Search results for: learning assessment
6249 A Self-Study of the Facilitation of Science Teachers’ Action Research
Authors: Jawaher A. Alsultan, Allen Feldman
Abstract:
With the rapid switch to remote learning due to the COVID-19 pandemic, science teachers were suddenly required to teach their classes online. This breakneck shift to eLearning raised the question of how teacher educators could support science teachers who wanted to use reform-based methods of instruction while using virtual technologies. In this retrospective self-study, we, two science teacher educators, examined our practice as we worked with science teachers to implement inquiry, discussion, and argumentation [IDA] through eLearning. Ten high school science teachers from a large school district in the southeastern US participated virtually in the COVID-19 Community of Practice [COVID-19 CoP]. The CoP met six times from the end of April through May 2020 via Zoom. Its structure was based on a model of action research called enhanced normal practice [ENP], which includes exchanging stories, trying out ideas, and systematic inquiry. Data sources included teacher educators' meeting notes and reflective conversations, audio recordings of the CoP meetings, teachers' products, and post-interviews of the teachers. Findings included a new understanding of the role of existing relationships, shared goals, and similarities in the participants' situations, which helped build trust in the CoP, and the effects of our paying attention to the science teachers’ needs led to a well-functioning CoP. In addition, we became aware of the gaps in our knowledge of how the teachers already used apps in their practice, which they then shared with all of us about how they could be used for online teaching using IDA. We also identified the need to pay attention to feelings about tensions between the teachers and us around the expectations for final products and the project's primary goals. We found that if we are to establish relationships between us as facilitators and teachers that are honest, fair, and kind, we must express those feelings within the collective, dialogical processes that can lead to learning by all members of the CoP, whether virtual or face-to-face.Keywords: community of practice, facilitators, self-study, action research
Procedia PDF Downloads 1326248 Dynamic Compaction Assessment for Improving Pasdaran Highway
Authors: Alireza Motamadnia, Roohollah Zohdi Oliayi, Hümeyra Bolakar, Ahmet Tortum
Abstract:
Dynamic compression as a method of soil improvement in recent decades has been considered by engineers and experts. Three methods mainly, deep dynamic compaction, soil density, dynamic and rapid change have been proposed and implemented to improve subgrade conditions of highway road. Northern highway route in Tabriz (Pasdaran), Iran that was placed on the manual soil was the main concern. Engineering properties of soil have been investigated experimentally and theoretically. Among the three methods rapid dynamic compaction for highway has been suggested to improve the soil subgrade conditions.Keywords: manual soil, subsidence, improvement, dynamic compression
Procedia PDF Downloads 6066247 A Fundamental Study for Real-Time Safety Evaluation System of Landing Pier Using FBG Sensor
Authors: Heungsu Lee, Youngseok Kim, Jonghwa Yi, Chul Park
Abstract:
A landing pier is subjected to safety assessment by visual inspection and design data, but it is difficult to check the damage in real-time. In this study, real - time damage detection and safety evaluation methods were studied. As a result of structural analysis of the arbitrary landing pier structure, the inflection point of deformation and moment occurred at 10%, 50%, and 90% of pile length. The critical value of Fiber Bragg Grating (FBG) sensor was set according to the safety factor, and the FBG sensor application method for real - time safety evaluation was derived.Keywords: FBG sensor, harbor structure, maintenance, safety evaluation system
Procedia PDF Downloads 2236246 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications
Authors: Atish Bagchi, Siva Chandrasekaran
Abstract:
Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning
Procedia PDF Downloads 1526245 Winkler Springs for Embedded Beams Subjected to S-Waves
Authors: Franco Primo Soffietti, Diego Fernando Turello, Federico Pinto
Abstract:
Shear waves that propagate through the ground impose deformations that must be taken into account in the design and assessment of buried longitudinal structures such as tunnels, pipelines, and piles. Conventional engineering approaches for seismic evaluation often rely on a Euler-Bernoulli beam models supported by a Winkler foundation. This approach, however, falls short in capturing the distortions induced when the structure is subjected to shear waves. To overcome these limitations, in the present work an analytical solution is proposed considering a Timoshenko beam and including transverse and rotational springs. The present research proposes ground springs derived as closed-form analytical solutions of the equations of elasticity including the seismic wavelength. These proposed springs extend the applicability of previous plane-strain models. By considering variations in displacements along the longitudinal direction, the presented approach ensures the springs do not approach zero at low frequencies. This characteristic makes them suitable for assessing pseudo-static cases, which typically govern structural forces in kinematic interaction analyses. The results obtained, validated against existing literature and a 3D Finite Element model, reveal several key insights: i) the cutoff frequency significantly influences transverse and rotational springs; ii) neglecting displacement variations along the structure axis (i.e., assuming plane-strain deformation) results in unrealistically low transverse springs, particularly for wavelengths shorter than the structure length; iii) disregarding lateral displacement components in rotational springs and neglecting variations along the structure axis leads to inaccurately low spring values, misrepresenting interaction phenomena; iv) transverse springs exhibit a notable drop in resonance frequency, followed by increasing damping as frequency rises; v) rotational springs show minor frequency-dependent variations, with radiation damping occurring beyond resonance frequencies, starting from negative values. This comprehensive analysis sheds light on the complex behavior of embedded longitudinal structures when subjected to shear waves and provides valuable insights for the seismic assessment.Keywords: shear waves, Timoshenko beams, Winkler springs, sol-structure interaction
Procedia PDF Downloads 666244 Stable Diffusion, Context-to-Motion Model to Augmenting Dexterity of Prosthetic Limbs
Authors: André Augusto Ceballos Melo
Abstract:
