Search results for: teaching learning model
17124 Evaluating Performance of Value at Risk Models for the MENA Islamic Stock Market Portfolios
Authors: Abderrazek Ben Maatoug, Ibrahim Fatnassi, Wassim Ben Ayed
Abstract:
In this paper we investigate the issue of market risk quantification for Middle East and North Africa (MENA) Islamic market equity. We use Value-at-Risk (VaR) as a measure of potential risk in Islamic stock market, for long and short position, based on Riskmetrics model and the conditional parametric ARCH class model volatility with normal, student and skewed student distribution. The sample consist of daily data for the 2006-2014 of 11 Islamic stock markets indices. We conduct Kupiec and Engle and Manganelli tests to evaluate the performance for each model. The main finding of our empirical results show that (i) the superior performance of VaR models based on the Student and skewed Student distribution, for the significance level of α=1% , for all Islamic stock market indices, and for both long and short trading positions (ii) Risk Metrics model, and VaR model based on conditional volatility with normal distribution provides the best accurate VaR estimations for both long and short trading positions for a significance level of α=5%.Keywords: value-at-risk, risk management, islamic finance, GARCH models
Procedia PDF Downloads 59217123 Optimization of Black-Litterman Model for Portfolio Assets Allocation
Authors: A. Hidalgo, A. Desportes, E. Bonin, A. Kadaoui, T. Bouaricha
Abstract:
Present paper is concerned with portfolio management with Black-Litterman (B-L) model. Considered stocks are exclusively limited to large companies stocks on US market. Results obtained by application of the model are presented. From analysis of collected Dow Jones stock data, remarkable explicit analytical expression of optimal B-L parameter τ, which scales dispersion of normal distribution of assets mean return, is proposed in terms of standard deviation of covariance matrix. Implementation has been developed in Matlab environment to split optimization in Markovitz sense from specific elements related to B-L representation.Keywords: Black-Litterman, Markowitz, market data, portfolio manager opinion
Procedia PDF Downloads 26017122 Structural Breaks, Asymmetric Effects and Long Memory in the Volatility of Turkey Stock Market
Authors: Serpil Türkyılmaz, Mesut Balıbey
Abstract:
In this study, long memory properties in volatility of Turkey Stock Market are being examined through the FIGARCH, FIEGARCH and FIAPARCH models under different distribution assumptions as normal and skewed student-t distributions. Furthermore, structural changes in volatility of Turkey Stock Market are investigated. The results display long memory property and the presence of asymmetric effects of shocks in volatility of Turkey Stock Market.Keywords: FIAPARCH model, FIEGARCH model, FIGARCH model, structural break
Procedia PDF Downloads 29117121 Equity and Quality in Saudi Early Childhood Education: A Case Study on Inclusion School
Authors: Ahlam A. Alghamdi
Abstract:
For many years and until now, education based on gendered division is endorsed in the public Saudi schools starting from the primary grades (1,2, 3rd grades). Although preschool has no boys and girls segregation restrictions, children from first grade starting their first form of cultural ideology based on gender. Ensuring high-quality education serving all children -both boys and girls- is an aim for policymakers and early learning professionals in Saudi Arabia. The past five years have witnessed a major change in terms of shifting the paradigm to educating young children in the country. In May 2018, the Ministry of Education (MoE) had declared a commencement decision of inclusion schools serve both girls and boys in primary grades with a high-quality early learning opportunity. This study sought to shed light on one of the earliest schools that have implemented the inclusion experience. The methodological approach adopted is based on the qualitative inquiry of case study to investigate complex phenomena within the contexts of inclusion school. Data collection procedures included on-site visitations and semi-structured interviews with the teachers to document their thoughts, narratives, and living experiences. The findings of this study identified three themes based on cultural, educational, and professional interpretations. An overview of recommendations highlighted the benefits and possible challenges of future implementations of inclusion schools in Saudi Arabia.Keywords: early learning, gender division, inclusion school, Saudi Arabia
Procedia PDF Downloads 15317120 Translation Quality Assessment: Proposing a Linguistic-Based Model for Translation Criticism with Considering Ideology and Power Relations
Authors: Mehrnoosh Pirhayati
Abstract:
