Chott-Melghir (68,751 km2), highland Constantine-07 (9578 km2) and El Hodna-05 basin (25,843 km2). The total area of this zone is about 104,500km2.Studies of protection against floods and design studies of hydraulic structures (spillway, storm basin, etc.) require the raw data which is often unknown in several places particularly at ungauged wadis of these areas. This makes it very difficult to schedules and managers working in the field of hydraulic studies. The objective of this study and propose a methodology for determining flows in the absence of observations in the semi-arid and arid south eastern Algeria. The objective of the study is to propose a methodology for these areas of flood calculation for ungauged rivers.Keywords: flood, watershed, specific flow, coefficient of variation, arid
Procedia PDF Downloads 5092646 Dynamic Analysis of Submerged Floating Tunnel Subjected to Hydrodynamic and Seismic Loadings
Authors: Naik Muhammad, Zahid Ullah, Dong-Ho Choi
Abstract:
Submerged floating tunnel (SFT) is a new solution for the transportation infrastructure through sea straits, fjords, and inland waters, and can be a good alternative to long span suspension bridges. SFT is a massive cylindrical structure that floats at a certain depth below the water surface and subjected to extreme environmental conditions. The identification of dominant structural response of SFT becomes more important due to intended environmental conditions for the design of SFT. The time domain dynamic problem of SFT moored by vertical and inclined mooring cables/anchors is formulated. The dynamic time history analysis of SFT subjected to hydrodynamic and seismic excitations is performed. The SFT is modeled by finite element 3D beam, and the mooring cables are modeled by truss elements. Based on the dynamic time history analysis the displacements and internal forces of SFT were calculated. The response of SFT is presented for hydrodynamic and seismic excitations. The transverse internal forces of SFT were the maximum compared to vertical direction, for both hydrodynamic and seismic cases; this indicates that the cable system provides very small stiffness in transverse direction as compared to vertical direction of SFT.Keywords: submerged floating tunnel, hydrodynamic analysis, time history analysis, seismic response
Procedia PDF Downloads 3292645 Assessing Environmental Urban Sustainability Using Multivariate Analysis: A Case of Nagpur, India
Authors: Anusha Vaddiraj Pallapu
Abstract:
Measuring urban sustainable development is at the forefront in contributing to overall sustainability, and it refers to attaining social equity, environmental protection and minimizing the impacts of urbanization. Assessing performance of urban issues ranging from larger consumption of natural resources by humans in terms of lifestyle to creating a polluted nearby environment, social and even economic dimensions of sustainability major issues observed such as water quality, transportation, management of solid waste and traffic pollution. However, relying on the framework of the project to do the goals of sustainable development or minimization of urban impacts through management practices is not enough to deal with the present urban issues. The aim of the sustainability is to know how severely the resources are depleted because of human consumption and how issues are characterized. The paper aims to assign benchmarks for the selected sustainability indicators for research, and analysis is done through multivariate analysis in Indian context a case of Nagpur city to identify the play role of each urban issues in the overall sustainability. The main objectives of this paper are to examine the indicators over by time basis on various scenarios and how benchmarking is used, what and which categories of values should be considered as the performance of indicators function.Keywords: environmental sustainability indicators, principal component analysis, urban sustainability, urban clusters, benchmarking
Procedia PDF Downloads 3462644 The Systematic Impact of Climatic Disasters on the Maternal Health in Pakistan
Authors: Yiqi Zhu, Jean Francois Trani, Rameez Ulhassan
Abstract:
Extreme weather phenomena increased by 46% between 2007 and 2017 and have become more intense with the rise in global average temperatures. This increased intensity of climate variations often induces humanitarian crises and particularly affects vulnerable populations in low- and middle-income countries (LMICs). Expectant and lactating mothers are among the most vulnerable groups. Pakistan ranks 10th among the most affected countries by climate disasters. In 2022, monsoon floods submerged a third of the country, causing the loss of 1,500 lives. Approximately 650,000 expectant and lactating mothers faced systematic stress from climatic disasters. Our study used participatory methods to investigate the systematic impact of climatic disasters on maternal health. In March 2023, we conducted six Group Model Building (GMB) workshops with healthcare workers, fathers, and mothers separately in two of the most affected areas in Pakistan. This study was approved by the Islamic Relief Research Review Board. GMB workshops consist of three sessions. In the first session, participants discussed the factors that impact maternal health. After identifying the factors, they discussed the connections among them and explored the system structures that collectively impact maternal health. Based on the discussion, a causal loop diagram (CLD) was created. Finally, participants discussed action ideas that could improve the system to enhance maternal health. Based on our discussions and the causal loop diagram, we identified interconnected factors at the family, community, and policy levels. Mothers and children are directly impacted by three interrelated factors: food insecurity, unstable housing, and lack of income. These factors create a reinforcing cycle that negatively affects both mothers and newborns. After the flood, many mothers were unable to produce sufficient breastmilk due to their health status. Without breastmilk and sufficient food for complementary feeding, babies tend to get sick in damp and unhygienic environments resulting from temporary or unstable housing. When parents take care of sick children, they miss out on income-generating opportunities. At the community level, the lack of access to clean water and sanitation (WASH) and maternal healthcare further worsens the situation. Structural failures such as a lack of safety nets and programs associated with flood preparedness make families increasingly vulnerable with each disaster. Several families reported that they had not fully recovered from a flood that occurred ten years ago, and this latest disaster destroyed their lives again. Although over twenty non-profit organizations are working in these villages, few of them provide sustainable support. Therefore, participants called for systemic changes in response to the increasing frequency of climate disasters. The study reveals the systematic vulnerabilities of mothers and children after climatic disasters. The most vulnerable populations are often affected the most by climate change. Collaborative efforts are required to improve water and forest management, strengthen public infrastructure, increase access to WASH, and gradually build climate-resilient communities. Governments, non-governmental organizations, and the community should work together to develop and implement effective strategies to prevent, mitigate, and adapt to climate change and its impacts.Keywords: climatic disasters, maternal health, Pakistan, systematic impact, flood, disaster relief.
Procedia PDF Downloads 78