Design to facilitate the recognition of congruent prosthetic movements, context-to-motion translations guided by image, verbal prompt, users nonverbal communication such as facial expressions, gestures, paralinguistics, scene context, and object recognition contributes to this process though it can also be applied to other tasks, such as walking, Prosthetic limbs as assistive technology through gestures, sound codes, signs, facial, body expressions, and scene context The context-to-motion model is a machine learning approach that is designed to improve the control and dexterity of prosthetic limbs. It works by using sensory input from the prosthetic limb to learn about the dynamics of the environment and then using this information to generate smooth, stable movements. This can help to improve the performance of the prosthetic limb and make it easier for the user to perform a wide range of tasks. There are several key benefits to using the context-to-motion model for prosthetic limb control. First, it can help to improve the naturalness and smoothness of prosthetic limb movements, which can make them more comfortable and easier to use for the user. Second, it can help to improve the accuracy and precision of prosthetic limb movements, which can be particularly useful for tasks that require fine motor control. Finally, the context-to-motion model can be trained using a variety of different sensory inputs, which makes it adaptable to a wide range of prosthetic limb designs and environments. Stable diffusion is a machine learning method that can be used to improve the control and stability of movements in robotic and prosthetic systems. It works by using sensory feedback to learn about the dynamics of the environment and then using this information to generate smooth, stable movements. One key aspect of stable diffusion is that it is designed to be robust to noise and uncertainty in the sensory feedback. This means that it can continue to produce stable, smooth movements even when the sensory data is noisy or unreliable. To implement stable diffusion in a robotic or prosthetic system, it is typically necessary to first collect a dataset of examples of the desired movements. This dataset can then be used to train a machine learning model to predict the appropriate control inputs for a given set of sensory observations. Once the model has been trained, it can be used to control the robotic or prosthetic system in real-time. The model receives sensory input from the system and uses it to generate control signals that drive the motors or actuators responsible for moving the system. Overall, the use of the context-to-motion model has the potential to significantly improve the dexterity and performance of prosthetic limbs, making them more useful and effective for a wide range of users Hand Gesture Body Language Influence Communication to social interaction, offering a possibility for users to maximize their quality of life, social interaction, and gesture communication.Keywords: stable diffusion, neural interface, smart prosthetic, augmenting
Procedia PDF Downloads 1066243 Designing Online Professional Development Courses Using Video-Based Instruction to Teach Robotics and Computer Science
Authors: Alaina Caulkett, Audra Selkowitz, Lauren Harter, Aimee DeFoe
Abstract:
Educational robotics is an effective tool for teaching and learning STEM curricula. Yet, most traditional professional development programs do not cover engineering, coding, or robotics. This paper will give an overview of how and why the VEX Professional Development Plus Introductory Training courses were developed to provide guided, simple professional development in the area of robotics and computer science instruction. These training courses guide educators through learning the basics of VEX robotics platforms, including VEX 123, GO, IQ, and EXP. Because many educators do not have experience teaching robotics or computer science, this course is meant to simulate one on one training or tutoring through video-based instruction. These videos, led by education professionals, can be watched at any time, which allows educators to watch at their own pace and create their own personalized professional development timeline. This personalization expands beyond the course itself into an online community where educators at different points in the self-paced course can converse with one another or with instructors from the videos and learn from a growing community of practice. By the end of each course, educators are armed with the skills to introduce robotics or computer science in their classroom or educational setting. The design of the course was guided by a variation of the Understanding by Design (UbD) framework and included hands-on activities and challenges to keep educators engaged and excited about robotics. Some of the concepts covered include, but are not limited to, following build instructions, building a robot, updating firmware, coding the robot to drive and turn autonomously, coding a robot using multiple methods, and considerations for teaching robotics and computer science in the classroom, and more. A secondary goal of this research is to discuss how this professional development approach can serve as an example in the larger educational community and explore ways that it could be further researched or used in the future.Keywords: computer science education, online professional development, professional development, robotics education, video-based instruction
Procedia PDF Downloads 1056242 Students' Online Evaluation: Impact on the Polytechnic University of the Philippines Faculty's Performance
Authors: Silvia C. Ambag, Racidon P. Bernarte, Jacquelyn B. Buccahi, Jessica R. Lacaron, Charlyn L. Mangulabnan
Abstract:
This study aimed to answer the query, “What is the impact of Students Online Evaluation on PUP Faculty’s Performance?” The problem of the study was resolve through the objective of knowing the perceived impact of students’ online evaluation on PUP faculty’s performance. The objectives were carried through the application of quantitative research design and by conducting survey research method. The researchers utilized primary and secondary data. Primary data was gathered from the self-administered survey and secondary data was collected from the books, articles on both print-out and online materials and also other theses related study. Findings revealed that PUP faculty in general stated that students’ online evaluation made a highly positive impact on their performance based on their ‘Knowledge of Subject’ and ‘Teaching for Independent Learning’, giving a highest mean of 3.62 and 3.60 respectively., followed by the faculty’s performance which gained an overall means of 3.55 and 3.53 are based on their ‘Commitment’ and ‘Management of Learning’. From the findings, the researchers concluded that Students’ online evaluation made a ‘Highly Positive’ impact on PUP faculty’s performance based on all Four (4) areas. Furthermore, the study’s findings reveal that PUP faculty encountered many problems regarding the students’ online evaluation; the impact of the Students’ Online Evaluation is significant when it comes to the employment status of the faculty; and most of the PUP faculty recommends reviewing the PUP Online Survey for Faculty Evaluation for improvement. Hence, the researchers recommend the PUP Administration to revisit and revise the PUP Online Survey for Faculty Evaluation, specifically review the questions and make a set of questions that will be appropriate to the discipline or field of the faculty. Also, the administration should fully orient the students about the importance, purpose and impact of online faculty evaluation. And lastly, the researchers suggest the PUP Faculty to continue their positive performance and continue on being cooperative with the administrations’ purpose of addressing the students’ concerns and for the students, the researchers urged them to take the online faculty evaluation honestly and objectively.Keywords: on-line Evaluation, faculty, performance, Polytechnic University of the Philippines (PUP)