In this study, the researcher tried to propose a model of Translation Criticism (TC) regarding the phenomenon of Translation Quality Assessment (TQA). With changing the general view on re/writing as an illegal act, the researcher defined a scale for the act of translation and determined the redline of translation with other products. This research attempts to show TC as a related phenomenon to TQA. This study shows that TQA with using the rules and factors of TC as depicted in both product-oriented analysis and process-oriented analysis, determines the orientation or the level of the quality of translation. This study also depicts that TC, regarding TQA’s perspective, reveals the aim of the translation of original text and the root of ideological manipulation and re/writing. On the other hand, this study stresses the existence of a direct relationship between the linguistic materials and semiotic codes of a text or book. This study can be fruitful for translators, scholars, translation criticizers, and translation quality assessors, and also it is applicable in the area of pedagogy.Keywords: a model of translation criticism, a model of translation quality assessment, critical discourse analysis (CDA), re/writing, translation criticism (TC), translation quality assessment (TQA)
Procedia PDF Downloads 32017119 Estimation of the Parameters of Muskingum Methods for the Prediction of the Flood Depth in the Moudjar River Catchment
Authors: Fares Laouacheria, Said Kechida, Moncef Chabi
Abstract:
The objective of the study was based on the hydrological routing modelling for the continuous monitoring of the hydrological situation in the Moudjar river catchment, especially during floods with Hydrologic Engineering Center–Hydrologic Modelling Systems (HEC-HMS). The HEC-GeoHMS was used to transform data from geographic information system (GIS) to HEC-HMS for delineating and modelling the catchment river in order to estimate the runoff volume, which is used as inputs to the hydrological routing model. Two hydrological routing models were used, namely Muskingum and Muskingum routing models, for conducting this study. In this study, a comparison between the parameters of the Muskingum and Muskingum-Cunge routing models in HEC-HMS was used for modelling flood routing in the Moudjar river catchment and determining the relationship between these parameters and the physical characteristics of the river. The results indicate that the effects of input parameters such as the weighting factor "X" and travel time "K" on the output results are more significant, where the Muskingum routing model was more sensitive to input parameters than the Muskingum-Cunge routing model. This study can contribute to understand and improve the knowledge of the mechanisms of river floods, especially in ungauged river catchments.Keywords: HEC-HMS, hydrological modelling, Muskingum routing model, Muskingum-Cunge routing model
Procedia PDF Downloads 27817118 A User Study on the Adoption of Context-Aware Destination Mobile Applications
Authors: Shu-Lu Hsu, Fang-Yi Chu
Abstract:
With the advances in information and communications technology, mobile context-aware applications have become powerful marketing tools. In Apple online store, there are numerous mobile applications (APPs) developed for destination tour. This study investigated the determinants of adoption of context-aware APPs for destination tour services. A model is proposed based on Technology Acceptance Model and privacy concern theory. The model was empirically tested based on a sample of 259 users of a tourism APP published by Kaohsiung Tourism Bureau, Taiwan. The results showed that the fitness of the model is well and, among all the factors, the perceived usefulness and perceived ease of use have the most significant influences on the intention to adopt context-aware destination APPs. Finally, contrary to the findings of previous literature, the effect of privacy concern on the adoption intention of context-aware APP is insignificant.Keywords: mobile application, context-aware, privacy concern, TAM
Procedia PDF Downloads 25817117 Asymmetrical Informative Estimation for Macroeconomic Model: Special Case in the Tourism Sector of Thailand
Authors: Chukiat Chaiboonsri, Satawat Wannapan
Abstract:
This paper used an asymmetric informative concept to apply in the macroeconomic model estimation of the tourism sector in Thailand. The variables used to statistically analyze are Thailand international and domestic tourism revenues, the expenditures of foreign and domestic tourists, service investments by private sectors, service investments by the government of Thailand, Thailand service imports and exports, and net service income transfers. All of data is a time-series index which was observed between 2002 and 2015. Empirically, the tourism multiplier and accelerator were estimated by two statistical approaches. The first was the result of the Generalized Method of Moments model (GMM) based on the assumption which the tourism market in Thailand had perfect information (Symmetrical data). The second was the result of the Maximum Entropy Bootstrapping approach (MEboot) based on the process that attempted to deal with imperfect information and reduced uncertainty in data observations (Asymmetrical data). In addition, the tourism leakages were investigated by a simple model based on the injections and leakages concept. The empirical findings represented the parameters computed from the MEboot approach which is different from the GMM method. However, both of the MEboot estimation and GMM model suggests that Thailand’s tourism sectors are in a period capable of stimulating the economy.Keywords: TThailand tourism, Maximum Entropy Bootstrapping approach, macroeconomic model, asymmetric information
Procedia PDF Downloads 29517116 Multimodal Characterization of Emotion within Multimedia Space
Authors: Dayo Samuel Banjo, Connice Trimmingham, Niloofar Yousefi, Nitin Agarwal
Abstract:
Technological advancement and its omnipresent connection have pushed humans past the boundaries and limitations of a computer screen, physical state, or geographical location. It has provided a depth of avenues that facilitate human-computer interaction that was once inconceivable such as audio and body language detection. Given the complex modularities of emotions, it becomes vital to study human-computer interaction, as it is the commencement of a thorough understanding of the emotional state of users and, in the context of social networks, the producers of multimodal information. This study first acknowledges the accuracy of classification found within multimodal emotion detection systems compared to unimodal solutions. Second, it explores the characterization of multimedia content produced based on their emotions and the coherence of emotion in different modalities by utilizing deep learning models to classify emotion across different modalities.Keywords: affective computing, deep learning, emotion recognition, multimodal
Procedia PDF Downloads 15817115 An Investigation of a Three-Dimensional Constitutive Model of Gas Diffusion Layers in Polymer Electrolyte Membrane Fuel Cells
Authors: Yanqin Chen, Chao Jiang, Chongdu Cho
Abstract:
This research presents the three-dimensional mechanical characteristics of a commercial gas diffusion layer by experiment and simulation results. Although the mechanical performance of gas diffusion layers has attracted much attention, its reliability and accuracy are still a major challenge. With the help of simulation analysis methods, it is beneficial to the gas diffusion layer’s extensive commercial development and the overall stress analysis of proton electrolyte membrane fuel cells during its pre-production design period. Therefore, in this paper, a three-dimensional constitutive model of a commercial gas diffusion layer, including its material stiffness matrix parameters, is developed and coded, in the user-defined material model of a commercial finite element method software for simulation. Then, the model is validated by comparing experimental results as well as simulation outcomes. As a result, both the experimental data and simulation results show a good agreement with each other, with high accuracy.Keywords: gas diffusion layer, proton electrolyte membrane fuel cell, stiffness matrix, three-dimensional mechanical characteristics, user-defined material model
Procedia PDF Downloads 15917114 A Prediction of Cutting Forces Using Extended Kienzle Force Model Incorporating Tool Flank Wear Progression
Authors: Wu Peng, Anders Liljerehn, Martin Magnevall
Abstract:
In metal cutting, tool wear gradually changes the micro geometry of the cutting edge. Today there is a significant gap in understanding the impact these geometrical changes have on the cutting forces which governs tool deflection and heat generation in the cutting zone. Accurate models and understanding of the interaction between the work piece and cutting tool leads to improved accuracy in simulation of the cutting process. These simulations are useful in several application areas, e.g., optimization of insert geometry and machine tool monitoring. This study aims to develop an extended Kienzle force model to account for the effect of rake angle variations and tool flank wear have on the cutting forces. In this paper, the starting point sets from cutting force measurements using orthogonal turning tests of pre-machined flanches with well-defined width, using triangular coated inserts to assure orthogonal condition. The cutting forces have been measured by dynamometer with a set of three different rake angles, and wear progression have been monitored during machining by an optical measuring collaborative robot. The method utilizes the measured cutting forces with the inserts flank wear progression to extend the mechanistic cutting forces model with flank wear as an input parameter. The adapted cutting forces model is validated in a turning process with commercial cutting tools. This adapted cutting forces model shows the significant capability of prediction of cutting forces accounting for tools flank wear and different-rake-angle cutting tool inserts. The result of this study suggests that the nonlinear effect of tools flank wear and interaction between the work piece and the cutting tool can be considered by the developed cutting forces model.Keywords: cutting force, kienzle model, predictive model, tool flank wear
Procedia PDF Downloads 10817113 Social Justice-Focused Mental Health Practice: An Integrative Model for Clinical Social Work
Authors: Hye-Kyung Kang
Abstract:
Social justice is a central principle of the social work profession and education. However, scholars have long questioned the profession’s commitment to putting social justice values into practice. Clinical social work has been particularly criticized for its lack of attention to social justice and for failing to address the concerns of the oppressed. One prominent criticism of clinical social work is that it often relies on individual intervention and fails to take on system-level changes or advocacy. This concern evokes the historical macro-micro tension of the social work profession where micro (e.g., mental health counseling) and macro (e.g., policy advocacy) practices are conceptualized as separate domains, creating a false binary for social workers. One contributor to this false binary seems to be that most clinical practice models do not prepare social work students and practitioners to make a clear link between clinical practice and social justice. This paper presents a model of clinical social work practice that clearly recognizes the essential and necessary connection between social justice, advocacy, and clinical practice throughout the clinical process: engagement, assessment, intervention, and evaluation. Contemporary relational theories, critical social work frameworks, and anti-oppressive practice approaches are integrated to build a clinical social work practice model that addresses the urgent need for mental health practice that not only helps and heals the person but also challenges societal oppressions and aims to change them. The application of the model is presented through case vignettes.Keywords: social justice, clinical social work, clinical social work model, integrative model
Procedia PDF Downloads 8517112 A Sliding Model Control for a Hybrid Hyperbolic Dynamic System
Authors: Xuezhang Hou
Abstract:
In the present paper, a hybrid hyperbolic dynamic system formulated by partial differential equations with initial and boundary conditions is considered. First, the system is transformed to an abstract evolution system in an appropriate Hilbert space, and spectral analysis and semigroup generation of the system operator is discussed. Subsequently, a sliding model control problem is proposed and investigated, and an equivalent control method is introduced and applied to the system. Finally, a significant result that the state of the system can be approximated by an ideal sliding mode under control in any accuracy is derived and examined.Keywords: hyperbolic dynamic system, sliding model control, semigroup of linear operators, partial differential equations
Procedia PDF Downloads 13617111 Podcasting as an Instructional Method: Case Study of a School Psychology Class
Authors: Jeff A. Tysinger, Dawn P. Tysinger
Abstract:
There has been considerable growth in online learning. Researchers continue to explore the impact various methods of delivery. Podcasting is a popular method for sharing information. The purpose of this study was to examine the impact of student motivation and the perception of the acquisition of knowledge in an online environment of a skill-based class. 25 students in a school psychology graduate class completed a pretest and posttest examining podcast use and familiarity. In addition, at the completion of the course they were administered a modified version of the Instructional Materials Motivation Survey. The four subscales were examined (attention, relevance, confidence, and satisfaction). Results indicated that students are motivated, they perceive podcasts as positive instructional tools, and students are successful in acquiring the needed information. Additional benefits of using podcasts and recommendations in school psychology training are discussed.Keywords: motivation, online learning, pedagogy, podcast
Procedia PDF Downloads 13117110 Analysis on Prediction Models of TBM Performance and Selection of Optimal Input Parameters
Authors: Hang Lo Lee, Ki Il Song, Hee Hwan Ryu
Abstract:
An accurate prediction of TBM(Tunnel Boring Machine) performance is very difficult for reliable estimation of the construction period and cost in preconstruction stage. For this purpose, the aim of this study is to analyze the evaluation process of various prediction models published since 2000 for TBM performance, and to select the optimal input parameters for the prediction model. A classification system of TBM performance prediction model and applied methodology are proposed in this research. Input and output parameters applied for prediction models are also represented. Based on these results, a statistical analysis is performed using the collected data from shield TBM tunnel in South Korea. By performing a simple regression and residual analysis utilizinFg statistical program, R, the optimal input parameters are selected. These results are expected to be used for development of prediction model of TBM performance.Keywords: TBM performance prediction model, classification system, simple regression analysis, residual analysis, optimal input parameters
Procedia PDF Downloads 30917109 Fairness in Recommendations Ranking: From Pairwise Approach to Listwise Approach
Authors: Patik Joslin Kenfack, Polyakov Vladimir Mikhailovich
Abstract:
Machine Learning (ML) systems are trained using human generated data that could be biased by implicitly containing racist, sexist, or discriminating data. ML models learn those biases or even amplify them. Recent research in work on has begun to consider issues of fairness. The concept of fairness is extended to recommendation. A recommender system will be considered fair if it doesn’t under rank items of protected group (gender, race, demographic...). Several metrics for evaluating fairness concerns in recommendation systems have been proposed, which take pairs of items as ‘instances’ in fairness evaluation. It doesn’t take in account the fact that the fairness should be evaluated across a list of items. The paper explores a probabilistic approach that generalize pairwise metric by using a list k (listwise) of items as ‘instances’ in fairness evaluation, parametrized by k. We also explore new regularization method based on this metric to improve fairness ranking during model training.Keywords: Fairness, Recommender System, Ranking, Listwise Approach
Procedia PDF Downloads 14817108 The Face Sync-Smart Attendance
Authors: Bekkem Chakradhar Reddy, Y. Soni Priya, Mathivanan G., L. K. Joshila Grace, N. Srinivasan, Asha P.