Procedia PDF Downloads 4136241 An Assessment of Tai Chi Exercise on Cognitive Performance in Vietnamese Older Adults
Authors: Hung Manh Nguyen, Duong Dai Nguyen
Abstract:
Objective: To evaluate the effects of Tai Chi exercise on cognitive performance of community-dwelling elderly in Vinh city, Vietnam. Design: A randomized controlled trial. Participants: One hundred and two subjected were recruited. Intervention: Subjects were divided randomly into two groups. Tai Chi group was assigned 6-months Tai Chi training. Control group was instructed to maintain their routine daily activities. Outcome measures: Trail Making Test (TMT) is primary outcome measure. Results: Participants in Tai Chi group reported significant improvement in TMT (part A) F(1, 71) = 78.37, p < .001, and in TMT (part B) F(1, 71)= 175.00, p < .001 in comparison with Control group. Conclusion: Tai Chi is beneficial to improve cognitive performance of the elderly.Keywords: cognitive, elderly, Vietnam, Tai Chi
Procedia PDF Downloads 5326240 Geometallurgy of Niobium Deposits: An Integrated Multi-Disciplined Approach
Authors: Mohamed Nasraoui
Abstract:
Spatial ore distribution, ore heterogeneity and their links with geological processes involved in Niobium concentration are all factors for consideration when bridging field observations to extraction scheme. Indeed, mineralogy changes of Nb-hosting phases, their textural relationships with hydrothermal or secondary minerals, play a key control over mineral processing. This study based both on filed work and ore characterization presents data from several Nb-deposits related to carbonatite complexes. The results obtained by a wide range of analytical techniques, including, XRD, XRF, ICP-MS, SEM, Microprobe, Spectro-CL, FTIR-DTA and Mössbauer spectroscopy, demonstrate how geometallurgical assessment, at all stage of mine development, can greatly assist in the design of a suitable extraction flowsheet and data reconciliation.Keywords: carbonatites, Nb-geometallurgy, Nb-mineralogy, mineral processing.
Procedia PDF Downloads 1706239 Multi-source Question Answering Framework Using Transformers for Attribute Extraction
Authors: Prashanth Pillai, Purnaprajna Mangsuli
Abstract:
Oil exploration and production companies invest considerable time and efforts to extract essential well attributes (like well status, surface, and target coordinates, wellbore depths, event timelines, etc.) from unstructured data sources like technical reports, which are often non-standardized, multimodal, and highly domain-specific by nature. It is also important to consider the context when extracting attribute values from reports that contain information on multiple wells/wellbores. Moreover, semantically similar information may often be depicted in different data syntax representations across multiple pages and document sources. We propose a hierarchical multi-source fact extraction workflow based on a deep learning framework to extract essential well attributes at scale. An information retrieval module based on the transformer architecture was used to rank relevant pages in a document source utilizing the page image embeddings and semantic text embeddings. A question answering framework utilizingLayoutLM transformer was used to extract attribute-value pairs incorporating the text semantics and layout information from top relevant pages in a document. To better handle context while dealing with multi-well reports, we incorporate a dynamic query generation module to resolve ambiguities. The extracted attribute information from various pages and documents are standardized to a common representation using a parser module to facilitate information comparison and aggregation. Finally, we use a probabilistic approach to fuse information extracted from multiple sources into a coherent well record. The applicability of the proposed approach and related performance was studied on several real-life well technical reports.Keywords: natural language processing, deep learning, transformers, information retrieval
Procedia PDF Downloads 1986238 Sustainable Tourism Development: Assessment of Egyptian Sustainable Resorts
Authors: Riham A. Ragheb
Abstract:
Tourism can do a great deal of good in destinations, whether it be by bringing economic benefits to local communities, helping with conservation efforts or in placing a value on aspects of cultural heritage. As responsive travelers, we must all try to do more of the good and less of the negative. This is simply description of the sustainable tourism. This paper aims to set some criteria of successful sustainable tourism development and then through these criteria analyzing the development of some resorts in Egypt known as sustainable resorts. Hence, a comprehensive improvement of the touristic areas is certainly needed to ensure a successful sustainable tourism development radiated the sense of uniformity and coherence. Egypt can benefit from these criteria to develop its resorts in order to preserve and revitalize its unique natural character and achieve mixed uses and tourism development.Keywords: Egypt, resorts, sustainable tourism, tourism development
Procedia PDF Downloads 4536237 Decision Support Tool for Water Re-used Systems
Authors: Katarzyna Pawęska, Aleksandra Bawiec, Ewa Burszta-Adamiak, Wiesław Fiałkiewicz
Abstract:
The water shortage becomes a serious problem not only in African and Middle Eastern countries, but also recently in the European Union. Scarcity of water means that not all agricultural, industrial and municipal needs will be met. When the annual availability of renewable freshwater per capita is less than 1,700 cubic meters, countries begin to experience periodic or regular water shortages. The phenomenon of water stress is the result of an imbalance between the constantly growing demand for water and its availability. The constant development of industry, population growth, and climate changes make the situation even worse. The search for alternative water sources and independent supplies is becoming a priority for many countries. Data enabling the assessment of country’s condition regarding water resources, water consumption, water price, wastewater volume, forecasted climate changes e.g. temperature, precipitation, are scattered and their interpretation by common entrepreneurs may be difficult. For this purpose, a digital tool has been developed to support decisions related to the implementation of water and wastewater re-use systems, as a result of an international research project “Framework for organizational decision-making process in water reuse for smart cities” (SMART-WaterDomain) funded under the EIG-CONCERT Japan call on Smart Water Management for Sustainable Society. The developed geo-visualization tool graphically presents, among others, data about the capacity of wastewater treatment plants and the volume of water demand in the private and public sectors for Poland, Germany, and the Czech Republic. It is expected that such a platform, extended with economical water management data and climate forecasts (temperature, precipitation), will allow in the future independent investigation and assessment of water use rate and wastewater production on the local and regional scale. The tool is a great opportunity for small business owners, entrepreneurs, farmers, local authorities, and common users to analyze the impact of climate change on the availability of water in the regions of their business activities. Acknowledgments: The authors acknowledge the support of the Project Organisational Decision Making in Water Reuse for Smart Cities (SMART- WaterDomain), funded by The National Centre for Research and Development and supported by the EIG-Concert Japan.Keywords: circular economy, digital tool, geo-visualization, wastewater re-use