Abstract:
Currently, there are a lot of problems related to marking attendance in schools, offices, or other places. Organizations tasked with collecting daily attendance data have numerous concerns. There are different ways to mark attendance. The most commonly used method is collecting data manually by calling each student. It is a longer process and problematic. Now, there are a lot of new technologies that help to mark attendance automatically. It reduces work and records the data. We have proposed to implement attendance marking using the latest technologies. We have implemented a system based on face identification and analyzing faces. The project is developed by gathering faces and analyzing data, using deep learning algorithms to recognize faces effectively. The data is recorded and forwarded to the host through mail. The project was implemented in Python and Python libraries used are CV2, Face Recognition, and Smtplib.Keywords: python, deep learning, face recognition, CV2, smtplib, Dlib.
Procedia PDF Downloads 5817107 Unsupervised Assistive and Adaptative Intelligent Agent in Smart Enviroment
Authors: Sebastião Pais, João Casal, Ricardo Ponciano, Sérgio Lorenço
Abstract:
The adaptation paradigm is a basic defining feature for pervasive computing systems. Adaptation systems must work efficiently in a smart environment while providing suitable information relevant to the user system interaction. The key objective is to deduce the information needed information changes. Therefore relying on fixed operational models would be inappropriate. This paper presents a study on developing an Intelligent Personal Assistant to assist the user in interacting with their Smart Environment. We propose an Unsupervised and Language-Independent Adaptation through Intelligent Speech Interface and a set of methods of Acquiring Knowledge, namely Semantic Similarity and Unsupervised Learning.Keywords: intelligent personal assistants, intelligent speech interface, unsupervised learning, language-independent, knowledge acquisition, association measures, symmetric word similarities, attributional word similarities
Procedia PDF Downloads 56317106 Public-Private Partnership for Community Empowerment and Sustainability: Exploring Save the Children’s 'School Me' Project in West Africa
Authors: Gae Hee Song
Abstract:
This paper aims to address the evolution of public-private partnerships for mainstreaming an evaluation approach in the community-based education project. It examines the distinctive features of Save the Children’s School Me project in terms of empowerment evaluation principles introduced by David M. Fetterman, especially community ownership, capacity building, and organizational learning. School Me is a Save the Children Korea funded-project, having been implemented in Cote d’Ivoire and Sierra Leone since 2016. The objective of this project is to reduce gender-based disparities in school completion and learning outcomes by creating an empowering learning environment for girls and boys. Both quasi-experimental and experimental methods for impact evaluation have been used to explore changes in learning outcomes, gender attitudes, and learning environments. To locate School Me in the public-private partnership framework for community empowerment and sustainability, the data have been collected from School Me progress/final reports, baseline, and endline reports, fieldwork observations, inter-rater reliability of baseline and endline data collected from a total of 75 schools in Cote d’Ivoire and Sierra Leone. The findings of this study show that School Me project has a significant evaluation component, including qualitative exploratory research, participatory monitoring, and impact evaluation. It strongly encourages key actors, girls, boys, parents, teachers, community leaders, and local education authorities, to participate in the collection and interpretation of data. For example, 45 community volunteers collected baseline data in Cote d’Ivoire; on the other hand, three local government officers and fourteen enumerators participated in the follow-up data collection of Sierra Leone. Not only does this public-private partnership improve local government and community members’ knowledge and skills of monitoring and evaluation, but the evaluative findings also help them find their own problems and solutions with a strong sense of community ownership. Such community empowerment enables Save the Children country offices and member offices to gain invaluable experiences and lessons learned. As a result, empowerment evaluation leads to community-oriented governance and the sustainability of the School Me project.Keywords: community empowerment, Cote d’Ivoire, empowerment evaluation, public-private partnership, save the children, school me, Sierra Leone, sustainability
Procedia PDF Downloads 12517105 Effects of Level Densities and Those of a-Parameter in the Framework of Preequilibrium Model for 63,65Cu(n,xp) Reactions in Neutrons at 9 to 15 MeV
Authors: L. Yettou
Abstract:
In this study, the calculations of proton emission spectra produced by 63Cu(n,xp) and 65Cu(n,xp) reactions are used in the framework of preequilibrium models using the EMPIRE code and TALYS code. Exciton Model predidtions combined with the Kalbach angular distribution systematics and the Hybrid Monte Carlo Simulation (HMS) were used. The effects of levels densities and those of a-parameter have been investigated for our calculations. The comparison with experimental data shows clear improvement over the Exciton Model and HMS calculations.Keywords: Preequilibrium models , level density, level density a-parameter., Empire code, Talys code.
Procedia PDF Downloads 13417104 Towards Learning Query Expansion
Authors: Ahlem Bouziri, Chiraz Latiri, Eric Gaussier
Abstract:
The steady growth in the size of textual document collections is a key progress-driver for modern information retrieval techniques whose effectiveness and efficiency are constantly challenged. Given a user query, the number of retrieved documents can be overwhelmingly large, hampering their efficient exploitation by the user. In addition, retaining only relevant documents in a query answer is of paramount importance for an effective meeting of the user needs. In this situation, the query expansion technique offers an interesting solution for obtaining a complete answer while preserving the quality of retained documents. This mainly relies on an accurate choice of the added terms to an initial query. Interestingly enough, query expansion takes advantage of large text volumes by extracting statistical information about index terms co-occurrences and using it to make user queries better fit the real information needs. In this respect, a promising track consists in the application of data mining methods to extract dependencies between terms, namely a generic basis of association rules between terms. The key feature of our approach is a better trade off between the size of the mining result and the conveyed knowledge. Thus, face to the huge number of derived association rules and in order to select the optimal combination of query terms from the generic basis, we propose to model the problem as a classification problem and solve it using a supervised learning algorithm such as SVM or k-means. For this purpose, we first generate a training set using a genetic algorithm based approach that explores the association rules space in order to find an optimal set of expansion terms, improving the MAP of the search results. The experiments were performed on SDA 95 collection, a data collection for information retrieval. It was found that the results were better in both terms of MAP and NDCG. The main observation is that the hybridization of text mining techniques and query expansion in an intelligent way allows us to incorporate the good features of all of them. As this is a preliminary attempt in this direction, there is a large scope for enhancing the proposed method.Keywords: supervised leaning, classification, query expansion, association rules
Procedia PDF Downloads 32517103 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach
Authors: Mpho Mokoatle, Darlington Mapiye, James Mashiyane, Stephanie Muller, Gciniwe Dlamini
Abstract:
Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on $k$-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0%, 80.5%, 80.5%, 63.6%, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms.Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing
Procedia PDF Downloads 16717102 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach
Authors: Darlington Mapiye, Mpho Mokoatle, James Mashiyane, Stephanie Muller, Gciniwe Dlamini
Abstract:
Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on k-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0 %, 80.5 %, 80.5 %, 63.6 %, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanismsKeywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing
Procedia PDF Downloads 15917101 Strategies and Approaches for Curriculum Development and Training of Faculty in Cybersecurity Education
Authors: Lucy Tsado
Abstract:
As cybercrime and cyberattacks continue to increase, the need to respond will follow suit. When cybercrimes occur, the duty to respond sometimes falls on law enforcement. However, criminal justice students are not taught concepts in cybersecurity and digital forensics. There is, therefore, an urgent need for many more institutions to begin teaching cybersecurity and related courses to social science students especially criminal justice students. However, many faculty in universities, colleges, and high schools are not equipped to teach these courses or do not have the knowledge and resources to teach important concepts in cybersecurity or digital forensics to criminal justice students. This research intends to develop curricula and training programs to equip faculty with the skills to meet this need. There is a current call to involve non-technical fields to fill the cybersecurity skills gap, according to experts. There is a general belief among non-technical fields that cybersecurity education is only attainable within computer science and technologically oriented fields. As seen from current calls, this is not entirely the case. Transitioning into the field is possible through curriculum development, training, certifications, internships and apprenticeships, and competitions. There is a need to identify how a cybersecurity eco-system can be created at a university to encourage/start programs that will lead to an interest in cybersecurity education as well as attract potential students. A short-term strategy can address this problem through curricula development, while a long-term strategy will address developing training faculty to teach cybersecurity and digital forensics. Therefore this research project addresses this overall problem in two parts, through curricula development for the criminal justice discipline; and training of faculty in criminal justice to teaching the important concepts of cybersecurity and digital forensics.Keywords: cybersecurity education, criminal justice, curricula development, nontechnical cybersecurity, cybersecurity, digital forensics