Procedia PDF Downloads 606236 “It Plays a Huge Role”: Examining Dual Language Teachers’ Conceptions of Language, Culture and Sociocultural Competence
Authors: Giselle Martinez Negrette
Abstract:
Language and culture mutually shape and reflect the human experience. In the learning process, this connection creates and sustains the shared world of learners and educators. Dual Language (DL) programs exemplify this relationship by placing language and culture at the center of their educational approach. These programs, originally conceived to advance social justice in education, aim to foster bilingualism, biliteracy, academic development and sociocultural competence, emphasizing the inseparability of linguistic and cultural growth. Furthermore, because DL programs serve children from diverse cultural, ethnic, and socioeconomic backgrounds, they operate as spaces where linguistic skills and sociocultural understandings are actively cultivated, negotiated, and celebrated. Against this background, this paper examines how two DL teachers see language and culture shaping and reflecting the educational experience, and how their understandings of the relationship influence their mediation of sociocultural competence in their classrooms. This qualitative study employs critical discourse analysis to study in detail participants’ narratives seeking to uncover their perspectives on the “politics” surrounding language use and cultural understandings in their school contexts. Our findings show that these educators are not only keenly aware of the pivotal role that language and culture play in multilingual students’ learning journeys, but they have identified the sociolinguistic “games” taking place in their classrooms. We contend these understandings are pivotal for the critical development of sociocultural competence in DL programs. This study provides DL educators with important conceptual and pedagogical insights regarding the intersection between language and culture in their classrooms and seeks to encourage them to analyze their roles as supporters or opponents of transformative rupture opportunities to contest inequities in educationKeywords: sociocultural competence, critical discourse analysis, dual language programs, language, culture
Procedia PDF Downloads 186235 The Analysis of Movement Pattern during Reach and Grasp in Stroke Patients: A Kinematic Approach
Authors: Hyo Seon Choi, Ju Sun Kim, DY Kim
Abstract:
Introduction: This study was aimed to evaluate temporo-spatial patterns during the reach and grasp task in hemiplegic stroke patients and to identify movement pattern according to severity of motor impairment. Method: 29 subacute post-stroke patients were enrolled in this study. The temporo-spatial and kinematic data were obtained during reach and grasp task through 3D motion analysis (VICON). The reach and grasp task was composed of four sub-tasks: reach (T1), transport to mouth (T2), transport back to table (T3) and return (T4). The movement time, joint angle and sum of deviation angles from normative data were compared between affected side and unaffected side. They were also compared between two groups (mild to moderate group: 28~66, severe group: 0~27) divided by upper-Fugl-Meyer Assessment (FMA) scale. Result: In affected side, total time and durations of all four tasks were significantly longer than those in unaffected side (p < 0.001). The affected side demonstrated significant larger shoulder abduction, shoulder internal rotation, wrist flexion, wrist pronation, thoracic external rotation and smaller shoulder flexion during reach and grasp task (p < 0.05). The significant differences between mild to moderate group and severe group were observed in total duration, durations of T1, T2, and T3 in reach and grasp task (p < 0.01). The severe group showed significant larger shoulder internal rotation during T2 (p < 0.05) and wrist flexion during T2, T3 (p < 0.05) than mild to moderate group. In range of motion during each task, shoulder abduction-adduction during T2 and T3, shoulder internal-external rotation during T2, elbow flexion-extension during T1 showed significant difference between two groups (p < 0.05). The severe group had significant larger total deviation angles in shoulder internal-external rotation and wrist extension-flexion during reach and grasp task (p < 0.05). Conclusion: This study suggests that post-stroke hemiplegic patients have an unique temporo-spatial and kinematic patterns during reach and grasp task, and the movement pattern may be related to affected upper limb severity. These results may be useful to interpret the motion of upper extremity in stroke patients.Keywords: Fugl-Meyer Assessment (FMA), motion analysis, reach and grasp, stroke
Procedia PDF Downloads 2426234 Intensive Neurophysiological Rehabilitation System: New Approach for Treatment of Children with Autism
Authors: V. I. Kozyavkin, L. F. Shestopalova, T. B. Voloshyn
Abstract:
Introduction: Rehabilitation of children with Autism is the issue of the day in psychiatry and neurology. It is attributed to constantly increasing quantity of autistic children - Autistic Spectrum Disorders (ASD) Existing rehabilitation approaches in treatment of children with Autism improve their medico- social and social- psychological adjustment. Experience of treatment for different kinds of Autistic disorders in International Clinic of Rehabilitation (ICR) reveals the necessity of complex intensive approach for healing this malady and wider implementation of a Kozyavkin method for treatment of children with ASD. Methods: 19 children aged from 3 to 14 years were examined. They were diagnosed ‘Autism’ (F84.0) with comorbid neurological pathology (from pyramidal insufficiency to para- and tetraplegia). All patients underwent rehabilitation in ICR during two weeks, where INRS approach was used. INRS included methods like biomechanical correction of the spine, massage, physical therapy, joint mobilization, wax-paraffin applications. They were supplemented by art- therapy, ergotherapy, rhythmical group exercises, computer game therapy, team Olympic games and other methods for improvement of motivation and social integration of the child. Estimation of efficacy was conducted using parent’s questioning and done twice- on the onset of INRS rehabilitation course and two weeks afterward. For efficacy assessment of rehabilitation of autistic