Procedia PDF Downloads 10517100 Teaching Ethical Behaviour: Conversational Analysis in Perspective
Authors: Nikhil Kewalkrishna Mehta
Abstract:
In the past researchers have questioned the effectiveness of ethics training in higher education. Also, there are observations that support the view that ethical behaviour (range of actions)/ethical decision making models used in the past make use of vignettes to explain ethical behaviour. The understanding remains in the perspective that these vignettes play a limited role in determining individual intentions and not actions. Some authors have also agreed that there are possibilities of differences in one’s intentions and actions. This paper makes an attempt to fill those gaps by evaluating real actions rather than intentions. In a way this study suggests the use of an experiential methodology to explore Berlo’s model of communication as an action along with orchestration of various principles. To this endeavor, an attempt was made to use conversational analysis in the pursuance of evaluating ethical decision making behaviour among students and middle level managers. The process was repeated six times with the set of an average of 15 participants. Similarities have been observed in the behaviour of students and middle level managers that calls for understanding that both the groups of individuals have no cognizance of their actual actions. The deliberations derived out of conversation were taken a step forward for meta-ethical evaluations to portray a clear picture of ethical behaviour among participants. This study provides insights for understanding demonstrated unconscious human behaviour which may fortuitously be termed both ethical and unethical.Keywords: ethical behaviour, unethical behavior, ethical decision making, intentions and actions, conversational analysis, human actions, sensitivity
Procedia PDF Downloads 24917099 Irrigation Scheduling for Wheat in Bangladesh under Water Stress Conditions Using Water Productivity Model
Authors: S. M. T. Mustafa, D. Raes, M. Huysmans
Abstract:
Proper utilization of water resource is very important in agro-based Bangladesh. Irrigation schedule based on local environmental conditions, soil type and water availability will allow a sustainable use of water resources in agriculture. In this study, the FAO crop water model (AquaCrop) was used to simulate the different water and fertilizer management strategies in different location of Bangladesh to obtain a management guideline for the farmer. Model was calibrated and validated for wheat (Triticum aestivum L.). The statistical indices between the observed and simulated grain yields obtained were very good with R2, RMSE, and EF values of 0.92, 0.33, and 0.83, respectively for model calibration and 0.92, 0.68 and 0.77, respectively for model validations. Stem elongation (jointing) to booting and flowering stage were identified as most water sensitive for wheat. Deficit irrigation on water sensitive stage could increase the grain yield for increasing soil fertility levels both for loamy and sandy type soils. Deficit irrigation strategies provides higher water productivity than full irrigation strategies and increase the yield stability (reduce the standard deviation). The practical deficit irrigation schedule for wheat for four different stations and two different soils were designed. Farmer can produce more crops by using deficit irrigation schedule under water stress condition. Practical application and validation of proposed strategies will make them more credible.Keywords: crop-water model, deficit irrigation, irrigation scheduling, wheat
Procedia PDF Downloads 43217098 Two-Dimensional Modeling of Seasonal Freeze and Thaw in an Idealized River Bank
Authors: Jiajia Pan, Hung Tao Shen
Abstract:
Freeze and thaw occurs seasonally in river banks in northern countries. Little is known on how the riverbank soil temperature responds to air temperature changes and how freeze and thaw develops in a river bank seasonally. This study presents a two-dimensional heat conduction model for numerical investigations of seasonal freeze and thaw processes in an idealized river bank. The model uses the finite difference method and it is convenient for applications. The model is validated with an analytical solution and a field case with soil temperature distributions. It is then applied to the idealized river bank in terms of partially and fully saturated conditions with or without ice cover influence. Simulated results illustrate the response processes of the river bank to seasonal air temperature variations. It promotes the understanding of freeze and thaw processes in river banks and prepares for further investigation of frost and thaw impacts on riverbank stability.Keywords: freeze and thaw, riverbanks, 2D model, heat conduction
Procedia PDF Downloads 12817097 Evaluating the Feasibility of Chemical Dermal Exposure Assessment Model
Authors: P. S. Hsi, Y. F. Wang, Y. F. Ho, P. C. Hung
Abstract:
The aim of the present study was to explore the dermal exposure assessment model of chemicals that have been developed abroad and to evaluate the feasibility of chemical dermal exposure assessment model for manufacturing industry in Taiwan. We conducted and analyzed six semi-quantitative risk management tools, including UK - Control of substances hazardous to health ( COSHH ) Europe – Risk assessment of occupational dermal exposure ( RISKOFDERM ), Netherlands - Dose related effect assessment model ( DREAM ), Netherlands – Stoffenmanager ( STOFFEN ), Nicaragua-Dermal exposure ranking method ( DERM ) and USA / Canada - Public Health Engineering Department ( PHED ). Five types of manufacturing industry were selected to evaluate. The Monte Carlo simulation was used to analyze the sensitivity of each factor, and the correlation between the assessment results of each semi-quantitative model and the exposure factors used in the model was analyzed to understand the important evaluation indicators of the dermal exposure assessment model. To assess the effectiveness of the semi-quantitative assessment models, this study also conduct quantitative dermal exposure results using prediction model and verify the correlation via Pearson's test. Results show that COSHH was unable to determine the strength of its decision factor because the results evaluated at all industries belong to the same risk level. In the DERM model, it can be found that the transmission process, the exposed area, and the clothing protection factor are all positively correlated. In the STOFFEN model, the fugitive, operation, near-field concentrations, the far-field concentration, and the operating time and frequency have a positive correlation. There is a positive correlation between skin exposure, work relative time, and working environment in the DREAM model. In the RISKOFDERM model, the actual exposure situation and exposure time have a positive correlation. We also found high correlation with the DERM and RISKOFDERM models, with coefficient coefficients of 0.92 and 0.93 (p<0.05), respectively. The STOFFEN and DREAM models have poor correlation, the coefficients are 0.24 and 0.29 (p>0.05), respectively. According to the results, both the DERM and RISKOFDERM models are suitable for performance in these selected manufacturing industries. However, considering the small sample size evaluated in this study, more categories of industries should be evaluated to reduce its uncertainty and enhance its applicability in the future.Keywords: dermal exposure, risk management, quantitative estimation, feasibility evaluation
Procedia PDF Downloads 16917096 Exploring the Efficacy of Context-Based Instructional Strategy in Fostering Students Achievement in Chemistry
Authors: Charles U. Eze, Joy Johnbest Egbo
Abstract:
The study investigated the effect of Context-Based Instructional Strategy (CBIS) on students’ achievement in chemistry. CBIS was used as an experimental group and expository method (EM) as a control group, sources showed that students poor achievement in chemistry is from teaching strategy adopted by the chemistry teachers. Two research questions were answered, and two null hypotheses were formulated and tested. This strategy recognizes the need for student-centered, relevance of tasks and students’ voice; it also helps students develop creative and critical learning skills. A quasi-experimental (non-equivalent, pretest, posttest control group) design was adopted for the study. The population for the study comprised all senior secondary class one (SSI) students who were offering chemistry in co-education schools in Agbani Education zone. The instrument for data collection was a self-developed Basic Chemistry Achievement Test (BCAT). Relevant data were collected from a sample of SSI chemistry students using purposive random sampling techniques from two co-education schools in Agbani Education Zone of Enugu State, Nigeria. A reliability co-efficient was obtained for the instrument using Kuder-Richardson formula 20. Mean and standard deviation scores were used to answer the research questions while two-way analysis of covariance (ANCOVA) was used to test the hypotheses. The findings showed that the experimental group taught with context-based instructional strategy (CBIS) obtained a higher mean achievement score than the control group in the post BCAT; male students had higher mean achievement scores than their female counterparts. The difference was significant. It was recommended, among others, that CBIS should be given more emphasis in the training and re-training program of secondary school chemistry teachers.Keywords: context-based instructional strategy, expository strategy, student-centered
Procedia PDF Downloads 22917095 Knowledge Sharing in Virtual Community: Societal Culture Considerations
Authors: Shahnaz Bashir, Abel Usoro, Imran Khan
Abstract:
Hofstede’s culture model is an important model to study culture between different societies. He collected data from world-wide and performed a comprehensive study. Hofstede’s cultural model is widely accepted and has been used to study cross cultural influences in different areas like cross-cultural psychology, cross cultural management, information technology, and intercultural communication. This study investigates the societal cultural aspects of knowledge sharing in virtual communities.Keywords: knowledge management, knowledge sharing, societal culture, virtual communities
Procedia PDF Downloads 405