children in ICR standardized tool was used, namely Autism Treatment Evaluation Checklist (ATEC). This scale was selected because any rehabilitation approaches for the child with Autism can be assessed using it. Results: Before the onset of INRS treatment mean score according to ATEC scale was 64,75±9,23, it reveals occurrence in examined children severe communication, speech, socialization and behavioral impairments. After the end of the rehabilitation course, the mean score was 56,5±6,7, what indicates positive dynamics in comparison to the onset of rehabilitation. Generally, improvement of psychoemotional state occurred in 90% of cases. Most significant changes occurred in the scope of speech (16,5 before and 14,5 after the treatment), socialization (15.1 before and 12,5 after) and behavior (20,1 before and 17.4 after). Conclusion: As a result of INRS rehabilitation course reduction of autistic symptoms was noted. Particularly improvements in speech were observed (children began to spell out new syllables, words), there was some decrease in signs of destructiveness, quality of contact with the surrounding people improved, new skills of self-service appeared. The prospect of the study is further, according to evidence- based medicine standards, deeper examination of INRS and assessment of its usefulness in treatment for Autism and ASD.Keywords: intensive neurophysiological rehabilitation system (INRS), international clinic od rehabilitation, ASD, rehabilitation
Procedia PDF Downloads 1726233 AI Peer Review Challenge: Standard Model of Physics vs 4D GEM EOS
Authors: David A. Harness
Abstract:
Natural evolution of ATP cognitive systems is to meet AI peer review standards. ATP process of axiom selection from Mizar to prove a conjecture would be further refined, as in all human and machine learning, by solving the real world problem of the proposed AI peer review challenge: Determine which conjecture forms the higher confidence level constructive proof between Standard Model of Physics SU(n) lattice gauge group operation vs. present non-standard 4D GEM EOS SU(n) lattice gauge group spatially extended operation in which the photon and electron are the first two trace angular momentum invariants of a gravitoelectromagnetic (GEM) energy momentum density tensor wavetrain integration spin-stress pressure-volume equation of state (EOS), initiated via 32 lines of Mathematica code. Resulting gravitoelectromagnetic spectrum ranges from compressive through rarefactive of the central cosmological constant vacuum energy density in units of pascals. Said self-adjoint group operation exclusively operates on the stress energy momentum tensor of the Einstein field equations, introducing quantization directly on the 4D spacetime level, essentially reformulating the Yang-Mills virtual superpositioned particle compounded lattice gauge groups quantization of the vacuum—into a single hyper-complex multi-valued GEM U(1) × SU(1,3) lattice gauge group Planck spacetime mesh quantization of the vacuum. Thus the Mizar corpus already contains all of the axioms required for relevant DeepMath premise selection and unambiguous formal natural language parsing in context deep learning.Keywords: automated theorem proving, constructive quantum field theory, information theory, neural networks
Procedia PDF Downloads 1856232 Seismic Hazard Assessment of Offshore Platforms
Authors: F. D. Konstandakopoulou, G. A. Papagiannopoulos, N. G. Pnevmatikos, G. D. Hatzigeorgiou
Abstract:
This paper examines the effects of pile-soil-structure interaction on the dynamic response of offshore platforms under the action of near-fault earthquakes. Two offshore platforms models are investigated, one with completely fixed supports and one with piles which are clamped into deformable layered soil. The soil deformability for the second model is simulated using non-linear springs. These platform models are subjected to near-fault seismic ground motions. The role of fault mechanism on platforms’ response is additionally investigated, while the study also examines the effects of different angles of incidence of seismic records on the maximum response of each platform.Keywords: hazard analysis, offshore platforms, earthquakes, safety
Procedia PDF Downloads 1566231 Galvinising Higher Education Institutions as Creative, Humanised and Innovative Environments
Authors: A. Martins, I. Martins, O. Pereira
Abstract:
The purpose of this research is to focus on the importance of distributed leadership in universities and Higher Education Institutions (HEIs). The research question is whether there a significant finding in self-reported ratings of leadership styles of those respondents that are studying management. The study aims to further discover whether students are encouraged to become responsible and proactive citizens, to develop their skills set, specifically shared leadership and higher-level skills to inspire creation knowledge, sharing and distribution thereof. Contemporary organizations need active and responsible individuals who are capable to make decisions swiftly and responsibly. Leadership influences innovative results and education play a dynamic role in preparing graduates. Critical reflection of extant literature indicates a need for a culture of leadership and innovation to promote organizational sustainability in the globalised world. This study debates the need for HEIs to prepare the graduate for both organizations and society as a whole. This active collaboration should be the very essence of both universities and the industry in order for these to achieve responsible sustainability. Learning and innovation further depend on leadership efficacy. This study follows the pragmatic paradigm methodology. Primary data collection is currently being gathered via the web-based questionnaire link which was made available on the UKZN notice system. The questionnaire has 35 items with a Likert scale of five response options. The purposeful sample method was used, and the population entails the undergraduate and postgraduate students in the College of Law and Business, University of KwaZulu-Natal, South Africa. Limitations include the design of the study and the reliance on the quantitative data as the only method of primary data collection. This study is of added value for scholars and organizations in the innovation economy.Keywords: knowledge creation, learning, performance, sustainability
Procedia PDF Downloads 2906230 Evaluation of Classification Algorithms for Diagnosis of Asthma in Iranian Patients
Authors: Taha SamadSoltani, Peyman Rezaei Hachesu, Marjan GhaziSaeedi, Maryam Zolnoori
Abstract:
Introduction: Data mining defined as a process to find patterns and relationships along data in the database to build predictive models. Application of data mining extended in vast sectors such as the healthcare services. Medical data mining aims to solve real-world problems in the diagnosis and treatment of diseases. This method applies various techniques and algorithms which have different accuracy and precision. The purpose of this study was to apply knowledge discovery and data mining techniques for the diagnosis of asthma based on patient symptoms and history. Method: Data mining includes several steps and decisions should be made by the user which starts by creation of an understanding of the scope and application of previous knowledge in this area and identifying KD process from the point of view of the stakeholders and finished by acting on discovered knowledge using knowledge conducting, integrating knowledge with other systems and knowledge documenting and reporting.in this study a stepwise methodology followed to achieve a logical outcome. Results: Sensitivity, Specifity and Accuracy of KNN, SVM, Naïve bayes, NN, Classification tree and CN2 algorithms and related similar studies was evaluated and ROC curves were plotted to show the performance of the system. Conclusion: The results show that we can accurately diagnose asthma, approximately ninety percent, based on the demographical and clinical data. The study also showed that the methods based on pattern discovery and data mining have a higher sensitivity compared to expert and knowledge-based systems. On the other hand, medical guidelines and evidence-based medicine should be base of diagnostics methods, therefore recommended to machine learning algorithms used in combination with knowledge-based algorithms.Keywords: asthma, datamining, classification, machine learning
Procedia PDF Downloads 4516229 Signed Language Phonological Awareness: Building Deaf Children's Vocabulary in Signed and Written Language
Authors: Lynn Mcquarrie, Charlotte Enns
Abstract:
The goal of this project was to develop a visually-based, signed language phonological awareness training program and to pilot the intervention with signing deaf children (ages 6 -10 years/ grades 1 - 4) who were beginning readers to assess the effects of systematic explicit American Sign Language (ASL) phonological instruction on both ASL vocabulary and English print vocabulary learning. Growing evidence that signing learners utilize visually-based signed language phonological knowledge (homologous to the sound-based phonological level of spoken language processing) when reading underscore the critical need for further research on the innovation of reading instructional practices for visual language learners. Multiple single-case studies using a multiple probe design across content (i.e., sign and print targets incorporating specific ASL phonological parameters – handshapes) was implemented to examine if a functional relationship existed between instruction and acquisition of these skills. The results indicated that for all cases, representing a variety of language abilities, the visually-based phonological teaching approach was exceptionally powerful in helping children to build their sign and print vocabularies. Although intervention/teaching studies have been essential in testing hypotheses about spoken language phonological processes supporting non-deaf children’s reading development, there are no parallel intervention/teaching studies exploring hypotheses about signed language phonological processes in supporting deaf children’s reading development. This study begins to provide the needed evidence to pursue innovative teaching strategies that incorporate the strengths of visual learners.Keywords: American sign language phonological awareness, dual language strategies, vocabulary learning, word reading
Procedia PDF Downloads 3376228 A Quantitative Analysis of Rural to Urban Migration in Morocco
Authors: Donald Wright
Abstract:
The ultimate goal of this study is to reinvigorate the philosophical underpinnings the study of urbanization with scientific data with the goal of circumventing what seems an inevitable future clash between rural and urban populations. To that end urban infrastructure must be sustainable economically, politically and ecologically over the course of several generations as cities continue to grow with the incorporation of climate refugees. Our research will provide data concerning the projected increase in population over the coming two decades in Morocco, and the population will shift from rural areas to urban centers during that period of time. As a result, urban infrastructure will need to be adapted, developed or built to fit the demand of future internal migrations from rural to urban centers in Morocco. This paper will also examine how past experiences of internally displaced people give insight into the challenges faced by future migrants and, beyond the gathering of data, how people react to internal migration. This study employs four different sets of research tools. First, a large part of this study is archival, which involves compiling the relevant literature on the topic and its complex history. This step also includes gathering data bout migrations in Morocco from public data sources. Once the datasets are collected, the next part of the project involves populating the attribute fields and preprocessing the data to make it understandable and usable by machine learning algorithms. In tandem with the mathematical interpretation of data and projected migrations, this study benefits from a theoretical understanding of the critical apparatus existing around urban development of the 20th and 21st centuries that give us insight into past infrastructure development and the rationale behind it. Once the data is ready to be analyzed, different machine learning algorithms will be experimented (k-clustering, support vector regression, random forest analysis) and the results compared for visualization of the data. The final computational part of this study involves analyzing the data and determining what we can learn from it. This paper helps us to understand future trends of population movements within and between regions of North Africa, which will have an impact on various sectors such as urban development, food distribution and water purification, not to mention the creation of public policy in the countries of this region. One of the strengths of this project is the multi-pronged and cross-disciplinary methodology to the research question, which enables an interchange of knowledge and experiences to facilitate innovative solutions to this complex problem. Multiple and diverse intersecting viewpoints allow an exchange of methodological models that provide fresh and informed interpretations of otherwise objective data.Keywords: climate change, machine learning, migration, Morocco, urban development
Procedia PDF Downloads 1616227 Applying Multiplicative Weight Update to Skin Cancer Classifiers
Authors: Animish Jain
Abstract:
This study deals with using Multiplicative Weight Update within artificial intelligence and machine learning to create models that can diagnose skin cancer using microscopic images of cancer samples. In this study, the multiplicative weight update method is used to take the predictions of multiple models to try and acquire more accurate results. Logistic Regression, Convolutional Neural Network (CNN), and Support Vector Machine Classifier (SVMC) models are employed within the Multiplicative Weight Update system. These models are trained on pictures of skin cancer from the ISIC-Archive, to look for patterns to label unseen scans as either benign or malignant. These models are utilized in a multiplicative weight update algorithm which takes into account the precision and accuracy of each model through each successive guess to apply weights to their guess. These guesses and weights are then analyzed together to try and obtain the correct predictions. The research hypothesis for this study stated that there would be a significant difference in the accuracy of the three models and the Multiplicative Weight Update system. The SVMC model had an accuracy of 77.88%. The CNN model had an accuracy of 85.30%. The Logistic Regression model had an accuracy of 79.09%. Using Multiplicative Weight Update, the algorithm received an accuracy of 72.27%. The final conclusion that was drawn was that there was a significant difference in the accuracy of the three models and the Multiplicative Weight Update system. The conclusion was made that using a CNN model would be the best option for this problem rather than a Multiplicative Weight Update system. This is due to the possibility that Multiplicative Weight Update is not effective in a binary setting where there are only two possible classifications. In a categorical setting with multiple classes and groupings, a Multiplicative Weight Update system might become more proficient as it takes into account the strengths of multiple different models to classify images into multiple categories rather than only two categories, as shown in this study. This experimentation and computer science project can help to create better algorithms and models for the future of artificial intelligence in the medical imaging field.Keywords: artificial intelligence, machine learning, multiplicative weight update, skin cancer
Procedia PDF Downloads 836226 ARABEX: Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder and Custom Convolutional Recurrent Neural Network
Authors: Hozaifa Zaki, Ghada Soliman
Abstract:
In this paper, we introduced an approach for Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder (ARABEX) with bidirectional LSTM. This approach is used for translating the Arabic dot-matrix expiration dates into their corresponding filled-in dates. A custom lightweight Convolutional Recurrent Neural Network (CRNN) model is then employed to extract the expiration dates. Due to the lack of available dataset images for the Arabic dot-matrix expiration date, we generated synthetic images by creating an Arabic dot-matrix True Type Font (TTF) matrix to address this limitation. Our model was trained on a realistic synthetic dataset of 3287 images, covering the period from 2019 to 2027, represented in the format of yyyy/mm/dd. We then trained our custom CRNN model using the generated synthetic images to assess the performance of our model (ARABEX) by extracting expiration dates from the translated images. Our proposed approach achieved an accuracy of 99.4% on the test dataset of 658 images, while also achieving a Structural Similarity Index (SSIM) of 0.46 for image translation on our dataset. The ARABEX approach demonstrates its ability to be applied to various downstream learning tasks, including image translation and reconstruction. Moreover, this pipeline (ARABEX+CRNN) can be seamlessly integrated into automated sorting systems to extract expiry dates and sort products accordingly during the manufacturing stage. By eliminating the need for manual entry of expiration dates, which can be time-consuming and inefficient for merchants, our approach offers significant results in terms of efficiency and accuracy for Arabic dot-matrix expiration date recognition.Keywords: computer vision, deep learning, image processing, character recognition
Procedia PDF Downloads 876225 Condition Based Assessment of Power Transformer with Modern Techniques
Authors: Piush Verma, Y. R. Sood
Abstract:
This paper provides the information on the diagnostics techniques for condition monitoring of power transformer (PT). This paper deals with the practical importance of the transformer diagnostic in the Electrical Engineering field. The life of the transformer depends upon its insulation i.e paper and oil. The major testing techniques applies on transformer oil and paper i.e dissolved gas analysis, furfural analysis, radio interface, acoustic emission, infra-red emission, frequency response analysis, power factor, polarization spectrum, magnetizing currents, turn and winding ratio. A review has been made on the modern development of this practical technology.Keywords: temperature, condition monitoring, diagnostics methods, paper analysis techniques, oil analysis techniques
Procedia PDF Downloads 4346224 Issues of Accounting of Lease and Revenue according to International Financial Reporting Standards
Authors: Nadezhda Kvatashidze, Elena Kharabadze
Abstract:
It is broadly known that lease is a flexible means of funding enterprises. Lease reduces the risk related to access and possession of assets, as well as obtainment of funding. Therefore, it is important to refine lease accounting. The lease accounting regulations under the applicable standard (International Accounting Standards 17) make concealment of liabilities possible. As a result, the information users get inaccurate and incomprehensive information and have to resort to an additional assessment of the off-balance sheet lease liabilities. In order to address the problem, the International Financial Reporting Standards Board decided to change the approach to lease accounting. With the deficiencies of the applicable standard taken into account, the new standard (IFRS 16 ‘Leases’) aims at supplying appropriate and fair lease-related information to the users. Save certain exclusions; the lessee is obliged to recognize all the lease agreements in its financial report. The approach was determined by the fact that under the lease agreement, rights and obligations arise by way of assets and liabilities. Immediately upon conclusion of the lease agreement, the lessee takes an asset into its disposal and assumes the obligation to effect the lease-related payments in order to meet the recognition criteria defined by the Conceptual Framework for Financial Reporting. The payments are to be entered into the financial report. The new lease accounting standard secures supply of quality and comparable information to the financial information users. The International Accounting Standards Board and the US Financial Accounting Standards Board jointly developed IFRS 15: ‘Revenue from Contracts with Customers’. The standard allows the establishment of detailed revenue recognition practical criteria such as identification of the performance obligations in the contract, determination of the transaction price and its components, especially price variable considerations and other important components, as well as passage of control over the asset to the customer. IFRS 15: ‘Revenue from Contracts with Customers’ is very similar to the relevant US standards and includes requirements more specific and consistent than those of the standards in place. The new standard is going to change the recognition terms and techniques in the industries, such as construction, telecommunications (mobile and cable networks), licensing (media, science, franchising), real property, software etc.Keywords: assessment of the lease assets and liabilities, contractual liability, division of contract, identification of contracts, contract price, lease identification, lease liabilities, off-balance sheet, transaction value
Procedia PDF Downloads 3236223 Mechanical Ventilation: Relationship between Body Mass Index and Selected Patients' Outcomes at a University Hospital in Cairo
Authors: Mohamed Mamdouh Al-Banna, Warda Youssef Mohamed Morsy, Hanaa Ali El-Feky, Ashraf Hussein Abdelmohsen
Abstract:
Background: The mechanically ventilated patients need a special nursing care with continuous closed observation. The patients’ body mass index may affect their prognosis or outcomes. Aim of the study: to investigate the relationship between BMI and selected outcomes of critically ill mechanically ventilated patients. Research Design: A descriptive correlational research design was utilized Research questions: a) what is the BMI profile of mechanically ventilated patients admitted to critical care units over a period of six months? b) What is the relationship between body mass index and frequency of organ dysfunction, length of ICU stay, weaning from mechanical ventilation, and the mortality rate among adult critically ill mechanically ventilated patients? Setting: different intensive care units of Cairo University Hospitals. Sample: A convenience sample of 30 mechanically ventilated patients for at least 72 hours. Tools of data collection: Three tools were utilized to collect data pertinent to the current study: tool 1: patients’ sociodemographic and medical data sheet, tool 2: BURNS Wean Assessment Program (BWAP) checklist, tool 3: Sequential organ failure assessment (SOFA score) sheet. Results: The majority of the studied sample (77%) was males, and (26.7 %) of the studied sample were in the age group of 18-28 years old, and (26.7 %) were in the age group of 40-50 years old. Moreover, two thirds (66.7%) of the studied sample were within normal BMI. No significant statistical relationship between BMI category and ICU length of stay or the mortality rate among the studied sample, (X² = 11.31, P value = 0.79), (X² = 0.15, P value = 0.928) respectively. No significant statistical relationship between BMI category and the weaning trials from mechanical ventilation among the studied sample, (X² = 0.15, P value = 0.928). No significant statistical relationship was found between BMI category and the occurrence of organ dysfunction among the studied sample, (X² = 2.54, P value = 0.637). Conclusion: No relationship between the BMI categories and the selected patients’ outcomes (weaning from MV, length of ICU stay, occurrence of organ dysfunction, mortality rate). Recommendations: Replication of this study on a larger sample from different geographical locations in Arab Republic of Egypt, conducting farther studies to assess the effect of the quality of nursing care on the mechanically ventilated patients’ outcomes.Keywords: mechanical ventilation, body mass index, outcomes of mechanically ventilated patient, organ failure
Procedia PDF Downloads 2556222 China’s Hotel m-Bookers’ Perceptions of their Booking Experiences
Authors: Weiqi Xia
Abstract:
We assess the perceptions of China’s hotel m-bookers using the E-SERVQUAL model and technology affordance assessment metrics. The data analysis provides insight into Chinese hotel m-bookers’ perceptions of information quality items, system quality items, and functional quality items. Respondents’ perceived value of such items is greatly enhanced via mini-program support and self-service innovation, which are predicted to be of increasing importance in the future. The findings of this study help close the gap between hotel operators’ understanding and customers’ perceptions. Our findings may also provide valuable insights into the functioning of China’s hotel industry.Keywords: mobile hotel booking, hotel m-bookers, user perception, China’s WeChat mini program, hotel booking apps.
Procedia PDF Downloads 506221 Monitoring of Quantitative and Qualitative Changes in Combustible Material in the Białowieża Forest
Authors: Damian Czubak
Abstract:
The Białowieża Forest is a very valuable natural area, included in the World Natural Heritage at UNESCO, where, due to infestation by the bark beetle (Ips typographus), norway spruce (Picea abies) have deteriorated. This catastrophic scenario led to an increase in fire danger. This was due to the occurrence of large amounts of dead wood and grass cover, as light penetrated to the bottom of the stands. These factors in a dry state are materials that favour the possibility of fire and the rapid spread of fire. One of the objectives of the study was to monitor the quantitative and qualitative changes of combustible material on the permanent decay plots of spruce stands from 2012-2022. In addition, the size of the area with highly flammable vegetation was monitored and a classification of the stands of the Białowieża Forest by flammability classes was made. The key factor that determines the potential fire hazard of a forest is combustible material. Primarily its type, quantity, moisture content, size and spatial structure. Based on the inventory data on the areas of forest districts in the Białowieża Forest, the average fire load and its changes over the years were calculated. The analysis was carried out taking into account the changes in the health status of the stands and sanitary operations. The quantitative and qualitative assessment of fallen timber and fire load of ground cover used the results of the 2019 and 2021 inventories. Approximately 9,000 circular plots were used for the study. An assessment was made of the amount of potential fuel, understood as ground cover vegetation and dead wood debris. In addition, monitoring of areas with vegetation that poses a high fire risk was conducted using data from 2019 and 2021. All sub-areas were inventoried where vegetation posing a specific fire hazard represented at least 10% of the area with species characteristic of that cover. In addition to the size of the area with fire-prone vegetation, a very important element is the size of the fire load on the indicated plots. On representative plots, the biomass of the land cover was measured on an area of 10 m2 and then the amount of biomass of each component was determined. The resulting element of variability of ground covers in stands was their flammability classification. The classification developed made it possible to track changes in the flammability classes of stands over the period covered by the measurements.Keywords: classification, combustible material, flammable vegetation, Norway spruce
Procedia PDF Downloads 956220 Proposal for an Inspection Tool for Damaged Structures after Disasters
Authors: Karim Akkouche, Amine Nekmouche, Leyla Bouzid
Abstract:
This study focuses on the development of a multifunctional Expert System (ES) called post-seismic damage inspection tool (PSDIT), a powerful tool which allows the evaluation, the processing, and the archiving of the collected data stock after earthquakes. PSDIT can be operated by two user types; an ordinary user (ingineer, expert, or architect) for the damage visual inspection and an administrative user for updating the knowledge and / or for adding or removing the ordinary user. The knowledge acquisition is driven by a hierarchical knowledge model, the Information from investigation reports and those acquired through feedback from expert / engineer questionnaires are part.Keywords: .disaster, damaged structures, damage assessment, expert system
Procedia PDF Downloads 89